WorldWideScience

Sample records for cycle inducing compounds

  1. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  2. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  3. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds

    Directory of Open Access Journals (Sweden)

    Di Renzo Livia

    2009-03-01

    Full Text Available Abstract Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ, sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1 and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells.

  4. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; CHENG, XIAOJIANG; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  5. The Thermodynamics of the Krebs Cycle and Related Compounds

    Science.gov (United States)

    Miller, Stanley L.; Smith-Magowan, David

    1990-07-01

    A survey is made of the enthalpies of formation, third law entropies and Gibbs energies available for Krebs cycle and related compounds. These include formate, acetate, succinate, fumarate, glycine, alanine, aspartate and glutamate. The potential of the NAD+/NADH couple is recalculated based on the ethanol/acetaldehyde and isopropanol/acetone equilibria. The reported enzyme catalyzed equilibrium constants of the Krebs cycle reactions are evaluated with estimated errors. These 28 equilibria form a network of reactions that is solved by a least squares regression procedure giving Gibbs energies of formation for 21 Krebs cycle and related compounds. They appear to be accurate to ±0.4 kJṡmol-1 for some compounds but ±1 kJṡmol-1 in less favorable cases. This procedure indicates which third law ΔfG and enzyme equilibria are inaccurate, and allows very accurate ΔfG to be determined for compounds related to the Krebs cycle by measuring enzyme equilibrium constants.

  6. Metabolic Basis of Visual Cycle Inhibition by Retinoid and Nonretinoid Compounds in the Vertebrate Retina*

    Science.gov (United States)

    Golczak, Marcin; Maeda, Akiko; Bereta, Grzegorz; Maeda, Tadao; Kiser, Philip D.; Hunzelmann, Silke; von Lintig, Johannes; Blaner, William S.; Palczewski, Krzysztof

    2008-01-01

    In vertebrate retinal photoreceptors, the absorption of light by rhodopsin leads to photoisomerization of 11-cis-retinal to its all-trans isomer. To sustain vision, a metabolic system evolved that recycles all-trans-retinal back to 11-cis-retinal. The importance of this visual (retinoid) cycle is underscored by the fact that mutations in genes encoding visual cycle components induce a wide spectrum of diseases characterized by abnormal levels of specific retinoid cycle intermediates. In addition, intense illumination can produce retinoid cycle by-products that are toxic to the retina. Thus, inhibition of the retinoid cycle has therapeutic potential in physiological and pathological states. Four classes of inhibitors that include retinoid and nonretinoid compounds have been identified. We investigated the modes of action of these inhibitors by using purified visual cycle components and in vivo systems. We report that retinylamine was the most potent and specific inhibitor of the retinoid cycle among the tested compounds and that it targets the retinoid isomerase, RPE65. Hydrophobic primary amines like farnesylamine also showed inhibitory potency but a short duration of action, probably due to rapid metabolism. These compounds also are reactive nucleophiles with potentially high cellular toxicity. We also evaluated the role of a specific protein-mediated mechanism on retinoid cycle inhibitor uptake by the eye. Our results show that retinylamine is transported to and taken up by the eye by retinol-binding protein-independent and retinoic acid-responsive gene product 6-independent mechanisms. Finally, we provide evidence for a crucial role of lecithin: retinol acyltransferase activity in mediating tissue specific absorption and long lasting therapeutic effects of retinoid-based visual cycle inhibitors. PMID:18195010

  7. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina.

    Science.gov (United States)

    Golczak, Marcin; Maeda, Akiko; Bereta, Grzegorz; Maeda, Tadao; Kiser, Philip D; Hunzelmann, Silke; von Lintig, Johannes; Blaner, William S; Palczewski, Krzysztof

    2008-04-11

    In vertebrate retinal photoreceptors, the absorption of light by rhodopsin leads to photoisomerization of 11-cis-retinal to its all-trans isomer. To sustain vision, a metabolic system evolved that recycles all-trans-retinal back to 11-cis-retinal. The importance of this visual (retinoid) cycle is underscored by the fact that mutations in genes encoding visual cycle components induce a wide spectrum of diseases characterized by abnormal levels of specific retinoid cycle intermediates. In addition, intense illumination can produce retinoid cycle by-products that are toxic to the retina. Thus, inhibition of the retinoid cycle has therapeutic potential in physiological and pathological states. Four classes of inhibitors that include retinoid and nonretinoid compounds have been identified. We investigated the modes of action of these inhibitors by using purified visual cycle components and in vivo systems. We report that retinylamine was the most potent and specific inhibitor of the retinoid cycle among the tested compounds and that it targets the retinoid isomerase, RPE65. Hydrophobic primary amines like farnesylamine also showed inhibitory potency but a short duration of action, probably due to rapid metabolism. These compounds also are reactive nucleophiles with potentially high cellular toxicity. We also evaluated the role of a specific protein-mediated mechanism on retinoid cycle inhibitor uptake by the eye. Our results show that retinylamine is transported to and taken up by the eye by retinol-binding protein-independent and retinoic acid-responsive gene product 6-independent mechanisms. Finally, we provide evidence for a crucial role of lecithin: retinol acyltransferase activity in mediating tissue specific absorption and long lasting therapeutic effects of retinoid-based visual cycle inhibitors.

  8. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  9. Capital dependent population growth induces cycles

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, Mustafa Kerem, E-mail: mkerem@bilkent.edu.tr [Bilkent University, Department of Economics, Bilkent, 06800 Ankara (Turkey)

    2011-09-15

    Highlights: > We examine the existence of cycles in Solow-Kalecki type economic growth models. > Cobb-Douglas type production functions and time delay are not sufficient for the economy to behave cyclic. > When capital dependent population dynamics are incorporated, the model induces Hopf bifurcation. - Abstract: Cobb-Douglas type production functions and time-delay are not sufficient for the economy to behave cyclic. However, capital dependent population dynamics can enforce Hopf bifurcation.

  10. Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV Lytic Cycle in EBV-Positive Epithelial Malignancies.

    Directory of Open Access Journals (Sweden)

    Chung King Choi

    Full Text Available Phorbol esters, which are protein kinase C (PKC activators, and histone deacetylase (HDAC inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es of strong inducer(s of EBV lytic cycle in gastric carcinoma (GC and nasopharyngeal carcinoma (NPC cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism

  11. Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies.

    Science.gov (United States)

    Choi, Chung King; Ho, Dona N; Hui, Kwai Fung; Kao, Richard Y; Chiang, Alan K S

    2015-01-01

    Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV

  12. Two new supramolecular compounds induced by novel ...

    Indian Academy of Sciences (India)

    Compound 1 has a 2D polypseudorotaxane structure and compound 2 presents a 1D chain structure. Furthermore, the thermal gravimetric analysis (TGA),UV–Vis diffusereflectance spectra, the morphology and the photocatalytic performances were studied carefully. Remarkably, both 1 and 2 exhibited good photocatalytic ...

  13. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  14. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-04-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.

  15. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle.

    Science.gov (United States)

    Jafari, Samineh; Saeidnia, Soodabeh; Abdollahi, Mohammad

    2014-01-01

    Natural phenolic compounds have been considered as one of the interesting secondary metabolites for their chemopreventive and chemotherapeutic effects in cancer for a long time. These are a large and diverse family of phytochemicals classified into several subgroups such as simple phenols, lignans, phenylpropanoids, flavonoids, coumarins, etc. The antioxidant potential of phenolic compounds is almost bolded in the treatment and prevention of cancer. Due to the concerns on the diverse effects of antioxidants in cancer, differentiation and clarification of their anti-neoplastic mechanisms are necessary. An important mechanism for phenolic compounds is related to their direct effect on the cell cycle progression, which has not been discussed in detail so far. This study aims to criticize the evidence on regulatory mechanisms of phenolic compounds in the cell cycle. Recent studies indicate that phenolic compounds from several subgroups significantly inhibit the proliferation of different cancer cells. The structural diversity of these compounds influences various components involved in cell cycle regulation. Forming active metabolites and sensitizing cancerous cells to chemotherapeutic medicines are additional values of these compounds. In the recent years, many studies on neoplastic cell cultures have been carried out to investigate the mechanisms of action of these compounds but dissimilarity of in vitro systems in comparison with human body in terms of metabolism and bioavailability is a major concern. Therefore, further studies are still needed.

  16. Elimination of quiescent slow-cycling cells via reducing quiescence depth by natural compounds purified from Ganoderma lucidum

    Science.gov (United States)

    Dai, Jian; Miller, Matthew A.; Everetts, Nicholas J.; Wang, Xia; Li, Peng; Li, Ye; Xu, Jian-Hua; Yao, Guang

    2017-01-01

    The medical mushroom Ganoderma lucidum has long been used in traditional Chinese medicine and shown effective in the treatment of many diseases including cancer. Here we studied the cytotoxic effects of two natural compounds purified from Ganoderma lucidum, ergosterol peroxide and ganodermanondiol. We found that these two compounds exhibited cytotoxicity not only against fast proliferating cells, but on quiescent, slow-cycling cells. Using a fibroblast cell-quiescence model, we found that the cytotoxicity on quiescent cells was due to induced apoptosis, and was associated with a shallower quiescent state in compound-treated cells, resultant from the increased basal activity of an Rb-E2F bistable switch that controls quiescence exit. Accordingly, we showed that quiescent breast cancer cells (MCF7), compared to its non-transformed counterpart (MCF10A), were preferentially killed by ergosterol peroxide and ganodermanondiol treatment presumably due to their already less stable quiescent state. The cytotoxic effect of natural Ganoderma lucidum compounds against quiescent cells, preferentially on quiescent cancer cells vs. non-cancer cells, may help future antitumor development against the slow-cycling cancer cell subpopulations including cancer stem and progenitor cells. PMID:28099150

  17. Elimination of quiescent slow-cycling cells via reducing quiescence depth by natural compounds purified from Ganoderma lucidum.

    Science.gov (United States)

    Dai, Jian; Miller, Matthew A; Everetts, Nicholas J; Wang, Xia; Li, Peng; Li, Ye; Xu, Jian-Hua; Yao, Guang

    2017-02-21

    The medical mushroom Ganoderma lucidum has long been used in traditional Chinese medicine and shown effective in the treatment of many diseases including cancer. Here we studied the cytotoxic effects of two natural compounds purified from Ganoderma lucidum, ergosterol peroxide and ganodermanondiol. We found that these two compounds exhibited cytotoxicity not only against fast proliferating cells, but on quiescent, slow-cycling cells. Using a fibroblast cell-quiescence model, we found that the cytotoxicity on quiescent cells was due to induced apoptosis, and was associated with a shallower quiescent state in compound-treated cells, resultant from the increased basal activity of an Rb-E2F bistable switch that controls quiescence exit. Accordingly, we showed that quiescent breast cancer cells (MCF7), compared to its non-transformed counterpart (MCF10A), were preferentially killed by ergosterol peroxide and ganodermanondiol treatment presumably due to their already less stable quiescent state. The cytotoxic effect of natural Ganoderma lucidum compounds against quiescent cells, preferentially on quiescent cancer cells vs. non-cancer cells, may help future antitumor development against the slow-cycling cancer cell subpopulations including cancer stem and progenitor cells.

  18. Life cycle responses of the midge Chironomus riparius to compounds with different modes of action

    NARCIS (Netherlands)

    Marinkovic, M.; Verweij, R.A.; Nummerdor, G.A.; Jonker, M.J.; Kraak, M.H.S.; Admiraal, W.

    2011-01-01

    Compounds with different modes of action may affect life cycles of biota differently. The aim of the present study was therefore to investigate the impact of four chemicals with different modes of action, including the essential metal copper, the nonessential metal cadmium, the organometal

  19. Life cycle responses of the midge Chironomus riparius to compounds with different modes of action.

    NARCIS (Netherlands)

    Marinkovic, M.; Verweij, R.A.; Nummerdor, G.A.; Jonker, M.J.; Kraak, M.H.S.; Admiraal, W.

    2011-01-01

    Compounds with different modes of action may affect life cycles of biota differently. The aim of the present study was therefore to investigate the impact of four chemicals with different modes of action, including the essential metal copper, the nonessential metal cadmium, the organometal

  20. Flow cytometry as a tool for analyzing changes in Plasmodium falciparum cell cycle following treatment with indol compounds.

    Science.gov (United States)

    Schuck, Desirée Cigaran; Ribeiro, Ramira Yuri; Nery, Arthur A; Ulrich, Henning; Garcia, Célia R S

    2011-11-01

    Melatonin and its derivatives modulate the Plasmodium falciparum and Plasmodium chabaudi cell cycle. Flow cytometry was employed together with the nucleic acid dye YOYO-1 allowing precise discrimination between mono- and multinucleated forms of P. falciparum-infected red blood cell. The use of YOYO-1 permitted excellent discrimination between uninfected and infected red blood cells as well as between early and late parasite stages. Fluorescence intensities of schizont-stage parasites were about 10-fold greater than those of ring-trophozoite form parasites. Melatonin and related indolic compounds including serotonin, N-acetyl-serotonin and tryptamine induced an increase in the percentage of multinucleated forms compared to non-treated control cultures. YOYO-1 staining of infected erythrocyte and subsequent flow cytometry analysis provides a powerful tool in malaria research for screening of bioactive compounds. Copyright © 2011 International Society for Advancement of Cytometry.

  1. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies

    Science.gov (United States)

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-01-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation. PMID:28367072

  2. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  3. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Science.gov (United States)

    Sztiller-Sikorska, Malgorzata; Koprowska, Kamila; Majchrzak, Kinga; Hartman, Mariusz; Czyz, Malgorzata

    2014-01-01

    Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti

  4. Nutrient cycling in bedform induced hyporheic zones

    Science.gov (United States)

    Bardini, L.; Boano, F.; Cardenas, M. B.; Revelli, R.; Ridolfi, L.

    2012-05-01

    The hyporheic zone is an ecotone connecting the stream and groundwater ecosystem that plays a significant role for stream biogeochemistry. Water exchange across the stream-sediment interface and biogeochemical reactions in the streambed concur to affect subsurface solute concentrations and eventually nutrient cycling in the fluvial corridor. In this paper we investigate the interplay of hydrological and biogeochemical processes in a duned streambed and their effect on spatial distribution of solutes. We employ a numerical model to simulate the turbulent water flow and the pressure distribution over the dunes, and then to evaluate the flow field and the biogeochemical reactions in the hyporheic sediments. Sensitivity analyses are performed to analyze the influence of hydrological and chemical properties of the system on solute reaction rates. The results demonstrate the effect of stream velocity and sediment permeability on the chemical zonation. Changing sediment permeability as well as stream velocity directly affects the nutrient supply and the residence times in the streambed, thus controlling the reaction rates under the dune. Stream-water quality is also shown to influence the reactive behavior of the sediments. In particular, the availability of dissolved organic carbon determines whether the streambed acts as a net sink or source of nitrate. This study represents a step towards a better understanding of the complex interactions between hydrodynamical and biogeochemical processes in the hyporheic zone.

  5. The effect of hydroxybenzoate calcium compounds in inducing cell death in epithelial breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nada M Merghani

    2015-12-01

    Full Text Available Hydroxybenzoate (HB compounds have shown their significance in inducing apoptosis in primary chronic lymphocytic leukemia (CLL and cancer cell lines, including HT-1080. The current study focuses on assessing the effects of 2-, 3- and 4-hydroxybenzoate calcium (HBCa compounds on MCF-10A, MDA-MB231 and MCF-7 epithelial breast cell lines. The HBCa-treated cells were examined using annexin V, to measure apoptosis in the three epithelial breast cell lines, after 48 h of treatment. The results indicated that 0.5 and 2.5 mmol/L of HBCa induced cell death in a dose-dependent manner. The induction of cell death in normal MCF-10A cells was found to be significantly less (p = 0.0003–0.0068, in comparison to the malignant cell lines (MDA-MB231 and MCF-7. HBCa compounds were also found to cause cell cycle arrest in the epithelial breast cells at G1/G0. Furthermore, HBCa compounds induced the upregulation of apoptotic proteins (p53, p21, Bax and caspase-3, as well as the downregulation of the anti-apoptotic protein Bcl-2, which may suggest that apoptosis is induced via the intrinsic pathway.

  6. Chemotheraphy Efficiency of Phosphonium Heterocyclic Compounds with Pyrimidine Cycle in Models of Generalized Staph Infection

    Directory of Open Access Journals (Sweden)

    A.V. Humenna

    2016-02-01

    Full Text Available It was conducted the study of the effectiveness of chemotherapy with 2-phenyl-4-(1-pyrrolidinyl-6-izopropiltio-5-pyrimidyltriphenylphosphonium perchlorate, which refers to phosphonium heterocyclic compounds with pyrimidine cycle in the experiment on the model of generalized staph infection. The results were positive and they allow make a conclusion about the possibility of their use in clinical trials and develop promising antibacterial and antiseptic preparations on their basis.

  7. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling.

    Science.gov (United States)

    Yang, Lijie; Cheng, Xinqun; Gao, Yunzhi; Zuo, Pengjian; Ma, Yulin; Du, Chunyu; Shen, Bin; Cui, Yingzhi; Guan, Ting; Yin, Geping

    2014-08-13

    Lithium compound deposition on mesocarbon microbead (MCMB) anode after long-term cycling was studied in LiCoO2/MCMB battery. Lithium compound deposition did not generate on the activated MCMB anode, but it generated unevenly on the long-term cycled anode. Gray deposition composed of dendrites and particles was formed on the lower surface of the MCMB layer first, then on the upper surface. The deposition and MCMB layer peeled off from the current collector, and a bump was formed in the cycled anode. The exfoliation and thick deposition increased the ohmic resistance, film resistance, and charge transfer resistance of the cell and decreased the capacity significantly. Metallic lithium did not exist in either the upper or the lower deposition layer according to the results of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), the discharge curve, and anode potential. The outer region of both the lower and the upper deposition layers consisted of Li2CO3, LiOH, ROCO2Li, and ROLi. The inner region of the etched lower deposition layer mainly consisted of Li2O, LiF, and Li2CO3, and that of the etched upper deposition layer mainly consisted of Li2CO3, ROCO2Li, ROLi, and LiF. Solid electrolyte interphase (SEI) film hindering the intercalation of lithium ions into carbon layers and LiCoO2 cathode providing lithium source for the deposition were the two reasons leading to the formation of lithium compound deposition during long-term cycles. Because SEI film on the lower surface of MCMB layer was thicker than that on the upper surface, lithium compound deposition generated on the lower surface first.

  8. Role of wastewater treatment plant (WWTP in environmental cycling of poly- and perfluoroalkyl (PFAS compounds

    Directory of Open Access Journals (Sweden)

    Hanna Hamid

    2016-11-01

    Full Text Available The role of wastewater treatment plant (WWTP in environmental cycling of the poly- and perfluoroalkyl compounds (PFASs through the aqueous effluent, sludge and air emission has been critically reviewed here. Understanding the role WWTPs can provide better understanding of global cycling of persistent PFASs and assist in formulating relevant environmental policies. The review suggested that, the WWTP effluent is a major source of perfluoroalkyl acids (PFAAs in surface water. Land application of biosolids (treated sludge have shown preferential bioaccumulation of short chain (cycle. Elevated air concentration (1.5 to 15 times of ∑PFASs were reported higher on WWTP sites (above aeration tanks, compared to reference sites not contaminated with WWTP emission. The air emission of neutral PFASs has important implication considering the long-range transport and subsequent degradation of the neutral compounds leading to the occurrence of recalcitrant PFAAs in pristine, remote environments. Research gap exist in terms of fate of polyfluroalkyl compounds (neutral PFASs during wastetwater treatment and in aquatic and terrestrial environemnt. Considering the wide range of commercially available PFASs, measuring only perfluorocarboxylic acid (PFCA and perfluorosulfonic acid (PFSA can lead to underestimation total PFAS load derived from WWTPs. Knowledge of the various pathways of PFAS from WWTP to receiving environment, outlined in this study can help to adopt best possible management practices to reduce the release of PFASs from WWTP.

  9. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    Science.gov (United States)

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  11. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.

    Science.gov (United States)

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-10-03

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.

  12. Biotransformations Utilizing β-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    Directory of Open Access Journals (Sweden)

    Alina Świzdor

    2012-12-01

    Full Text Available β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described.

  13. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Makarov, M. I.

    2017-09-01

    Chloride ions in soil may interact with soil organic matter and form organochlorine compounds in situ. The biotic chlorination of soil organic substances takes places under aerobic conditions with participation of H2O2 forming from peroxidases released by soil microorganisms (in particular, by microscopic fungi). The abiotic chlorination results also from the redox reactions with the participation of Fe3+/Fe2+ system, but it develops several times slower. Chlorination of soil organic substances is favored by Cl- coming to soil both from natural (salinized soil-forming rocks and groundwater, sea salt) and anthropogenic sources of chlorides, i.e., spills of saline water at oil production, road deicing chemicals, mineral fertilizers, etc. The study of the biogeochemical chlorine cycle should take into account the presence of organochlorine compounds in soils, in addition to transformation and migration of chloride ions.

  14. Oxime-Induced Reactivation of Carboxylesterase Inhibited by Organophosphorus Compounds

    Science.gov (United States)

    1993-05-13

    O.NOH C.l(H CII,- 0-(4 Ixonitroso acet0- 2-PAK M- phenofle (IN"P) O4."M C14.NW C-0 Nonoisontrou’- Diacetyl mono- T9 acetOne . (XINA) oxims (DAN) 823...Or AD-POOB 837111.1 IIII IN III EllNIH NI Oxime -induced Reactivation of Carboxylesterase Inhibited by Organophosphorus Compounds Donald M. Maxwell...ABSTRACT A structure-activity analysis of the ability of oximes to reactivate rat plasma carboxylesterase (CaE) that was inhibited by organophosphorus

  15. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  16. Identification of benzazole compounds that induce HIV-1 transcription.

    Directory of Open Access Journals (Sweden)

    Jason D Graci

    Full Text Available Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents.

  17. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  18. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    Science.gov (United States)

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  19. Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization.

    Science.gov (United States)

    Meng, Jing; Shi, Chenxia; Li, Lin; Du, Yumin; Xu, Yanfang

    2013-10-15

    Impaired ventricular repolarization can lead to long QT syndrome (LQT), a proarrhythmic disease with high risk of developing lethal ventricular tachyarrhythmias. The compound ICA-105574 is a recently developed hERG activator and it enhances IKr current with very high potency by removing the channel inactivation. The present study was designed to investigate antiarrhythmic properties of ICA-105574. For comparison, the effects of another compound NS1643 was in-parallel assessed, which also acts primarily to attenuate channel inactivation with moderate potency. We found that both ICA-105574 and NS1643 concentration-dependently shortened action potential duration (APD) in ventricular myocytes, and QT/QTc intervals in isolated guinea-pig hearts. ICA-105574, but not NS1643, completely prevented ventricular arrhythmias in intact guinea-pig hearts caused by IKr and IKs inhibitors, although both ICA-105574 and NS1643 could reverse the drug-induced prolongation of APD in ventricular myocytes. Reversing prolongation of QT/QTc intervals and antagonizing the increases in transmural dispersion of repolarization and instability of the QT interval induced by IKr and IKs inhibitors contributed to antiarrhythmic effect of ICA-105574. Meanwhile, ICA-105574 at higher concentrations showed a potential proarrhythmic risk in normal hearts. Our results suggest that ICA-105574 has more efficient antiarrhythmic activity than NS1643. However, its potential proarrhythmic risk implies that benefits and risks should be seriously taken into consideration for further developing this type of hERG activators. © 2013 Elsevier B.V. All rights reserved.

  20. Compound

    Indian Academy of Sciences (India)

    UV-vis spectra showing solvent effects on compounds (6). Figure S4. UV-vis spectra showing solvent effects on compounds (9). Figure S5. UV-vis spectra showing solvent ___, acidic--- and basic -□- effects on compound (8) in CH2Cl2 solution. Table S1. 1H and 13C NMR spectral data of salicylaldimine Schiff bases (5-8).

  1. Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander

    2013-01-01

    More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.

  2. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  3. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

    Science.gov (United States)

    Lawrence, Scott A; Armstrong, Charlotte B; Patrick, Wayne M; Gerth, Monica L

    2017-01-01

    Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi, which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida, which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta, we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi. Additionally, we present here the first published protocol for producing zoospores from P. agathidicida, which will aid in the further study of this emerging pathogen.

  4. Effect of Thermal Cycle on the Formation of Intermetallic Compounds in Laser Welding of Aluminum-Steel Overlap Joints

    Science.gov (United States)

    Fan, J.; Thomy, C.; Vollertsen, F.

    The intermetallic compound (IMC) (or intermetallic phase layer) has a significant influence on the mechanical properties ofjoints between dissimilar metals obtained by thermal processes such as laser welding. Its formation is basically affected by thermal cycles in the joining or contact zone, where the IMC is formed. Within this study, the influence of the thermal cycle on the formation of the IMC during laser welding of an aluminum-steel (Al99.5-DC01) overlap joint was investigated. The temperature was measured directly by a thermocouple, and the weld seam was analyzed by scanning electron microscope (SEM). The influence of peak temperature, cooling time and the integral of the thermal cycle on the thickness of the IMC was identified and discussed. It was identified that cooling time has the biggest influence on the thickness of the IMC.

  5. Advances in induced resistance by natural compounds: towards new options for woody crop protection

    Directory of Open Access Journals (Sweden)

    Eugenio Llorens

    Full Text Available ABSTRACT: The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.

  6. S-52, a novel nootropic compound, protects against β-amyloid induced neuronal injury by attenuating mitochondrial dysfunction.

    Science.gov (United States)

    Gao, Xin; Zheng, Chun Yan; Qin, Guo Wei; Tang, Xi Can; Zhang, Hai Yan

    2012-10-01

    Accumulating evidence suggests that β-amyloid (Aβ)-induced oxidative DNA damage and mitochondrial dysfunction may initiate and contribute to the progression of Alzheimer's disease (AD). This study evaluated the neuroprotective effects of S-52, a novel nootropic compound, on Aβ-induced mitochondrial failure. In an established paradigm of moderate cellular injury induced by Aβ, S-52 was observed to attenuate the toxicity of Aβ to energy metabolism, mitochondrial membrane structure, and key enzymes in the electron transport chain and tricarboxylic acid cycle. In addition, S-52 also effectively inhibited reactive oxygen species accumulation dose dependently not only in Aβ-harmed cells but also in unharmed, normal cells. The role of S-52 as a scavenger of free radicals is involved in the antioxidative effect of this compound. The beneficial effects on mitochondria and oxidative stress extend the neuroprotective effects of S-52. The present study provides crucial information for better understanding the beneficial profiles of this compound and discovering novel potential drug candidates for AD therapy. Copyright © 2012 Wiley Periodicals, Inc.

  7. Ligand-induced TCR down-regulation is not dependent on constitutive TCR cycling

    DEFF Research Database (Denmark)

    Dietrich, Jes; Menné, Charlotte; Lauritsen, Jens Peter H

    2002-01-01

    is regulated by mechanisms distinct from those involved in constitutive internalization, whereas other studies have suggested that the ligand-induced TCR internalization pathway is identical with the constitutive pathway. To resolve this question, we first identified requirements for constitutive TCR cycling......-induced internalization of the TCR. In conclusion, ligand-induced TCR internalization and constitutive cycling of the TCR represents two independent pathways regulated by different mechanisms....

  8. Influence of menstrual cycle and salivary ß-estradiol on volatile sulfur compound

    Directory of Open Access Journals (Sweden)

    Shahla Kakoei

    2012-07-01

    CONCLUSIONS: The menstrual cycle, stress and oral dryness were the most important determinants of halitosis. The salivary ß-estradiol level could not explain such relationship as its effect was eliminated considering the other factors.

  9. Compound 49b protects against blast-induced retinal injury.

    Science.gov (United States)

    Jiang, Youde; Liu, Li; Pagadala, Jayaprakash; Miller, Duane D; Steinle, Jena J

    2013-07-30

    To determine whether Compound 49b, a novel beta-adrenergic receptor agonist, can prevent increased inflammation and apoptosis in mice after exposure to ocular blast. Eyes of C57/BL6 mice were exposed to a blast of air from a paintball gun at 26 psi (≈0.18 MPa). Eyes were collected 4 hours, 24 hours, and 72 hours after blast exposure. In a subset of mice, Compound 49b eyedrops (1 mM) were applied within 4 hours, 24 hours, or 72 hours of the blast. Three days after blast exposure, all mice were sacrificed. One eye was used to measure levels of retinal proteins (TNFα, IL-1β, Bax, BcL-xL, caspase 3, and cytochrome C). The other eye was used for TUNEL labeling of apoptotic cells, which were co-labeled with NeuN to stain for retinal ganglion cells. We found that ocular exposure to 26 psi air pressure led to a significant increase in levels of apoptotic and inflammatory mediators within 4 hours, which lasted throughout the period investigated. When Compound 49b was applied within 4 hours or 24 hours of blast injury, levels of apoptotic and inflammatory mediators were significantly reduced. Application of Compound 49b within 72 hours of blast injury reduced levels of inflammatory mediators, but not to untreated levels. Ocular blast injury produces a significant increase in levels of key inflammatory and apoptotic markers in the retina as early as 4 hours after blast exposure. These levels are significantly reduced if a beta-adrenergic receptor agonist is applied within 24 hours of blast exposure. Data suggest that local application of beta-adrenergic receptor agonists may be beneficial to reduce inflammation and apoptosis.

  10. Radiation induced chemical changes of phenolic compounds in strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Breitfellner, F.; Solar, S. E-mail: sonja.solar@univie.ac.at; Sontag, G

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  11. Roles of autophagy induced by natural compounds in prostate cancer.

    Science.gov (United States)

    Naponelli, V; Modernelli, A; Bettuzzi, S; Rizzi, F

    2015-01-01

    Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment. Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.

  12. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis.

    Science.gov (United States)

    Li, Yi; Wen, Jia-Ming; Du, Chuan-Jun; Hu, Su-Min; Chen, Jia-Xi; Zhang, Shi-Geng; Zhang, Nan; Gao, Feng; Li, Shao-Jiang; Mao, Xia-Wa; Miyamoto, Hiroshi; Ding, Ke-Feng

    2017-09-16

    Thymol is a phenolic compound with various pharmacological activities such as anti-inflammatory, anti-bacterial and anti-tumor effects. However, the effect of thymol on bladder cancer cell growth is still elusive. The purpose of this study is to investigate the efficacy of thymol in bladder cancer cells and its underlying mechanism. Thymol inhibited bladder cancer cell proliferation in a dose and time-dependent manner. We also observed cell cycle arrest at the G2/M phase after the treatment of thymol. Moreover, thymol could induce apoptosis in bladder cancer cells via the intrinsic pathway along with caspase-3/9 activation, release of cytochrome c and down-regulation of anti-apoptotic Bcl-2 family proteins. The activation of JNK and p38 was also critical for thymol-induced apoptosis since it was abrogated by the treatment of JNK inhibitor (SP600125), and p38 inhibitor (SB203580) but not ERK inhibitor (SCH772984). Furthermore, the generation of ROS (reactive oxygen species) was detected after the treatment of thymol. ROS scavenger NAC (N-acetyl cysteine) could block the thymol-triggered apoptosis and activation of MAPKs. These findings offer a novel therapeutic approach for bladder cancer. Copyright © 2017. Published by Elsevier Inc.

  13. Induced moment due to perpendicular field cycling in trained ...

    Indian Academy of Sciences (India)

    specular mode has recently revealed that perpendicular field cycling brings about a modification in the interfacial mag- netization of a trained exchange coupled interface. We show here by various model fits to our neutron reflectivity data that a ...

  14. Sesquiterpene lactones from Ambrosia spp. are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest.

    Science.gov (United States)

    Martino, Renzo; Beer, María Florencia; Elso, Orlando; Donadel, Osvaldo; Sülsen, Valeria; Anesini, Claudia

    2015-10-01

    Sesquiterpene lactones (STLs) are natural terpenoid compounds. They have been recognized as antitumor agents. The purpose of this investigation was to explore the antiproliferative effects of psilostachyin, psilostachyin C, peruvin and cumanin on the murine lymphoma cell line BW5147. Cells were treated with the STLs at different concentrations. Tritiated thymidine uptake was employed to determine cell proliferation. MTT assay was used to analyze cell viability. Flow cytometry assay with annexin V-FITC and propidium iodide was employed to evaluate cell death. Reactive oxygen species (ROS), mitochondrial membrane potential and cell cycle analysis were also evaluated by flow cytometry. Antioxidant enzymes activities were determined spectrophotometrically by kinetic assays. Results showed that these STLs inhibited cell proliferation in a concentration-dependent manner by exerting cytotoxicity through apoptosis. Psilostachyin C was the most active and the less toxic compound. This STL induced apoptosis with an impairment in mitochondrial membrane potential. Psilostachyin C was able to induce ROS generation, related to a modulation of the antioxidant enzymes activity. In addition, it induced cell cycle arrest in S phase. In conclusion, psilostachyin C was found to be active against lymphoma cells exerting both cytostatic and cytotoxic effects. These findings may provide a novel approach for lymphoma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Kaempferol, a flavonoid compound from Gynura medica induced ...

    African Journals Online (AJOL)

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we ...

  16. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    Science.gov (United States)

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  17. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  18. stress-induced release of prolactin in cycling and anoestrous ewes ...

    African Journals Online (AJOL)

    STRESS-INDUCED RELEASE OF PROLACTIN IN CYCLING AND ANOESTROUS EWES,. AND IN WETHERS. OPSOMMING: VRYSTELLING VAN PROLAKTIEN ONDER SPANNINGSTOESTANDE BY OOIE IN VERSKILLENDE STADIUMS VAN. REPRODUKSIE, EN BY HAMELS. Aangesien dit bekend is dat spanning die ...

  19. Induced moment due to perpendicular field cycling in trained ...

    Indian Academy of Sciences (India)

    Depth-sensitive polarized neutron scattering in specular and off-specular mode has recently revealed that perpendicular field cycling brings about a modification in the interfacial magnetization of a trained exchange coupled interface. We show here by various model fits to our neutron reflectivity data that a restoration of the ...

  20. Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell.

    Science.gov (United States)

    Yu, Jing hua; Liu, Chun yu; Zheng, Gui bin; Zhang, Li Ying; Yan, Ming hui; Zhang, Wen yan; Meng, Xian ying; Yu, Xiao fang

    2013-01-01

    PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC.

  1. Fast temperature cycling stress-induced and electromigration-induced interlayer dielectric cracking failure in multilevel interconnection

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Nguyen, H.; Salm, Cora; Vroemen, J.; Voets, J.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    2002-01-01

    There is an increasing reliability concern of thermal stress-induced and electromigration-induced failures in multilevel interconnections in recent years. This paper reports our investigations of thin film cracking of a multilevel interconnect due to fast temperature cycling and electromigration

  2. Recovery of the Cell Cycle Inhibition in CCl4-Induced Cirrhosis by the Adenosine Derivative IFC-305

    Directory of Open Access Journals (Sweden)

    Victoria Chagoya de Sánchez

    2012-01-01

    Full Text Available Introduction. Cirrhosis is a chronic degenerative illness characterized by changes in normal liver architecture, failure of hepatic function, and impairment of proliferative activity. The aim of this study is to know how IFC-305 compound induces proliferation of the liver during reversion of cirrhosis. Methods. Once cirrhosis has been installed by CCl4 treatment for 10 weeks in male Wistar rats, they were divided into four groups: two received saline and two received the compound; all were euthanized at 5 and 10 weeks of treatment. Liver homogenate, mitochondria, and nucleus were used to measure cyclins, CDKs, and cell cycle regulatory proteins PCNA, pRb, p53, E2F, p21, p27, HGF, liver ATP, and mitochondrial function. Results. Diminution and small changes were observed in the studied proteins in the cirrhotic animals without treatment. The IFC-305-treated rats showed a clear increase in most of the proteins studied mainly in PCNA and CDK6, and a marked increased in ATP and mitochondrial function. Discussion/Conclusion. IFC-305 induces a recovery of the cell cycle inhibition promoting recovery of DNA damage through the action of PCNA and p53. The increase in energy and preservation of mitochondrial function contribute to recovering the proliferative function.

  3. Purified Brominated Indole Derivatives from Dicathais orbita Induce Apoptosis and Cell Cycle Arrest in Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-10-01

    Full Text Available Dicathais orbita is a large Australian marine gastropod known to produce bioactive compounds with anticancer properties. In this research, we used bioassay guided fractionation from the egg mass extract of D. orbita using flash column chromatography and identified fractions containing tyrindoleninone and 6-bromoisatin as the most active against colon cancer cells HT29 and Caco-2. Liquid chromatography coupled with mass spectrometry (LCMS and 1H NMR were used to characterize the purity and chemical composition of the isolated compounds. An MTT assay was used to determine effects on cell viability. Necrosis and apoptosis induction using caspase/LDH assay and flow cytometry (PI/Annexin-V and cell cycle analysis were also investigated. Our results show that semi-purified 6-bromoisatin had the highest anti-cancer activity by inhibiting cell viability (IC50 = ~100 µM and increasing caspase 3/7 activity in both of the cell lines at low concentration. The fraction containing 6-bromoisatin induced 77.6% apoptosis and arrested 25.7% of the cells in G2/M phase of cell cycle in HT29 cells. Tyrindoleninone was less potent but significantly decreased the viability of HT29 cells at IC50 = 390 µM and induced apoptosis at 195 µM by increasing caspase 3/7 activity in these cells. This research will facilitate the development of these molluscan natural products as novel complementary medicines for colorectal cancer.

  4. Neonatal handling induces anovulatory estrous cycles in rats

    Directory of Open Access Journals (Sweden)

    Gomes C.M.

    1999-01-01

    Full Text Available Since previous work has shown that stimulation early in life decreases sexual receptiveness as measured by the female lordosis quotient, we suggested that neonatal handling could affect the function of the hypothalamus-pituitary-gonadal axis. The effects of neonatal handling on the estrous cycle and ovulation were analyzed in adult rats. Two groups of animals were studied: intact (no manipulation, N = 10 and handled (N = 11. Pups were either handled daily for 1 min during the first 10 days of life or left undisturbed. At the age of 90 days, a vaginal smear was collected daily at 9:00 a.m. and analyzed for 29 days; at 9:00 a.m. on the day of estrus, animals were anesthetized with thiopental (40 mg/kg, ip, the ovaries were removed and the oviduct was dissected and squashed between 2 glass slides. The number of oocytes of both oviductal ampullae was counted under the microscope. The average numbers for each phase of the cycle (diestrus I, diestrus II, proestrus and estrus during the period analyzed were compared between the two groups. There were no significant differences between intact and handled females during any of the phases. However, the number of handled females that showed anovulatory cycles (8 out of 11 was significantly higher than in the intact group (none out of 10. Neonatal stimulation may affect not only the hypothalamus-pituitary-adrenal axis, as previously demonstrated, but also the hypothalamus-pituitary-gonadal axis in female rats.

  5. RTV Silicone Rubber Degradation Induced by Temperature Cycling

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-07-01

    Full Text Available Room temperature vulcanized (RTV silicone rubber is extensively used in power system due to its hydrophobicity and hydrophobicity transfer ability. Temperature has been proven to markedly affect the performance of silicone rubbers. This research investigated the degradation of RTV silicone rubber under temperature cycling treatment. Hydrophobicity and its transfer ability, hardness, functional groups, microscopic appearance, and thermal stability were analyzed using the static contact angle method, a Shore A durometer, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and thermogravimetry (TG, respectively. Some significant conclusions were drawn. After the temperature was cycled between −25 °C and 70 °C, the hydrophobicity changed modestly, but its transfer ability changed remarkably, which may result from the competition between the formation of more channels for the transfer of low molecular weight (LMW silicone fluid and the reduction of LMW silicone fluid in the bulk. A hardness analysis and FTIR analysis demonstrated that further cross-linking reactions occurred during the treatment. SEM images showed the changes in roughness of the RTV silicone rubber surfaces. TG analysis also demonstrated the degradation of RTV silicone rubber by presenting evidence that the content of organic materials decreased during the temperature cycling treatment.

  6. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    Science.gov (United States)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  7. Licochalcone B Arrests Cell Cycle Progression and Induces Apoptosis in Human Breast Cancer MCF-7 Cells.

    Science.gov (United States)

    Yu, Lina; Ma, Jun; Han, Jichun; Wang, Bo; Chen, Xiaoyu; Gao, Caixia; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Recent patent of licochalcone B (LCB) as an antiinflammatory agent has been developed. Emerging evidence shows that LCB may be a promising alternative compound with anti-cancer activities. However, the anticancer mechanism of LCB in MCF-7 cells has not been fully investigated. We aimed to unearth the anti-cancer effect and mechanism of LCB in MCF-7 cells. Cell proliferation activity and cell-cycle progression were determined by sulforhodamine B assay and flow cytometry, respectively. The mRNA and protein levels of cell cycle-related proteins and apoptosis-associated proteins were examined by RT-qPCR and western blot, respectively. Mitochondrial membrane potential (MMP) was measured by flow cytometry after JC-1 staining. We found that LCB inhibited MCF-7 cells proliferation in a concentration- and time-dependent manner. Moreover, LCB-treatment led to S phase arrest in MCF-7 cells, which could be elucidated by the decreased mRNA and protein levels of Cyclin A, Cdk2 and Cdc25 A, and the increased protein level of p21. LCB also induced such apoptosis morphology as phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Moreover, LCB led to the loss of MMP, resulting in the release of cytochrome C. The above apoptotic events were supported by the fact that LCB upregulated the mRNA and protein levels of Caspase 3, Caspase 9 and Bax, and downregulated the mRNA and protein level of Bcl-2, which was triggered by the increased p53 protein level in LCB-treated MCF-7 cells. These findings suggested that LCB could be a promising agent for treatment of human breast cancer.

  8. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  9. The mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds

    Science.gov (United States)

    Deguchi, Keita; Demura, Satoshi; Okazaki, Hiroyuki; Denholme, Saleem; Fujioka, Masaya; Ozaki, Toshinori; Yamaguchi, Takahide; Takeya, Hiroyuki; Takano, Yoshihiko

    2013-03-01

    We have clarified the mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds. Previously we reported that the bulk superconductivity in Fe-based compounds Fe(Te, Se) and Fe(Te, S) is achieved by heating in alcoholic beverages. However, the exact mechanism of how they act to enhance the superconductivity in the compounds remains unsolved. To understand the effect of alcoholic beverage treatment, we investigated the mechanism using a technology of metabolomic analysis. We found that weak acid in alcoholic beverages has the ability to deintercalate the excess Fe, which is not in favor of superconductivity. In this presentation, we will discuss the systematic mechanism to induce superconductivity in Fe-chalcogenide compounds.

  10. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    Science.gov (United States)

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  11. Glutathione prevents ethanol induced gastric mucosal damage and depletion of sulfhydryl compounds in humans.

    Science.gov (United States)

    Loguercio, C; Taranto, D; Beneduce, F; del Vecchio Blanco, C; de Vincentiis, A; Nardi, G; Romano, M

    1993-01-01

    Whether parenteral administration of reduced glutathione prevented ethanol induced damage to and depletion of sulfhydryl compounds in the human gastric mucosa was investigated. Ten healthy volunteers underwent endoscopy on three separate occasions. Gastric mucosal damage was induced by spraying 80% ethanol on to the gastric mucosa through the biopsy channel of the endoscope. The gastric mucosal score, total sulfhydryls, glutathione, and cysteine were evaluated in basal conditions and after ethanol administration with and without pretreatment with parenteral glutathione. Glutathione significantly decreased the extent of ethanol induced macroscopic injury to the mucosa of the gastric body and antrum. Glutathione's protective effect is associated with appreciable inhibition of ethanol induced depletion of gastric sulfhydryl compounds. This is the first report of protection against ethanol induced gastric mucosal damage by a sulfhydryl containing agent in humans. PMID:8432465

  12. Fast temperature cycling and electromigration induced thin film cracking multilevel interconnection: experiments and modeling

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Nguyen, H.; Salm, Cora; Vroemen, J.; Voets, J.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    2002-01-01

    There is an increasing reliability concern of thermal stress-induced and electromigration-induced failures in multilevel interconnections in recent years. This paper reports our investigations of thinfilm cracking of a multilevel interconnect due to fast temperature cycling and electromigration

  13. Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard

    Science.gov (United States)

    Fares, S.; Park, J.-H.; Gentner, D. R.; Weber, R.; Ormeño, E.; Karlik, J.; Goldstein, A. H.

    2012-10-01

    Orange trees are widely cultivated in Mediterranean climatic regions where they are an important agricultural crop. Citrus have been characterized as emitters of volatile organic compounds (VOC) in chamber studies under controlled environmental conditions, but an extensive characterization at field scale has never been performed using modern measurement methods, and is particularly needed considering the complex interactions between the orchards and the polluted atmosphere in which Citrus is often cultivated. For one year, in a Valencia orange orchard in Exeter, California, we measured fluxes using PTRMS (Proton Transfer Reaction Mass Spectrometer) and eddy covariance for the most abundant VOC typically emitted from citrus vegetation: methanol, acetone, and isoprenoids. Concentration gradients of additional oxygenated and aromatic compounds from the ground level to above the canopy were also measured. In order to characterize concentrations of speciated biogenic VOC (BVOC) in leaves, we analyzed leaf content by GC-MS (Gas Chromatography - Mass Spectrometery) regularly throughout the year. We also characterized in more detail concentrations of speciated BVOC in the air above the orchard by in-situ GC-MS during a few weeks in spring flowering and summer periods. Here we report concentrations and fluxes of the main VOC species emitted by the orchard, discuss how fluxes measured in the field relate to previous studies made with plant enclosures, and describe how VOC content in leaves and emissions change during the year in response to phenological and environmental parameters. The orchard was a source of monoterpenes and oxygenated VOC. The highest emissions were observed during the springtime flowering period, with mid-day fluxes above 2 nmol m-2 s-1 for methanol and up to 1 nmol m-2 s-1 for acetone and monoterpenes. During hot summer days emissions were not as high as we expected considering the known dependence of biogenic emissions on temperature. We provide

  14. 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione, a potent antitumor agent, induces cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Singh Shashank K

    2010-12-01

    Full Text Available Abstract Background Anticancer activities of several substituted naphthalimides (1H-benz[de]isoquinoline-1,3-diones are well documented. Some of them have undergone Phase I-II clinical trials. Presently a series of ten N-(hydroxyalkyl naphthalimides (compounds 1a-j were evaluated as antitumor agents. Methods Compounds 1a-j were initially screened in MOLT-4, HL-60 and U-937 human tumor cell lines and results were compared with established clinical drugs. Cytotoxicities of compounds 1d and 1i were further evaluated in a battery of human tumor cell lines and in normal human peripheral blood mononuclear cells. Cell cycle analysis of compound 1i treated MOLT-4 cells was studied by flow cytometry. Its apoptosis inducing effect was carried out in MOLT-4 and HL-60 cells by flow cytometry using annexin V-FITC/PI double staining method. The activities of caspase-3 and caspase-6 in MOLT-4 cells following incubation with compound 1i were measured at different time intervals. Morphology of the MOLT-4 cells after treatment with 1i was examined under light microscope and transmission electron microscope. 3H-Thymidine and 3H-uridine incorporation in S-180 cells in vitro following treatment with 8 μM concentration of compounds 1d and 1i were studied. Results 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione (compound 1i, has exhibited maximum activity as it induced significant cytotoxicity in 8 out of 13 cell lines employed. Interestingly it did not show any cytotoxicity against human PBMC (IC50 value 273 μM. Cell cycle analysis of compound 1i treated MOLT-4 cells demonstrated rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating up-regulation of apoptosis along with mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. Its apoptosis inducing effect was confirmed in flow cytometric study in MOLT-4 and the action was mediated by activation of both caspase 3 and 6. Light and

  15. Starspot-induced radial velocity jitter during a stellar cycle

    DEFF Research Database (Denmark)

    Korhonen, Heidi Helena; Andersen, Jan Marie; Järvinen, Silva

    2012-01-01

    on the Sun and other cool stars changes cyclically during an activity cycle, which has length varying from about a year to longer than the solar 11 years. In this work we investigate the influence of varying amount of starspots on the sparsely sampled radial velocity observations - which are the norm......Late-type stars exhibit cool regions on their surface, the stellar equivalent of sunspots. These dark starspots can also mimic the radial velocity variations caused by orbiting planets, making it at times difficult to distinguish between planets and activity signatures. The amount of spots...... in the radial velocity studies searching for exoplanets on wide orbits. We study two simulated cases: one with a random spot configuration, and one where the spot occurrence is concentrated. In addition we use Doppler images of young solar analogue V889 Her as a high activity case....

  16. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities

    Energy Technology Data Exchange (ETDEWEB)

    Bennetts, L.E.; De Iuliis, G.N.; Nixon, B.; Kime, M.; Zelski, K. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia); McVicar, C.M.; Lewis, S.E. [Obstetrics and Gynaecology, Queen' s University, Belfast (United Kingdom); Aitken, R.J. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia)], E-mail: jaitken@mail.newcastle.edu.au

    2008-05-10

    A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear ({beta}-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17{beta}-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of

  17. Glutathione prevents ethanol induced gastric mucosal damage and depletion of sulfhydryl compounds in humans.

    OpenAIRE

    Loguercio, C; Taranto, D; Beneduce, F.; del Vecchio Blanco, C; de Vincentiis, A; Nardi, G; M. Romano

    1993-01-01

    Whether parenteral administration of reduced glutathione prevented ethanol induced damage to and depletion of sulfhydryl compounds in the human gastric mucosa was investigated. Ten healthy volunteers underwent endoscopy on three separate occasions. Gastric mucosal damage was induced by spraying 80% ethanol on to the gastric mucosa through the biopsy channel of the endoscope. The gastric mucosal score, total sulfhydryls, glutathione, and cysteine were evaluated in basal conditions and after et...

  18. Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation.

    Science.gov (United States)

    Damati, Artemis; Vlastos, Dimitris; Philippopoulos, Athanassios I; Matthopoulos, Demetrios P

    2014-04-01

    The genotoxic evaluation (in vitro analysis) of a series of eight inorganic tin(II) and tin(IV) compounds [tin(II) acetate, tin(II) chloride, tin(II) ethylhexanoate, tin(II) oxalate, tin(II) oxide, tin(IV) acetate, tin(IV) chloride and tin(IV) oxide], for the detection of micronuclei in human blood lymphocytes, was performed in the absence of metabolic activation by the cytokinesis-block micronucleus assay. Human lymphocytes were treated for over one cell cycle (31 hours), with concentrations ranging from 1 to 75 μM (1, 5, 10, 20, 50 and 75 μM), of tin(II) and tin(IV) salts dissolved in dimethyl sulfoxide. The above-listed concentrations cover the values that have been detected in humans with no occupational exposure to tin compounds. The experimental results show the absence of genotoxicity for all inorganic compounds tested in the specific concentrations and experimental conditions. Cytotoxic effects of tin(II) and tin(IV) compounds were evaluated by the determination of cytokinesis block proliferation index and cytotoxicity percentage. Our observations on the cytotoxicity pattern of the tested tin(II) and tin(IV) compounds indicate that they are cytotoxic in several tested concentrations to human lymphocytes treated in vitro. The observed differences in cytotoxicity of each tested compound might reflect differences in their chemical structure.

  19. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity

    Directory of Open Access Journals (Sweden)

    Jia-Ching Wu

    2017-01-01

    Full Text Available Contaminants (or pollutants that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.

  20. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Davoud Hasanzadeh

    Full Text Available Farnesiferol C is one of the major compounds, isolated from Ferula asafoetida (a type of coumarins and used for cancer treatment as a folk remedy. Treatment of many cancers depends on oxidative stress situation. In this study, we sought the hypothesis that oxidative stress induced by Farnesiferol C contribute to anticancer property and induce apoptosis in MCF-7, human breast cancer cell line. We investigated the effect of Farnesiferol C on oxidative stress by measurement of some enzymes activity including catalase (CAT, superoxide dismutase (SOD, malondialdehyde (MDA, as well as some parameters such as total thiol and ROS levels. Also we evaluated Farnesiferol C effects on the cell cycle and apoptosis induction by using flow cytometry analysis. Our findings demonstrated that Farnesiferol C significantly induced apoptosis mediated by increasing in the cellular ROS levels. This compound increased cellular SOD and CAT activities in 24 and 48 h and reduced activity of these enzymes after 72 h exposure. Furthermore, MDA and total thiol levels were increased and decreased, respectively in the cells treated with Farnesiferol C after 24–72 h. G0/G1 phase cell cycle arrest followed by induction of apoptosis was also observed in MCF-7 cells after treatment with Farnesiferol C. According to these data, Farnesiferol C has a therapeutic effect on MCF-7 cells and can be suitable candidate for breast cancer treatment; however it is necessary for further experiments. Keywords: Apoptosis, Farnesiferol C, Catalase, Superoxide dismutase, Malondialdehyde, MCF-7 cell line

  1. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound.

    Science.gov (United States)

    Cabrera, Maia; Gomez, Natalia; Remes Lenicov, Federico; Echeverría, Emiliana; Shayo, Carina; Moglioni, Albertina; Fernández, Natalia; Davio, Carlos

    2015-01-01

    Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) compounds, we have previously identified 4,4'-dimethoxybenzophenone thiosemicarbazone (T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction) and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies.

  2. HIV-1 gp120 and Morphine Induced Oxidative Stress: Role in Cell Cycle Regulation

    Directory of Open Access Journals (Sweden)

    Samikkannu eThangavel

    2015-06-01

    Full Text Available HIV infection and illicit drugs are known to induce oxidative stress and linked with severity of viral replication, disease progression, impaired cell cycle regulation and neurodegeneration. Studies have shown that morphine accelerates HIV infection and disease progression mediated by Reactive oxygen species (ROS. Oxidative stress impact redox balance and ROS production affect cell cycle regulation. However, the role of morphine in HIV associated acceleration of oxidative stress and its link to cell cycle regulation and neurodegeneration has not been elucidated. The aim of present study is to elucidate the mechanism of oxidative stress induced glutathione synthases (GSS, super oxide dismutase (SOD, and glutathione peroxidase (GPx impact cell cycle regulated protein cyclin-dependent kinase 1, cell division cycle 2 (CDK-1/CDC-2, cyclin B, and cell division cycle 25C (CDC-25C influencing neuronal dysfunction by morphine co-morbidity with HIV-1 gp120. It was observed that redox imbalance inhibited the GSS, GPx and increased SOD which, subsequently inhibited CDK-1/CDC-2 whereas cyclin B and CDC-25C significantly up regulated in HIV-1 gp120 with morphine compared to either HIV-1 gp120 or morphine treated alone in human microglial cell line. These results suggest that HIV positive morphine users have increased levels of oxidative stress and effect of cell cycle machinery, which may cause the HIV infection and disease progression.

  3. The Novel Vascular Disrupting Agent ANG501 Induces Cell Cycle Arrest and Enhances Endothelial Cell Sensitivity to Radiation

    Directory of Open Access Journals (Sweden)

    Shona T. Dougherty Dr.

    2009-01-01

    Full Text Available The efficacy of approaches in which vascular disrupting agents (VDA are used in combination with conventional chemotherapy and/or radiation therapy in the treatment of cancer might be improved if there were a better understanding of the cellular and molecular changes induced in normal and malignant cells as a result of VD A exposure. Toward this goal, murine endothelial cells were treated in vitro with ANG501, a novel stilbene VDA developed in our laboratory, and alterations in gene expression determined by genome-wide microarray analysis and subsequently confirmed by Western blot analysis. Among the genes that were shown to be induced upon brief exposure to non-cytotoxic doses of ANG501 were several involved in the control of cell cycle progression and apoptosis, including p21 Wafl and the heat shock/stress proteins hsp25, hsp70 and anti-B-crystallin. Reflecting such induction, functional studies confirmed that normal cell cycling is temporarily inhibited following treatment with ANG501 such that the majority of cells accumulate at the radiation-sensitive G2/M phase of the cell cycle at 6 hr. The effects were transient and by 24 hr normal cell cycling had largely resumed. Combination experiments confirmed that endothelial cells treated 6 hr previously with ANG501 were more readily killed by radiation. Importantly, significant effects were evident at clinically relevant radiation doses. Taken together these findings emphasize the need to consider the radiosensitizing activity of VD As when developing therapies in which these promising compounds are used in combination with radiation.

  4. CI431, an Aqueous Compound from Ciona intestinalis L., Induces Apoptosis through a Mitochondria-Mediated Pathway in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Linyou Cheng

    2011-01-01

    Full Text Available In the present studies, a novel compound with potent anti-tumor activity from Ciona intestinalis L. was purified by acetone fractionation, ultrafiltration, gel chromatography and High Performance Liquid Chromatography. The molecular weight of the highly purified compound, designated CI431, was 431Da as determined by HPLC-MS analysis. CI431 exhibited significant cytotoxicity to several cancer cell types. However, only a slight inhibitory effect was found when treating the benign human liver cell line BEL-7702 with the compound. To explore its mechanism against hepatocellular carcinoma, BEL-7402 cells were treated with CI431 in vitro. We found that CI431 induced apoptotic death in BEL-7402 cells in a dose- and time-dependent manner. Cell cycle analysis demonstrated that CI431 caused cell cycle arrest at the G2/M phase, and a sub-G1 peak appeared after 24 h. The mitochondrial-mediated pathway was implicated in this CI431-induced apoptosis as evidenced by the disruption of mitochondrial membrane potential. The results suggest that the CI431 induces apoptosis in BEL-7402 human hepatoma cells by intrinsic mitochondrial pathway.

  5. Nutrient cycling in dune-induced hyporheic exchange of reactive solutes

    Science.gov (United States)

    Bardini, L.; Boano, F.; Cardenas, M. B.; Revelli, R.; Ridolfi, L.

    2011-12-01

    The hyporheic zone is an ecotone connecting the stream and groundwater ecosystems that plays a significant role for stream biogeochemistry. Hyporheic water exchanges across the stream-sediment interface occur generally in response to variations in bed topography, with a very wide range of spatial and temporal scales. For instance, small-scale exchanges are mainly induced by river bed forms, like ripples and dunes, while large-scale exchanges depend on larger geomorphological features. The chemicals enter the sediments with the water and they are transformed into oxidized or reduced substances by biogeochemical reactions, mediated by hyporheic microfauna. These sediment-scale transformations have an influence on the quality of the upwelling water and potentially also on the quality of the stream water. Thus, the interaction of hyporheic fluxes and biochemical reactions in the streambed concur to affect subsurface solute concentrations and eventually nutrient cycling in the fluvial corridor. In this work we investigate the interplay of hydrological and biochemical processes in a duned streambed and their effect on spatial distribution of solutes. We employ a numerical model to simulate the turbulent water flow and the pressure distribution over the dunes, and then to evaluate the flow field and the biochemical reactions in the hyporheic sediments. We take into account for representative reactive compounds: dissolved organic carbon (DOC), oxygen (O2), nitrate (NO3-) and ammonium (NH4+). Sensitivity analyses are performed to analyze the influence of hydrological and chemical properties of the system on solute reaction rates. The results demonstrate the effect of stream velocity and sediment permeability on the chemical zonation. Increasing sediment permeability as well as stream velocity enhances the reaction rates. Stream water quality is also shown to influence the reactive behavior of the sediments. In particular, the availability of dissolved organic carbon

  6. Phenolic compounds isolated from Pilea microphylla prevent radiation-induced cellular DNA damage

    Directory of Open Access Journals (Sweden)

    Punit Bansal

    2011-12-01

    Full Text Available Six phenolic compounds namely, quercetin-3-O-rutinoside (1, 3-O-caffeoylquinic acid (2, luteolin-7-O-glucoside (3, apigenin-7-O-rutinoside (4, apigenin-7-O-β-d-glucopyranoside (5 and quercetin (6 were isolated from the whole plant of Pilea microphylla using conventional open-silica gel column chromatography and preparative HPLC. Further, these compounds were characterized by 1D, 2D NMR techniques and high-resolution LC–MS. Compounds 1–3 and 6 exhibited significant antioxidant potential in scavenging free radicals such as DPPH, ABTS and SOD with IC50 of 3.3–20.4 μmol/L. The same compounds also prevented lipid peroxidation with IC50 of 10.4–32.2 μmol/L. The compounds also significantly prevented the Fenton reagent-induced calf thymus DNA damage. Pre-treatment with compounds 1–3 and 6 in V79 cells attenuated radiation-induced formation of reactive oxygen species, lipid peroxidation, cytotoxicity and DNA damage, correlating the antioxidant activity of polyphenols with their radioprotective effects. Compounds 1, 3 and 6 significantly inhibited lipid peroxidation, presumably due to 3′,4′-catechol ortho-dihydroxy moiety in the B-ring, which has a strong affinity for phospholipid membranes. Oxidation of flavonoids, with catechol structure on B-ring, yields a fairly stable ortho-semiquinone radical by facilitating electron delocalization, which is involved in antioxidant mechanism. Hence, the flavonoid structure, number and location of hydroxyl groups together determine the antioxidant and radioprotection mechanism.

  7. Phenotypic Assays for Characterizing Compound Effects on Induced Pluripotent Stem Cell-Derived Cardiac Spheroids.

    Science.gov (United States)

    Sirenko, Oksana; Hancock, Michael K; Crittenden, Carole; Hammer, Matthew; Keating, Sean; Carlson, Coby B; Chandy, Grischa

    Development of more complex, biologically relevant, and predictive cell-based assays for compound screening is a major challenge in drug discovery. The focus of this study was to establish high-throughput compatible three-dimensional (3D) cardiotoxicity assays using human induced pluripotent stem cell-derived cardiomyocytes. Using both high-content imaging and fast kinetic fluorescence imaging, the impact of various compounds on the beating rates and patterns of cardiac spheroids was monitored by changes in intracellular Ca(2+) levels with calcium-sensitive dyes. Advanced image analysis methods were implemented to provide multiparametric characterization of the Ca(2+) oscillation patterns. In addition, we used confocal imaging and 3D analysis methods to characterize compound effects on the morphology of 3D spheroids. This phenotypic assay allows for the characterization of parameters such as beating frequency, amplitude, peak width, rise and decay times, as well as cell viability and morphological characteristics. A set of 22 compounds, including a number of known cardioactive and cardiotoxic drugs, was assayed at different time points, and the calculated EC50 values for compound effects were compared between 3D and two-dimensional (2D) model systems. A significant concordance in the phenotypes was observed for compound effects between the two models, but essential differences in the concentration responses and time dependencies of the compound-induced effects were observed. Together, these results indicate that 3D cardiac spheroids constitute a functionally distinct biological model system from traditional flat 2D cultures. In conclusion, we have demonstrated that phenotypic assays using 3D model systems are enabled for screening and suitable for cardiotoxicity assessment in vitro.

  8. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Katia Maalouf

    2011-02-01

    Full Text Available Katia Maalouf1, Elias Baydoun2, Sandra Rizk11Department of Natural Sciences, Lebanese American University, Beirut, Lebanon; 2Department of Biology, American University of Beirut, Beirut, LebanonBackground: Adult lymphoblastic leukemia (ALL is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer.Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1-negative malignant T-lymphocytes.Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α, transforming growth factor- beta1 (TGF-β1, matrix metalloproteinase-2 (MMP-2, and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR. Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA and flow cytometry.Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 µg/µL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF- β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was

  9. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-10-01

    Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC.

  10. Bocavirus Infection Induces Mitochondrion-Mediated Apoptosis and Cell Cycle Arrest at G2/M Phase▿

    OpenAIRE

    Chen, Aaron Yun; Luo, Yong; Cheng, Fang; Sun, Yuning; Qiu, Jianming

    2010-01-01

    Bocavirus is a newly classified genus of the family Parvovirinae. Infection with Bocavirus minute virus of canines (MVC) produces a strong cytopathic effect in permissive Walter Reed/3873D (WRD) canine cells. We have systematically characterized the MVC infection-produced cytopathic effect in WRD cells, namely, the cell death and cell cycle arrest, and carefully examined how MVC infection induces the cytopathic effect. We found that MVC infection induces an apoptotic cell death characterized ...

  11. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    Science.gov (United States)

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  12. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells

    Directory of Open Access Journals (Sweden)

    Yongfeng Guo

    2016-11-01

    Full Text Available During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing.

  13. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells

    Science.gov (United States)

    Guo, Yongfeng; Flegel, Kerry; Kumar, Jayashree; McKay, Daniel J.

    2016-01-01

    ABSTRACT During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. PMID:27737823

  14. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13C-lactate/13C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Competition-induced starvation drives large-scale population cycles in Antarctic krill.

    Science.gov (United States)

    Ryabov, Alexey B; de Roos, André M; Meyer, Bettina; Kawaguchi, So; Blasius, Bernd

    2017-07-01

    Antarctic krill (Euphausia superba) - one of the most abundant animal species on Earth - exhibits a 5-6 year population cycle, with oscillations in biomass exceeding one order of magnitude. Previous studies have postulated that the krill cycle is induced by periodic climatological factors, but these postulated drivers neither show consistent agreement, nor are they supported by quantitative models. Here, using data analysis complemented with modeling of krill ontogeny and population dynamics, we identify intraspecific competition for food as the main driver of the krill cycle, while external climatological factors possibly modulate its phase and synchronization over large scales. Our model indicates that the cycle amplitude increases with reduction of krill loss rates. Thus, a decline of apex predators is likely to increase the oscillation amplitude, potentially destabilizing the marine food web with drastic consequences for the entire Antarctic ecosystem.

  16. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds.

    Science.gov (United States)

    Yamaoka, Hitoshi; Tsujii, Naohito; Suzuki, Michi-To; Yamamoto, Yoshiya; Jarrige, Ignace; Sato, Hitoshi; Lin, Jung-Fu; Mito, Takeshi; Mizuki, Jun'ichiro; Sakurai, Hiroya; Sakai, Osamu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Giovannini, Mauro; Bauer, Ernst

    2017-07-19

    A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f 13 state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb2+ state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb2+ state at the second QCP.

  18. The relationship between exercise-induced oxidative stress and the menstrual cycle.

    Science.gov (United States)

    Joo, Mi Hyun; Maehata, Eisuke; Adachi, Tetsuo; Ishida, Akiko; Murai, Fumie; Mesaki, Noboru

    2004-10-01

    The purpose of this study was to investigate the relationship between exercise-induced oxidative stress and the menstrual cycle in healthy sedentary woman. Eighteen women with regular menstrual cycles participated in this research. The subjects monitored their basal body temperature (BBT) and carried out a urinary ovulation test (twice) for 2 months prior to the study to determine their menstrual cycle. The subjects performed bicycle ergometer exercise (for 30 min at 60% V(.)>O(2max)) in each phase (menses, follicular and luteal phases) of the menstrual cycle. Serum estradiol and progesterone concentrations were determined from blood that was collected at rest. Serum thiobarbituric acid reactive substances (TBARS), total superoxide dismutase (T-SOD) and extracellular superoxide dismutase (EC-SOD) were determined as markers of oxidative stress in blood samples collected at rest and after exercise. TBARS was significantly lower after exercise [2.4 (0.5) nmol/ml] in the follicular phase, and T-SOD was significantly lower after exercise [3.2 (1.2) U/ml] in the luteal phase. EC-SOD did not show a significant change after exercise during each phase of the menstrual cycle. Furthermore, there was a negative correlation between estradiol and DeltaT-SOD ( r=-0.46, Pmenstrual cycle, free radicals produced as a consequence of exercise may be easily eliminated by sedentary women with normal menstrual cycles.

  19. Is Moderate Intensity Cycling Sufficient to Induce Cardiorespiratory and Biomechanical Modifications of Subsequent Running?

    Science.gov (United States)

    Walsh, Joel A; Dawber, James P; Lepers, Romuald; Brown, Marc; Stapley, Paul J

    2017-04-01

    Walsh, JA, Dawber, JP, Lepers, R, Brown, M, and Stapley, PJ. Is moderate intensity cycling sufficient to induce cardiorespiratory and biomechanical modifications of subsequent running? J Strength Cond Res 31(4): 1078-1086, 2017-This study sought to determine whether prior moderate intensity cycling is sufficient to influence the cardiorespiratory and biomechanical responses during subsequent running. Cardiorespiratory and biomechanical variables measured after moderate intensity cycling were compared with control running at the same intensity. Eight highly trained, competitive triathletes completed 2 separate exercise tests; (a) a 10-minute control run (no prior cycling) and, (b) a 30-minute transition run (TR) (preceded by 20-minute of variable cadence cycling, i.e., run versus cycle-run). Respiratory, breathing frequency (fb), heart rate (HR), cost of running (Cr), rate constant, stride length, and stride frequency variables were recorded, normalized, and quantified at the mean response time (MRT), third minute, 10th minute (steady state), and overall for the control run (CR) and TR. Cost of running increased (p ≤ 0.05) at all respective times during the TR. The V[Combining Dot Above]E/V[Combining Dot Above]CO2 and respiratory exchange ratio (RER) were significantly (p running. Furthermore, prior cycling seems to have a sustained effect on the Cr during subsequent running.

  20. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Do Yeon; Park, Min Woo; Yuan, Hai Dan; Lee, Hyo Jung; Kim, Sung Hoon; Chung, Sung Hyun

    2009-11-25

    Although compound K (CK), an intestinal metabolite of ginseng protopanaxadiol saponins, has been known to induce apoptosis in various cancer cells, association of AMP-activated protein kinase (AMPK) with apoptosis in HT-29 colon cancer cells remains unclear. We hypothesized that CK may exert an anticancer activity through modulating the AMPK pathway in HT-29 cells. CK-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic factors (cytochrome c and apoptosis-inducing factor) from mitochondria, and cleavage of caspase-9, caspase-3, caspase-8, Bid, and PARP proteins. This apoptotic effect of CK on colon cancer cells was found to be initiated by AMPK activation, and AMPK was activated through phosphorylation by Ca2+/calmodulin-activated protein kinase-IV (CAMK-IV). Treatment of HT-29 cells with compound C (AMPK inhibitor) or siRNA for AMPK completely abolished the CK-induced apoptosis. STO-609, CAMKs inhibitor, also attenuated CK-induced AMPK activation and apoptosis. In conclusion, the present study demonstrates that CK-mediated cell death of HT-29 colon cancer cells is regulated by CAMK-IV/AMPK pathways, and these findings provide a molecular basis for the anticancer effect of CK.

  1. SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease.

    Science.gov (United States)

    Khan, Reas S; Dine, Kimberly; Das Sarma, Jayasri; Shindler, Kenneth S

    2014-01-02

    Multiple sclerosis (MS) is characterized by central nervous system inflammation and demyelination, and increasing evidence demonstrates significant neuronal damage also occurs and is associated with permanent functional impairment. Current MS therapies have limited ability to prevent neuronal damage, suggesting additional neuroprotective therapies are needed. Compounds that activate the NAD+-dependent SIRT1 deacetylase prevent neuronal loss in an autoimmune-mediated MS model, but the mechanism of this effect is unknown, and it is unclear whether SIRT1 activating compounds exert similar effects in demyelinating disease induced by other etiologies. We measured neuronal loss in C57BL/6 mice inoculated with a neurotropic strain of mouse hepatitis virus, MHV-A59, that induces an MS-like disease. Oral treatment with the SIRT1 activating compound SRTAW04 significantly increased SIRT1 activity within optic nerves and prevented neuronal loss during optic neuritis, an inflammatory demyelinating optic nerve lesion that occurs in MS and its animal models. MHV-A59 induced neuronal loss was associated with reactive oxygen species (ROS) accumulation, and SRTAW04 treatment significantly reduced ROS levels while promoting increased expression of enzymes involved in mitochondrial function and reduction of ROS. SRTAW04 exerted similar protective effects in EAE spinal cords, with decreased demyelination. Results demonstrate that SIRT1 activating compounds prevent neuronal loss in viral-induced demyelinating disease similar to their effects in autoimmune-mediated disease. One mechanism of this neuroprotective effect involves increasing mitochondrial biogenesis with reduction of oxidative stress. SIRT1 activators represent a potential neuroprotective therapy for MS. Understanding common mechanisms of these effects in distinct disease models will help identify targets for more specific therapies.

  2. Are phenolic compounds released from the Mediterranean shrub Cistus albidus responsible for changes in N cycling in siliceous and calcareous soils?

    Science.gov (United States)

    Eva Castells; Josep Peñuelas; David W. Valentine

    2004-01-01

    We studied the effects of Cistus albidus leaf leachates on nitrogen-cycling processes in two siliceous soils (granite and schist) and one calcareous soil. We compared those effects with gross N-transformation rates in soils sampled underneath Cistus. Our results show that although phenolic compounds leached from green foliage...

  3. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint

    Science.gov (United States)

    Gandarillas, Alberto

    2012-01-01

    Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621

  4. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    Science.gov (United States)

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  5. Cell cycle arrest and apoptosis induced by enteroaggregative Escherichia coli in cultured human intestinal epithelial cells.

    Science.gov (United States)

    Priya, Anshu; Kaur, Kiranjeet; Bhattacharyya, Shalmoli; Chakraborti, Anuradha; Ghosh, Sujata

    2017-03-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen causing diarrhoeal diseases in multiple epidemiological and clinical settings. However, understanding of the pathogenesis of the disease caused by this organism is still suboptimal. Studies have indicated that enteric bacteria induced cell cycle arrest and apoptosis in host intestinal epithelial cells might play a vital role in the pathogenesis caused by these organisms. In this study an attempt was made to assess EAEC-induced apoptosis and cell cycle modulation in human intestinal epithelial cell lines. INT-407 and HCT-15 cells were infected with EAEC-T8 (clinical isolate) as well as plasmid cured variant of EAEC-T8 (EAEC-pT8). Propidium iodide staining was done to select the time of infection and the incubation period of the infected culture. Apoptosis was further assessed in EAEC infected both the cell lines by annexin-V-FLUOS & propidium iodide, cell death detection ELISA, DNA strand breaks and microscopic analysis. Further, the DNA content of the EAEC-infected cells at different phases of cell cycle was also monitored. We have found that EAEC could induce apoptosis in human small intestinal as well as colonic epithelial cell lines, which was assessed by the expression of phosphatidylserine on host cell surface, internucleosomal cleavage of host cell DNA and microscopic analysis of the characteristic apoptotic features of these cells. EAEC was also found to arrest cells at S phase and G2-M phase of the cell cycle. EAEC-T8 could induce maximum apoptosis and cell cycle modulation in both small intestinal and colonic epithelial cells. Further, we have observed that the plasmid of this organism had maximum contribution to these processes. The outcome of this study has undoubtedly led to a better understanding of the basic mechanism of pathogenesis caused by EAEC.

  6. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer.

  7. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells.

    Science.gov (United States)

    Rodriguez-Garcia, Aida; Hevia, David; Mayo, Juan C; Gonzalez-Menendez, Pedro; Coppo, Lucia; Lu, Jun; Holmgren, Arne; Sainz, Rosa M

    2017-08-01

    Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Copyright © 2017. Published by Elsevier B.V.

  8. Marine Benthic Diatoms Contain Compounds Able to Induce Leukemia Cell Death and Modulate Blood Platelet Activity

    Directory of Open Access Journals (Sweden)

    Lars Herfindal

    2009-11-01

    Full Text Available In spite of the high abundance and species diversity of diatoms, only a few bioactive compounds from them have been described. The present study reveals a high number of mammalian cell death inducing substances in biofilm-associated diatoms sampled from the intertidal zone. Extracts from the genera Melosira, Amphora, Phaeodactylum and Nitzschia were all found to induce leukemia cell death, with either classical apoptotic or autophagic features. Several extracts also contained inhibitors of thrombin-induced blood platelet activation. Some of this activity was caused by a high content of adenosine in the diatoms, ranging from 0.07 to 0.31 μg/mg dry weight. However, most of the bioactivity was adenosine deaminase-resistant. An adenosine deaminase-resistant active fraction from one of the extracts was partially purified and shown to induce apoptosis with a distinct phenotype. The results show that benthic diatoms typically found in the intertidal zone may represent a richer source of interesting bioactive compounds than hitherto recognized.

  9. Mental stress-induced haemoconcentration in women: effects of menstrual cycle phase.

    Science.gov (United States)

    Veldhuijzen van Zanten, Jet J C S; Carroll, Douglas; Ring, Christopher

    2009-11-01

    In women, variation in the incidence of myocardial infarction (MI) has been reported with phase of the menstrual cycle. Mental stress-induced rheological and haemodynamic perturbations have been implicated in the triggering of MI. This study examined cardiovascular reactions to mental stress across the menstrual cycle, as a factor contributing to the known variation between the menstrual cycle phases in MI incidence. Rheological and haemodynamic activity during rest and a prolonged mental stress task were assessed in 12 women during the follicular and luteal phases of the menstrual cycle. The stress task increased haematocrit, colloid osmotic pressure, blood pressure and heart rate, and decreased heart rate variability and R-wave to pulse interval. However, there were no effects of menstrual phase on rheological or haemodynamic function at rest or in response to mental stress. There were also no moderating menstrual cycle effects for the rheological or haemodynamic reactions over time to this prolonged stress task. Our findings do not support the hypothesis that variations in reactions to mental stress can explain the reported variations in risk for MI across the menstrual cycle.

  10. Metabolic demand and muscle damage induced by eccentric cycling of knee extensor and flexor muscles.

    Science.gov (United States)

    Peñailillo, Luis; Guzmán, Nicolás; Cangas, José; Reyes, Alvaro; Zbinden-Foncea, Hermann

    2017-03-01

    The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Eight sedentary men (23.3 ± 0.7 y) underwent two eccentric cycling sessions (EXT and FLEX) of 30 min each, at 60% of the maximum power output. Oxygen consumption (VO 2 ), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1-4 days after cycling. FLEX showed greater VO 2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.

  11. Two new isoquinoline alkaloids from Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in human glioma cancer U87 cells.

    Science.gov (United States)

    Ding, Dan; Guo, Ya-Ru; Wu, Rui-Ling; Qi, Wei-Yan; Xu, Han-Mei

    2016-04-01

    Two new isoquinoline alkaloids 1-2 and seven known compounds 3-9 were isolated from the ethanol extract of centipede Scolopendra subspinipes mutilans L. Koch. The structures were elucidated by a combination of spectroscopic analyses including 1D and 2D NMR, and HRESIMS. Compounds 1-2 exhibited good cytotoxicity with IC50 values ranging from 1.19 to 31.28μM against six human cancer cell lines and low cytotoxicity against human normal liver L-02 cell lines, suggesting that compounds 1-2 had high specific cytotoxicity on human cancer cell lines. Further analyses showed that compounds 1-2 inhibited U87 cells proliferation by arresting cell cycle progress at G0/G1 phase and inducing apoptosis through loss of mitochondrial membrane potential (MMP), activation of caspase 9/3 and down-regulation of the Bcl-2/Bax protein ratio. The results suggest that compounds 1-2 induce apoptosis in U87 cells through the mitochondria apoptosis pathway, and they deserve further research as potential anti-glioma cancer agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes.

    Science.gov (United States)

    Ma, Chaoxiong; Zaino Iii, Lawrence P; Bohn, Paul W

    2015-05-01

    We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy)32/3+/tri-n-propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH3)63+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.

  13. Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory

    Science.gov (United States)

    Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu

    2005-08-01

    We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.

  14. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    Science.gov (United States)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  15. The Antiangiogenic Compound Aeroplysinin-1 Induces Apoptosis in Endothelial Cells by Activating the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Beatriz Martínez-Poveda

    2012-09-01

    Full Text Available Aeroplysinin-1 is a brominated metabolite extracted from the marine sponge Aplysina aerophoba that has been previously characterized by our group as a potent antiangiogenic compound in vitro and in vivo. In this work, we provide evidence of a selective induction of apoptosis by aeroplysinin-1 in endothelial cells. Studies on the nuclear morphology of treated cells revealed that aeroplysinin-1 induces chromatin condensation and nuclear fragmentation, and it increases the percentage of cells with sub-diploid DNA content in endothelial, but not in HCT-116, human colon carcinoma and HT-1080 human fibrosarcoma cells. Treatment of endothelial cells with aeroplysinin-1 induces activation of caspases-2, -3, -8 and -9, as well as the cleavage of apoptotic substrates, such as poly (ADP-ribose polymerase and lamin-A in a caspase-dependent mechanism. Our data indicate a relevant role of the mitochondria in the apoptogenic activity of this compound. The observation that aeroplysinin-1 prevents the phosphorylation of Bad relates to the mitochondria-mediated induction of apoptosis by this compound.

  16. Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

    Science.gov (United States)

    Nosál'ová, Viera; Sotníková, Ružena; Drábiková, Katarína; Fialová, Silvia; Košťálová, Daniela; Banášová, Silvia; Navarová, Jana

    2010-01-01

    Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants. PMID:21217883

  17. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone

    Energy Technology Data Exchange (ETDEWEB)

    Saviranta, Niina M.M. [University of Kuopio, Department of Biosciences, Institute of Applied Biotechnology, Box 1627, 70211 Kuopio (Finland); Julkunen-Tiitto, Riitta; Oksanen, Elina [University of Joensuu, Faculty of Biosciences, Natural Product Research Laboratories, Box 111, 80101 Joensuu (Finland); Karjalainen, Reijo O., E-mail: reijo.karjalainen@uku.f [University of Kuopio, Department of Biosciences, Institute of Applied Biotechnology, Box 1627, 70211 Kuopio (Finland); AgriFood Research Finland, 31600 Jokioinen (Finland)

    2010-02-15

    Red clover (Trifolium pratense L.), an important feed crop in many parts of the world, is exposed to elevated ozone over large areas. Plants can limit ozone-induced damages by various defence mechanisms. In this work, changes in the concentrations of antioxidant phenolic compounds induced by slightly elevated levels of ozone were determined in red clover leaves by high-performance liquid chromatography and mass spectrometry. 31 different phenolics were identified and the most abundant isoflavones and flavonoids were biochanin A glycoside malonate (G-M), formononetin-G-M and quercetin-G-M. Elevated ozone (mean 32.4 ppb) increased the total phenolic content of leaves and also had minor effects on the concentrations of individual compounds. Elevated ozone increased the net photosynthesis rate of red clover leaves before visible injuries by 21-23%. This study thus suggests that the concentrations of phenolics in red clover leaves change in response to slightly elevated ozone levels. - Concentrations of antioxidant phenolic compounds from red clover can be influenced by elevated ozone.

  18. Altered cytotoxicity of ROS-inducing compounds by sodium pyruvate in cell culture medium depends on the location of ROS generation.

    Science.gov (United States)

    Kelts, Jessica L; Cali, James J; Duellman, Sarah J; Shultz, John

    2015-01-01

    Induction of oxidative stress by drugs and other xenobiotics is an important mechanism of cytotoxicity. However, in vitro studies on the relationship between oxidative stress and cytotoxicity in cultured cells is frequently complicated by the fact that cell culture medium components affect reactive oxygen species (ROS) exposures in ways that vary with the mode of ROS production. The objectives of this study were to first determine the mode of ROS induction by certain model compounds when they are applied to cultured cells, and then to determine how ROS induction and cytotoxicity were affected by the ROS-quenching medium component pyruvate. Three compounds, eseroline, benserazide, and pyrogallol induced H2O2 in cell culture media independent of cells. However, another compound, menadione, induced H2O2 in a manner largely dependent on the MDA-MB-231 breast cancer cells used in this study, which is consistent with its known mechanism of inducing ROS through intracellular redox cycling. 1 mM pyruvate, as well as catalase, reduced the H2O2 in culture wells with each ROS inducer tested but it only reduced the cytotoxicity of cell-independent inducers. It reduced the cytotoxicity of benserazide and pyrogallol >10-fold and of eseroline about 2.5-fold, but had no effect on menadione cytotoxicity. From this data, it was concluded that depending on the mechanism of ROS induction, whether intra- or extracellular, a ROS-quenching medium component such as pyruvate will differentially affect the net ROS-induction and cytotoxicity of a test compound.

  19. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.

    Science.gov (United States)

    Liu, Yi; Zhang, Weihe; Cao, Yanyan; Liu, Yan; Bergmeier, Stephen; Chen, Xiaozhuo

    2010-12-08

    Cancer cells depend heavily on glucose as both energy and biosynthesis sources and are found to upregulate glucose transport and switch their main energy supply pathway from oxidative phosphorylation to glycolysis. These molecular and metabolic changes also provide targets for cancer treatment. Here we report that novel small molecules inhibited basal glucose transport and cell proliferation, and induced apoptosis in lung and breast cancer cells without affecting much their normal cell counterparts. Cancer cells survived the compound treatment lost their capability to proliferate. Mechanistic study indicates that the cancer cell inhibition by the test compounds has a component of apoptosis and the induced apoptosis was p53-independent and caspase 3-dependent, similar to those resulted from glucose deprivation. Compound treatment also led to cell cycle arrest in G1/S phase. The inhibition of cancer cell growth was partially relieved when additional glucose was supplied to cells, suggesting that the inhibition was due to, at least in part, the inhibition of basal glucose transport. When used in combination, the test compounds demonstrated synergistic effects with anticancer drugs cisplatin or paclitaxel in inhibition of cancer cell growth. All these results suggest that these glucose transport inhibitors mimic glucose deprivation and work through inhibiting basal glucose transport. These inhibitors have the potential to complement and replace traditional glucose deprivation, which cannot be used in animals, as new tools to study the effects of glucose transport and metabolism on cancer and normal cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Joseph B Fisher

    Full Text Available BACKGROUND: Tat-interactive protein 60 (Tip60 is a member of the MYST family of histone acetyltransferases. Studies using cultured cells have shown that Tip60 has various functions including DNA repair, apoptosis and cell-cycle regulation. We globally ablated the Tip60 gene (Htatip, observing that Tip60-null embryos die at the blastocyst stage (Hu et al. Dev.Dyn.238:2912;2009. Although adult heterozygous (Tip60(+/- mice reproduce normally without a haploinsufficient phenotype, stress caused by Myc over-expression induced B-cell lymphoma in Tip60(+/- adults, suggesting that Tip60 is a tumor suppressor (Gorrini et al. Nature 448:1063;2007. These findings prompted assessment of whether Tip60, alternative splicing of which generates two predominant isoforms termed Tip60α and Tip60β, functions to suppress the cell-cycle in adult cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: Western blotting revealed that Tip60α is the predominant Tip60 isoprotein in the embryonic heart, transitioning at neonatal stages to Tip60β, which is the only isoprotein in the adult heart wherein it is highly enriched. Over-expression of Tip60β, but not Tip60α, inhibited cell proliferation in NIH3T3 cells; and, Tip60-haploinsufficient cultured neonatal cardiomyocytes exhibited increased cell-cycle activity. To address whether Tip60β suppresses the cardiomyocyte cell-cycle in the adult heart, hypertrophic stress was induced in Tip60(+/+ and Tip(+/- littermates via two methods, Myc over-expression and aortic banding. Based on immunostaining cell-cycle markers and western blotting cyclin D, stress increased cardiomyocyte cell-cycle mobilization in Tip60(+/- hearts, in comparison with Tip60(+/+ littermates. Aortic-banded Tip60(+/- hearts also exhibited significantly decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: These findings provide evidence that Tip60 may function in a tumor suppressor pathway(s to maintain adult cardiomyocytes in replicative senescence.

  1. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment.

    Science.gov (United States)

    Beesoo, Rima; Neergheen-Bhujun, Vidushi; Bhagooli, Ranjeet; Bahorun, Theeshan

    2014-10-01

    Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents particularly if the process is selective to cancer cells. Marine natural products have become important sources in the discovery of antitumour drugs, especially when recent technological and methodological advances have increased the scope of investigations of marine organisms. A high number of individual compounds from diverse organisms have induced apoptosis in several tumour cell lines via a number of mechanisms. Here, we review the effects of selected marine natural products and their synthetic derivatives on apoptosis signalling pathways in association with their pharmacological properties. Providing an outlook into the future, we also examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Li, Xinghui [Departments of Physiology and Pathophysiology, Shanghai College of Medicine, Fudan University, Shanghai (China); Ma, Fenfen; Luo, Shanshan [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Ge, Ruowen [Departmentof Biological Sciences, National University of Singapore (Singapore); Zhu, Yizhun, E-mail: zhuyz@fudan.edu.cn [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Departmentof Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  3. Profile of blood glucose and ultrastucture of beta cells pancreatic islet in alloxan compound induced rats

    Directory of Open Access Journals (Sweden)

    I Nyoman Suarsana

    2010-06-01

    Full Text Available Diabetes is marked by elevated levels of blood glucose, and progressive changes of the structure of pancreatic islet histopathology. The objective of this research was to analyse the glucose level and histophatological feature in pancreatic islet in alloxan compound induced rats. A total of ten male Spraque Dawley rats of 2 months old were used in this study. The rats were divided into two groups: (1 negative control group (K-, and (2 positif induced alloxan group (diabetic group =DM. The rats were induced by a single dose intraperitonial injection of alloxan compound 120 mg/kg of body weight. The treatment was conducted for 28 days. Blood glucose levels of rats were analysed at 0, 4, 7, 14, 21, and 28 days following treatment. At the end of the experiment, rats were sacrificed by cervical dislocation. Pancreas was collected for analysis of histopathological study by Immunohistochemical technique, and ultrastructural study using transmission electron microscope (TEM. The result showed that Langerhans islet of diabetic rat (rat of DM group showed a marked reduction of size, number of Langerhans islet of diabetic rat decrease, and characterized by hyperglycemic condition. By using TEM, beta cells of DM group showed the rupture of mitochondrial membrane, the lost of cisternal structure of inner membrane of mitocondria, reduction of insulin secretory granules, linkage between cells acinar with free Langerhans islet, and the caryopicnotic of nucleus.

  4. Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune Stimulation Via ROS-Dependent Inflammasome Activation.

    Science.gov (United States)

    Adam, Christian; Wohlfarth, Jonas; Haußmann, Maike; Sennefelder, Helga; Rodin, Annette; Maler, Mareike; Martin, Stefan F; Goebeler, Matthias; Schmidt, Marc

    2017-02-01

    Chromium allergy is a common occupational skin disease mediated by chromium (VI)-specific T cells that induce delayed-type hypersensitivity in sensitized individuals. Additionally, chromium (VI) can act as an irritant. Both responses critically require innate immune activation, but if and how chromium (VI) elicits this signal is currently unclear. Using human monocytes, primary human keratinocytes, and murine dendritic cells we show that chromium (VI) compounds fail to trigger direct proinflammatory activation but potently induce processing and secretion of IL-1β. IL-1β release required priming by phorbol-ester or toll-like receptor stimulation and was prevented by inhibition of K+ efflux, NLRP3 depletion or caspase-1 inhibition, identifying chromium (VI) as a hapten activator of the NLRP3 inflammasome. Inflammasome activation was initiated by mitochondrial reactive oxygen species production triggered by chromium (VI), as indicated by sensitivity to treatment with the ROS scavenger N-acetyl cysteine and a coinciding failure of K+ efflux, caspase-1, or NLRP3 inhibition to prevent mitochondrial reactive oxygen species accumulation. IL-1β release further correlated with cytotoxicity that was secondary to reactive oxygen species, K+ efflux, and NLRP3 activation. Trivalent chromium was unable to induce mitochondrial reactive oxygen species production, inflammasome activation, and cytotoxicity, suggesting that oxidation state-specific differences in mitochondrial reactivity may determine inflammasome activation and allergic/irritant capacity of different chromium compounds. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells.

    Science.gov (United States)

    Wu, Jian; Yi, Wenshi; Jin, Linhong; Hu, Deyu; Song, Baoan

    2012-08-31

    Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  6. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  7. Structure-activity relationship of 9-methylstreptimidone, a compound that induces apoptosis selectively in adult T-cell leukemia cells.

    Science.gov (United States)

    Takeiri, Masatoshi; Ota, Eisuke; Nishiyama, Shigeru; Kiyota, Hiromasa; Umezawa, Kazuo

    2012-01-01

    We previously reported that 9-methylstreptimidone, a piperidine compound isolated from a culture filtrate of Streptomyces, induces apoptosis selectively in adult T-cell leukemia cells. It was screened for a compound that inhibits LPS-induced NF-kappaB and NO production in mouse macrophages. However, 9-methystreptimidone is poorly obtained from the producing microorganism and difficult to synthesize. Therefore, in the present research, we studied the structure-activity relationship to look for new selective inhibitors. We found that the structure of the unsaturated hydrophobic portion of 9-methylstreptimidone was essential for the inhibition of LPS-induced NO production. Among the 9-methylstreptimidone-related compounds tested, (+/-)-4,alpha-diepi-streptovitacin A inhibited NO production in macrophage-like cells as potently as 9-methylstreptimidone and without cellular toxicity. Moreover, this compound selectively induced apoptosis in adult T-cell leukemia MT-1 cells.

  8. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    Science.gov (United States)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (panimals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  9. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  10. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.

    Science.gov (United States)

    Xu, Shanshan; Zong, Yujin; Feng, Yi; Liu, Runna; Liu, Xiaodong; Hu, Yaxin; Han, Shimin; Wan, Mingxi

    2015-01-01

    In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Light-induced transition in spin-crossover compounds with correlated stochastic processes

    Science.gov (United States)

    Gudyma, Iurii V.; Maksymov, Artur

    2015-11-01

    The stochastic kinetics of a photoinduced phase transition in spin-crossover compounds in the presence of environmental background and systems internal noises were studied. The correlation phenomena that determine the color of internal and external noises was taken into account. The mathematical framework for the study of light-induced transition in spin-crossover nanoparticles was based on the Langevin equation and steady solution of corresponding Fokker-Planck equation. The system behavior was described by nonequilibrium (dynamic) potential in terms of Lyapunov functions for the deterministic case and by stochastic Fokker-Planck potential in the noise case action.

  12. Influence of Radix Astragali, Hirudo, Hirudin and their Compound Medicated Serum on the Growth Cycle and Apoptosis of Glomerular Mesangial Cell in Rats

    Directory of Open Access Journals (Sweden)

    Xianzhi Ren

    2014-06-01

    Full Text Available Objective: To observe the effect of Radix Astragali (RA, hirudo, hirudin and their compound medicated serum on growth cycle and apoptosis of glomerular mesangial cells (GMCs in rats and their apoptotic morphology. Methods: The prepared cells were randomly divided into control group, hirudo group, hirudin group, RA group and compound group. Flow cytometer was used to detect the growth cycle and apoptosis of GMCs while Wright stain and microscope were applied for the observation of apoptotic cells. Results: RA, hirudo, hirudin and their compound medicated serum could maintain abundant GMCs in gap phase 0/1 (G0/G1 and improve apoptotic rate of GMCs, which had significant differences when compared with control group (P < 0.01. Additionally, they could improve GMCs apoptosis, and differences were significant in hirudo and formula groups when compared with control group (P < 0.01. Conclusion: Hirudo, hirudin, RA and their compound (containing hirudo and RA can effectively inhibit MC proliferation and promote GMCs apoptosis by stopping GMCs entering phase S of which the efficacy of compound is the best, followed by hirudo.

  13. An EOQ Model for Phase Inventory with Induced Demand and Periodic Cycle Time

    Directory of Open Access Journals (Sweden)

    Sujit Kumar De

    2014-01-01

    Full Text Available This paper deals with a stock flow of an inventory problem over induced demand. The inventory is consumed through “core customer” or chain marketing system in an induced environment (inductance to exhaust all the items of the stock inventory in an indefinite time. The demand rate is depicted due to induced factor which is generated from the same inventory presented nearby. The inventory cycle time is split into several periodic times due to oscillatory feature of the inventory which is called phase inventory. Considering uniform demand, this cycle time splits into two basic parts, namely, “first shift” (phase and “second shift” (phase. Since the process dampens over time, so the whole inventory will exhaust after few periods. A cost function consisted of inventory cost, setup cost, and loss for induced items is minimized to obtain optimal order quantity and replenishment time. The multivariate lagrange interpolation (MLI over the average values of the postsensitivity analysis is developed here. Finally, graphical illustrations are made to justify the model.

  14. Studies on chemical protectors against radiation, 33; Protective mechanisms of various compounds against skin injury induced by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi; Kumazawa, Noriko; Suzuki, Makoto; Wang Cheng-Ming; Ohta, Setsuko; Shinoda, Masato (Hoshi Univ., Tokyo (Japan))

    1991-01-01

    The radiation protective mechanisms on skin injury induced by soft X-irradiation were investigated by use of various radiation protective agents such as sulfur compounds (MEA, MEG, thiourea), nucleic acid constitutional compounds (adenosine, inosine), antioxidative compounds (sesamol, ferulic acid, ascorbic acid), crude drugs (Rosae Fructus, Anemarrhenae Rhizoma, Trapae Fructus, Forsythiae Fructus, Aloe arborescens). Scavenge action of activated oxygen, inhibitory effect of lipid peroxidation, induction of antioxidative protein and protective effect against damage of deoxyribonucleic acid and superoxide dismutase by X-irradiation were evaluated as the radiation protective mechanisms, and relationship between these results and protective effect of skin injury induced by radiation was studied. (author).

  15. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells

    Science.gov (United States)

    Guha, Gunjan; Liang, Xiaobo; Kulesz-Martin, Molly F.; Mahmud, Taifo; Indra, Arup Kumar; Ganguli-Indra, Gitali

    2015-01-01

    Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action. PMID:25938491

  16. Neurogenic contraction induced by the antiarrhythmic compound, AVE 0118, in rat small mesenteric arteries.

    Science.gov (United States)

    Kun, Attila; Seprényi, György; Varró, András; Papp, Julius Gy; Pataricza, János

    2014-10-01

    The purpose of this study was to investigate the vasoactivity of two inhibitors of potassium ion (K(+) ) channels, a potential antiarrhythmic compound, AVE 0118, and 4-aminopyridine (4-AP). Basal and stimulated tones of rat small mesenteric arteries as well as the possible involvement of KV 1.5 ion channel in the mechanism of vascular effect induced by the compounds were analysed. The standard organ bath technique for vascular tone and immunohistochemistry for the localization of ion channels in the arterial tissue were performed. Third- or fourth-order branch of arterial segments was mounted in myographs for recording the isometric tension. AVE 0118 (10(-5) M) and 4-AP (10(-5) M) modulated neither the basal tone nor the contraction induced by noradrenaline but increased the contraction evoked by electrical field stimulation, sensitive to the block of alpha-1 adrenergic receptors. KV 1.5 ion channel-specific immunostaining demonstrated the presence of immunoreactive nerves, and Schwann-cell-specific (S100) immunostaining confirmed the presence of myelin sheath in rat small mesenteric arteries. The study supports an indirect, sympathetic effect of AVE 0118 similar to that of 4-AP, which is mediated, at least in part, by blocking neuronal KV 1.5 type potassium ion channels in the medio-adventitial layer of rat small mesenteric artery. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Induced root-secreted phenolic compounds as a belowground plant defense

    Science.gov (United States)

    Burlat, Vincent; Schurr, Ulrich; Röse, Ursula SR

    2010-01-01

    Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties. PMID:20699651

  18. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    Science.gov (United States)

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalipada, E-mail: kalipada.das@saha.ac.in; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} (PCMO) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}–La{sub 0.67}Sr{sub 0.33}MnO{sub 3} nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds.

  20. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    Science.gov (United States)

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  2. Tyrphostin AG-related compounds attenuate H2O2-induced TRPM2-dependent and -independent cellular responses.

    Science.gov (United States)

    Yamamoto, Shinichiro; Toda, Takahiro; Yonezawa, Ryo; Negoro, Takaharu; Shimizu, Shunichi

    2017-05-01

    TRPM2 is a Ca2+-permeable channel that is activated by H2O2. TRPM2-mediated Ca2+ signaling has been implicated in the aggravation of inflammatory diseases. Therefore, the development of TRPM2 inhibitors to prevent the aggravation of these diseases is expected. We recently reported that some Tyrphostin AG-related compounds inhibited the H2O2-induced activation of TRPM2 by scavenging the intracellular hydroxyl radical. In the present study, we examined the effects of AG-related compounds on H2O2-induced cellular responses in human monocytic U937 cells, which functionally express TRPM2. The effects of AG-related compounds on H2O2-induced changes in intracellular Ca2+ concentrations, extracellular signal-regulated kinase (ERK) activation, and CXCL8 secretion were assessed using U937 cells. Ca2+ influxes via TRPM2 in response to H2O2 were blocked by AG-related compounds. AG-related compounds also inhibited the H2O2-induced activation of ERK, and subsequent secretion of CXCL8 mediated by TRPM2-dependent and -independent mechanisms. Our results show that AG-related compounds inhibit H2O2-induced CXCL8 secretion following ERK activation, which is mediated by TRPM2-dependent and -independent mechanisms in U937 cells. We previously reported that AG-related compounds blocked H2O2-induced TRPM2 activation by scavenging the hydroxyl radical. The inhibitory effects of AG-related compounds on TRPM2-independent responses may be due to scavenging of the hydroxyl radical. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.

    Directory of Open Access Journals (Sweden)

    Rachel J Skilton

    Full Text Available BACKGROUND: Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB differentiates into a non-infectious replicative form known as a reticulate body (RB. RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non-infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. PRINCIPAL FINDINGS: Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. CONCLUSIONS: We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate

  4. Intense Two-Cycle Laser Pulses Induce Time-Dependent Bond Hardening in a Polyatomic Molecule

    Science.gov (United States)

    Dota, K.; Garg, M.; Tiwari, A. K.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; Mathur, D.

    2012-02-01

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules such as TMS do not exhibit a prominent molecular ion (TMS+) as unimolecular dissociation into [Si(CH3)3]+ proceeds very fast. Under a strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond hardening: a field-induced potential well is created in the TMS+ potential energy curve that effectively traps a wave packet. The time dependence of this bond-hardening process is verified using longer-duration (≥100fs) pulses; the relatively slower falloff of optical field in such pulses allows the initially trapped wave packet to leak out, thereby rendering TMS+ unstable once again.

  5. Permanence induced by life-cycle resonances: the periodical cicada problem.

    Science.gov (United States)

    Kon, Ryusuke

    2012-01-01

    Periodical cicadas are known for their unusually long life cycle for insects and their prime periodicity of either 13 or 17 years. One of the explanations for the prime periodicity is that the prime periods are selected to prevent cicadas from resonating with predators with submultiple periods. This paper considers this hypothesis by investigating a population model for periodical predator and prey. The study shows that if the periods of the two periodical species are not coprime, then the predator cannot resist the invasion of the prey. On the other hand, if the periods are coprime, then the predator can resist the invasion of the prey. It is also shown that if the periods are not coprime, then the life-cycle resonance can induce a permanent system, in which no cohorts are missing in both populations. On the other hand, if the periods are coprime, then the system cannot be permanent.

  6. Toxic but drank: gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees.

    Directory of Open Access Journals (Sweden)

    Ainara Ayestaran

    Full Text Available BACKGROUND: Deterrent substances produced by plants are relevant due to their potential toxicity. The fact that most of these substances have an unpalatable taste for humans and other mammals contrasts with the fact that honeybees do not reject them in the range of concentrations in which these compounds are present in flower nectars. Here we asked whether honeybees detect and ingest deterrent substances and whether these substances are really toxic to them. RESULTS: We show that pairing aversive substances with an odor retards learning of this odor when it is subsequently paired with sucrose. Harnessed honeybees in the laboratory ingest without reluctance a considerable volume (20 µl of various aversive substances, even if some of them induce significant post-ingestional mortality. These substances do not seem, therefore, to be unpalatable to harnessed bees but induce a malaise-like state that in some cases results in death. Consistently with this finding, bees learning that one odor is associated with sugar, and experiencing in a subsequent phase that the sugar was paired with 20 µl of an aversive substance (devaluation phase, respond less than control bees to the odor and the sugar. Such stimulus devaluation can be accounted for by the malaise-like state induced by the aversive substances. CONCLUSION: Our results indicate that substances that taste bitter to humans as well as concentrated saline solutions base their aversive effect on the physiological consequences that their ingestion generates in harnessed bees rather than on an unpalatable taste. This conclusion is only valid for harnessed bees in the laboratory as freely-moving bees might react differently to aversive compounds could actively reject aversive substances. Our results open a new possibility to study conditioned taste aversion based on post-ingestional malaise and thus broaden the spectrum of aversive learning protocols available in honeybees.

  7. Interhemispheric coupling induced by the Holton-Tan effect and its sensitivity to the solar cycle

    Science.gov (United States)

    Matthias, Vivien; Becker, Erich

    2016-04-01

    The modulation of the northern winter polar vortex due to the Holton-Tan (HT) effect results in changes of the gravity wave (GW) drag in the mesosphere/ lower thermosphere (MLT). According to the interhemispheric coupling mechanism, one expects an associated modulation of the entire residual circulation from the summer to the winter pole, including a corresponding variability of the southern summer mesopause temperature. In a preceding study we studied this possible vertical and global extension of the HT effect on the basis of the CMAM30 (Canadian Middle Atmosphere Model) data. We found that a clear effect shows up only when sorting the data according to the phases of the 11-year solar cycle. In particular, the strongest interhemispheric coupling induced by the HT effect in January is visible during solar maximum, while the effect is much weaker during solar minimum and even reversed during the transition phases. In the present study we analyze sensitivity experiments with a new version of the KMCM (Kühlungsborn Mechanistic general Circulation Model; T42,L115) that includes self-generated QBO. Different phases of the solar cycle are mimicked by absorption of solar insolation by ozone around the stratopause. The model runs reproduce the behavior as detected from the CMAM30 data, confirming that the primary cause for the solar-cycle-induced variations of the HT effect are due to the solar heating around the stratopause. In order to explain the simulated sensitivity of the MLT to the solar cycle, we will analyze the differences among the model runs with respect to the dynamics of Rossby waves and GWs and their wave-wave and wave-mean flow interactions. For example, the stratospheric planetary wave drag is weaker during solar transition than during both solar minimum and maximum.

  8. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  9. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Science.gov (United States)

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  10. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  11. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy.

    Science.gov (United States)

    Lin, Shian-Ren; Fu, Yaw-Syan; Tsai, May-Jywan; Cheng, Henrich; Weng, Ching-Feng

    2017-07-01

    Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds-curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin-are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.

  12. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells.

    Science.gov (United States)

    Tang, Yuzhe; Chen, Ruibao; Huang, Yan; Li, Guodong; Huang, Yiling; Chen, Jiepeng; Duan, Lili; Zhu, Bao-Ting; Thrasher, J Brantley; Zhang, Xu; Li, Benyi

    2014-06-01

    Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anticancer effect of a recently isolated natural compound, Alternol, in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived nonmalignant cells. As assessed by trypan blue exclusion assay, significant cell death was observed in all prostate cancer cell lines except DU145 but not in nonmalignant (RWPE-1 and BPH1) cells. Further analyses revealed that Alternol-induced cell death was an apoptotic response in a dose- and time-dependent manner, as evidenced by the appearance of apoptosis hallmarks such as caspase-3 processing and PARP cleavage. Interestingly, Alternol-induced cell death was completely abolished by reactive oxygen species scavengers N-acetylcysteine and dihydrolipoic acid. We also demonstrated that the proapoptotic Bax protein was activated after Alternol treatment and was critical for Alternol-induced apoptosis. Animal xenograft experiments in nude mice showed that Alternol treatment largely suppressed tumor growth of PC-3 xenografts but not Bax-null DU-145 xenografts in vivo. These data suggest that Alternol might serve as a novel anticancer agent for patients with late-stage prostate cancer. ©2014 American Association for Cancer Research.

  13. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions

    Directory of Open Access Journals (Sweden)

    D.F. Meinerz

    2011-11-01

    Full Text Available We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS. The co-incubation with diphenyl diselenide (100 µM completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect. Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.

  14. Ambient ionization and direct identification of volatile organic compounds with microwave-induced plasma mass spectrometry.

    Science.gov (United States)

    Li, Dandan; Tian, Yong-Hui; Zhao, Zhongjun; Li, Wenwen; Duan, Yixiang

    2015-02-01

    An innovative method of volatile organic compounds analysis by using microwave-induced plasma ionization (MIPI) source in combination with an ambient ion trap mass spectrometer is presented here. Using MIPI for direct sample vapor, analysis was achieved without any sample preparation or subsequent heating. The relative abundance of the target compounds can be obtained almost instantly within a few seconds. The ionization processes of different volatile compounds was optimized, and the limits of detection were identified in the range of 0.15-4.5 pptv or 0.73-8.80 pg ml(-1). The relative standard deviation (RSD) is in the range of 4-14%, while correlation coefficients of the working curves (R(2)) are better than 0.98. The new method possesses advantages of ease operation, time-saving, high sensitivity and inexpensive setup. In addition, the ionization processes of short n-alkane chains were investigated with the MIPI technique, and a unique [M + 13](+) was detected, which has not been reported in detail by any other related ionization techniques. An ionization mechanism was proposed on the basis of the experimental results obtained in this work and available information in literatures, in which the n-alkanes in the plasma environment possibly generate protonated cyclopentadiene [M - 5](+) or alkyl-substituted analogues as well as hydrous ions [M + 13](+) and [M + 13 + 18](+), as shown in Scheme 1 in the main text. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Cruz, Jaqueline Matos; Claro, Marina Turini; Quiterio, Gabriela Mercuri; Bidoia, Ederio Dino

    2017-04-01

    The type and concentration of perfluorinated compounds (PFCs) can induce different types of enzymes and promote alternate patterns of BTEX transformation. However, it is not known how the presence of active fluorocarbon-degrading microbial populations affects the transformation of BTEX. In addition to chemical analysis at the molecular level, our research approached the aqueous film forming fire-fighting foams (AFFF) and BTEX co-contamination at a large-scale with respirometers to quantify the total microbial metabolism of soil via CO2 output levels. The intended outcome of this research was to obtain and characterize shifts in BTEX degradation at a set realistic environmental condition while measuring byproducts and CO2 production. Both methodologies complimentarily provided an in-depth knowledge of the environmental behavior of fire-fighting foams. The biodegradation was monitored using headspace sampling and two types of gas chromatography: thermal conductivity detector and flame ionization detector. Headspace samples were periodically withdrawn for BTEX biodegradation and CO2 production analysis. Our research suggests the discovery of an altered metabolic pathway in aromatic hydrocarbons biodegradation that is directly affected by fluorinated substances. The fluorinated compounds affected the BTEX biodegradation kinetics, as PFCs may contribute to a shift in styrene and catechol concentrations in co-contamination scenarios. A faster production of styrene and catechol was detected. Catechol is also rapidly consumed, thus undergoing further metabolic stages earlier under the presence of PFCs. The release of AFFF compounds not only changes byproducts output but also drastically disturbs the soil microbiota according to the highly variable CO2 yields. Therefore, we observed a high sensitivity of microbial consortia due to PFCs in the AFFF formulation, therefore shifting their BTEX degradation routes in terms of intermediate products concentration. Copyright © 2016

  16. Laser-induced forward transfer of a bis-pyrene compound for OTFTs

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, Catalin, E-mail: constantinescu@lp3.univ-mrs.fr [Aix-Marseille Université, CNRS, LP3 (UMR 7341), 13288 Marseille Cedex 9 (France); Diallo, Abdou Karim; D’Aleo, Anthony; Fages, Frédéric [Aix-Marseille Université, CNRS, CINaM (UMR 7325), 13288 Marseille Cedex 9 (France); Videlot-Ackermann, Christine, E-mail: videlot@cinam.univ-mrs.fr [Aix-Marseille Université, CNRS, CINaM (UMR 7325), 13288 Marseille Cedex 9 (France); Delaporte, Philippe [Aix-Marseille Université, CNRS, LP3 (UMR 7341), 13288 Marseille Cedex 9 (France); Alloncle, Anne-Patricia, E-mail: alloncle@lp3.univ-mrs.fr [Aix-Marseille Université, CNRS, LP3 (UMR 7341), 13288 Marseille Cedex 9 (France)

    2015-05-01

    Graphical abstract: - Highlights: • 1,4-Bis(octyloxy)-2,5-bis(ethynylpyrene)benzene (“bis-pyrene”) films are synthesized. • Laser-based technology is used to print bis-pyrene pixels for OTFT devices. • The structure and electrical properties of the transistors are discussed. - Abstract: We present results on a newly synthesized bis-pyrene compound that, besides the typical fluorescence, also exhibits semiconducting properties. Thin films have been grown by vacuum thermal evaporation on oxidized silicon and on transparent quartz substrates. Micrometric-sized pixels have subsequently been printed by laser-induced forward transfer (LIFT), in air and at low pressure (90 mbar), by using a Nd:YAG laser source (355 nm, 50 ps pulse duration) to produce functional organic thin film transistors (o-TFTs). Top-contact (TC) configurations are emphasized, and the influence of the pressure and laser fluence during the LIFT procedure is discussed.

  17. Pressure induced structural phase transition in IB transition metal nitrides compounds

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Shubhangi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Jain, A. [Department of Physics, Govt. Holkar Science college, A. B. Road, Indore-452001 India (India); Shah, S. [Department of Physics, P. M. B. Gujarati Science College, Indore-452001 (India); Choudhary, K. K. [Department of Physics, National Defence Academy, Khadakwasla, Pune-411 0231 India (India)

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  18. Chemopreventive Potential of Major Flavonoid Compound of Methanolic Bark Extract of Saraca asoca (Roxb.) in Benzene-induced Toxicity of Acute Myeloid Leukemia Mice.

    Science.gov (United States)

    Mukhopadhyay, Manas Kumar; Shaw, Mithun; Nath, Debjani

    2017-07-01

    Saraca asoca (SA) (Roxb.) is one of the folk medicinal plants found in India, Bangladesh, and Sri Lanka. Its major biological activity appears due to the presence of flavonoid group of compounds in its bark extract. In this study, our research aims to analyze the chemopreventive effect of flavonoids, especially a natural phenol catechin present in the bark methanolic extract of SA on acute myeloid leukemia (AML) mice. The total bark extract was partitioned and analyzed on thin-layer chromatography (TLC) plate. The yellow-brown material of spot 4 was analyzed and identified as catechin. The yellowish brown material (YBM) was tested for their chemopreventive potential. An in vivo AML mice model was used to test the efficacy. Hematological parameters (Hb %, red blood cell, and white blood cell count), expression of cell cycle regulatory proteins, and DNA fragmentation analysis were performed. After treatment of benzene-exposed mice with the major flavonoid compound, namely catechin, the above parameters increase significantly (P flavonoid-treated group compared to that of control (P ≤ 0.05). The present study indicates that the secondary metabolites of SA methanolic bark extract, comprising flavonoid catechin as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. Our data suggest that catechin from methanolic bark extract of SA effectively attenuates benzene-induced secondary AML in bone marrow, which is likely associated with the anticell cycle deregulation properties of this flavan-3-ol. This study was supported by the observation that catechin (YBM), like doxorubicin, can act as the neutralizer and protector of mortality in cancer cases. The catechin from methanolic bark extract of Saraca asoca has chemoprotective activity in benzene-induced secondary acute myeloid leukemia.(AML) in bone marrowHematological parameters, structural analysis of DNA showed that the purified catechin

  19. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  20. Icarisid II inhibits the proliferation of human osteosarcoma cells by inducing apoptosis and cell cycle arrest.

    Science.gov (United States)

    Tang, Yuanyuan; Xie, Mao; Jiang, Neng; Huang, Feifei; Zhang, Xiao; Li, Ruishan; Lu, Jingjing; Liao, Shijie; Liu, Yun

    2017-06-01

    Icarisid II, one of the main active components of Herba Epimedii extracts, shows potent antitumor activity in various cancer cell lines, including osteosarcoma cells. However, the anticancer mechanism of icarisid II against osteosarcoma U2OS needs further exploration. This study aims to investigate further antitumor effects of icarisid II on human osteosarcoma cells and elucidate the underlying mechanism. We cultivated human osteosarcoma USO2 cells in vitro using different concentrations of icarisid II (0-30 µM). Cell viability was detected at 24, 48, and 72 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis. Cell cycle was tested by flow cytometry after treatment with icarisid II for 48 h. Annexin V-allophycocyanin and 7-aminoactinomycin D staining were conducted to detect cell apoptosis. Quantitative real-time polymerase chain reaction and Western blot assay were performed to measure the levels of genes and proteins related to cell cycle and apoptosis. Results showed that icarisid II significantly inhibited the proliferation and induced apoptosis of human osteosarcoma U2OS cells. The half maximal inhibitory concentration values were 14.44, 11.02, and 7.37 µM at 24, 48, and 72 h, respectively. Cell cycle was arrested in the G2/M phase in vitro. In addition, icarisid II upregulated the expression levels of P21 and CyclinB1 whereas downregulated the expression levels of CyclinD1, CDC2, and P-Cdc25C, which were related to cell cycle arrest in U2OS cells. The cell apoptotic rate increased in a dose-dependent manner after treatment with icarisid II for 48 h. Icarisid II induced apoptosis by upregulating Bax, downregulating Bcl-2, and activating apoptosis-related proteins, including cleaved caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase. These data indicate that icarisid II exhibits an antiproliferation effect on human osteosarcoma cells and induces apoptosis by activating the caspase family in a time- and dose

  1. Daphnoretin Induces Cell Cycle Arrest and Apoptosis in Human Osteosarcoma (HOS Cells

    Directory of Open Access Journals (Sweden)

    Jinhai He

    2012-01-01

    Full Text Available In this study antiproliferation, cell cycle arrest and apoptosis induced by daphnoretin in human osteosarcoma (HOS cells were investigated. Antiproliferative activity was measured with the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. The IC50 value of daphnoretin was 3.89 μM after 72 h treatment. Induction of apoptosis was evidenced by apoptotic body appearance and Annexin V-FITC/PI apoptosis detection kit. Flow cytometric analysis indicated daphnoretin arrested the cell cycle in the G2/M phase. Western-blot assay showed that the G2/M phase arrest was accompanied by down-regulation of cdc2, cyclin A and cyclin B1. Moreover, daphnoretin inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade. Our results demonstrated that daphnoretin caused death of HOS cells by blocking cells successively in G2/M phases and activating the caspase-3 pathway.

  2. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    Science.gov (United States)

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin+) and leukemia stem cell population (CD34+CD38-Lin-/low). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration

    NARCIS (Netherlands)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M.; Straube, Werner L.; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, Andras; Drechsel, David N.; Tanaka, Elly M.

    2017-01-01

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell

  5. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  6. Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration.

    Science.gov (United States)

    To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming

    2013-07-28

    Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.

  7. Nondestructive application of laser-induced fluorescence spectroscopy for quantitative analyses of phenolic compounds in strawberry fruits (Fragaria x ananassa).

    Science.gov (United States)

    Wulf, J S; Rühmann, S; Rego, I; Puhl, I; Treutter, D; Zude, M

    2008-05-14

    Laser-induced fluorescence spectroscopy (LIFS) was nondestructively applied on strawberries (EX = 337 nm, EM = 400-820 nm) to test the feasibility of quantitatively determining native phenolic compounds in strawberries. Eighteen phenolic compounds were identified in fruit skin by UV and MS spectroscopy and quantitatively determined by use of rp-HPLC for separation and diode-array or chemical reaction detection. Partial least-squares calibration models were built for single phenolic compounds by means of nondestructively recorded fluorescence spectra in the blue-green wavelength range using different data preprocessing methods. The direct orthogonal signal correction resulted in r (2) = 0.99 and rmsep fruits.

  8. Comparison of the pedalling performance induced by magnetic and electrical stimulation cycle ergometry in able-bodied subjects.

    Science.gov (United States)

    Szecsi, J; Straube, A; Fornusek, C

    2014-04-01

    The purpose of the study was to compare the mechanical power and work generated by able-bodied subjects during functional magnetic stimulation (FMS) vs. functional electrical stimulation (FES) induced ergometer training conditions. Both stimulation methods were applied at a 30 Hz frequency to the quadriceps muscles of 22 healthy able-bodied subjects to induce cycling for 4× four minutes or until exhaustion. FMS was performed via large surface, cooled coils, while FES was applied with a typical stimulation setup used for cycling. Significantly more (pstimulation induced pain and fatigue mechanisms of the neuromuscular system. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. The Pressure-Induced Structural Response of A2Hf2O7 (A=Y, Sm, Eu, Gd, Dy, Yb) Compounds from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2016-12-01

    A2B2O7 (A, B= cations) compounds have structures that make their properties conducive to many applications; for example they are a proposed waste-form for actinides generated in the nuclear fuel cycle. This interest in part is due to their structural responses to extreme environments of high P, T, or under intense irradiation. Depending on their cationic radius ratio, ra/rb, A2B2O7 compounds either crystallize as pyrochlore (ra/rb=1.46-1.7) or "defect fluorite" (ra/rb>1.46). The structure types are similar: they are derivatives of ideal fluorite with two cations and 1/8 missing anions. In pyrochlore, the cations and anion vacancy are ordered. In "defect fluorite"-structured oxides, the cations and anion vacancies are random. A2B2O7 compounds rarely amorphize in extreme environments. Rather, they disorder and undergo phase transitions; this resistance to amorphization contributes to the durability of this potential actinide waste-form. Under high-pressure, A2B2O7 compounds are known to disorder or form a cottunite-like phase. Their radius ratio affects their response to extreme environments; "defect fluorite" type compounds tend to disorder, and pyrochlore type compounds tend to form the cottunite-like phase. We have examined six A2Hf2O7 compounds (A=Y, Sm, Eu, Gd, Dy, Yb) in situ to 50 GPa. By keeping the B-site constant (Hf), we examined the effect of a changing radius ratio on the pressure-induced structural response of hafnates. We used symmetric DACs, ruby fluorescence, stainless steel gaskets, and methanol: ethanol (4:1 by volume) pressure medium. We characterized these materials with in situ Raman spectroscopy at Stanford University, and synchrotron X-Ray Diffraction (XRD) at APS 16 BM-D and ALS 12.2.2. The compounds were pyrochlore structured (Sm, Eu, Gd) and "defect-fluorite" structured (Y, Dy, Yb) hafnates . These compounds undergo a slow phase transition to a high-pressure cotunnite-like phase between 18-30 GPa. They undergo disordering of their cation

  10. Cell cycle regulation and radiation-induced cell death; Regulation du cycle cellulaire et de la mort cellulaire radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V. [Centre Universitaire d' Orsay, Institut Curie, Section de Recherche, Lab. Raymond-Latarjet, Unite 350 Inserm, 91 (France)

    2000-10-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  11. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios

    2017-09-22

    There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.

  12. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-06-01

    Full Text Available The objective of the present study was to investigate the anti-cancer effects of eriodictyol in human hepatocellular carcinoma cells (Hep-G2 and normal liver hepatocyte cell line (AML12 along with evaluating its mode of action. Sulforhodamine B assay was used to evaluate the cytotoxic effect of the compound while as fluorescence microscopy was involved to demonstrate the effect of eriodictyol on cellular apoptosis. Flow cytometry was used to investigate the effect of eriodictyol on cell cycle while Western blot analysis revealed the effect on apoptosis-related protein expressions. Results indicate that eriodictyol-induced selective and concentration-dependent cytotoxic effect on Hep-G2 cancer cells while AML12 normal liver cells were very less susceptible to its effect. Eriodictyol-induced apoptosis related morphological changes including chromatin condensation and nuclear fragmentation. It also induced G2/M cell cycle arrest in these cells. Eriodictyol led to up-regulation of Bax and PARP and down-regulation of Bcl-2 protein.

  13. Migraine with aura: a vicious cycle perpetuated by potassium-induced vasoconstriction.

    Science.gov (United States)

    Young, D B; Van Vliet, B N

    1992-01-01

    Two hypotheses have dominated attempts to understand the etiology of migraine with aura or classic migraine; the vascular spasm model proposed by Wolff and colleagues, and the spreading cortical depression hypothesis. Neither can provide a fully satisfactory explanation for the syndrome, however. We propose that classic migraine is both spreading cortical depression and localized ischemia linked in a vicious cycle by potassium induced vasoconstriction. The cycle can be initiated by any event which raises the local cortical ECF potassium concentration to approximately 20 mM. Such an event could be a localized burst of activity of a group of cells, localized metabolic impairment, or a transient reduction in blood flow to a region of the cortex. Once this level of potassium concentration is reached, it may result in localized depolarization of neurons, releasing more potassium into the ECF. Glial siphoning can distribute the potassium preferentially toward the blood vessels in the area, leading to an elevation in potassium concentration in the ECF surrounding the vascular smooth muscle of the arterioles. Above approximately 15 mM, vascular smooth muscle increases its tension in response to elevations in potassium. Therefore, as cortical ECF potassium concentration rises above 15 to 20 mM, localized vasoconstriction occurs, thereby reducing both the supply of oxygen for aerobic metabolism and the removal of potassium in the blood. Under these conditions, the effectiveness of the mechanisms which control potassium concentration is impaired and unable to prevent additional elevations in potassium. As the concentration continues to rise, vasoconstriction becomes more intense, perpetuating the cycle that results in localized depression of cortical neuronal activity and ischemia. The condition is propagated to adjacent regions of the cortex by diffusion and glial-mediated spread of potassium. In many respects, the hypothesis unites the vascular spasm and spreading

  14. Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guang Cheng

    2011-08-01

    Full Text Available Parthenolide, the principal component of sesquiterpene lactones present in medical plants such as feverfew (Tanacetum parthenium, has been reported to have anti-tumor activity. In this study, we evaluated the therapeutic potential of parthenolide against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with parthenolide resulted in a significant decrease in cell viability. Parthenolide induced apoptosis through the modulation of Bcl-2 family proteins and poly (ADP-ribose polymerase degradation. Treatment with parthenolide led to G1 phase cell cycle arrest in 5637 cells by modulation of cyclin D1 and phosphorylated cyclin-dependent kinase 2. Parthenolide also inhibited the invasive ability of bladder cancer cells. These findings suggest that parthenolide could be a novel therapeutic agent for treatment of bladder cancer.

  15. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke

    Directory of Open Access Journals (Sweden)

    Taryn Klarner

    2016-11-01

    Full Text Available Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L cycling training. Nineteen individuals with chronic stroke (more than six months postlesion performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.

  16. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.

    Science.gov (United States)

    Lin, Renyu; Zhang, Ziheng; Chen, Lingfeng; Zhou, Yunfang; Zou, Peng; Feng, Chen; Wang, Li; Liang, Guang

    2016-10-10

    Head and neck cancer is the sixth most common cancer worldwide. Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, exhibits a wide range of biological roles including a highly efficient and specific anti-tumor activity. Here, we aimed to examine the effect of DHA on head and neck carcinoma cells and elucidate the potential mechanisms. We used five head and neck carcinoma cell lines and two non-tumorigenic normal epithelial cell lines to achieve our goals. Cells were exposed to DHA and subjected to cellular activity assays including viability, cell cycle analysis, cell death, and angiogenic phenotype. Our results show that DHA causes cell cycle arrest which is mediated through Forkhead box protein M1 (FOXM1). We also demonstrate that DHA induces ferroptosis and apoptosis in head and neck carcinoma cells. Lastly, our results show that DHA alters the angiogenic phenotype of cancer cells by reducing the expression of angiogenic factors and the ability of cancer cells to support endothelial cell tubule formation. Our study suggests that DHA specifically causes head and neck cancer cell death through contribution from both ferroptosis and apoptosis. DHA may represent an effective strategy in head and neck cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2015-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells, The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole, as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation. The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression. Were observed taken together, these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer. PMID:25859268

  18. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    NARCIS (Netherlands)

    Kegge, W.; Weldegergis, B.T.; Soler, R.; Vergeer-van Eijk, M.H.; Dicke, M.; Voesenek, L.A.C.J.; Pierik, R.

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia

  19. The thymus atrophy inducing organotin compound DBTC stimulates TCRalfabeta-CD3 signalling in immature rat thymocytes

    NARCIS (Netherlands)

    Pieters, R.H.H.; Punt, P.; Bol, M.; Dijken, J.M. van; Seinen, W.; Penninks, A.H.

    1995-01-01

    In the present study, we show that the thymus atrophy inducing compound DBTC stimulates the intracellular release, but not the influx, of Ca2+ elicited by cross-linking of the TcRαβ-CD3-complex on rat thymocytes and inhibits capping of TcRαβ. Similarities with the effects of cytochalasin B together

  20. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice

    NARCIS (Netherlands)

    Veld, ter M.G.R.; Zawadzka, E.; Berg, van den J.H.J.; Saag, van der P.T.; Rietjens, I.M.C.M.; Murk, A.J.

    2008-01-01

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues

  1. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    NARCIS (Netherlands)

    ter Veld, M.G.R.; Zawadzka, E.; van den Berg, J.H.J.; van der Saag, P.T.; Rietjens, I.M.C.M.; Murk, A.J.

    2008-01-01

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues

  2. Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-10-01

    Full Text Available Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc in tobacco (Nicotiana tabacum and Pseudomonas syringae pv. tomato (Pst in Arabidopsis thaliana. To select target compound(s with direct and indirect (volatile effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA and jasmonic acid (JA signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  3. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups.

    Science.gov (United States)

    Schaefer, Laura; Auchtung, Thomas A; Hermans, Karley E; Whitehead, Daniel; Borhan, Babak; Britton, Robert A

    2010-06-01

    Reuterin is an antimicrobial compound produced by Lactobacillus reuteri, and has been proposed to mediate, in part, the probiotic health benefits ascribed to this micro-organism. Despite 20 years of investigation, the mechanism of action by which reuterin exerts its antimicrobial effects has remained elusive. Here we provide evidence that reuterin induces oxidative stress in cells, most likely by modifying thiol groups in proteins and small molecules. Escherichia coli cells subjected to sublethal levels of reuterin expressed a set of genes that overlapped with the set of genes composing the OxyR regulon, which senses and responds to various forms of oxidative stress. E. coli cells mutated for oxyR were more sensitive to reuterin compared with wild-type cells, further supporting a role for reuterin in exerting oxidative stress. The addition of cysteine to E. coli or Clostridium difficile growth media prior to exposure to reuterin suppressed the antimicrobial effect of reuterin on these bacteria. Interestingly, interaction with E. coli stimulated reuterin production or secretion by L. reuteri, indicating that contact with other microbes in the gut increases reuterin output. Thus, reuterin inhibits bacterial growth by modifying thiol groups, which indicates that reuterin negatively affects a large number of cellular targets.

  4. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-03-05

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid ..beta..-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using (32/sub p/)cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid ..beta..-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for ..beta..-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the ..beta..-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification.

  5. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80

    Directory of Open Access Journals (Sweden)

    Sena Lee

    2014-04-01

    Full Text Available The protective effect of ginsenoside Re, isolated from ginseng berry, against acute gastric mucosal lesions was examined in rats with a single intraperitoneal injection of compound 48/80 (C48/80. Ginsenoside Re (20 mg/kg or 100 mg/kg was orally administered 0.5 h prior to C48/80 treatment. Ginsenoside Re dose-dependently prevented gastric mucosal lesion development 3 h after C48/80 treatment. Increases in the activities of myeloperoxidase (MPO; an index of neutrophil infiltration and xanthine oxidase (XO and the content of thiobarbituric acid reactive substances (TBARS; an index of lipid peroxidation and decreases in the contents of hexosamine (a marker of gastric mucus and adherent mucus, which occurred in gastric mucosal tissues after C48/80 treatment, were significantly attenuated by ginsenoside Re. The elevation of Bax expression and the decrease in Bcl2 expression after C48/80 treatment were also attenuated by ginsenoside Re. Ginsenoside Re significantly attenuated all these changes 3 h after C48/80 treatment. These results indicate that orally administered ginsenoside Re protects against C48/80-induced acute gastric mucosal lesions in rats, possibly through its stimulatory action on gastric mucus synthesis and secretion, its inhibitory action on neutrophil infiltration, and enhanced lipid peroxidation in the gastric mucosal tissue.

  6. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  7. Esculetin, a natural coumarin compound, evokes Ca(2+) movement and activation of Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells.

    Science.gov (United States)

    Chang, Hong-Tai; Chou, Chiang-Ting; Lin, You-Sheng; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-04-01

    Esculetin (6,7-dihydroxycoumarin), a derivative of coumarin compound, is found in traditional medicinal herbs. It has been shown that esculetin triggers diverse cellular signal transduction pathways leading to regulation of physiology in different models. However, whether esculetin affects Ca(2+) homeostasis in breast cancer cells has not been explored. This study examined the underlying mechanism of cytotoxicity induced by esculetin and established the relationship between Ca(2+) signaling and cytotoxicity in human breast cancer cells. The results showed that esculetin induced concentration-dependent rises in the intracellular Ca(2+) concentration ([Ca(2+)]i) in ZR-75-1 (but not in MCF-7 and MDA-MB-231) human breast cancer cells. In ZR-75-1 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by the store-operated Ca(2+) channel blocker 2-aminoethoxydiphenyl borate (2-APB). In Ca(2+)-free medium, pre-treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished esculetin-induced [Ca(2+)]i rises. Conversely, incubation with esculetin abolished TG-induced [Ca(2+)]i rises. Esculetin induced cytotoxicity that involved apoptosis, as supported by the reduction of mitochondrial membrane potential and the release of cytochrome c and the proteolytic activation of caspase-9/caspase-3, which were partially reversed by pre-chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Moreover, esculetin increased the percentage of cells in G2/M phase and regulated the expressions of p53, p21, CDK1, and cyclin B1. Together, in ZR-75-1 cells, esculetin induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through 2-APB-sensitive store-operated Ca(2+) entry. Furthermore, esculetin activated Ca(2+)-associated mitochondrial apoptotic pathways that involved G2/M cell cycle arrest. Graphical abstract The summary of esculetin

  8. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457 (China); Obesita and Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris (France); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  9. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury.

    Directory of Open Access Journals (Sweden)

    Xueyan Zhang

    Full Text Available BACKGROUND: The prevention and treatment of Microwave-caused cardiovascular injury remains elusive. This study investigated the cardiovascular protective effects of compound Chinese medicine "Kang Fu Ling" (KFL against high power microwave (HPM-induced myocardial injury and the role of the mitochondrial permeability transition pore (mPTP opening in KFL protection. METHODS: Male Wistar rats (100 were divided into 5 equal groups: no treatment, radiation only, or radiation followed by treatment with KFL at 0.75, 1.5, or 3 g/kg/day. Electrocardiography was used to Electrophysiological examination. Histological and ultrastructural changes in heart tissue and isolated mitochondria were observed by light microscope and electron microscopy. mPTP opening and mitochondrial membrane potential were detected by confocal laser scanning microscopy and fluorescence analysis. Connexin-43 (Cx-43 and endothelial nitric oxide synthase (eNOS were detected by immunohistochemistry. The expression of voltage-dependent anion channel (VDAC was detected by western blotting. RESULTS: At 7 days after radiation, rats without KFL treatment showed a significantly lower heart rate (P<0.01 than untreated controls and a J point shift. Myocyte swelling and rearrangement were evident. Mitochondria exhibited rupture, and decreased fluorescence intensity, suggesting opening of mPTP and a consequent reduction in mitochondrial membrane potential. After treatment with 1.5 g/kg/day KFL for 7 d, the heart rate increased significantly (P<0.01, and the J point shift was reduced flavorfully (P<0.05 compared to untreated, irradiated rats; myocytes and mitochondria were of normal morphology. The fluorescence intensities of dye-treated mitochondria were also increased, suggesting inhibition of mPTP opening and preservation of the mitochondrial membrane potential. The microwave-induced decrease of Cx-43 and VDAC protein expression was significantly reversed. CONCLUSION: Microwave radiation can

  10. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response.

    Science.gov (United States)

    Alexandrou, Aris T; Li, Jian Jian

    2014-03-20

    There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.

  11. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    Science.gov (United States)

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  12. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance.

    Science.gov (United States)

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T; Lagakos, William S; Oh, Dayoung; Watkins, Steven M; Kim, Jane J

    2015-08-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation. Copyright © 2015 the American Physiological Society.

  13. The Isolated and Combined Effects of Folic Acid and Synthetic Bioactive Compounds against Aβ(25-35-Induced Toxicity in Human Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ming-Chi Tang

    2010-03-01

    Full Text Available Folic acid plays an important role in neuronal development. A series of newly synthesized bioactive compounds (NSCs was reported to exhibit immunoactive and neuroprotective functions. The isolated and combined effects of folic acid and NSCs against β-amyloid (Aβ-induced cytotoxicity are poorly understood. These effects were tested using human microglia cells (C13NJ subjected to Aβ(25-35 challenge. According to an MTT assay, treatment of C13NJ cells with Aβ(25-35 at 10~100 μM for 48 h induced 18%~43% cellular death in a dose-dependent manner (p < 0.05. Aβ(25-35 treatment at 25 μM induced nitrite oxide (NO release, elevated superoxide production, and reduced the distribution of cells in the S phase. Preincubation of C13NJ with 100 μM folic acid protected against Aβ(25-35-induced cell death, which coincided with a reduction in NO release by folic acid supplements. NSC47 at a level of 50 μM protected against Aβ(25-35-induced cell death and reduced Aβ-promoted superoxide production (p < 0.05. Folic acid in combination with NSC47 at their cytoprotective doses did not synergistically ameliorate Aβ(25-35-associated NO release, superoxide production, or cell cycle arrest. Taken together, folic acid or NSC treatment alone, but not the combined regimen, protected against Aβ(25-35-induced cell death, which may partially, if not completely, be mediated by free radical-scavenging effects.

  14. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells.

    Science.gov (United States)

    Wang, Yifei; Han, Alex; Chen, Eva; Singh, Rakesh K; Chichester, Clinton O; Moore, Richard G; Singh, Ajay P; Vorsa, Nicholi

    2015-05-01

    Cranberry flavonoids (flavonols and flavan-3-ols), in addition to their antioxidant properties, have been shown to possess potential in vitro activity against several cancers. However, the difficulty of isolating cranberry compounds has largely limited anticancer research to crude fractions without well-defined compound composition. In this study, individual cranberry flavonoids were isolated to the highest purity achieved so far using gravity and high performance column chromatography and LC-MS characterization. MTS assay indicated differential cell viability reduction of SKOV-3 and OVCAR-8 ovarian cancer cells treated with individual cranberry flavonoids. Treatment with quercetin aglycone and PAC DP-9, which exhibited the strongest activity, induced apoptosis, led to caspase-3 activation and PARP deactivation, and increased sensitivity to cisplatin. Furthermore, immunofluorescence microscopy and western blot study revealed reduced expression and activation of epidermal growth factor receptor (EGFR) in PAC DP-9 treated SKOV-3 cells. In addition, quercetin aglycone and PAC DP-9 deactivated MAPK-ERK pathway, induced downregulation of cyclin D1, DNA-PK, phospho-histone H3 and upregulation of p21, and arrested cell cycle progression. Overall, this study demonstrates promising in vitro cytotoxic and anti-proliferative properties of two newly characterized cranberry flavonoids, quercetin aglycone and PAC DP-9, against ovarian cancer cells.

  15. Tubeimoside-1 upregulates p21 expression and induces apoptosis and G2/M phase cell cycle arrest in human bladder cancer T24 cells

    Directory of Open Access Journals (Sweden)

    Azhar Rasul

    2014-12-01

    Full Text Available Tubeimoside-1 (TBMS1 is a triterpenoid saponin with potent anticancer properties. In this study, for the first, we examined the anti-proliferative effects of TBMS1 in human bladder cancer T24 cells and its ability to induce apoptosis and cell cycle arrest. Our results demonstrated that TBMS1 decreased the cell viability of bladder cancer T24 cells in a dose-dependent manner. Flow cytometric analysis showed that TBMS1 significantly triggered apoptosis in T24 cells and arrested cell cycle at G2/M phase in a dose-dependent manner. Further characterization demonstrated that TBMS1-induced apoptosis is associated with dissipation in mitochondrial membrane potential (ΔΨm, down-regulation of Bcl-2, and up-regulation of Bax and p21 in TBMS1-treated T24 cells. These in vitro results suggested that TBMS1 is an effective anti-bladder cancer natural compound that worth further mechanistic and therapeutic studies in human bladder cancer.

  16. Mitochondrial reactive oxygen species production mediates ursolic acid-induced mitochondrial uncoupling and glutathione redox cycling, with protection against oxidant injury in H9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2015-02-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is a ubiquitous compound widely distributed in many plants, fruits and medicinal herbs worldwide. A previous study in our laboratory has shown that UA can increase the mitochondrial ATP generation capacity (ATP-GC) and a glutathione-dependent antioxidant response, thereby protecting against oxidant injury in H9c2 cells in vitro and rat hearts ex vivo. However, the mechanism underlying the cellular protective effects induced by UA remains largely unknown. The present study has shown that pre-incubation with UA produces a transient increase in the mitochondrial membrane potential in H9c2 cells, which was accompanied by increases in mitochondrial reactive oxygen species (ROS) production. Studies using an antioxidant (dimethylthiourea) indicated that the suppression of mitochondrial ROS completely abrogated the UA-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, as well as protection against menadione cytotoxicity in H9c2 cells. Co-incubation with specific inhibitors of uncoupling proteins and GR almost completely prevented the cytoprotection afforded by UA against menadione-induced cytotoxicity in H9c2 cells. The results obtained so far suggest that UA-induced mitochondrial ROS production can elicit mitochondrial uncoupling and glutathione-dependent antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  17. Improvement effect of corn silk, perilla leaf and grape stem extract mixture against UVB-induced skin damage and compound 48/80-induced pruritus

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byoung Ok; Shin, Jae Young; Che, Denis Nchang; Hwang, Young Min; Lee, Hyun Seo; Choi, Ji Won; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of); Ryu, Cheol [Hyangmiwon Corporation, Gimje (Korea, Republic of)

    2017-02-15

    This study was conducted to evaluate the synergistic protective effects of mixtures of corn silk, perilla leaf and grape stem extract (CPG mixture) against UVB-induced skin damage and compound 48/80-induced pruritus in mice. The results showed that treatment with CPG mixture exhibited much stronger suppressive effect on erythema and melanin index as well as melanin formation than treatment with ascorbic acid (AA) in UVB-irradiated mice. Moreover, the treatment with CPG mixture showed ameliorative effect on immune cell infiltration and collagen fiber destruction in UV-irradiated mice. The treatment with CPG mixture inhibited glutathione (GSH) depletion, lipid peroxidation and production of pro-inflammatory cytokines in UVB-irradiated mice. Furthermore, the treatment with CPG mixture inhibited compound 48/80-induced scratching behavior and histological changes in mice. Taken together, these results indicated that CPG mixture has potentials as functional and therapeutic materials against skin damage and itch-related skin diseases.

  18. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    Science.gov (United States)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  19. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    Directory of Open Access Journals (Sweden)

    Choi Jung-Hye

    2009-12-01

    Full Text Available Abstract Background Compound K [20-O-β-(D-glucopyranosyl-20(S-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. Methods We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Results Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1 the activation of caspases-3, -8, and -9; (2 the loss of mitochondrial membrane potential; (3 the release of cytochrome c and Smac/DIABLO to the cytosol; (4 the translocation of Bid and Bax to mitochondria; and (5 the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. Conclusions The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through

  20. Supplement of TCA cycle intermediates protects against high glucose/palmitate-induced INS-1 beta cell death.

    Science.gov (United States)

    Choi, Sung-E; Lee, Youn-Jung; Hwang, Geum-Sook; Chung, Joo Hee; Lee, Soo-Jin; Lee, Ji-Hyun; Han, Seung Jin; Kim, Hae Jin; Lee, Kwan-Woo; Kim, Youngsoo; Jun, Hee-Sook; Kang, Yup

    2011-01-15

    The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis.

    Science.gov (United States)

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2010-07-30

    Breast cancer is one of the most common tumors in women of Western countries. The high aggressiveness and therapeutic resistance of estrogen-independent breast tumors have motivated the development of new strategies for prevention and/or treatment. Combinations of two or more chemopreventive agents are currently being used to achieve greater inhibitory effects on breast cancer cells. This study reveals that both aspirin and lunasin inhibit, in a dose-dependent manner, human estrogen-independent breast cancer MDA-MB-231 cell proliferation. These compounds arrest the cell cycle in the S- and G1-phases, respectively, acting synergistically to induce apoptosis. To begin elucidating the mechanism(s) of action of these compounds, different molecular targets involved in cell cycle control, apoptosis and signal transduction have been evaluated by real-time polymerase chain reaction (RT-PCR) array. The cell growth inhibitory effect of a lunasin/aspirin combination is achieved, at least partially, by modulating the expression of genes encoding G1 and S-phase regulatory proteins. Lunasin/aspirin therapy exerts its potent pro-apoptotic effect is at least partially achieved through modulating the extrinsic-apoptosis dependent pathway. Synergistic down-regulatory effects were observed for ERBB2, AKT1, PIK3R1, FOS and JUN signaling genes, whose amplification has been reported as being responsible for breast cancer cell growth and resistance to apoptosis. Therefore, our results suggest that a combination of these two compounds is a promising strategy to prevent/treat breast cancer. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater

    Science.gov (United States)

    Grueneberg, Jan; Engelen, Aschwin H.; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in

  4. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater.

    Directory of Open Access Journals (Sweden)

    Jan Grueneberg

    Full Text Available Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens, which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal

  5. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater.

    Science.gov (United States)

    Grueneberg, Jan; Engelen, Aschwin H; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in

  6. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    Science.gov (United States)

    Ter Veld, Marcel G R; Zawadzka, E; van den Berg, J H J; van der Saag, Paul T; Rietjens, Ivonne M C M; Murk, Albertinka J

    2008-07-30

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues 8h after dosing the ER-luc male mice intraperitoneally (IP) or 14h after oral dosing. Estradiol-propionate (EP) was used as a positive control at 0.3 and 1mg/kg bodyweight (bw), DMSO as solvent control. The food-associated estrogenic compounds tested at non-toxic doses were bisphenol A (BPA) and nonylphenol (NP) (both at 10 and 50mg/kgbw), dichlorodiphenyldichloroethylene (p,p'-DDE; at 5 and 25mg/kgbw), quercetin (at 1.66 and 16.6mg/kgbw), di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 30 and 100mg/kgbw. In general IP dosing resulted in higher luc inductions than oral dosing. EP induced luc activity in the liver in a statistically significant dose-related way with the highest induction of all compounds tested which was 20,000 times higher than the induction by the DMSO-control. NP, DDE, DEHA and DIHP did not induce luc activity in any of the tissues tested. BPA induced luc in the liver up to 420 times via both exposure routes. BPA, DEHP and quercetin induced luc activity in the liver after oral exposure. BPA (50mg/kgbw IP) also induced luc activity in the testis, kidneys and tibia. The current study reveals that biomarker-responses in ER-luc male mice occur after a single oral exposure to food-associated estrogenic model compounds at exposure levels 10 to 10(4) times higher than the established TDI's for some of these compounds. Given the facts that (i) the present study did not include chronic exposure and that (ii) simultaneous exposure to multiple estrogenic compounds may be a realistic exposure scenario, it remains to be seen whether this margin is sufficiently high.

  7. Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury

    NARCIS (Netherlands)

    Janssen, T.W.J.; Pringle, D.D.

    2008-01-01

    Computer-controlled electrical stimulation (ES)-induced leg cycle ergometer (ES-LCE) exercise can be beneficial for individuals with spinal cord injury (SCI), but exercise performance is often insufficient for eliciting continuous gains in cardiopulmonary training adaptations. The first purpose of

  8. Scale-up aspects of photobioreactors : effects of mixing-induced light/dark cycles

    NARCIS (Netherlands)

    Janssen, M.; Bresser, de L.; Baijens, T.; Tramper, J.; Mur, L.R.; Snel, J.F.H.; Wijffels, R.H.

    2000-01-01

    The green micro-algae Chlamydomonas reinhardtii and Dunaliella tertiolecta were cultivated under medium-duration square-wave light/dark cycles with a cycle time of 15 s. These cycles were used to simulate the light regime experienced by micro-algae in externally-illuminated (sunlight) air-lift loop

  9. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    Science.gov (United States)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  10. Novel anti-ulcer alpha,beta-unsaturated lactones inhibit compound 48/80-induced mast cell degranulation.

    Science.gov (United States)

    Penissi, Alicia B; Vera, Mariano E; Mariani, María L; Rudolph, María I; Ceñal, Juan P; de Rosas, Juan C; Fogal, Teresa H; Tonn, Carlos E; Favier, Laura S; Giordano, Oscar S; Piezzi, Ramón S

    2009-06-10

    The present study was designed to examine the effects of a sesquiterpene lactone isolated from Artemisia douglasiana Besser (dehydroleucodine), a xanthanolide sesquiterpene isolated from Xanthium cavanillesii Schouw (xanthatin) and a semisynthetic butenolide (3-benzyloxymethyl-5H-furan-2-one) on mast cell degranulation induced by compound 48/80. Peritoneal mast cells from male adult Sprague-Dawley rats were purified in Percoll, preincubated in the presence of test lactones (dehydroleucodine, xanthatin or 3-benzyloxymethyl-5H-furan-2-one) and then challenged with the mast cell activator compound 48/80 (10 microg/ml). Concentration-response and kinetic studies of mast cell serotonin release evoked by compound 48/80, evaluation of mast cell viability and morphology by light and electron microscopy, and comparative studies using ketotifen and sodium chromoglycate were carried out. Serotonin release studies, carried out together with morphological studies, showed the effectiveness of the above lactones to stabilize mast cells. The comparative study with ketotifen and sodium chromoglycate, well known mast cell stabilizers, showed the following order of potency dehydroleucodine=xanthatin>3-benzyloxymethyl-5H-furan-2-one> or =ketotifen/sodium chromoglycate to inhibit mast cell serotonin release induced by compound 48/80. The present study provides the first strong evidence in favour of the hypothesis that dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one inhibit compound 48/80-induced serotonin release from peritoneal mast cells, acting thus as mast cell stabilizers. Our findings may provide an insight into the design of novel pharmacological agents which may be used to regulate the mast cell response.

  11. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  12. Vortex-induced vibration of a tension leg platform tendon: multi-mode limit cycle oscillations

    Science.gov (United States)

    Datta, Nabanita

    2017-11-01

    This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.

  13. Vortex-induced vibration of a tension leg platform tendon: Multi-mode limit cycle oscillations

    Science.gov (United States)

    Datta, Nabanita

    2017-12-01

    This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.

  14. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-10-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  15. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-12-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  16. Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing human breast epithelial cells.

    Science.gov (United States)

    Katdare, Meena; Osborne, Michael; Telang, Nitin T

    2002-10-01

    In the multistep progressive pathogenesis of human breast cancer, comedo ductal carcinoma in situ (DCIS) represents a preinvasive precursor lesion for therapy resistant invasive cancer. Human tissue derived cell culture models exhibiting molecular similarities to clinical DCIS facilitate an important preclinical mechanistic approach for evaluation of preventive efficacy of natural and synthetic chemopreventive compounds. Natural phytochemicals present in fresh fruits, vegetables and grain products are likely to offer protection against cancer. The clinical efficacy of these natural phytochemicals, however, depends on extrapolation, and is therefore equivocal. The present study determined whether the natural soy isoflavone genistein (GEN) inhibited aberrant proliferation in 184-B5/HER cells (a model for human comedo DCIS) and identified possible mechanisms responsible for its efficacy. Human reduction mammoplasty derived HER-2/neu oncogene expressing preneoplastic 184-B5/HER cells represented the experimental system. Flow cytometry and cellular epifluorescence based assays were utilized to quantitate the alterations in cell cycle progression, cellular apoptosis, and in the status of cell cycle regulatory and apoptosis-associated gene product expression. The 184-B5/HER cells exhibited specific immunofluorescence to p185HER, p53, EGFR, but not to ERalpha, thus resembling comedo DCIS. Treatment of 184-B5/HER cells with GEN resulted in a dose-dependent decrease in the viable cell population, increase in the G0/G1:S + G2/M ratio and enhancement of sub G0/G1 (apoptotic population). Exposure to the maximum cytostatic 10 microM dose of GEN down-regulated HER-2/neu mediated signal transduction as evidenced by a 73.9% decrease (p=0.001) in p185HER specific, and a 89.8% decrease (p=0.001) in phosphotyrosine specific immunofluorescence. The increase in G0/G1:S + G2/M ratio in response to the treatment with 10 microM GEN was associated with a 85.5% decrease (p=0.001) in

  17. The Zebrafish, a Novel Model Organism for Screening Compounds Affecting Acute and Chronic Ethanol-Induced Effects.

    Science.gov (United States)

    Tran, S; Facciol, A; Gerlai, R

    2016-01-01

    Alcohol addiction is a major unmet medical and economic issue for which very few efficacious pharmacological treatment options are currently available. The development and identification of new compounds and drugs to treat alcohol addiction is hampered by the high costs and low amenability of traditional laboratory rodents to high-throughput behavioral screens. The zebrafish represents an excellent compromise between systems complexity and practical simplicity by overcoming many limitations inherent in these rodent models. In this chapter, we review current advances in the behavioral and neurochemical characterization of ethanol-induced changes in zebrafish. We also discuss the basic principles and methods of and the most recent advances in using paradigms with which one can screen for compounds altering acute and chronic ethanol-induced effects in zebrafish. © 2016 Elsevier Inc. All rights reserved.

  18. Effects of Atractylodis Rhizoma Pharmacopuncture on an Acute Gastric Mucosal Lesion Induced by Compound 48/80 in Rats

    Directory of Open Access Journals (Sweden)

    Lee Yun-Kyu

    2012-03-01

    Full Text Available Objectives: This study was designed to investigate the protective effects of Atractylodis Rhizoma pharmacopuncture (ARP against acute gastric mucosal lesions induced by compound 48/80 in rats. Methods: The ARP was injected in Joksamni (ST36 and Jungwan (CV12 1 hr before treatment with compound 48/80. The animals were sacrificed under anesthesia 3 hrs after treatment with compound 48/80. The stomachs were removed, and the amounts of gastric adherent mucus, gastric mucosal hexosamine, thiobarbituric acid reactive substances (TBARS, xanthine oxidase (XO, and superoxide dismutase (SOD were measured. Also, histological examination were performed. Results: Gastric adherent mucus, gastric mucosal hexosamine and histological defects of gastric mucosa declined significantly after ARP treatment. Changes in gastric mucosal TBARS were also reduced by ARP treatment, but this result was not statistically significant. ARP treatment did not change the XO and the SOD activities. Conclusions: ARP showed protective effects for acute gastric mucosal lesions induced by compound 48/80 in rats. These results suggest that ARP may have protective effects for gastritis.

  19. The promoter of Rv0560c is induced by salicylate and structurally-related compounds in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Dorothée L Schuessler

    Full Text Available Mycobacterium tuberculosis, the causative agent of tuberculosis (TB, is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. P(Rv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of P(Rv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The -10 and -35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the -35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter.

  20. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  1. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    Science.gov (United States)

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-05

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    Science.gov (United States)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  3. LncRNA LINC00341 mediates PM2.5-induced cell cycle arrest in human bronchial epithelial cells.

    Science.gov (United States)

    Xu, Yiqin; Wu, Jianjun; Peng, Xiaowu; Yang, Ti; Liu, Meiling; Chen, Lijian; Dai, Xin; Wang, Zhishan; Yang, Chengfeng; Yan, Bing; Jiang, Yiguo

    2017-07-05

    Fine particulate matter (PM2.5) could adhere to many toxic substances and cause respiratory diseases.However, the associated pathogenic mechanism remains unclear. In this study, we investigated the effects of PM2.5 on cell cycle progression in human bronchial epithelial cells (16HBE) and the underlying mechanism mediated by lncRNAs. PM2.5 treatment inhibited cell proliferation in 16HBE cells in a dose-dependent manner. The results of flow cytometry assay (FCM) showed that PM2.5 induced cell apoptosis and cell cycle arrest at G2/M phase. The lncRNA microarray analysis indicated that treatment with PM2.5 led to the alteration of lncRNA expression profiles. qRT-PCR were performed to confirm the differential expression of several candidate lncRNAs. lncRNA LINC00341 was significantly up-regulated in 16HBE cell after PM2.5 treatment. Further functional studies showed that knockdown of lncRNA LINC00341 reversed PM2.5-induced G2/M phase cell cycle arrest and p21 expression. These results suggest that up-regulation of the lncRNA LINC00341 mediates PM2.5-induced cell cycle arrest at the G2/M phase, and probably through regulating the expression of p21. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles

    Science.gov (United States)

    Pace, M. L.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G. P.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A.

    2017-10-01

    The ability of processing through laser beams different kinds of metallic powders for direct production of 3D components with complex geometries has been gaining an impressive and growing attention for specific industrial applications. The process which can be distinguished as Selective Laser Sintering or Selective Laser Melting is even considered, more generally, as Additive Manufacturing where layer by layer material is built by the interaction between a laser beam and a powder bed. The rapid heating of the powder due to the laser beam energy transfer process followed by a rapid cooling rate induces within the manufactured material a cellular structure with fine sub-grains, which are in the range of few hundreds of micrometers. These metastable structures, which are smaller than the grain size in conventionally manufactured 316L stainless steel components, can undertake towards a recrystallization process due to either heat or mechanical treatments. For instance, when sub-grain boundaries of the cells are enriched with Mo and higher concentration of dislocation, dynamical processes occur generating local residual stresses. In these circumstances the segregation of Mo in cell boundaries is out of thermodynamic equilibrium conditions so that microstructures and phases are metastable. In the range of 1100-1400 °C heat treatments a complete dissolution of Mo in the Fe matrix with a gradual disappearance of sub-microns cell is observed feeding the growth of larger austenitic sub-grains formation. It follows a higher degree of Mo dissolution in the material matrix and a decrease of dislocation's concentration (Saeidi et al., 2015) [1]. In the work here presented we point out which are the microstructural features of stainless steel 316L components realized by Additive Manufacturing. Furthermore, the occurrence of a microstructural evolution is presented after experiencing to fatigue of 80000 cycles some door joints obtained by this technique. A decrease of dislocation

  5. LPS-induced inflammatory response triggers cell cycle reactivation in murine neuronal cells through retinoblastoma proteins induction.

    Science.gov (United States)

    D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Iannuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio

    2017-08-18

    Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.

  6. 15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Mao-Te Chuang

    2011-01-01

    Full Text Available 5,16-dihydrotanshinone I (DHTS is extracted from Salvia miltiorrhiza Bunge (tanshen root and was found to be the most effective compound of tanshen extracts against breast cancer cells in our previous studies. However, whether DHTS can induce apoptosis through an endoplasmic reticular (ER stress pathway was examined herein. In this study, we found that DHTS significantly inhibited the proliferation of human prostate DU145 carcinoma cells and induced apoptosis. DHTS was able to induce ER stress as evidenced by the upregulation of glucose regulation protein 78 (GRP78/Bip and CAAT/enhancer binding protein homologous protein/growth arrest- and DNA damage-inducible gene 153 (CHOP/GADD153, as well as increases in phosphorylated eukaryotic initiation factor 2α (eIF2α, c-jun N-terminal kinase (JNK, and X-box-binding protein 1 (XBP1 mRNA splicing forms. DHTS treatment also caused significant accumulation of polyubiquitinated proteins and hypoxia-inducible factor (HIF-1α, indicating that DHTS might be a proteasome inhibitor that is known to induce ER stress or enhance apoptosis caused by the classic ER stress-dependent mechanism. Moreover, DHTS-induced apoptosis was reversed by salubrinal, an ER stress inhibitor. Results suggest that DHTS can induce apoptosis of prostate carcinoma cells via induction of ER stress and/or inhibition of proteasome activity, and may have therapeutic potential for prostate cancer patients.

  7. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    Science.gov (United States)

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis.

    Directory of Open Access Journals (Sweden)

    Yin-Quan Tang

    Full Text Available BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50 values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk and prostate (RWPE-1 cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer

  9. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  10. Dietary intake of the flower extracts of German chamomile (Matricaria recutita L.) inhibited compound 48/80-induced itch-scratch responses in mice.

    Science.gov (United States)

    Kobayashi, Y; Nakano, Y; Inayama, K; Sakai, A; Kamiya, T

    2003-11-01

    The antipruritic effects of the diets containing German chamomile on the compound 48/80-induced scratching in ddY mice were examined. Since it is reported that an injection of compound 48/80, but not histamine, induced scratching behaviour due to itch but not to pain in ddY mice (Kuraishi et al., 1995), compound 48/80-induced scratching in ddY mice seems to be a suitable parameter for evaluating antipruritic agents independent of histamine receptor antagonism. In the mice fed the diet containing 1.2 w/w % of the ethyl acetate extract of dried flower of German chamomile (Matricaria recutita L.) for 11 days, the compound 48/80-induced scratching behaviour was significantly suppressed. The ethyl acetate extract of German chamomile dose dependently suppressed compound 48/80-induced scratching without affecting body weight increase. The ethyl acetate fraction of the ethanol extract and the ethanol extract of hot water extraction residue of German chamomile flower also showed strong inhibition on the compound 48/80-induced scratching. The inhibitory effects of the dietary intake of the German chamomile extracts on compound 48/80-induced itch-scratch response were comparable to oxatomide (10 mg/kg, p.o.), an anti-allergic agent.

  11. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death.

    Science.gov (United States)

    Magalhaes Moreira, Diogo Rodrigo; de Oliveira, Ana Daura Travassos; Teixeira de Moraes Gomes, Paulo André; de Simone, Carlos Alberto; Villela, Filipe Silva; Ferreira, Rafaela Salgado; da Silva, Aline Caroline; dos Santos, Thiago André Ramos; Brelaz de Castro, Maria Carolina Accioly; Pereira, Valéria Rego Alves; Leite, Ana Cristina Lima

    2014-03-21

    Chagas disease, caused by Trypanosoma cruzi, is a life-threatening infection leading to approximately 12,000 deaths per year. T. cruzi is susceptible to thiosemicarbazones, making this class of compounds appealing for drug development. Previously, the homologation of aryl thiosemicarbazones resulted in an increase in anti-T. cruzi activity in comparison to aryl thiosemicarbazones without a spacer group. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new aryl thiosemicarbazones (9a-x), designed as more conformationally restricted compounds. By varying substituents attached to the phenyl ring, substituents were observed to retain, enhance or greatly increase the anti-T. cruzi activity, in comparison to the nonsubstituted derivative. In most cases, hydrophobic and bulky substituents, such as bromo, biphenyl and phenoxyl groups, greatly increased antiparasitic activity. Specifically, thiosemicarbazones were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting mouse splenocytes viability. The most potent anti-T. cruzi thiosemicarbazones were evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these thiosemicarbazones induce apoptosis. In conclusion, the structural design executed within the series of aryl thiosemicarbazones (9a-x) led to the identification of new potent anti-T. cruzi agents, such as compounds (9h) and (9r), which greatly inhibited epimastigote proliferation, and demonstrated a toxicity for trypomastigotes, but not for splenocytes. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle

    Science.gov (United States)

    Pierce, Thomas; Hogrefe, Christian; Trivikrama Rao, S.; Porter, P. Steven; Ku, Jia-Yeong

    2010-09-01

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the "weekend ozone effect" to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NO x] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988-2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NO x emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the

  13. Selenium compounds induce ROS in human high-metastatic large cell lung cancer cell line L9981

    Directory of Open Access Journals (Sweden)

    Chengfei LIU

    2008-06-01

    Full Text Available Background and objective It has been proved that methylseleninic acid (MSA is a kind of artificially developed selenium compound, which appeared to be the best candidate for cancer prevention and therapy. Reduced glutathione is not only critical to MSA metabolism, but also is a kind of protective antioxidant which could remove the oxygen free radical promptly and maintain the intracellular redox status stable. The aim of this study is to explore the anticancer effects of ROS induced by MSA and the molecular mechanisms of MSA on induction of ROS. Methods We confirmed that MSA and selenite have the anticancer effect in the human high-metastatic large cell lung cancer cell line L9981 by growth inhibition detection, we detect the ROS induced by MSA and selenite in L9981 by fluorescence microscopy, and use flow cytometry to quantitate the ROS induced by NAC together with selenium compounds. Results ①MSA 2.5 μM and 5.0 μM selenite could inhibit the L9981 growth, Increasing the concentration resulted in a more pronounced effect. ②MSA and selenite could induce ROS in L9981. ③incubated NAC with selenite could significantly inhibit the ROS but increase the ROS treated by NAC with MSA. Conclusions ①MSA and selenite had anti-L9981 effect. ②Oxidative stress reaction may participate in the induction of apoptosis by MSA and selenite in lung cancer cell line L9981.

  14. A bis-sulphamoylated estradiol derivative induces ROS-dependent cell cycle abnormalities and subsequent apoptosis.

    Science.gov (United States)

    Visagie, Michelle Helen; van den Bout, Iman; Joubert, Anna Margaretha

    2017-01-01

    Clinical trials have revealed that the potential anticancer agent, 2-methoxyestradiol (2ME2) has limitations due to its low bioavailability. Subsequently, 2ME2 derivatives including (8R,13S,14S,17S)-2-ethyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrane-3,17-diyl bis(sulphamate) (EMBS) have shown improved efficacies in inducing apoptosis. However, no conclusive data exist to explain the mode of action exerted by these drugs. This study investigated the mode of action used by EMBS as a representative of the sulphamoylated 2ME2 derivatives. Hydrogen peroxide and superoxide production was quantified using dichlorofluorescein diacetate and hydroethidine. Cell proliferation and mitochondrial metabolism were investigated using crystal violet and Alamar Blue. Apoptosis was assessed using Annexin V-FITC while mitochondrial integrity was assessed using Mitocapture. Autophagy was visualised using LC3B II antibodies. The effects of EMBS on H2A phosphorylation and nuclei were visualised using phospho H2A antibody and 4',6-diamidino-2-phenylindole, dihydrochloride. Data showed that EMBS exposure leads to increased reactive oxygen species (ROS) production which is correlated with loss of cell proliferation, mitochondrial membrane damage, decreased metabolic activity, G2/M arrest, endoreduplication, DNA double stranded breaks, micronuclei and apoptosis induction. Treatment of EMBS-exposed cells with the ROS scavenger, N-acetyl cysteine, abrogated ROS production, cell cycle arrest and apoptosis implying an essential role for ROS production in EMBS signaling. The inhibition of c-Jun N-terminal kinase (JNK) activity also inhibited EMBS-induced apoptosis suggesting that EMBS triggers apoptosis via the JNK pathway. Lastly, evaluation of LC3IIB protein levels indicated that autophagy is not activated in EMBS-exposed cells. Our data shows that EMBS targets a pathway that leads to increased ROS production as an early event that culminates in G2/M arrest and

  15. A bis-sulphamoylated estradiol derivative induces ROS-dependent cell cycle abnormalities and subsequent apoptosis.

    Directory of Open Access Journals (Sweden)

    Michelle Helen Visagie

    Full Text Available Clinical trials have revealed that the potential anticancer agent, 2-methoxyestradiol (2ME2 has limitations due to its low bioavailability. Subsequently, 2ME2 derivatives including (8R,13S,14S,17S-2-ethyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrane-3,17-diyl bis(sulphamate (EMBS have shown improved efficacies in inducing apoptosis. However, no conclusive data exist to explain the mode of action exerted by these drugs. This study investigated the mode of action used by EMBS as a representative of the sulphamoylated 2ME2 derivatives. Hydrogen peroxide and superoxide production was quantified using dichlorofluorescein diacetate and hydroethidine. Cell proliferation and mitochondrial metabolism were investigated using crystal violet and Alamar Blue. Apoptosis was assessed using Annexin V-FITC while mitochondrial integrity was assessed using Mitocapture. Autophagy was visualised using LC3B II antibodies. The effects of EMBS on H2A phosphorylation and nuclei were visualised using phospho H2A antibody and 4',6-diamidino-2-phenylindole, dihydrochloride. Data showed that EMBS exposure leads to increased reactive oxygen species (ROS production which is correlated with loss of cell proliferation, mitochondrial membrane damage, decreased metabolic activity, G2/M arrest, endoreduplication, DNA double stranded breaks, micronuclei and apoptosis induction. Treatment of EMBS-exposed cells with the ROS scavenger, N-acetyl cysteine, abrogated ROS production, cell cycle arrest and apoptosis implying an essential role for ROS production in EMBS signaling. The inhibition of c-Jun N-terminal kinase (JNK activity also inhibited EMBS-induced apoptosis suggesting that EMBS triggers apoptosis via the JNK pathway. Lastly, evaluation of LC3IIB protein levels indicated that autophagy is not activated in EMBS-exposed cells. Our data shows that EMBS targets a pathway that leads to increased ROS production as an early event that culminates in G2

  16. mRNA cycles through hypoxia-induced stress granules in live Drosophila embryonic muscles.

    Science.gov (United States)

    van der Laan, Annelies M A; van Gemert, Alice M C; Dirks, Roeland W; Noordermeer, Jasprina N; Fradkin, Lee G; Tanke, Hans J; Jost, Carolina R

    2012-01-01

    In some myopathies, hypoxia can be the result of pathologic effects like muscle necrosis and abnormal blood flow. At the molecular level, the consequence of hypoxic conditions is not yet fully understood. Under stress conditions, many housekeeping gene mRNAs are translationally silenced, while translation of other mRNAs increases. Alterations to the pool of mRNAs available for translation lead to the formation of so-called stress granules containing both mRNAs and proteins. Stress granule formation and dynamics have been investigated using cells in culture, but have not yet been examined in vivo. In Drosophila embryonic muscles, we found that hypoxia induces the formation of sarcoplasmic granules containing the established stress granule markers RIN and dFMR1. Upon restoration of normoxia, the observed granules were decreased in size, indicating that their formation might be reversible. Employing photobleaching approaches, we found that a cytoplasmic reporter mRNA rapidly shuttles in and out of the granules. Hence, stress granules are highly dynamic complexes and not simple temporary storage sites. Although mRNA rapidly cycles through the granules, its movement throughout the muscle is, remarkably, spatially restricted by the presence of yet undefined myofiber domains. Our results suggest that in hypoxic muscles mRNA remains highly mobile; however, its movement throughout the muscle is restricted by certain boundaries. The development of this Drosophila hypoxia model makes it possible to study the formation and dynamics of stress granules and their associated mRNAs and proteins in a living organism.

  17. Cell Cycle Arrest and Apoptosis Induced by Kinamycin F in Human Osteosarcoma Cells.

    Science.gov (United States)

    Bavelloni, Alberto; Focaccia, Enrico; Piazzi, Manuela; Errani, Costantino; Blalock, William; Faenza, Irene

    2017-08-01

    Kinamycin F is a bacterial metabolite which contains an unusual and potentially reactive diazo group that is known for its ability to inhibit cell growth. In this study, the potential anti-tumor activity of kinamycin F was investigated in three human osteosarcoma cell lines, MG-63, U-2 OS and HOS as an antitumor agent with a potentially novel target. Proliferation and cell viability were measured in three human osteosarcoma cell lines by commercially available kits. We also evaluated the effects of the drug on cell cycle progression using the Muse™ Cell Analyzer. Caspase-3 activity was determined by a fluorometric EnzChek assay kit. Finally, following treatment with kinamycin F the protein levels of cyclin D3, cyclin A and cdK-2 were examined. Kinamycin F induced a concentration-dependent cell death in all the three cell lines. Flow cytometry revealed that kinamycin F treatment at 1 μM concentration significantly increased the cell population in the G2/M-phase (60-65%). Kinamycin F activated caspase 3 in all the three cell lines, clearly demonstrating that the growth inhibitory effect of kinamycin F can be attributed to apoptosis induction. Finally, kinamycin F suppressed osteosarcoma cell proliferation affecting cyclin A and D3 expression. Understanding the mechanism by which kinamycin F exerts its ability to inhibit cell growth may be a step forward in the development of new therapeutic strategies for the treatment of OS. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Factors of force potentiation induced by stretch-shortening cycle in plantarflexors.

    Directory of Open Access Journals (Sweden)

    Atsuki Fukutani

    Full Text Available Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF to 15° plantarflexion (PF. Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1 concentric contraction without preliminary contraction (CON, (2 concentric contraction after preliminary eccentric contraction (ECC, and (3 concentric contraction after preliminary isometric contraction (ISO. Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8% and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0% conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001. Even without preliminary eccentric contraction (i.e., ISO condition, SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement also contributes to SSC effect.

  19. Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo12

    Science.gov (United States)

    Tellier, Céline; Desmet, Déborah; Petit, Laurenne; Finet, Laure; Graux, Carlos; Raes, Martine; Feron, Olivier; Michiels, Carine

    2015-01-01

    Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of

  20. Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment

    KAUST Repository

    Essack, Magbubah

    2011-09-20

    Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review. 2011 by the authors.

  1. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line.

    Science.gov (United States)

    Fenteany, G; Standaert, R F; Reichard, G A; Corey, E J; Schreiber, S L

    1994-04-12

    Lactacystin, a microbial natural product, induces neurite outgrowth in Neuro 2A mouse neuroblastoma cells and inhibits progression of synchronized Neuro 2A cells and MG-63 human osteosarcoma cells beyond the G1 phase of the cell cycle. A related beta-lactone, clasto-lactacystin beta-lactone, formally the product of elimination of N-acetylcysteine from lactacystin, is also active, whereas the corresponding clastolactacystin dihydroxy acid is completely inactive. Structural analogs of lactacystin altered only in the N-acetylcysteine moiety are active, while structural or stereochemical modifications of the gamma-lactam ring or the hydroxyisobutyl group lead to partial or complete loss of activity. The inactive compounds do not antagonize the effects of lactacystin in either neurite outgrowth or cell cycle progression assays. The response to lactacystin involves induction of a predominantly bipolar morphology that is maximal 16-32 h after treatment and is distinct from the response to several other treatments that result in morphological differentiation. Neurite outgrowth in response to lactacystin appears to be dependent upon microtubule assembly, actin polymerization, and de novo protein synthesis. The observed structure-activity relationships suggest that lactacystin and its related beta-lactone may act via acylation of one or more relevant target molecule(s) in the cell.

  2. ETME, a novel β-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    2014-12-01

    Full Text Available Arsenic trioxide (ATO has been identified as an effective treatment for acute promyelocytic leukemia (APL but is much less effective against solid tumors such as hepatocellular carcinoma (HCC. In the search for ways to enhance its therapeutic efficacy against solid tumors, we have examined its use in combination with a novel derivative of β-elemene, N-(β-elemene-13-yltryptophan methyl ester (ETME. Here we report the effects of the combination on cell viability, apoptosis, the cell cycle and mitochondria membrane potential (MMP in HCC SMMC-7721 cells. We found that the two compounds acted synergistically to enhance antiproliferative activity and apoptosis. The combination also decreased the MMP, down-regulated Bcl-2 and pro-proteins of the caspase family, and up-regulated Bax and BID, all of which were reversed by the p53 inhibitor, pifithrin-α. In addition, the combination induced cell cycle arrest at the G2/M phase and reduced tumor volume and weight in an xenograft model of nude mice. Overall, the results suggest that ETME in combination with ATO may be useful in the treatment of HCC patients particularly those unresponsive to ATO alone.

  3. An Ingenol Derived from Euphorbia kansui Induces Hepatocyte Cytotoxicity by Triggering G0/G1 Cell Cycle Arrest and Regulating the Mitochondrial Apoptosis Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Xiaojing Yan

    2016-06-01

    Full Text Available Natural product lingenol, a purified diterpenoid compound derived from the root of Euphorbia kansui, exerts serious hepatotoxicity; however, the molecular mechanisms remain to be defined. In the present study, cell counting Kit-8 (CCK-8, inverted phase contrast microscope and flow cytometry were used to demonstrate that lingenol significantly inhibited L-O2 cells proliferation, and induced cell cycle arrest and apoptosis. Moreover, the results investigated that lingenol markedly disrupted mitochondrial functions by high content screening (HCS. In addition, the up-regulation of cytochrome c, AIF and Apaf-1 and activation of caspases were found in L-O2 cells detected by Western blotting and ELISA assay, which was required for lingenol activation of cytochrome c-mediated caspase cascades and AIF-mediated DNA damage. Mechanistic investigations revealed that lingenol significantly down-regulated the Bcl-2/Bax ratio and enhanced the reactive oxygen species (ROS in L-O2 cells. These data collectively indicated that lingenol modulation of ROS and Bcl-2/Bax ratio led to cell cycle arrest and mitochondrial-mediated apoptosis in L-O2 cells in vitro. All of these results will be helpful to reveal the hepatotoxicity mechanism of Euphorbia kansui and to effectively guide safer and better clinical application of this herb.

  4. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells.

    Science.gov (United States)

    Wang, J; Zhao, Y M; Zhang, B; Guo, C Y

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration.

  5. A novel, soluble compound, C25, sensitizes to TRAIL-induced apoptosis through upregulation of DR5 expression.

    Science.gov (United States)

    James, Michael A; Seibel, William L; Kupert, Elena; Hu, Xiao X; Potharla, Vishwakanth Y; Anderson, Marshall W

    2015-06-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential therapeutic agent that induces apoptosis selectively in tumor cells. However, numerous solid tumor types are resistant to TRAIL. Sensitization to TRAIL has been an area of great research interest, but has met significant challenges because of poor bioavailability, half-life, and solubility of sensitizing compounds such as curcumin. Soluble, TRAIL-sensitizing compounds were screened on the basis of similarity to the redox-active substructure of curcumin and sensitization to TRAIL-induced apoptosis. We determined the effect of the lead compound, C25, in combination with TRAIL in human cancer cell lines using MTS proliferation assays, apoptosis assays, and western blotting. Short hairpin RNA knockdown of death receptor 5 (DR5) was performed to determine whether DR5 upregulation was required for TRAIL-mediated apoptosis. In-vivo efficacy was determined using human lung tumor xenograft models. C25 helped overcome TRAIL resistance by upregulating the expression of the TRAIL receptor DR5 and apoptosis in several tumor cell lines. Blockade of DR5 expression abrogated C25 sensitization to TRAIL, demonstrating the requirement for DR5 upregulation for C25-mediated potentiation of TRAIL-mediated apoptosis. The combination of C25 and TRAIL effectively inhibited tumorigenesis in vivo. This study demonstrates the synergistic efficacy of C25 in sensitization to TRAIL-induced apoptosis in multiple tumor cell types, including highly resistant lung and ovarian tumor cell lines. Furthermore, C25 was efficacious against tumor growth in vivo. Thus, C25 may be a potential therapeutic for cancer in combination with TRAIL or DR5 agonist therapy.

  6. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-A [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Shim, Sang Hee [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ahn, Hong Ryul [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Jung, Sang Hoon, E-mail: shjung507@gmail.com [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  7. Proliferation inhibition, cell cycle arrest and apoptosis induced in HL-60 HL-60HL-60 HL-60 cells by a natural diterpene ester from Daphne mucronata

    Directory of Open Access Journals (Sweden)

    R Yazdanparast

    2011-05-01

    Full Text Available "n  "nBackground and the purpose of the study: Gnidilatimonoein (Gn, a new diterpene ester from Daphne mucronata, possesses strong anti-metastasis and anti-tumor activities. In this study, its apoptosis and differentiation capabilities were evaluated by using the leukemia HL-60 cell line. "nMaterial and methods: Cell prolifaration inhibition was estimated by MTT assay. The occurrence of apoptosis was evaluated by EtBr/AO double staining technique, cell cycle analyses and detection of apoptotic cells by Annexin V-FITC and propodium iodide (PI. Differentiation of the cells was determined by NBT reduction assay and the expression of specific cell surface markers such as CD14 and CD11b, were analyzed by flow cytometry.   "nResults: The drug decreased the growth of the cells dose- and time- dependently and the IC50 was found to be 1.3 µM. Our data suggested that Gn induced both monocytic differentiation  and apoptosis among HL-60 cells. In addition, cell cycle analyses showed an increase in G1 phase population by 24 hrs, which was gradually replaced by Sub-G1 cell population (apoptotic cells by 72 hrs. "nConclusion: Based on these data, the Gn-treated HL-60 cells displayed differentiation-dependent apoptosis. Thus, Gn might be a good candidate for differentiation therapy of leukemia, pending full biological evaluation of the compound among the wide array of leukemia cells. "nevaluation of the compound among the wide array of leukemia cells.

  8. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds.

    Science.gov (United States)

    Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing

    2017-08-03

    We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.

  9. Time-Course of Changes in Choroidal Thickness after Complete Mydriasis Induced by Compound Tropicamide in Children.

    Science.gov (United States)

    Li, Zhouyue; Zeng, Junwen; Jin, Wei; Long, Wen; Lan, Weizhong; Yang, Xiao

    2016-01-01

    The aim of this study was to investigate the time-course of changes in choroidal thickness (ChT) following complete mydriasis induced by compound tropicamide. ChT was measured by OCT with the enhanced-depth imaging technique (Spectralis HRA+OCT, Heidelberg Engineering, Germany) at nine locations of the fundus: subfoveal ChT (SFChT) and ChT at 1 mm and 3 mm from the fovea in four quadrants. Mydriasis was induced with compound tropicamide (0.5% tropicamide plus 0.5% phenylephrine hydrochloride, three doses at 5-minute intervals). Measurements were conducted prior to the instillation and at 0, 30, and 60 min following complete mydriasis. Results at different time-points were compared using repeated-measures ANOVA to investigate the time-course of the changes. Thirty-nine subjects (mean age 11.9±2 years; 16 males and 23 females) were enrolled in the study. Compound tropicamide resulted in a statistically significant decrease in SFChT at 0, 30, and 60 min after complete mydriasis, as compared to baseline (-5±4 μm, -12±4 μm, and -13±4 μm, respectively; all Ptropicamide led to choroidal thinning, and the magnitude varied over time.

  10. [Protective effect of compound tianpupian (TPP) against H(2)O(2)-induced apoptosis of murine splenic lymphocytes].

    Science.gov (United States)

    Wei, Ri-Bao; Wang, Yong-Xin; Cao, Li; Zhuo, Li; Fu, Bo; Li, Ping

    2011-02-01

    The aim of this study was to explore the protective effect of compound tianpupian (TPP) against (2)O(2)-induced the apoptosis of murine splenic lymphocytes and its mechanism. The cell apoptosis rate was detected by MTT method; the cell apoptosis and mitochondrial membrance potential were detected by flow cytometry (FCM) with Annexi-V/PI double staining and JC-1 staining method, respectively; and caspase 3 relative activity was determined by colorimetry. The results indicated that after treating with (2)O(2), the absorbance value of cultured lymphocytes and the red/green ratio of JC-1 were reduced, and the apoptotic rate and caspase 3 activity were increased, coculture of (2)O(2)-treated cells with compound TPP increased the cell absorbance ratio and red/green rate of JC-1, while reduced the apoptosis rate and caspase 3 activity. It is concluded that compound TPP alleviates intracellular oxidative damages and dose-dependently inhibited apoptosis of murine splenic lymphocytes through reducing mitochondrial membrane potential and inhibiting caspase 3 activity. This suggests that compound TPP is a potential anti-apoptotic agent.

  11. Rapid response of the steatosis-sensing hepatokine LECT2 during diet-induced weight cycling in mice.

    Science.gov (United States)

    Chikamoto, Keita; Misu, Hirofumi; Takayama, Hiroaki; Kikuchi, Akihiro; Ishii, Kiyo-Aki; Lan, Fei; Takata, Noboru; Tajima-Shirasaki, Natsumi; Takeshita, Yumie; Tsugane, Hirohiko; Kaneko, Shuichi; Matsugo, Seiichi; Takamura, Toshinari

    2016-09-23

    Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  13. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Choi Hyun

    2009-05-01

    Full Text Available Abstract Background 3,3'-Diindolylmethane (DIM, an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. Methods HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK and cell division cycle (CDC2 were conducted. Results The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Conclusion Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  14. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: a hypothesis.

    Science.gov (United States)

    Misra, Jitendra B

    2014-02-15

    Photorespiration is generally considered to be an essentially dissipative process, although it performs some protective and essential functions. A theoretical appraisal indicates that the loss of freshly assimilated CO2 due to photorespiration in well-watered plants may not be as high as generally believed. Even under moderately adverse conditions, these losses may not exceed 10%. The photorespiratory metabolism of the source leaves of well-watered and well-nourished crop plants ought to be different from that of other leaves because the fluxes of the export of both carbohydrates and organic N-transport compounds in source leaves is quite high. With a heuristic approach that involved the dovetailing of certain metabolic steps with the photorespiratory cycle (PR-cycle), a novel network is proposed to operate in the source-leaves of well-watered and well-nourished plants. This network allows for the diversion of metabolites from their cyclic-routes in sizeable quantities. With the removal of considerable quantities of glycine and serine from the cyclic route, the number of RuBP oxygenation events would be several times those of the formation of hydroxypyruvate. Thus, to an extreme extent, photorespiratory metabolism would become open-ended and involve much less futile recycling of glycine and serine. Conversion of glyoxylate to glycine has been proposed to be a crucial step in the determination of the relative rates of the futile (cyclic) and anabolic (open-ended) routes. Thus, in the source leaves of well-watered and well-nourished plants, the importance of the cyclic route is limited to the salvaging of photorespiratory intermediates for the regeneration of RuBP. The proposed network is resilient enough to coordinate the rates of the assimilation of carbon and nitrogen in accordance with the moisture and N-fertility statuses of the soil. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke

    DEFF Research Database (Denmark)

    Joseph, Jason P; Mecca, Adam P; Regenhardt, Robert W

    2014-01-01

    Evidence indicates that angiotensin II type 2 receptors (AT2R) exert cerebroprotective actions during stroke. A selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exert beneficial effects in models of cardiac and renal disease, as well as hemorrhagic stroke. Here, we...

  16. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    Science.gov (United States)

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  17. Four new compounds from the roots of Euphorbia ebracteolata and their inhibitory effect on LPS-induced NO production.

    Science.gov (United States)

    Bai, Jiao; Huang, Xue-Yan; Liu, Zhi-Guo; Gong, Chi; Li, Xin-Yu; Li, Da-Hong; Hua, Hui-Ming; Li, Zhan-Lin

    2018-03-01

    Three new diterpenoids, ebractenoids O~Q (1-3), and a new phenolic glucoside, γ-pyrone-3-O-β-d-(6-galloyl)-glucopyranoside (4), together with 6 known compounds, were isolated from the 95% ethanol extract of the roots of Euphorbia ebracteolata, and their structures were elucidated on the basis of spectroscopic data. The absolute configurations of 1-3 were determined by electronic circular dichroism (ECD) calculations. The inhibitory effects of all the isolates with exception of compounds 8 and 10 on the NO production in lipopolysaccharide (LPS)-induced macrophages were evaluated. All of them exhibited significant inhibitory activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. K562 cells display different vulnerability to H₂O₂ induced oxidative stress in differing cell cycle phases.

    Science.gov (United States)

    Akcakaya, Handan; Dal, Fulya; Tok, Sabiha; Cinar, Suzan-Adin; Nurten, Rustem

    2015-02-01

    Oxidative stress can be defined as the increase of oxidizing agents like reactive oxygen and nitrogen species, or the imbalance between the antioxidative defense mechanism and oxidants. Cell cycle checkpoint response can be defined as the arrest of the cell cycle functioning after damaging chemical exposure. This temporary arrest may be a period of time given to the cells to repair the DNA damage before entering the cycle again and completing mitosis. In order to determine the effects of oxidative stress on several cell cycle phases, human erytroleukemia cell line (K562) was synchronized with mimosine and genistein, and cell cycle analysis carried out. Synchronized cells were exposed to oxidative stress with hydrogen peroxide (H2O2) at several concentrations and different times. Changes on mitochondria membrane potential (ΔΨm) of K562 cells were analyzed in G1, S, and G2 /M using Rhodamine 123 (Rho 123). To determine apoptosis and necrosis, stressed cells were stained with Annexin V (AnnV) and propidium iodide (PI) for flow cytometry. Changes were observed in the ΔΨm of synchronized and asynchronized cells that were exposed to oxidative stress. Synchronized cells in S phase proved resistant to the effects of oxidative stress and synchronized cells at G2 /M phase were sensitive to the effects of H2O2 -induced oxidative stress at 500 μM and above. © 2014 International Federation for Cell Biology.

  19. Inducing myoblast re-entry into the cell cycle: a potential mechanism for laser-enhanced skeletal muscle regeneration

    Science.gov (United States)

    Liu, T.; Fang, Y.; Zhang, C. P.; Chen, P.; Wang, C. Z.; Kang, H. X.; Shen, B. J.; Liang, J.; Fu, X. B.

    2014-09-01

    This study investigated the effect of low-level laser irradiation (LLLI) on the cell cycle and proliferative activity of cultured myoblasts, and sought to elucidate the possible cellular mechanism by which LLLI promotes the regeneration of skeletal muscle in vivo. Primary myoblasts isolated from rat hindlegs were irradiated with helium-neon laser light at different energy densities. Distributions of cell-cycle subpopulations and the expression of cell-cycle regulatory proteins in myoblasts were assessed using flow cytometric analysis and western blot assay. It was found that laser irradiation stimulated cell-cycle entry; induced the expression of cyclin A and cyclin D; and increased cell proliferation index and bromodeoxyuridine incorporation as compared to the unirradiated control cells, indicating LLLI augmented the number of proliferative myoblasts in the S phase and G2/M phase of the cell cycle. These results suggest that LLLI at certain fluxes and wavelengths could activate quiescent myoblasts, leading to cell division and facilitating new myofiber formation. This could contribute to the improvement of skeletal muscle regeneration following trauma and myopathic diseases.

  20. A simple method for inducing estrous cycle stage-specific morphological changes in the vaginal epithelium of immature female mice.

    Science.gov (United States)

    Merkwitz, Claudia; Blaschuk, Orest; Eplinius, Franziska; Winkler, Jana; Prömel, Simone; Schulz, Angela; Ricken, Albert

    2016-10-01

    The vaginal epithelium of the adult female laboratory rodent changes from mucous secretion to cornification over the course of the estrous cycle. The morphophysiological changes occur with such regularity, accuracy and precision that the specific stage of the estrous cycle in the rat can be determined by inspection of the vaginal opening and/or exfoliative vaginal cytology. However, in the mouse, post-mortem vaginal histology is often required to determine the estrous cycle stage for ensuring the required level of reliability. Consequently, an excess number of female adult mice are needed to allow for the delivery of sufficient numbers of mice in a desired estrous cycle stage. In this study, we demonstrate that the standard procedure for oocyte superovulation and collection in the laboratory mouse (e.g. injection of equine chorionic gonadotropin followed 48 h later by human chorionic gonadotropin) can also be reliably used to induce changes in the epithelium of 3.5-week-old mouse vaginas in an estrous cycle stage-specific manner (e.g. establishment and replacement of a mucous secreting epithelium with a cornified epithelium; induction of cornification-associated loricrin expression). The superovulation protocol thus allows for the efficient and economic induction of estrous cycle stage-specific characteristics in the Müllerian duct-derived vagina thereby avoiding the necessity of post-mortem identification of the estrous cycle stage. In addition, our study indicates that the laboratory mouse vagina is an excellent organ for studying the sequence of events leading to cornification. © The Author(s) 2015.

  1. Use of a gas-sensor array for detecting volatile organic compounds (VOC) in chemically induced cells.

    Science.gov (United States)

    Pasini, Patrizia; Powar, Nilesh; Gutierrez-Osuna, Ricardo; Daunert, Sylvia; Roda, Aldo

    2004-01-01

    An application of gas sensors for rapid bioanalysis is presented. An array of temperature-modulated semiconductor sensors was used to characterize the headspace above a cell culture. Recombinant Saccharomyces cerevisiae yeast cells, able to respond to 17 beta-estradiol by producing a reporter protein, were used as a model system. Yeast cells had the DNA sequence of the human estrogen receptor stably integrated into the genome, and contained expression plasmids carrying estrogen-responsive sequences and the reporter gene lac-Z, encoding the enzyme beta-galactosidase. The sensor-response profiles showed small but noticeable discrimination between cell samples induced with 17 beta-estradiol and non-induced cell samples. The sensor array was capable of detecting changes in the volatile organic compound composition of the headspace above the cultured cells, which can be associated with metabolic changes induced by a chemical compound. This finding suggests the possibility of using cross-selective gas-sensor arrays for analysis of drugs or bioactive molecules through their interaction with cell systems, with the advantage of providing information on their bioavailability.

  2. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.

    Science.gov (United States)

    Danner, Holger; Boeckler, G Andreas; Irmisch, Sandra; Yuan, Joshua S; Chen, Feng; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2011-06-01

    After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (-)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The Effect of New Collision-Induced Absorption Coefficients on the Early Mars Limit Cycle Hypothesis

    Science.gov (United States)

    Hayworth, B. P.; Payne, R. C.; Kasting, J. F.

    2017-11-01

    Updating the Limit Cycling (LC) Model for early Mars with new absorption coefficients to test for changes to LC behavior and to potentially lower needed concentrations of greenhouse gases. Thought will be given to the effect of LC on habitability.

  4. Experimental Investigation on Limit Cycle Wing Rock Effect on Wing Body Configuration Induced by Forebody Vortices

    National Research Council Canada - National Science Library

    Rong, Zhen; Deng, Xueying; Ma, Baofeng; Wang, Bing

    2016-01-01

    ...° swept wing configuration undergoing a limit cycle oscillation using a synchronous measurement and control technique of wing rock/particle image velocimetry/dynamic pressure associated with the time...

  5. Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells.

    Science.gov (United States)

    Gao, Qi; Chen, Kexin; Gao, Lu; Zheng, Yang; Yang, Yong-Guang

    2016-09-08

    CD47 signaling in endothelial cells has been shown to suppress angiogenesis, but little is known about the link between CD47 and endothelial senescence. Herein, we demonstrate that the thrombospondin-1 (TSP1)-CD47 signaling pathway is a major mechanism for driving endothelial cell senescence. CD47 deficiency in endothelial cells significantly improved their angiogenic function and attenuated their replicative senescence. Lack of CD47 also suppresses activation of cell cycle inhibitors and upregulates the expression of cell cycle promoters, leading to increased cell cycle progression. Furthermore, TSP1 significantly accelerates replicative senescence and associated cell cycle arrest in a CD47-dependent manner. These findings demonstrate that TSP1-CD47 signaling is an important mechanism driving endothelial cell senescence. Thus, TSP1 and CD47 provide attractive molecular targets for treatment of aging-associated cardiovascular dysfunction and diseases involving endothelial dysregulation.

  6. N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells.

    Science.gov (United States)

    Castiglioni, Sara; Casati, Silvana; Ottria, Roberta; Ciuffreda, Pierangela; Maier, Jeanette A M

    2013-05-01

    Cytokinins are phytohormones critically involved in the regulation of plant growth and development. They also affect the proliferation and differentiation of animal cells, thus representing new tools to treat diseases that involve dysfunctional cell growth and/or differentiation. Recently, by performing structure-function studies on human cells, we found that only N6-isopentenyladenosine and its benzyl analogue N6-benzyladenosine suppress the clonogenic activity and the growth of different neoplastic cells. We here broaden our studies on bladder carcinoma T24 cells, because, due to the high recurrence rate of bladder cancer, new active molecules are sought to contrast the growth of this tumor. Early events induced by N6-isopentenyladenosine and N6-benzyladenosine are the alteration of T24 cell morphology and the disorganization of the actin cytoskeleton. After 24 h N6-isopentenyladenosine and N6-benzyladenosine inhibit growth by arresting the cells in the G0/G1 phase of the cell cycle. We also show that the two compounds induce apoptosis, an event linked to the activation of caspase 3. Since DNA damage is a prime factor resulting in cell cycle arrest and apoptosis, it is noteworthy that we do not detect any genotoxic effect upon treatment of T24 cells with N6-isopentenyladenosine and N6- benzyladenosine. Because the disruption of actin filaments leads to G1 arrest and is also implicated in apoptosis, we hypothesize that cytoskeletal rearrangement might be responsible for triggering the antiproliferative and proapotpotic effects of N6-isopentenyladenosine and N6- benzyladenosine in T24 cells.

  7. Quinazoline-based tricyclic compounds that regulate programmed cell death, induce neuronal differentiation, and are curative in animal models for excitotoxicity and hereditary brain disease

    OpenAIRE

    Vainshtein, A.; Veenman, L; Shterenberg, A; Singh, S; Masarwa, A; Dutta, B.; Island, B; Tsoglin, E; Levin, E.; Leschiner, S; Maniv, I; Pe?er, L; Otradnov, I; Zubedat, S; Aga-Mizrachi, S

    2015-01-01

    Expanding on a quinazoline scaffold, we developed tricyclic compounds with biological activity. These compounds bind to the 18?kDa translocator protein (TSPO) and protect U118MG (glioblastoma cell line of glial origin) cells from glutamate-induced cell death. Fascinating, they can induce neuronal differentiation of PC12 cells (cell line of pheochromocytoma origin with neuronal characteristics) known to display neuronal characteristics, including outgrowth of neurites, tubulin expression, and ...

  8. Population pharmacokinetic modeling and dosing simulations of nitrogen-scavenging compounds: disposition of glycerol phenylbutyrate and sodium phenylbutyrate in adult and pediatric patients with urea cycle disorders.

    Science.gov (United States)

    Monteleone, Jon P R; Mokhtarani, M; Diaz, G A; Rhead, W; Lichter-Konecki, U; Berry, S A; Lemons, C; Dickinson, K; Coakley, D; Lee, B; Scharschmidt, B F

    2013-07-01

    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. © The Author(s) 2013.

  9. High-pressure-induced phase transitions in the ferroelectric bis-thiourea pyridinium iodide inclusion compound

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P; Bobrowicz-Sarga, L; Czarnecki, P; Maluszynska, H; Wasicki, J [Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Natkaniec, I [Frank Laboratory of Neutrons Physics, JINR, 141980 Dubna (Russian Federation)

    2008-12-03

    The effect of temperature and pressure on physical properties of the ferroelectric bis-thiourea pyridinium iodide inclusion compound has been studied by dielectric spectroscopy, neutron spectroscopy, neutron powder diffractometry, single crystal x-ray diffraction and nuclear magnetic resonance (NMR). At ambient pressure two structural phase transitions have been revealed: at T{sub 1} = 161 K between phases I and II and at T{sub 2} = 141 K between phases II and III. Phase III with increasing pressure splits into two phases, IIIa and IIIb. The temperatures of the phase transitions T{sub I-II}, T{sub II-IIIa} and T{sub IIIa-IIIb} increase with increasing pressure. The p-T phase diagram constructed for this compound shows two triple points of coordinates 150 K, 100 MPa and 115 K, 100 MPa.

  10. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    Science.gov (United States)

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  11. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells

    OpenAIRE

    Tang, Yuzhe; Chen, Ruibao; Huang, Yan; Li, Guodong; Huang, Yiling; Chen, Jiepeng; Duan, Lili; Zhu, Bao-Ting; Thrasher,J. Brantley; Zhang, Xu; Li, Benyi

    2014-01-01

    Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anti-cancer effect of a recently isolated natural compound Alternol in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived non-malignant cells. As assessed by trypan blue exclusion a...

  12. Laser induced rapid decontamination of aromatic compound from porous soil simulant

    Science.gov (United States)

    Zheng, Wenjun; Hou, Sichao; Su, Ming

    2017-08-01

    Soil contamination with organic compounds can lead to the loss of farmable and habitable lands and cause long-term human and animal exposure to toxins. This paper reports a new laser based method for in situ soil decontamination at high efficiency, in which a focused excimer laser is used to remove organic contaminants from soil through burning by generating a local high temperature region. An aromatic compound, 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene, is used as an organic contaminant, and a porous silica plate is used as a soil simulant. A heat transfer model is created to simulate the interaction between the laser and the organic compound. The lithographic mode of operation allows the accurate quantitation of laser effects. The effects of power, speed, frequency, and energy consumption on the efficiency of decontamination have been examined with high accuracy. The decomposition area increases with the increase in the laser power and the decrease in the scan speed and frequency. Given the high energy conversion yield of the high power laser, this method would be promising for large scale in situ soil decontamination.

  13. Identification of novel compounds inhibiting chikungunya virus-induced cell death by high throughput screening of a kinase inhibitor library.

    Directory of Open Access Journals (Sweden)

    Deu John M Cruz

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415, one pyrrolopyridine (CND0545 and one thiazol-carboxamide (CND3514 inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against

  14. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds.

    Science.gov (United States)

    Gao, Mengxuan; Igata, Hideyoshi; Takeuchi, Aoi; Sato, Kaoru; Ikegaya, Yuji

    2017-02-01

    Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  16. Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Gandhi, Gopalsamy Rajiv; Ignacimuthu, Savarimuthu; Paulraj, Michael Gabriel

    2011-11-01

    In this study, quantification of phenolic compounds and the investigation of antidiabetic and antioxidant activities of the fruit of Solanum torvum Swartz. are described. S. torvum fruit methanol extract (STMe) was administered orally at a dose of 200 and 400mg/kg/day to streptozotocin induced diabetic rats for 30days. The levels of glucose, insulin, total protein, hemoglobin, glycated hemoglobin, liver glycogen and marker enzymes of carbohydrate metabolism, hepatic function and antioxidants were analyzed. High-performance liquid chromatography (HPLC) analysis revealed that STMe contained high levels of phenolic compounds, mainly rutin (1.36%w/w), caffeic acid (12.03%w/w), gallic acid (4.78%w/w) and catechin (0.46%w/w). STMe at 200 and 400mg/kg reduced blood glucose level by 17.04% and 42.10%, respectively in diabetic rats. The levels and/or activities of other biochemical parameters were restored significantly compared to diabetic control rats due to treatment with fruit extract. Histology of liver and pancreas in STMe treated groups substantiated the cytoprotective action of the drug. Immunohistochemical observation of islets in extract treated diabetic rats showed apparent β-cells regeneration. These findings suggest that S. torvum fruit containing phenolic compounds has great potential as a natural source of antidiabetic and antioxidant drug. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds

    Directory of Open Access Journals (Sweden)

    Mengxuan Gao

    2017-02-01

    Full Text Available Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as “seizure-inducing” drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs.

  18. Salarin C, a member of the salarin superfamily of marine compounds, is a potent inducer of apoptosis.

    Science.gov (United States)

    Ben-Califa, Nathalie; Bishara, Ashgan; Kashman, Yoel; Neumann, Drorit

    2012-02-01

    The continuous emergence of new diseases and the development of drug-resistant cancers necessitate the development of new drugs with novel mechanisms of action. The richest marine source of natural anti-cancer products has been soft-bodied organisms that lack physical defenses against their predators, and hence rely on chemical defense mechanisms using cytotoxic secondary metabolites. Bio-guided (brine shrimp test) separation of CHCl(3)-CH(3)OH (1:1) extract from the Madagascar Fascaplysinopsis sp. sponge provided several new compounds. Here we focused on the biological activity of a panel of novel natural compounds, salarins A-J. Of these, salarin C was the most potent inhibitor of proliferation, as demonstrated on the K562 leukemia cell line. Salarin C-treated K562 cells underwent apoptotic death as monitored by cell-cycle analysis, annexin V/propidium iodide staining, cleavage of poly-ADP-ribose polymerase (PARP) and caspase 3, and caspase 9 levels. The experimental approach described herein is an essential step towards identifying the cellular pathway(s) affected by salarin C and producing potent synthetic derivatives of salarin C with potential future uses as basic research tools and/or drugs and drug leads.

  19. [The study on the laser-induced breakdown spectroscopy properties of compound fertilizer with different physical forms].

    Science.gov (United States)

    Li, Jun; Lu, Ji-dong; Yao, Shun-chun; Dong, Mei-rong

    2012-04-01

    In order to study the mechanism of laser-induced breakdown spectroscopy for detecting the chemical components content of compound fertilizer in detail, two physical forms of compound fertilizer samples (powder and granular) were used for this study. The authors analyzed the laser-induced breakdown spectroscopy properties of samples with different physical forms made under different preparation pressure. And the spectral characteristics and plasma characteristics of N,P and K in the powder and granules made under the preparation pressure of 0, 0. 5, 2, 4, and 6 MPa, respectively were compared experimentally. The experiments results showed that the spectral characteristics of the two forms have obvious difference when the pressure is small and the grain samples have significant higher line intensity than those of the powder samples. With the increase in the pressure, the difference in the plasma characteristics between these two physical forms was reduced, and all the characteristic spectral lines intensity of the same physical form samples increases firstly and reduces afterward.

  20. Pressure induced novel compounds in the Hf-O system from first-principles calculations

    OpenAIRE

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Xue, Kan-Hao; Wang, Zhenhai; Dong, Huafeng

    2015-01-01

    Using first-principles evolutionary simulations, we have systematically investigated phase stability in the Hf-O system at pressure up to 120 GPa. New compounds Hf5O2, Hf3O2, HfO and HfO3 are discovered to be thermodynamically stable at certain pressure ranges and a new stable high-pressure phase is found for Hf2O with space group Pnnm and anti-CaCl2-type structure. Both P62m-HfO and P4m2-Hf2O3 show semimetallic character. Pnnm-HfO3 shows interesting structure, simultaneously containing oxide...

  1. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  2. QiShenYiQi Pills, a Compound Chinese Medicine, Prevented Cisplatin Induced Acute Kidney Injury via Regulating Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-12-01

    Full Text Available Nephrotoxicity is a serious adverse effect of cisplatin chemotherapy that limits its clinical application, to deal with which no effective management is available so far. The present study was to investigate the potential protective effect of QiShenYiQi Pills (QSYQ, a compound Chinese medicine, against cisplatin induced nephrotoxicity in mice. Pretreatment with QSYQ significantly attenuated the cisplatin induced increase in plasma urea and creatinine, along with the histological damage, such as tubular necrosis, protein cast, and desquamation of epithelial cells, improved the renal microcirculation disturbance as indicated by renal blood flow, microvascular flow velocity, and the number of adherent leukocytes. Additionally, QSYQ prevented mitochondrial dysfunction by preventing the cisplatin induced downregulation of mitochondrial complex activity and the expression of NDUFA10, ATP5D, and Sirt3. Meanwhile, the cisplatin-increased renal thiobarbituric acid-reactive substances, caspase9, cleaved-caspase9, and cleaved-caspase3 were all diminished by QSYQ pretreatment. In summary, the pretreatment with QSYQ remarkably ameliorated the cisplatin induced nephrotoxicity in mice, possibly via the regulation of mitochondrial function, oxidative stress, and apoptosis.

  3. Targeting executioner procaspase-3 with the procaspase activating compound B-PAC-1 induces apoptosis in multiple myeloma cells

    Science.gov (United States)

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-01-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase-3, -6 and -7) to active caspase-3, -6, and -7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step will overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. In concert, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy resistant or sensitive myeloma cell lines (n=7) and primary patient cells (n=11). Exogenous zinc abrogated B-PAC-1-induced cell demise. B-PAC-1-treatment-induced apoptosis was similar in the presence or absence of growth-promoting cytokines such as interleukin-6 and hepatocyte growth factor. Presence or absence of anti-apoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggests that activating terminal executioner procaspase-3, -6 and -7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to be an effective anti-myeloma therapy. PMID:26257207

  4. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    Science.gov (United States)

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  5. Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals

    Science.gov (United States)

    Shur, V. Ya.; Mingaliev, E. A.; Lebedev, V. A.; Kuznetsov, D. K.; Fursov, D. V.

    2013-05-01

    Polarization reversal during heating-cooling cycles was investigated in MgO doped lithium niobate (MgO:LN) crystal using piezoresponse force microscopy. The essential dependence of the domain structure evolution scenario on the maximal temperature in the cycle has been revealed experimentally. It has been shown that the heating of the engineered domain matrix from room temperature to 85 °C leads to light size reduction of the isolated domains at the matrix edges, whereas the heating to 170 °C leads to essential reduction of the domain size. The opposite strong effect of the domain formation and growth during cooling after pulse heating have been revealed in single domain MgO:LN. The simulation of the time dependence of the pyroelectric field during heating-cooling cycle allowed to reveal the temperature hysteresis and to explain all observed effects taking into account the temperature dependence of the bulk conductivity.

  6. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation

    Directory of Open Access Journals (Sweden)

    Tzung-Hsun Tsai

    2016-04-01

    Full Text Available Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser. leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1 and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2 by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF-α, and cyclooxygenase (COX-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  7. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation.

    Science.gov (United States)

    Tsai, Tzung-Hsun; Huang, Wen-Cheng; Ying, How-Ting; Kuo, Yueh-Hsiung; Shen, Chien-Chang; Lin, Yin-Ku; Tsai, Po-Jung

    2016-04-06

    Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  8. Novel Piperazine-based Compounds Inhibit Microtubule Dynamics and Sensitize Colon Cancer Cells to Tumor Necrosis Factor-induced Apoptosis*

    Science.gov (United States)

    Chopra, Avijeet; Anderson, Amy; Giardina, Charles

    2014-01-01

    We recently identified a series of mitotically acting piperazine-based compounds that potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a structure-activity relationship study on this compound class and identify a highly active derivative ((4-(3-chlorophenyl)piperazin-1-yl)(2-ethoxyphenyl)methanone), referred to as AK301, the activity of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈115 nm. Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more pronounced in the colon cancer cells (50% versus 10%). Cells arrested by AK301 showed the formation of multiple microtubule organizing centers with Aurora kinase A and γ-tubulin. Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active TNF-sensitizing agent and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic ligand sensitivity and may ultimately be useful for developing agents that augment the anti-cancer activities of the immune response. PMID:24338023

  9. Demethylation and alterations in the expression level of the cell cycle-related genes as possible mechanisms in arsenic trioxide-induced cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Moghaddaskho, Farima; Eyvani, Haniyeh; Ghadami, Mohsen; Tavakkoly-Bazzaz, Javad; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2017-02-01

    Arsenic trioxide (As2O3) has been used clinically as an anti-tumor agent. Its mechanisms are mostly considered to be the induction of apoptosis and cell cycle arrest. However, the detailed molecular mechanisms of its anti-cancer action through cell cycle arrest are poorly known. Furthermore, As2O3 has been shown to be a potential DNA methylation inhibitor, inducing DNA hypomethylation. We hypothesize that As2O3 may affect the expression of cell cycle regulatory genes by interfering with DNA methylation patterns. To explore this, we examined promoter methylation status of 24 cell cycle genes in breast cancer cell lines and in a normal breast tissue sample by methylation-specific polymerase chain reaction and/or restriction enzyme-based methods. Gene expression level and cell cycle distribution were quantified by real-time polymerase chain reaction and flow cytometric analyses, respectively. Our methylation analysis indicates that only promoters of RBL1 (p107), RASSF1A, and cyclin D2 were aberrantly methylated in studied breast cancer cell lines. As2O3 induced CpG island demethylation in promoter regions of these genes and restores their expression correlated with DNA methyltransferase inhibition. As2O3 also induced alterations in messenger RNA expression of several cell cycle-related genes independent of demethylation. Flow cytometric analysis revealed that the cell cycle arrest induced by As2O3 varied depending on cell lines, MCF-7 at G1 phase and both MDA-MB-231 and MDA-MB-468 cells at G2/M phase. These changes at transcriptional level of the cell cycle genes by the molecular mechanisms dependent and independent of demethylation are likely to represent the mechanisms of cell cycle redistribution in breast cancer cells, in response to As2O3 treatment.

  10. Modulation of Zn-C Bond Lengths Induced by Ligand Architecture in Zinc Carbatrane Compounds.

    Science.gov (United States)

    Ruccolo, Serge; Sattler, Wesley; Rong, Yi; Parkin, Gerard

    2016-11-09

    Bond lengths between pairs of atoms in covalent molecules are generally predicted well by the sum of their respective covalent radii, such that there are usually only small variations in related compounds. It is, therefore, significant that we have demonstrated that the incorporation of appropriately sized linkers between carbon and a metal center provides a means to modulate the length and nature of a metal-carbon interaction. Specifically, X-ray diffraction studies on a series of tris(1-methylimidazol-2-ylthio)methyl zinc complexes, [Titm Me ]ZnX, demonstrate how the Zn-C bond lengths are highly variable (2.17-2.68 Å) and are up to 0.67 Å longer than the average value listed in the Cambridge Structural Database (2.01 Å). Furthermore, density functional theory calculations on [Titm Me ]ZnCl demonstrate that the interaction is very flexible, such that either increasing or decreasing the Zn-C length from that in the equilibrium structure is associated with little energy change in comparison to that for other compounds with Zn-C bonds.

  11. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Poulsen, Steen Seier; Poulsen, Lars K.

    2010-01-01

    An increasing number of engineered particles, including nanoparticles, are being manufactured, increasing the need for simple low-dose toxicological screening methods. This study aimed to investigate the kinetics of biomarkers related to acute and sub-chronic particle-induced lung inflammation of...

  12. Beer-induced pancreatic enzyme secretion: characterization of some signaling pathways and of the responsible nonalcoholic compounds.

    Science.gov (United States)

    Gerloff, Andreas; Singer, Manfred V; Feick, Peter

    2009-09-01

    Various alcoholic beverages have different effects on pancreatic enzyme secretion in vivo and in vitro. Recently we demonstrated that beer dose-dependently induces amylase release of rat pancreatic acinar cells, whereas pure ethanol and other alcoholic beverages have no effect. The aims of this study were to: (1) investigate the involved signaling pathways in the beer-induced enzyme secretion of rat pancreatic acinar cells and (2) characterize the responsible nonalcoholic compounds from beer. Rat pancreatic AR4-2J cells were differentiated by dexamethasone treatment for 72 hours. After incubation of cells with 1 to 10% (v/v) beer (containing 4.7% v/v ethanol) in the absence or presence of the maximal effective concentration of cholecystokinin (CCK) (100 nM) for 60 minutes, protein secretion was measured using amylase activity assay. To study the involved signaling pathways, cells were pretreated with selective inhibitors or the fluorescent dye Fura2/AM for 15 and 30 minutes, respectively. To characterize the responsible compounds, beer was distilled, lyophilized, dialyzed, or treated with proteases prior stimulation of the cells. Extract of barley was prepared by boiling the crop and subsequent filtration. Stimulation with 5% and 10% beer (v/v) significantly (p beer-induced amylase release, whereas inhibition of protein kinase C, adenylate cyclase, and protein kinase A had no significant effect. Using the fluorescent Ca(2+) indicator Fura-2/AM revealed that beer induces an increase of cytosolic free Ca(2+) concentration. Stimulation of AR4-2J cells with preproducts of beer and fermented glucose indicated that the stimulatory substances from beer derived from barley and are not produced during alcoholic fermentation. Furthermore, the stimulants from beer are thermostable, nonvolatile substances with a molecular weight higher than 15 kDa. Beer-induced enzyme secretion of AR4-2J cells is, at least in part, mediated by the activation of PLC and subsequent Ca(2

  13. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    Science.gov (United States)

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  14. Combination of RGD compound and low-dose paclitaxel induces apoptosis in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    Full Text Available BACKGROUND: Integrins are a family of transmembrane adhesion proteins that mediate cell adhesion and intracellular signaling. Integrin-αvβ3 is expressed on the surface of human glioblastoma cells, and can be further induced by chemical stress. The Arg-Gly-Asp (RGD motif-containing peptides are specifically bound to integrin-αvβ3, and to inhibit neovasculature underlying competition to normal extracellular matrix proteins. This study employed two types of RGD peptides, cyclic RGD (c(RGDyK and bi-cyclic RGD (E[c(RGDyK](2 peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. PRINCIPAL FINDINGS: Human glioblastoma U87MG cells were treated with RGD peptides in the absence or presence of initial exposure to low-dose 10 nM PTX. Results showed that integrin-αvβ3 expressing on the surface of U87MG cells was induced by 10 nM PTX pre-treatment for 12 hrs. Additionally, the U87MG cells pre-treated with PTX and followed by RGD peptides exhibited greater expression of caspases-3, -8 and -9 than those merely treated with single agent of PTX or RGD peptide. Furthermore, the caspase-3, -8 and -9 inhibitor presented significant protection against E[c(RGDyK](2 peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells. CONCLUSIONS: This study provides a novel concept of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment.

  15. Combination of RGD Compound and Low-Dose Paclitaxel Induces Apoptosis in Human Glioblastoma Cells

    Science.gov (United States)

    Chang, Ming-Wei; Lo, Jem-Mau; Juan, Hsueh-Fen; Chang, Hsin-Yi; Chuang, Chun-Yu

    2012-01-01

    Background Integrins are a family of transmembrane adhesion proteins that mediate cell adhesion and intracellular signaling. Integrin-αvβ3 is expressed on the surface of human glioblastoma cells, and can be further induced by chemical stress. The Arg-Gly-Asp (RGD) motif-containing peptides are specifically bound to integrin-αvβ3, and to inhibit neovasculature underlying competition to normal extracellular matrix proteins. This study employed two types of RGD peptides, cyclic RGD (c(RGDyK)) and bi-cyclic RGD (E[c(RGDyK)]2) peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX) pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. Principal Findings Human glioblastoma U87MG cells were treated with RGD peptides in the absence or presence of initial exposure to low-dose 10 nM PTX. Results showed that integrin-αvβ3 expressing on the surface of U87MG cells was induced by 10 nM PTX pre-treatment for 12 hrs. Additionally, the U87MG cells pre-treated with PTX and followed by RGD peptides exhibited greater expression of caspases-3, -8 and -9 than those merely treated with single agent of PTX or RGD peptide. Furthermore, the caspase-3, -8 and -9 inhibitor presented significant protection against E[c(RGDyK)]2 peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells. Conclusions This study provides a novel concept of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment. PMID:22655084

  16. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    Science.gov (United States)

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  17. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings.

    Science.gov (United States)

    Hu, Yanfeng; Li, Jiaolong; Yang, Lijing; Nan, Wenbin; Cao, Xiaoping; Bi, Yurong

    2014-09-01

    Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5-5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5-5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5-5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.

  18. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Morris Robert

    2010-03-01

    Full Text Available Abstract Background Sulforaphane (SFN, an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC. The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC. Results SFN at concentrations of 5 - 20 μM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 μM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 μM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose-polymerase (PARP. Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex. Conclusions SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.

  19. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  20. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  1. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung

    NARCIS (Netherlands)

    A.A. Kroon (Abraham); J. Wang (Jinxia); B. Kavanagh (Brian); Z. Huang (Zhen); M. Kuliszewski (Maciej); J.B. van Goudoever (Hans); M.R. Post (Martin)

    2011-01-01

    textabstractRationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar

  2. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung

    NARCIS (Netherlands)

    Kroon, A.A.; Wang, J.; Kavanagh, B.; Huang, Z.; Kuliszewski, M.; van Goudoever, J.B.; Post, M.

    2011-01-01

    The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats.

  3. stress-induced release of prolactin in cycling and anoestrous ewes ...

    African Journals Online (AJOL)

    Since stress has been shown to influence prolactin release in sheep, the secretion of this hormone during the oestrous cycle of the ewe was re-evaluated. At intervals of two hours, for a total period of 40 hours, blood samples were obtained from oestrous, inter-

  4. Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I

    Directory of Open Access Journals (Sweden)

    Hagen Thilo

    2011-04-01

    Full Text Available Abstract The transcription factor Hypoxia-Inducible Factor-1α is a master regulator of the cellular response to low oxygen concentration. Compound C, an inhibitor of AMP-activated kinase, has been reported to inhibit hypoxia dependent Hypoxia-Inducible Factor-1α activation via a mechanism that is independent of AMP-activated kinase but dependent on its interaction with the mitochondrial electron transport chain. The objective of this study is to characterize the interaction of Compound C with the mitochondrial electron transport chain and to determine the mechanism through which the drug influences the stability of the Hypoxia-Inducible Factor-1α protein. We found that Compound C functions as an inhibitor of complex I of the mitochondrial electron transport chain as demonstrated by its effect on mitochondrial respiration. It also prevents hypoxia-induced Hypoxia-Inducible Factor-1α stabilization in a dose dependent manner. In addition, Compound C does not have significant effects on reactive oxygen species production from complex I via both forward and reverse electron flux. This study provides evidence that similar to other mitochondrial electron transport chain inhibitors, Compound C regulates Hypoxia-Inducible Factor-1α stability by controlling the cellular oxygen concentration.

  5. Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice.

    Science.gov (United States)

    Ben Saad, Hajer; Gargouri, Manel; Kallel, Fatma; Chaabene, Rim; Boudawara, Tahia; Jamoussi, Kamel; Magné, Christian; Mounir Zeghal, Khaled; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-05-01

    Potassium bromate (KBrO3 ), an environmental pollutant, is a well-known human carcinogen and a potent nephrotoxic agent. Currently, natural products have built a well-recognized role in the management of many diseases induced by pollutants. As potent natural sources of bioactive compounds, marine algae have been demonstrated to be rich in novel secondary metabolites with a broad range of biological functions. In this study, adults male mice were orally treated for 15 days with KBrO3 (0.5 g/L) associated or not with extract of Alsidium corallinum, a red Mediterranean alga. In vitro study demonstrated that algal extract has antioxidant efficacy attributable to the presence of flavonoids and polyphenols. Among these, Liquid chromatography-mass spectrometry analysis showed A. corallinum is rich in kaempferol, apigenin, catechin, and quercetin flavonoids. In vivo study showed that supplementation with the alga significantly prevented KBrO3 -induced nephrotoxicity as indicated by plasma biomarkers (urea, uric acid, and creatinin levels) and oxidative stress related parameters (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C, hydrogen peroxide, protein oxidation products) in kidney tissue. The corrective effect of A. corallinum on KBrO3 -induced kidney injury was also supported by molecular and histopathological observations. In conclusion, it was established that the red alga, thanks to its bioactive compounds, effectively counteracts toxic effects of KBrO3 and could be a useful coadjuvant agent for treatment of this pollutant poisonings. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1475-1486, 2017. © 2016 Wiley Periodicals, Inc.

  6. Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Xue; Qu, Kai; Tao, Jie; Yin, Guozhi; Han, Shaoshan; Liu, Qingguang; Sun, Hao

    2018-01-08

    CIP2A is a recent identified oncogene that inhibits protein phosphatase 2A (PP2A) and stabilizes c-Myc in cancer cells. To investigate the potential oncogenic role and prognostic value of CIP2A, we comprehensively analyzed the CIP2A expression levels in pan-cancer and observed high expression level of CIP2A in majority cancer types, including hepatocellular carcinoma (HCC). Based on a validation cohort including 60 HCC and 20 non-tumorous tissue samples, we further confirmed the high mRNA and protein expression levels of CIP2A in HCC, and found high CIP2A mRNA expression level was associated with unfavorable overall and recurrence-free survival in patients with HCC. Mechanistic investigations revealed that inhibition of CIP2A significantly attenuated cellular proliferation in vitro and tumourigenicity in vivo. Bioinformatic analysis suggested that CIP2A might be involved in regulating cell cycle. Our experimental data further confirmed CIP2A knockdown induced cell cycle arrest at G1 phase. We found accumulated cellular senescence in HCC cells with CIP2A knockdown, companying expression changes of senescence associated proteins (p21, CDK2, CDK4, cyclin D1, MCM7 and FoxM1). Mechanistically, CIP2A knockdown repressed FoxM1 expression and induced FoxM1 dephosphorylation. Moreover, inhibition of PP2A by phosphatase inhibitor rescued the repression of FoxM1. Taken together, our results showed that CIP2A was highly expressed in HCC. Inhibition of CIP2A induced cell cycle arrest and promoted cellular senescence via repressing FoxM1 transcriptional activity, suggesting a potential anti-cancer target for patients with HCC. Copyright © 2017. Published by Elsevier Inc.

  7. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion.

    Science.gov (United States)

    Guay, Claudiane; Madiraju, S R Murthy; Aumais, Alexandre; Joly, Erik; Prentki, Marc

    2007-12-07

    In pancreatic beta-cells, metabolic coupling factors generated during glucose metabolism and pyruvate cycling through anaplerosis/cataplerosis processes contribute to the regulation of insulin secretion. Pyruvate/citrate cycling across the mitochondrial membrane leads to the production of malonyl-CoA and NADPH, two candidate coupling factors. To examine the implication of pyruvate/citrate cycling in glucose-induced insulin secretion (GIIS), different steps of the cycle were inhibited in INS 832/13 cells by pharmacological inhibitors and/or RNA interference (RNAi) technology: mitochondrial citrate export, ATP-citrate lyase (ACL), and cytosolic malic enzyme (ME1). The inhibitors of the di- and tri-carboxylate carriers, n-butylmalonate and 1,2,3-benzenetricarboxylate, respectively, reduced GIIS, indicating the importance of transmitochondrial transport of tri- and dicarboxylates in the action of glucose. To directly test the role of ACL and ME1 in GIIS, small hairpin RNA (shRNA) were used to selectively decrease ACL or ME1 expression in transfected INS 832/13 cells. shRNA-ACL reduced ACL protein levels by 67%, and this was accompanied by a reduction in GIIS. The amplification/K(ATP)-independent pathway of GIIS was affected by RNAi knockdown of ACL. The ACL inhibitor radicicol also curtailed GIIS. shRNA-ME1 reduced ME1 activity by 62% and decreased GIIS. RNAi suppression of either ACL or ME1 did not affect glucose oxidation. However, because ACL is required for malonyl-CoA formation, inhibition of ACL expression by shRNA-ACL decreased glucose incorporation into palmitate and increased fatty acid oxidation in INS 832/13 cells. Taken together, the results underscore the importance of pyruvate/citrate cycling in pancreatic beta-cell metabolic signaling and the regulation of GIIS.

  8. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Shian-Ren Lin

    2017-07-01

    Full Text Available Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.

  9. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways.

    Science.gov (United States)

    Hrgovic, Igor; Doll, Monika; Kleemann, Johannes; Wang, Xiao-Fan; Zoeller, Nadja; Pinter, Andreas; Kippenberger, Stefan; Kaufmann, Roland; Meissner, Markus

    2016-09-30

    The formation of new lymphatic vessels provides an additional route for tumour cells to metastasize. Therefore, inhibiting lymphangiogenesis represents an interesting target in cancer therapy. First evidence suggests that histone deacetylase inhibitors (HDACi) may mediate part of their antitumor effects by interfering with lymphangiogenesis. However, the underlying mechanisms of HDACi induced anti-lymphangiogenic properties are not fully investigated so far and in part remain unknown. Human lymphatic endothelial cells (LEC) were cultured in vitro and treated with or without HDACi. Effects of HDACi on proliferation and cell cycle progress were analysed by BrdU assay and flow cytometry. Apoptosis was measured by quantifying mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates. In vitro lymphangiogenesis was investigated using the Matrigel short term lymphangiogenesis assay. The effects of TSA on cell cycle regulatory proteins and apoptosis-related proteins were examined by western blotting, immunofluorescence staining and semi-quantitative RT-PCR. Protein- and mRNA half-life of p21 were analysed by western blotting and quantitative RT-PCR. The activity of the p21 promoter was determined using a dual luciferase assay and DNA-binding activity of Sp1/3 was investigated using EMSA. Furthermore, siRNA assays were performed to analyse the role of p21 and p53 on TSA-mediated anti-lymphangiogenic effects. We found that HDACi inhibited cell proliferation and that the pan-HDACi TSA induced G0/G1 arrest in LEC. Cell cycle arrest was accompanied by up-regulation of p21, p27 and p53. Additionally, we observed that p21 protein accumulated in cellular nuclei after treatment with TSA. Moreover, we found that p21 mRNA was significantly up-regulated by TSA, while the protein and mRNA half-life remained largely unaffected. The promoter activity of p21 was enhanced by TSA indicating a transcriptional mechanism. Subsequent EMSA analyses showed increased constitutive Sp1

  10. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  11. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    Science.gov (United States)

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control

  12. Pycnogenol, a compound isolated from the bark of pinus maritime mill, attenuates ventilator-induced lung injury through inhibiting NF-κB-mediated inflammatory response

    OpenAIRE

    Xia, YF; Zhang, JH; Xu, ZF; Deng, XM

    2015-01-01

    Background: During mechanical ventilation, high end-inspiratory lung volume results in a permeability type pulmonary oedema, called ventilator-induced lung injury (VILI). The pathophysiology of ventilator-induced lung injury involves multiple mechanisms, such as excessive inflammation. And pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have anti-inflammatory activity. Objective: We investigated the effects of pyncogenol on ventilator-induced lung injury in r...

  13. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway.

    Science.gov (United States)

    Wang, Han; Jiang, Dandan; Liu, Jing; Ye, Shuhong; Xiao, Shan; Wang, Wenwen; Sun, Zhongyan; Xie, Yuping; Wang, Jihui

    2013-10-01

    Compound K (CK; 20-O-D-glucopyranosyl-20(S)-protopanaxadiol), a major metabolite of ginsenoside, has been shown to possess several biological activities such as potent antitumor properties. However, the effect of CK on the apoptosis of bladder cancer cells and its underlying mechanisms remain poorly understood. Therefore, we examined the effect of CK on the apoptosis of bladder cancer T 24 cells. Cell counts showed that treatment of T24 cells with CK decreased the cell number in a dose- and time-dependent manner. Flow cytometric analysis revealed that CK could significantly induce apoptosis of T24 cells in vitro. Further, cellular glutathione reduction, accumulation of reactive oxygen species (ROS) were also observed in CK-treated T24 cells. Western blot demonstrated the release of cytochrome c, activation of procaspases-3, procaspases-9, and the change of Bax/Bcl-2 proteins ratio. We also found that the phosphorylation of p38MAPK was increased by CK, while treatment with SB203580 inhibited CK-induced cell apoptosis in T24 cells. The blockage of ROS generation by N-acetylcysteine effectively prevented the apoptosis induction in T24 cells with CK treatment, accompanied by the decrease of activation of p38MAPK. These results suggested that CK induced the apoptosis of bladder cancer T24 cells, which is partially due to ROS generation and p38MAPK activation.

  14. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo.

    Science.gov (United States)

    Sidahmed, Heyam M A; Hashim, Najihah Mohd; Amir, Junaidah; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Hassandarvish, Pouya; Teh, Xinsheng; Loke, Mun Fai; Vadivelu, Jamuna; Rahmani, Mawardi; Mohan, Syam

    2013-07-15

    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (pulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. PKA-mediated responses in females' estrous cycle affect cocaine-induced responses in dopamine-mediated intracellular cascades.

    Science.gov (United States)

    Weiner, J; Sun, W Lun; Zhou, L; Kreiter, C M; Jenab, S; Quiñones-Jenab, V

    2009-07-07

    An extensive body of literature provides evidence for both sexual dimorphism and menstrual cycle effects in drug abuse patterns and behavioral responses. However, the cellular mechanisms underlying sexually dimorphic responses to and hormonal effects on cocaine use remain unclear. We hypothesized that endogenous hormonal fluctuations during the estrous cycle of rats modulate cocaine's effects on dopamine- and PKA-mediated intracellular responses. To test this hypothesis, intact female rats at different stages of their cycle received a single injection of saline or cocaine (20 mg/kg) and were sacrificed after 15 or 60 min. The nucleus accumbens (NAc) and caudate putamen (CPu) were dissected and analyzed via Western blot for total and phosphorylated (p-thr34) dopamine- and 3'-5'-cyclic AMP-regulated phosphoprotein with molecular weight 32 kDa (DARPP-32), PP1, PP2B (CNA1 and CNB1 subunits), PKA, CREB, cFOS, and Delta-FosB. Our results show that saline-treated rats had estrous cycle-related differences in protein levels of pCREB, DARPP-32, p-thr34-DARPP-32, PP1, and CNA1. Saline-treated female rats in the estrus stage had higher levels of pCREB in the NAc, but cocaine-treatment lowered pCREB levels. The estrous cycle also significantly affected the magnitude of change for p-thr34-DARPP-32 protein levels in both the NAc and CPu. Sixty minutes of cocaine administration increased p-thr34-DARPP-32 levels in the NAc of rats during estrus and proestrus and in the CPu of rats in diestrus. Furthermore, cocaine-induced changes in PP1 protein levels in the NAc were also affected by the stage of the cycle; 60 min of cocaine administration increased PP1 levels in the NAc of rats during diestrus, whereas PP-1 levels decreased in rats during estrus. Taken together, these novel findings suggest that hormonal fluctuations during the estrous cycle may contribute to the previously reported sex differences in the PKA pathway and in behavioral responses to cocaine.

  16. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  17. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells

    Science.gov (United States)

    Wang, J.; Zhao, Y. M.; Zhang, B.; Guo, C. Y.

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration. PMID:26009648

  18. Cycle-Induced Flow and Transport in an Alveolus Partially Filled with Liquid

    Science.gov (United States)

    Wei, Hsien-Hung; Benintendi, Steven W.; Halpern, David; Grotberg, James B.

    2001-11-01

    The flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, and gene therapy. A simplified model is developed for alveolar liquid lining undergoing cyclic stretching which mimics breathing motions. A thin, viscous film coats an extensible slot with small aspect ratio and strained amplitude. We apply scaling analysis and asymptotic theory to describe the interface profile and surfactant distribution during the oscillation cycle for either insoluble or soluble surfactants. The flow consists of two distinct regimes: a near-parallel flow region and a non-parallel flow, end region near the slot pinned wall. Non-zero cycle-averaged flows are shown and their turning directions near the pinned wall depend on the parameters of the system. We also model the case when the liquid is partially filled in the alveolus and has a comparable thickness to the size of the alveolus. The surfactant-free case is first investigated. By assuming a spherical interface due to small capillary number, we solve the Stokes flow analytically in the toroidal coordinate system. For small liquid volume, the flow field is dominated by the normal velocity component while large liquid volume leads to vortex structures near the alveolar opening. The flow is zero cycle-averaged. However, when the interface is deformed away from a spherical shape or surfactants are present, a non-zero cycle-averaged flow is expected. The research is supported by grants NASA NAG3-2196, NIH HL41126 and HL64373.

  19. Ursolic acid induces cell cycle arrest and apoptosis of gallbladder carcinoma cells

    OpenAIRE

    Weng, Hao; Tan, Zhu-Jun; Hu, Yun-Ping; Shu, Yi-Jun; Bao, Run-Fa; Jiang, Lin; Wu, Xiang-Song; Li, Mao-Lan; Ding, Qian; Wang, Xu-An; Xiang, Shan-Shan; Li, Huai-Feng; Cao, Yang; Tao, Feng; Liu, Ying-Bin

    2014-01-01

    Background Ursolic acid (UA), a plant extract used in traditional Chinese medicine, exhibits potential anticancer effects in various human cancer cell lines in vitro. In the present study, we evaluated the anti-tumoral properties of UA against gallbladder carcinoma and investigated the potential mechanisms responsible for its effects on proliferation, cell cycle arrest and apoptosis in vitro. Methods The anti-tumor activity of UA against GBC-SD and SGC-996 cells was assessed using MTT and col...

  20. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    OpenAIRE

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2012-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation ...

  1. Stress-induced increases in progesterone and cortisol in naturally cycling women

    Directory of Open Access Journals (Sweden)

    Alexandra Ycaza Herrera

    2016-06-01

    Full Text Available Studies with animals of both sexes show that the adrenal glands release progesterone in addition to cortisol in response to stress. However, little is known about the progesterone response to stress in naturally cycling women. We investigated the effect of stress on estradiol, progesterone, and cortisol levels in women during the follicular phase of the menstrual cycle. We found that physical stress (the cold pressor test had no effect on estradiol levels, but increased progesterone and cortisol. We also found positive correlations between baseline progesterone and cortisol levels, as well as between the change in progesterone and cortisol before and after water exposure in both the stress and control sessions. Mediation analyses revealed during the stress session, the change in progesterone from baseline to 42-min post-stress onset was mediated by the magnitude of change in cortisol levels across the same time span. Overall, these findings reveal that progesterone released in response to stress as observed in animals and men extends to women during the low ovarian output follicular phase of the menstrual cycle, and that the mechanism of release may be similar to the mechanism of cortisol release.

  2. p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells.

    Science.gov (United States)

    Sharma, Gunjan; Rana, Nishant Kumar; Singh, Priya; Dubey, Pradeep; Pandey, Daya Shankar; Koch, Biplob

    2017-04-01

    We previously reported synthesis of novel arene ruthenium (Ru) complexes and evaluated their antitumor activity in murine lymphoma (DL) cells. In this present study we further investigated the mechanism of action of two ruthenium complexes [complex 1 (η6-arene)RuCl(2-pcdpm)] and complex 2 (η6-arene)RuCl(4-mtdpm)] in cervical cancer cell line (HeLa). Our studies demonstrate that anticancer property of these two complexes was due to induction of apoptosis through p53 mediated pathway as well as arrest of cells in G2/M phase of cell cycle. It is worth to note that the complexes did not cause any substantial cytotoxic effect on normal cells. Further in comprehensive studies, apoptosis inducing property of both complexes were established in accordance with array of morphological changes ranging from membrane blebbing to formation of apoptotic bodies and followed by DNA fragmentation assay. Furthermore, Flow cytometry by Annexin V/PI staining delineate that complex 1 and 2 have strident impact to induce apoptosis in HeLa cells. The complex 1 and 2 treated cells show increased level of intracellular ROS generation which was preceded by p53 activation. Apoptosis induced by 1 and 2 was preceded by mitochondrial aggregations which were monitored by mitotracker. In addition flow cytometry analysis showed that both complexes also effectively arrest cells at G2/M phase of cell cycle. Western blot, RT-PCR as well as Real Time analysis were used to further confirm that the complexes induced apoptosis in p53 dependent pathway. Thus, our promising results can contribute to the rational design of novel potential anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. ASPL-TFE3 Oncoprotein Regulates Cell Cycle Progression and Induces Cellular Senescence by Up-Regulating p21

    Directory of Open Access Journals (Sweden)

    Naoko Ishiguro

    2016-10-01

    Full Text Available Alveolar soft part sarcoma is an extremely rare soft tissue sarcoma with poor prognosis. It is characterized by the unbalanced recurrent chromosomal translocation der(17t(X;17(p11;q25, resulting in the generation of an ASPL-TFE3 fusion gene. ASPL-TFE3 oncoprotein functions as an aberrant transcriptional factor and is considered to play a crucial role in the tumorigenesis of alveolar soft part sarcoma. However, the underlying molecular mechanisms are poorly understood. In this study, we identified p21 (p21WAF1/CIP1 as a direct transcriptional target of ASPL-TFE3. Ectopic ASPL-TFE3 expression in 293 cells resulted in cell cycle arrest and significant increases in protein and mRNA levels of p21. ASPL-TFE3 activated p21 expression in a p53-independent manner through direct transcriptional interactions with the p21 promoter region. When ASPL-TFE3 was expressed in human bone marrow–derived mesenchymal stem cells in a tetracycline-inducible manner, we observed the up-regulation of p21 expression and the induction of senescence-associated β-galactosidase activity. Suppression of p21 significantly decreased the induction of ASPL-TFE3-mediated cellular senescence. Furthermore, ASPL-TFE3 expression in mesenchymal stem cells resulted in a significant up-regulation of proinflammatory cytokines associated with senescence-associated secretory phenotype (SASP. These results show that ASPL-TFE3 regulates cell cycle progression and induces cellular senescence by up-regulating p21 expression. In addition, our data suggest a potential mechanism by which ASPL-TFE3-induced senescence may play a role in tumorigenesis by inducing SASP, which could promote the protumorigenic microenvironment.

  4. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  5. Inhibition of Oral Streptococci Growth Induced by the Complementary Action of Berberine Chloride and Antibacterial Compounds

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2015-07-01

    Full Text Available Synergistic interactions between natural bioactive compounds from medicinal plants and antibiotics may exhibit therapeutic benefits, acting against oral cariogenic and opportunistic pathogens. The aim of the presented work was to assess the antibacterial activity of berberine chloride (BECl in light of the effect exerted by common antibiotics on selected reference strains of oral streptococci (OST, and to evaluate the magnitude of interactions. Three representative oral microorganisms were investigated: Streptococcus mutans ATCC 25175 (SM, S. sanguinis ATCC 10556 (SS, S. oralis ATCC 9811 (SO and microdilution tests, along with disc diffusion assays were applied. Here, we report that growth (viability of all oral streptococci was reduced by exposure to BECl and was dependent primarily on exposure/ incubation time. A minimum inhibitory concentrations (MIC of BECl against OST ranged from 512 µg/mL (SS to 1024 µg/mL (SM, SO. The most noticeable antibacterial effects were observed for S. sanguinis (MIC 512 µg/mL and the most significant synergistic action was found for the combinations BECl-penicillin, BECl-clindamycin and BECl-erythromycin. The S. oralis reflects the highest MBC value as assessed by the AlamarBlue assay (2058 µg/mL. The synergy between berberine and common antibiotics demonstrates its potential use as a novel antibacterial tool for opportunistic infections and also provides a rational basis for the use of berberine as an oral hygiene measure.

  6. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    Science.gov (United States)

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.

  7. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis

    Directory of Open Access Journals (Sweden)

    Daniel M Craig

    2015-10-01

    Full Text Available Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibres (Type I and IIA myosin heavy chain, an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds, functional foods and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans.

  8. Chlorogenic acid was specifically induced among phenolic compounds in centipedegrass by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Byung Chul; Barampuram, Shyamkumar; Lee, Seung Sik; Lee, Eun Mi; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedlling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to 0.114 mg ml{sup -1} and 0.0258 to 0.2211 mg ml{sup -1}, respectively) from 3{sup rd} to 15{sup th} day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance on seedling stage plants by gamma irradiation as simplicity and cheaply method.

  9. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Science.gov (United States)

    Prokai-Tatrai, Katalin; Prokai, Laszlo; Simpkins, James W.; Jung, Marianna E.

    2009-01-01

    Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol) to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage. PMID:19468338

  10. A novel compound, NP-184, inhibits the vascular endothelial growth factor induced angiogenesis.

    Science.gov (United States)

    Lin, Kuan-Ting; Lien, Jin-Cherng; Chung, Ching-Hu; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-03-25

    Angiogenesis is observed in many diseases, such as tumor progression, diabetes and rheumatoid arthritis; it is a process that involves proliferation, migration, differentiation and tube formation of endothelial cells. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis by induction of these endothelial functions. Thus, inhibition of these critical angiogenic steps is a practical therapeutic strategy for those diseases. NP-184 is a substituted benzimidazole analogue which exhibits a potent anti-thrombotic activity. In this report, NP-184 inhibited the viability of human umbilical vascular endothelial cells (HUVEC) in a concentration-dependent manner, and caused cell apoptosis as examined by cell-cycle analysis and Annexin V staining with flow cytometry. NP-184 also concentration-dependently inhibited the HUVEC migration, tube formation on Matrigel, and rat aortic ring sprouting stimulated by VEGF. Regarding the intracellular signal transduction, NP-184 concentration-dependently interfered with the activation of AKT, ERK and the nuclear translocation of NF-kappaB. In vivo study showed that NP-184 dose-dependently reduced angiogenesis in Matrigel plug assay. These results indicate that NP-184 is a potential candidate for developing the treatment of angiogenesis related-diseases.

  11. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  12. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    Full Text Available AbstractFucoidan, a sulfated polysaccharide found in marine algae and brown seaweeds, has been shown to inhibit the in vitro growth of human cancer cells. This study was conducted in cultured human bladder cancer EJ cells to elucidate the possible mechanisms by which fucoidan exerts its anti-proliferative activity, which until now has remained poorly understood. Fucoidan treatment of EJ cells resulted in dose-dependent inhibition of cell growth and induced apoptotic cell death. Flow cytometric analysis revealed that fucoidan led to G1 arrest in cell cycle progression. It was associated with down-regulation of cyclin D1, cyclin E, and cyclin-dependent-kinases (Cdks in a concentration-dependent manner, without any change in Cdk inhibitors, such as p21 and p27. Furthermore, dephosphorylation of retinoblastoma protein (pRB by this compound was associated with enhanced binding of pRB with the transcription factors E2F-1 and E2F-4. Overall, our results demonstrate that fucoidan possesses anticancer activity potential against bladder cancer cells by inhibiting pRB phosphorylation.

  13. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  14. PLK1 blockade enhances therapeutic effects of radiation by inducing cell cycle arrest at the mitotic phase.

    Science.gov (United States)

    Inoue, Minoru; Yoshimura, Michio; Kobayashi, Minoru; Morinibu, Akiyo; Itasaka, Satoshi; Hiraoka, Masahiro; Harada, Hiroshi

    2015-10-27

    The cytotoxicity of ionizing radiation depends on the cell cycle phase; therefore, its pharmacological manipulation, especially the induction of cell cycle arrest at the radiosensitive mitotic-phase (M-phase), has been attempted for effective radiation therapy. Polo-like kinase 1 (PLK1) is a serine/threonine kinase that functions in mitotic progression, and is now recognized as a potential target for radiosensitization. We herein investigated whether PLK1 blockade enhanced the cytotoxic effects of radiation by modulating cell cycle phases of cancer cells using the novel small molecule inhibitor of PLK1, TAK-960. The TAK-960 treatment exhibited radiosensitizing effects in vitro, especially when it increased the proportion of M-phase cells. TAK-960 did not sensitize cancer cells to radiation when an insufficient amount of time was provided to induce mitotic arrest. The overexpression of a PLK1 mutant, PLK1-R136G&T210D, which was confirmed to cancel the TAK-960-mediated increase in the proportion of mitotic cells, abrogated the radiosensitizing effects of TAK-960. A tumor growth delay assay also demonstrated that the radiosensitizing effects of TAK-960 depended on an increase in the proportion of M-phase cells. These results provide a rational basis for targeting PLK1 for radiosensitization when considering the therapeutic time window for M-phase arrest as the best timing for radiation treatments.

  15. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    Science.gov (United States)

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  16. Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning.

    Science.gov (United States)

    Capacio, B R; Harris, L W; Anderson, D R; Lennox, W J; Gales, V; Dawson, J S

    1992-01-01

    The accelerating rotarod was used to assess motor performance decrement in rats after administration of candidate anticonvulsant compounds (acetazolamide, amitriptyline, chlordiazepoxide, diazepam, diazepam-lysine, lorazepam, loprazolam, midazolam, phenobarbital and scopolamine) against nerve agent poisoning. All compounds were tested as the commercially available injectable preparation except for diazepam-lysine and loprazolam, which are not FDA approved. A peak effect time, as well as a dose to decrease performance time by 50% from control (PDD50), was determined. The calculated PDD50 (mumol/kg) values and peak effect times were midazolam, 1.16 at 15 min; loprazolam, 1.17 at 15 min; diazepam-lysine, 4.17 at 30 min; lorazepam, 4.98 at 15 min; diazepam, 5.27 at 15 min; phenobarbital, 101.49 at 45 min; chlordiazepoxide, 159.21 at 30 min; scopolamine, amitriptyline and acetazolamide did not demonstrate a performance decrement at any of the doses tested. The PDD50 values were compared with doses which have been utilized against nerve agent-induced convulsions or published ED50 values from standard anticonvulsant screening tests (maximal electroshock [MES] and subcutaneous pentylenetetrazol [scMET]). The results suggest that at anticonvulsant doses against nerve agents, all the benzodiazepines and phenobarbital have the potential to cause a performance decrement, whereas candidate anticonvulsants of the non-benzodiazepine or non-barbiturate type would not be expected to demonstrate this effect on motor performance. It is concluded that compounds such as acetazolamide, amitriptyline and scopolamine offer alternatives to the highly decrementing benzodiazepines and phenobarbital and should be further tested as anticonvulsant candidates against nerve agent intoxication.

  17. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta; Kivimäenpää, Minna; Faubert, Patrick

    2015-01-01

    to a fixed temperature,warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increaseappeared to result from increased plant coverage and changes in vegetation composition. The litter addition treat-ment also caused significant increases in the emission...... and stimulated microbial production of BVOCs. We suggest that the changes in the subarcticvegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emissionpotentials and composition.......Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensi-tive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, weaimed to investigate how warming affects the BVOC emissions in the long term...

  18. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy.

    Science.gov (United States)

    Impellizzeri, Daniela; Esposito, Emanuela; Mazzon, Emanuela; Paterniti, Irene; Di Paola, Rosanna; Bramanti, Placido; Morittu, Valeria Maria; Procopio, Antonio; Britti, Domenico; Cuzzocrea, Salvatore

    2011-08-01

    Several olive oil phenolic compounds, such us oleuropein have attracted considerable attention because of their antioxidant activity, anti-atherosclerotic and anti-inflammatory properties. The aim of this study was to investigate the effects of oleuropein aglycone, a hydrolysis product of oleuropein, in a mouse model of carrageenan-induced pleurisy. Mice were anaesthetized and subjected to a skin incision at the level of the left sixth intercostals space. The underlying muscle was dissected and saline or saline containing 2% λ-carrageenan was injected into the pleural cavity. Injection of carrageenan elicited an acute inflammatory response characterized by: infiltration of neutrophils in lung tissues (P olive oil phenolic constituents may be useful in the treatment of various inflammatory diseases. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Towards an Observation of Active Conformations in Asymmetric Catalysis: Interaction-Induced Conformational Preferences of a Chiral Thiourea Model Compound.

    Science.gov (United States)

    Kreienborg, Nora M; Pollok, Corina H; Merten, Christian

    2016-08-22

    The observation of the active species is the goal of most spectroscopic investigations on enantioselective organocatalysts in solution. Although NMR spectroscopy is widely applied, it has low sensitivity for conformational changes or the chiral nature of the interactions. In the present work, we exemplify the use of vibrational circular dichroism (VCD) spectroscopy for the characterization of a chiral thiourea model compound in nonpolar and polar solvents, as well as for a detailed analysis of its interaction with a model reactant. We discuss solvent-induced conformational changes of the thiourea, and provide evidence for an unexpected binding topology between the thiourea and an acetate anion. The results clearly showcase the possibilities offered by using VCD spectroscopy in the characterization of chiral organocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SKLB70326, a novel small-molecule inhibitor of cell-cycle progression, induces G{sub 0}/G{sub 1} phase arrest and apoptosis in human hepatic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuanyuan; He, Haiyun [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Peng, Feng [Department of Thoracic Oncology of the Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Liu, Jiyan; Dai, Xiaoyun; Lin, Hongjun; Xu, Youzhi; Zhou, Tian; Mao, Yongqiu; Xie, Gang; Yang, Shengyong; Yu, Luoting; Yang, Li [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Zhao, Yinglan, E-mail: alancenxb@sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer SKLB70326 is a novel compound and has activity of anti-HCC. Black-Right-Pointing-Pointer SKLB70326 induces cell cycle arrest and apoptosis in HepG2 cells. Black-Right-Pointing-Pointer SKLB70326 induces G{sub 0}/G{sub 1} phase arrest via inhibiting the activity of CDK2, CDK4 and CDK6. Black-Right-Pointing-Pointer SKLB70326 induces apoptosis through the intrinsic pathway. -- Abstract: We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G{sub 0}/G{sub 1} phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G{sub 0}/G{sub 1} phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.

  1. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    Science.gov (United States)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  2. AP-2γ Induces p21 Expression, Arrests Cell Cycle, Inhibits the Tumor Growth of Human Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hualei Li

    2006-07-01

    Full Text Available Activating enhancer-binding protein 2γ (AP-2γ is a member of the developmentally regulated AP-2 transcription factor family that regulates the expression of many downstream genes. Whereas the effects of AP-2α overexpression on cell growth are fairly well established, the cellular effects of AP-2γ overexpression are less well studied. Our new findings show that AP-2γ significantly upregulates p21 mRNA and proteins, inhibits cell growth, decreases clonogenic survival. Cell cycle analysis revealed that forced AP-2γ expression induced G1-phase arrest, decreased DNA synthesis, decreased the fraction of cells in S phase. AP-2γ expression also led to cyclin D1 repression, decreased Rb phosphorylation, decreased E2F activity in breast carcinoma cells. AP-2γ binding to the p21 promoter was observed in vivo, the absence of growth inhibition in response to AP-2γ expression in p21 (-/- cells demonstrated that p21 caused, at least in part, AP-2-induced cell cycle arrest. Finally, the tumor growth of human breast carcinoma cells in vivo was inhibited by the expression of AP-2γ relative to empty vector-infected cells, suggesting that AP-2γ acts as a tumor suppressor. In summary, expression of either AP-2γ or AP-2α inhibited breast carcinoma cell growth; thus, these genes may be therapeutic targets for breast cancer.

  3. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells

    Science.gov (United States)

    2013-01-01

    Background Apigenin (4’,5,7-trihydroxyflavone) was recently shown effective in inhibiting several cancers. The aim of this study was to investigate the effect and mechanism of apigenin in the human bladder cancer cell line T24 for the first time. Methods T24 cells were treated with varying concentrations and time of apigenin. Cell viability was evaluated by MTT assay. Cell motility and invasiveness were assayed by Matrigel migration and invasion assay. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. Results The results demonstrated that apigenin suppressed proliferation and inhibited the migration and invasion potential of T24 bladder cancer cells in a dose- and time-dependent manner, which was associated with induced G2/M Phase cell cycle arrest and apoptosis. The mechanism of action is like to involve PI3K/Akt pathway and Bcl-2 family proteins. Apigenin increased caspase-3 activity and PARP cleavage, indicating that apigenin induced apoptosis in a caspase-dependent way. Conclusions These findings suggest that apigenin may be an effective way for treating human bladder cancer. PMID:23724790

  4. High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats.

    Science.gov (United States)

    Volk, Katrina M; Pogrebna, Veronika V; Roberts, Jackson A; Zachry, Jennifer E; Blythe, Sarah N; Toporikova, Natalia

    2017-12-01

    Diet-induced obesity has been associated with various metabolic and reproductive disorders, including polycystic ovary syndrome. However, the mechanisms by which obesity influences the reproductive system are still not fully known. Studies have suggested that impairments in hormone signaling are associated with the development of symptoms such as acyclicity and ovarian cysts. However, these studies have often failed to address how these hormonal changes arise and how they might contribute to the progression of reproductive diseases. In the present study, we used a high-fat, high-sugar (HFHS) diet to induce obesity in a female rodent model to determine the changes in critical reproductive hormones that might contribute to the development of irregular estrous cycling and reproductive cycle termination. The HFHS animals exhibited impaired estradiol, progesterone (P4), and luteinizing hormone (LH) surges before ovulation. The HFHS diet also resulted in altered basal levels of testosterone (T) and LH. Furthermore, alterations in the basal P4/T ratio correlated strongly with ovarian cyst formation in HFHS rats. Thus, this model provides a method to assess the underlying etiology of obesity-related reproductive dysfunction and to examine an acyclic reproductive phenotype as it develops.

  5. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716 (China); Huang, Zhenping, E-mail: huangzhenping19633@163.com [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China)

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  6. Oxymatrine inhibits proliferation of human bladder cancer T24 cells by inducing apoptosis and cell cycle arrest.

    Science.gov (United States)

    Li, Shun; Zhang, Yi; Liu, Qingyong; Zhao, Qingli; Xu, Liuyu; Huang, Shengliang; Huang, Shiming; Wei, Xuebin

    2017-06-01

    Oxymatrine has been shown to exert an antitumor effect on several types of cancer cells. However, the role of oxymatrine in bladder cancer has not yet been evaluated. The present study was designed to investigate the potential anti-proliferative effect of oxymatrine on bladder cancer T24 cells and the possible mechanisms involved. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine cell growth, and the cell morphology was examined using hematoxylin and eosin staining, wrights' staining and electron microscopy. The caspase-3 and survivin mRNA and protein levels were assessed using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The expression of tumor protein p53 (p53), Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2) were analyzed using immunohistochemistry. Oxymatrine inhibited the proliferation of the T24 cells in a dose- and time-dependent manner. Oxymatrine also induced apoptosis and cell cycle arrest in the cells, in association with the upregulation of caspase-3 and Bax, and the downregulation of survivin, Bcl-2 and p53 expression. Overall, oxymatrine inhibits the proliferation of human bladder cancer cells by inducing apoptosis and cell cycle arrest via mechanisms that involve p53-Bax signaling and the downregulation of survivin expression.

  7. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells.

    Science.gov (United States)

    Zhu, Yi; Mao, Yeqing; Chen, Hong; Lin, Yiwei; Hu, Zhenghui; Wu, Jian; Xu, Xin; Xu, Xianglai; Qin, Jie; Xie, Liping

    2013-06-01

    Apigenin (4',5,7-trihydroxyflavone) was recently shown effective in inhibiting several cancers. The aim of this study was to investigate the effect and mechanism of apigenin in the human bladder cancer cell line T24 for the first time. T24 cells were treated with varying concentrations and time of apigenin. Cell viability was evaluated by MTT assay. Cell motility and invasiveness were assayed by Matrigel migration and invasion assay. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. The results demonstrated that apigenin suppressed proliferation and inhibited the migration and invasion potential of T24 bladder cancer cells in a dose- and time-dependent manner, which was associated with induced G2/M Phase cell cycle arrest and apoptosis. The mechanism of action is like to involve PI3K/Akt pathway and Bcl-2 family proteins. Apigenin increased caspase-3 activity and PARP cleavage, indicating that apigenin induced apoptosis in a caspase-dependent way. These findings suggest that apigenin may be an effective way for treating human bladder cancer.

  8. [Protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats].

    Science.gov (United States)

    Mu, F H; Hu, F L; Wei, H; Zhang, Y Y; Yang, G B; Lei, X Y; Yang, Y P; Sun, W N; Cui, M H

    2016-02-01

    To investigate the protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats and its possible mechanism. Acute gastric mucosal injury model was developed with intraperitoneal injection of aspirin in Wistar rats. The rats were divided into normal control group, injury group, sucralfate protection group, compound bismuth and magnesium granules protection group and its herbal components protection group(each group 12 rats). In the protection groups, drugs as mentioned above were administered by gavage before treated with intraperitoneal injection of aspirin. To evaluate the extent of gastric mucosal injury and the protective effect of drugs, gastric mucosal lesion index, gastric mucosal blood flow, content of gastric mucosal hexosamine, prostaglandins (PG), nitric oxide(NO), tumor necrosis factor (TNF), and interleukin (IL) -1, 2, 8 were measured in each group, and histological changes were observed by gross as well as under microscope and electron microscope. Contents of hexosamine, NO, and PG in all the protection groups were significantly higher than those in the injury group (all Pbismuth and magnesium granules group was significantly higher than that in the sucralfate group ((11.29±0.51) vs(10.80±0.36)nmol/ml, Pbismuth and magnesium granules group were significantly lower than those in the sucralfate group ((328.17±6.56) vs(340.23±8.05)pg/ml, Pbismuth and magnesium granules and its herbal components may have significant protective effect on aspirin-induced gastric mucosal injury.

  9. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth.

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    Full Text Available BACKGROUND: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. METHODOLOGY/PRINCIPAL FINDINGS: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this

  10. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells.

    Science.gov (United States)

    Chen, JinYan; Sun, MengRu; Wang, XingHua; Lu, Jing; Wei, Yan; Tan, Yan; Liu, Ying; Götz, Jürgen; He, RongQiao; Hua, Qian

    2014-04-01

    The herbal medicine Tong Luo Jiu Nao (TLJN) contains geniposide (GP) and ginsenoside Rg1 at a molar ratio of 10:1. Rg1 is the major component of another herbal medicine, panax notoginseng saponin (PNS). TLJN has been shown to strengthen brain function in humans, and in animals it improves learning and memory. We have previously shown that TLJN reduces amyloidogenic processing in Alzheimer's disease (AD) mouse models. Together this suggests TLJN may be a potential treatment for patients with dementia. Because chronic damage of the central nervous system by formaldehyde (FA) has been presented as a risk factor for age-associated cognitive dysfunction, in the present study we investigated the protective effect of both TLJN and GP in neuron-like cells exposed to FA. FA-exposed murine N2a neuroblastoma cells were incubated with TLJN, its main ingredient GP, as well as PNS, to measure cell viability and morphology, the rate of apoptosis and expression of genes encoding Akt, FOXO3, Bcl2 and p53. The CCK-8 assay, cytoskeletal staining and flow cytometry were used to test cell viability, morphology and apoptosis, respectively. Fluorescent quantitative real-time PCR (qRT-PCR) was used to monitor changes in gene expression, and HPLC to determine the rate of FA clearance. Treatment of N2a cells with 0.09 mmol L(-1) FA for 24 h significantly reduced cell viability, changed cell morphology and promoted apoptosis. Both TLJN and GP conferred neuroprotection to FA-treated N2a cells, whereas PNS, which had to be used at lower concentrations because of its toxicity, did not. Our data demonstrate that TLJN can rescue neuronal damage caused by FA and that its main ingredient, GP, has a major role in this efficacy. This presents purified GP as a drug or lead compound for the treatment of AD.

  11. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Mariem Ben-Abdallah

    Full Text Available Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB, a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of

  12. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  13. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung.

    Directory of Open Access Journals (Sweden)

    Andreas A Kroon

    Full Text Available RATIONALE: The molecular mechanism(s by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹. MEASUREMENT AND MAIN RESULTS: Ventilation for 24 h (h decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2, decreased that of p16(INK4a, while the levels of p21(Waf/Cip1 and p15(INK4b were unchanged. Increased p27(Kip1 expression coincided with reduced phosphorylation of p27(Kip1 at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05, thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹ and when fetal lung epithelial cells were subjected to a continuous (17% elongation cyclic stretch. CONCLUSION: This is the first demonstration that prolonged (24 h of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1, p57(Kip2 from the Kip family.

  14. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  15. Application of Nuclear Volume Measurements to Comprehend the Cell Cycle in Root-Knot Nematode-Induced Giant Cells

    Directory of Open Access Journals (Sweden)

    José Dijair Antonino de Souza Junior

    2017-06-01

    Full Text Available Root-knot nematodes induce galls that contain giant-feeding cells harboring multiple enlarged nuclei within the roots of host plants. It is recognized that the cell cycle plays an essential role in the set-up of a peculiar nuclear organization that seemingly steers nematode feeding site induction and development. Functional studies of a large set of cell cycle genes in transgenic lines of the model host Arabidopsis thaliana have contributed to better understand the role of the cell cycle components and their implication in the establishment of functional galls. Mitotic activity mainly occurs during the initial stages of gall development and is followed by an intense endoreduplication phase imperative to produce giant-feeding cells, essential to form vigorous galls. Transgenic lines overexpressing particular cell cycle genes can provoke severe nuclei phenotype changes mainly at later stages of feeding site development. This can result in chaotic nuclear phenotypes affecting their volume. These aberrant nuclear organizations are hampering gall development and nematode maturation. Herein we report on two nuclear volume assessment methods which provide information on the complex changes occurring in nuclei during giant cell development. Although we observed that the data obtained with AMIRA tend to be more detailed than Volumest (Image J, both approaches proved to be highly versatile, allowing to access 3D morphological changes in nuclei of complex tissues and organs. The protocol presented here is based on standard confocal optical sectioning and 3-D image analysis and can be applied to study any volume and shape of cellular organelles in various complex biological specimens. Our results suggest that an increase in giant cell nuclear volume is not solely linked to increasing ploidy levels, but might result from the accumulation of mitotic defects.

  16. Knockdown of human deubiquitinase PSMD14 induces cell cycle arrest and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Ann; McLaren, Rajashree P.; Mason, Paul; Chai, Lilly; Dufault, Michael R.; Huang, Yinyin; Liang, Beirong; Gans, Joseph D.; Zhang, Mindy; Carter, Kara; Gladysheva, Tatiana B.; Teicher, Beverly A.; Biemann, Hans-Peter N.; Booker, Michael; Goldberg, Mark A.; Klinger, Katherine W.; Lillie, James [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States); Madden, Stephen L., E-mail: steve.madden@genzyme.com [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States); Jiang, Yide, E-mail: yide.jiang@genzyme.com [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States)

    2010-01-15

    The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21{sup /Cip} and p27{sup /Kip1}. Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.

  17. Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans

    DEFF Research Database (Denmark)

    Kjaer, M; Perko, G; Secher, N H

    1994-01-01

    Cardiovascular and ventilatory responses to electrically induced dynamic exercise were investigated in eight healthy young males with afferent neural influence from the legs blocked by epidural anaesthesia (25 ml 2% lidocaine) at L3-L4. This caused cutaneous sensory anaesthesia below T8-T9 and co...

  18. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci)

    Energy Technology Data Exchange (ETDEWEB)

    Honda-Uezono, Asumi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Kaida, Atsushi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Michi, Yasuyuki; Harada, Kiyoshi [Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Hayashi, Yoshiki; Hayashi, Yoshio [Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Miura, Masahiko, E-mail: masa.mdth@tmd.ac.jp [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Fucci visualizes cell cycle by green and red fluorescence. Black-Right-Pointing-Pointer Plinabulin, induced unusual red fluorescence at M-phase in HeLa-Fucci cells. Black-Right-Pointing-Pointer The unusual pattern was followed by mitotic catastrophe. Black-Right-Pointing-Pointer The unusual pattern may be an early indicator of cell death in HeLa cells. -- Abstract: Plinabulin (NPI-2358) is a novel microtubule-depolymerizing agent. In HeLa cells, plinabulin arrests the cell-cycle at M phase and subsequently induces mitotic catastrophe. To better understand the effects on this compound on the cell-cycle, we used the fluorescent ubiquitination-based cell cycle indicator (Fucci), which normally enables G1 and S/G2/M cells to emit red and green fluorescence, respectively. When HeLa-Fucci cells were treated with 50 nM plinabulin, cells began to fluoresce both green and red in an unusual pattern; most cells exhibited the new pattern after 24 h of treatment. X-irradiation efficiently induced G2 arrest in plinabulin-treated cells and significantly retarded the emergence of the unusual pattern, suggesting that entering M phase is essential for induction of the pattern. By simultaneously visualizing chromosomes with GFP-histone H2B, we established that the pattern emerges after nuclear envelope breakdown but before metaphase. Pedigree assay revealed a significant relationship between the unusual expression and mitotic catastrophe. Nocodazole, KPU-133 (a more potent derivative of plinabulin), and paclitaxel also exerted similar effects. From these data, we conclude that the unusual pattern may be associated with dysregulation of late M phase-specific E3 ligase activity and mitotic catastrophe following treatment with anti-microtubule agents.

  19. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Directory of Open Access Journals (Sweden)

    Su Liu

    2014-01-01

    Full Text Available A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE and compound amino acid (AA in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  20. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Science.gov (United States)

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat. PMID:25133239

  1. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation

    Science.gov (United States)

    Kandhare, Amit D.; Aswar, Urmila M.; Mohan, Vishwaraman

    2017-01-01

    Allergic diseases are a significant health concern in developing countries. Type-A procyanidin polyphenols from cinnamon (Cinnamomum zeylanicum Blume) bark (TAPP-CZ) possesses antiasthmatic and antiallergic potential. The present study was aimed at the possible anti-allergic mechanism of TAPP-CZ against the compound 48/80 (C48/80)–induced mast cell degranulation in isolated rat peritoneal mast cells (RPMCs). TAPP-CZ (1, 3, 10, and 30 µg/ml) was incubated for 3 hours with isolated, purified RPMCs. The C48/80 (1 µg/ml) was used to induce mast cell degranulation. The mast cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay whereas histamine, β-hexosaminidase (β-HEX), and interleukin-4 (IL-4) levels were determined in RPMCs. TAPP-CZ (3, 10, and 30 µg/ml) showed significant and dose-dependent decrease in a number of degranulated cells and levels of markers (histamine, β-HEX, and IL-4) as compared with C48/80 control. In conclusion, TAPP-CZ stabilizes mast cell and cause inhibition of the allergic markers such as histamine, IL-4, and β-HEX in IgE-mediated manner. The present study supports mast cell stabilization as a possible mechanism of action of TAPP-CZ against immune respiratory disorders such as asthma and allergic rhinitis. PMID:29354299

  2. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    Science.gov (United States)

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Eijk, Marleen Vergeer-Van; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography–mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase–quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant–plant and plant–insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. PMID:23845065

  3. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma.

    Science.gov (United States)

    Cholujova, Danka; Bujnakova, Zdenka; Dutkova, Erika; Hideshima, Teru; Groen, Richard W; Mitsiades, Constantine S; Richardson, Paul G; Dorfman, David M; Balaz, Peter; Anderson, Kenneth C; Jakubikova, Jana

    2017-12-01

    Multiple myeloma (MM), a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow, remains incurable despite the use of novel and conventional therapies. In this study, we demonstrated MM cell cytotoxicity triggered by realgar (REA; As 4 S 4 ) nanoparticles (NREA) versus Arsenic trioxide (ATO) against MM cell lines and patient cells. Both NREA and ATO showed in vivo anti-MM activity, resulting in significantly decreased tumour burden. The anti-MM activity of NREA and ATO is associated with apoptosis, evidenced by DNA fragmentation, depletion of mitochondrial membrane potential, cleavage of caspases and anti-apoptotic proteins. NREA induced G 2 /M cell cycle arrest and modulation of cyclin B1, p53 (TP53), p21 (CDKN1A), Puma (BBC3) and Wee-1 (WEE1). Moreover, NREA induced modulation of key regulatory molecules in MM pathogenesis including JNK activation, c-Myc (MYC), BRD4, and histones. Importantly, NREA, but not ATO, significantly depleted the proportion and clonogenicity of the MM stem-like side population, even in the context of the bone marrow stromal cells. Finally, our study showed that both NREA and ATO triggered synergistic anti-MM activity when combined with lenalidomide or melphalan. Taken together, the anti-MM activity of NREA was more potent compared to ATO, providing the preclinical framework for clinical trials to improve patient outcome in MM. © 2017 John Wiley & Sons Ltd.

  4. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Roel A. van der Heijden

    2016-01-01

    Full Text Available Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52 received a control low-fat diet (LFD; 10 kcal% fat for 6 weeks followed by 24 weeks of either LFD (n=13 or high-fat diet (HFD; 45 kcal% fat; n=13 or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n=13 or an anthocyanin-rich bilberry extract (HFD+B; n=13. Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient

  5. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    van der Heijden, Roel A; Morrison, Martine C; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P H; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Tietge, Uwe J F; Koonen, Debby P Y; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n = 52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n = 13) or high-fat diet (HFD; 45 kcal% fat; n = 13) or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n = 13) or an anthocyanin-rich bilberry extract (HFD+B; n = 13). Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT) histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient and

  6. Investigation of the distance error induced by cycle-to-cycle jitter in a correlating time-of-flight distance measurement system

    Science.gov (United States)

    Seiter, Johannes; Hofbauer, Michael; Davidovic, Milos; Zimmermann, Horst

    2014-07-01

    Time-of-flight (TOF) range sensors acquire distances by means of an optical signal delay measurement. As the signal travels at the speed of light, distance resolutions in the subcentimeters range require a time measurement resolution that is in the picoseconds range. However, typical clock synthesizers and digital buffers possess cycle-to-cycle jitter values of up to hundreds of picoseconds, which can potentially have a noticeable impact on the TOF system performances. In this publication, we investigate the influence of two common types of cycle-to-cycle jitter distributions on the measured distance. This includes a random Gaussian distribution, which is caused by, e.g., stochastic noise sources, and a discrete jitter distribution, which is found when timing constraints fail in synchronous digital designs. It was demonstrated that a Gaussian cycle-to-cycle jitter has only a negligible impact on the performance of the TOF distance sensors up to a standard deviation of 1 ns of the Gaussian jitter distribution. However, even the discrete cycle-to-cycle jitter investigated in its simplest form lowers the distance precision of the TOF sensor by a factor of 2.86, i.e., the standard deviation increases from 2.9 to 8.3 mm.

  7. Evaluation of derived compounds from sponges against induced oxidative stress in cortical neurons

    Directory of Open Access Journals (Sweden)

    Marta Leirós

    2014-06-01

    stress condition, we conclude that all of them afford some protection against oxidation, which is consistent with the already published about MKs H, L and G (Utkina, 2013. Once again compound H was the less active in our cellular model and MKs L and G denoted some antioxidant protection. Above all the MKs tested, the no-previously tested MK J at 0.1 µM highlights with a complete neuroprotection, reducing oxidation consequences, such as mitochondrial dysfunction and ROS generation, and increasing antioxidant defenses by maintaining GSH basal levels and CAT activity. All these antioxidant effects might be explained for an activation of the nuclear factor erythroid 2-related factor 2 (Nrf2 antioxidant response element (ARE pathway, the main sensor and modulator of oxidative stress, that trigger the transcription of genes like superoxide dismutase 1, CAT, sulforedoxin, thioredoxin, peroxiredoxin and proteins responsible for the synthesis and metabolism of GSH. It has been reported that Nrf2-ARE pathway activation ameliorates the animal symptoms in research models for neurodegenerative diseases (Gan and Johnson, 2013 and numerous scientists of this area are focusing their experiments on the modulation of enzymatic regulatory components, that protect against oxidative stress, to emulate their restorative effects and consequently slow down the illness progression (Andersen, 2004. The results presented in this work elucidate that makaluvamine J is a potent molecule for neuroprotection against oxidative stress. Nevertheless, the precise mechanism by which MK J activates the antioxidant cell defenses is still unknown. For that reason, further studies about the MK J activity over the Nrf2-ARE pathway and its possible implications in neurodegenerative disorders will be required.

  8. Annual Cycle of GW-induced CO2 Cloud Formation in Mars' Middle Atmosphere

    Science.gov (United States)

    Yiğit, E.; Medvedev, A. S.

    2016-12-01

    Gravity waves (GWs) of lower atmospheric origin influence the dynamical and thermal structure of the Martian middle and upper atmosphere. Recently, using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating the Yigit et al 2008 whole atmosphere nonlinear GW parameterization, Yigit et al 2015 have demonstrated that GWs facilitate high-altitude CO2 ice cloud formation. In this study, using the same modeling framework, we analyze the annual cycle of cloud formation along with the associated variations of GW activity. CO2 ice cloud variations in the mesosphere and the lower thermosphere (MLT) during one Martian year appreciably coincide with GW effects, suggesting that GW processes significantly affect CO2 ice cloud formation in the Martian MLT

  9. Consequential life cycle inventory modelling of land use induced by crop consumption

    DEFF Research Database (Denmark)

    Kløverpris, Jesper Hedal

    cycle assessments involving crop consumption. Increased demand for a given crop can be met by intensification, expansion, and/or by displacement of other crops or pastures. The last option will reduce the supply of other agricultural products, which may then be replaced elsewhere. Such displacement-replacement......The purpose of the present PhD project was to identify the mechanisms governing global land use consequences of increased crop demand in a given location and, based on this conceptual analysis, to present and demonstrate a method proposal for construction of land use data that can be used in life...... mechanisms are governed by the availability of suitable agricultural land and several economic conditions, such as transport and trade costs. To estimate the land use response to an increase in crop demand, economic modelling can be used. In this project, the economic equilibrium model GTAP (Global Trade...

  10. Network-induced oscillatory behavior in material flow networks and irregular business cycles.

    Science.gov (United States)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units--and linear chains of these units--behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  11. Solar cycle dynamic of the Martian induced magnetosphere. Planetary ions acceleration zones and escape.

    Science.gov (United States)

    Fedorov, Andrey; Modolo, Ronan; Jarvinen, Riku; Barabash, Stas

    2016-10-01

    This work presents a massive statistical analysis of the ion flows in the Martian induced magnetosphere. We performed this analysis using Mars Express ion mass spectrometer data taken during 2008 - 2013 time interval. This data allows to make an enhanced study of the induced magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma properties in the planetary wake as well as the ionosospheric escape as a function of the solar activity.

  12. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity

    Science.gov (United States)

    Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

  13. Bark Beetle-Induced Mortality Impacts on Forest Biogeochemical Cycles are Less than Expected

    Science.gov (United States)

    Ewers, B. E.; Pendall, E.; Norton, U.; Millar, D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Hyde, K.

    2015-12-01

    Bark beetles increased conifer tree mortality across western North America due to past land use interacting with climate change. For both mountain pine and spruce beetles, the mechanism of mortality is hydraulic failure due to xylem occlusion by beetle-carried blue stain fungi, which causes the trees to die from symptoms that are the same as extreme drought. As the mortality event peaked in the last decade, the hypothesized effects on forest biogeochemical processes were 1) lower forest water use from xylem occlusion, 2) less carbon uptake from limited canopy gas exchange, 3) increased nitrogen cycling from increased litterfall and soil moisture and 4) increased streamflow and organic N and C loading at the watershed scale from the first three consequences. The stand-scale effects during mortality were as predicted with transpiration falling by 10-35% in proportion to the occluded xylem, carbon uptake declining by > 50% due to lack of canopy gas exchange and nitrogen cycling increasing from elevated litter inputs and stimulated organic matter decomposition. Some stands, especially mid-elevation lodgepole pine, did not follow these trends because of residual vegetation taking advantage of the increased resources from the dead trees and rapid succession within 5 years of new grasses, shrubs and tree seedlings as well as increased resource use by surviving canopy trees. In a high elevation spruce stand, the lower water use lasted for only three years while summer carbon uptake was only significantly reduced for a year. At the scale of small to medium-sized watersheds, the impact of mortality was not detectable in stream flow due to the spatial and temporal scale muting of the mortality signal as temporal and spatial scales increase. Current ecosystem and watershed models miss these compensating mechanisms with increasing scale and thus over predict the impact of bark beetle mortality.

  14. Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung

    Science.gov (United States)

    Kroon, Andreas A.; Wang, Jinxia; Kavanagh, Brian; Huang, Zhen; Kuliszewski, Maciej; van Goudoever, Johannes B.; Post, Martin

    2011-01-01

    Rationale The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg−1). Measurement and Main Results Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8–24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b were unchanged. Increased p27Kip1 expression coincided with reduced phosphorylation of p27Kip1 at Thr157, Thr187 and Thr198 (pventilated with high tidal volume (40 mL.kg−1) and when fetal lung epithelial cells were subjected to a continuous (17% elongation) cyclic stretch. Conclusion This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G1 and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27Kip1, p57Kip2) from the Kip family. PMID:21359218

  15. Model for Estimating Life-Cycle Costs Associated with Noise-Induced Hearing Loss

    Science.gov (United States)

    2007-01-10

    hearing conservation program (HCP) and as a result of noise induced hearing loss (NIHL) sustained by the sailor. Calculation of associated economic costs...entry hearing test, results in a screened population, baseline audiogram established No Basic training and advanced training Assume not noise...exposed No Assigned to high noise occupation Annual monitoring audiometry , noise exposure documented on permanent medical record Yes, Navy Sustains

  16. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response

    OpenAIRE

    Alexandrou, AT; Li, JJ

    2014-01-01

    Significance: There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function...

  17. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kulcenty, Katarzyna [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Wierzchowski, Marcin [Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan (Poland); Kaczmarek, Mariusz [Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan (Poland); Murias, Marek [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kwiatkowska-Borowczyk, Eliza [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan (Poland); Jodynis-Liebert, Jadwiga, E-mail: liebert@ump.edu.pl [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland)

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  18. Comparison of Two Components of Propolis: Caffeic Acid (CA and Caffeic Acid Phenethyl Ester (CAPE Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Agata Kabała-Dzik

    2017-09-01

    Full Text Available Studies show that caffeic acid (CA and caffeic acid phenethyl ester (CAPE are compounds with potent chemopreventive effects. Breast cancer is a common form of aggressive cancer among women worldwide. This study shows a comparison of CA and CAPE activity on triple-negative human caucasian breast adenocarcinoma line cells (MDA-MB-231. MDA-MB-231 cells were treated by CA and CAPE with doses of from 10 to 100 µM, for periods of 24 h and 48 h. Cytotoxicity MTT tests, apoptosis by Annexin V, and cell cycle with Dead Cell Assays were performed. Cytotoxic activity was greater for CAPE compared to CA (both incubation times, same dosage. IC50 values for CAPE were 27.84 µM (24 h and 15.83 µM (48 h and for CA > 10,000 µM (24 h and > 1000 µM (48 h. Polyphenols induced apoptosis, while CAPE (dose dependently, induced a higher apoptotic effect. CAPE also induced cell cycle arrest in S phase (time and dose dependently, CA did it only for 50 and 100 µM. A dose dependent decline was seen for the G0/G1 phase (CAPE, 48 h, as well as elimination of phase G2/M by 100 µM of CAPE (only mild effect for CA. Comparing CA and CAPE activity on MDA-MB-231, CAPE clearly showed better activity for the same dosages and experiment times.

  19. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  20. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  1. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  2. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana

    Science.gov (United States)

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography–mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. PMID:24475190

  3. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  4. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Science.gov (United States)

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  5. Potential effect of compounds isolated from Coffea arabica against UV-B induced skin damage by protecting fibroblast cells.

    Science.gov (United States)

    Cho, Yong-Hun; Bahuguna, Ashutosh; Kim, Han-Hyuk; Kim, Dong-In; Kim, Hyeon-Jeong; Yu, Jae-Myo; Jung, Hyun-Gug; Jang, Jae-Yoon; Kwak, Jae-Hoon; Park, Geun-Hye; Kwon, O-Jun; Cho, Young Je; An, Jeong Yeon; Jo, Cheorun; Kang, Sun Chul; An, Bong-Jeun

    2017-09-01

    Ultraviolet (UV) radiation has adverse effects on extracellular matrix (ECM) proteins, leading to formation of wrinkles a hallmark of premature skin aging. The adverse effects of UV radiation are associated with induction of matrix metalloproteinases (MMPs) expression and degradation of collagen and elastin. The present study investigated anti-wrinkle effects of chlorogenic acid (CGA), pyrocatechol (PC) and 3,4,5-tricaffeoyl quinic acid (TCQ), isolated from beans of Coffea arabica, against UV-B stimulated mouse fibroblast cells (CCRF) by measuring expression levels of MMP-1, 3, 9, and type-I procollagen. The three compounds were isolated and purified from coffee grounds using column chromatography and structural examination was evaluated by nuclear magnetic resonance (NMR) analysis. Among the three isolated compounds, CGA effectively suppressed the expression of the MMP-1, 3, and 9 and increased synthesis of type-I procollagen as compared UV-B-stimulated CCRF cells. In addition, CGA dose-dependently inhibited intracellular reactive oxygen species (ROS) production in CCRF cells stimulated by UV radiation. Moreover, CGA displayed a good sun protection factor (SPF) and in vitro DNA damage protection together with inhibition of enzyme xanthine oxidase. The enzyme inhibitory kinetic behavior of CGA was determined by Lineweaver-Burk plot, displayed a mixed type enzyme inhibition with 260.3±4.5μM, Ki value. The results indicate that CGA has potential to be used as a preventive agent against premature skin aging induced by UV radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest.

    Science.gov (United States)

    Wang, Jin-Sheng; Wang, Cui-Lian; Wen, Ji-Fang; Wang, Yong-Jin; Hu, Yong-Bin; Ren, Hong-Zheng

    2008-07-07

    To investigate the effect of lithium on proliferation of esophageal cancer (EC) cells and its preliminary mechanisms. Eca-109 cells were treated with lithium chloride, a highly selective inhibitor of glycogen synthase kinase 3beta (GSK-3beta), at different concentrations (2-30 mmol/L) and time points (0, 2, 4, 6 and 24 h). Cell proliferative ability was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distribution was examined by flow cytometry. Expressions of p-GSK-3beta, beta-catenin, cyclin B1, cdc2 and cyclin D1 protein were detected by Western blotting, and the subcellular localization of beta-catenin was determined by immunofluorescence. The mRNA level of cyclin B1 was detected by reverse transcription polymerase chain reaction (RT-PCR). Lithium could inhibit the proliferation of Eca-109 cells. Lithium at a concentration of 20 mmol/L lithium for 24 h produced obvious changes in the distribution of cell cycle, and increased the number of cells in G(2)/M phase (Pgroup). Western blotting showed that lithium inhibited GSK-3beta by Ser-9 phosphorylation and stabilized free beta-catenin in the cytoplasm. Immunofluorescence further confirmed that free beta-catenin actively translocated to the nucleus. Moreover, lithium slightly elevated cyclin D1 protein expression, whereas lowered the cyclin B1 expression after 24 h lithium exposure and no obvious change was observed for cdc2 protein. Lithium can inhibit the proliferation of human esophageal cancer cell line Eca-109 by inducing a G(2)/M cell cycle arrest, which is mainly mediated through the inhibition of lithium-sensitive molecule, GSK-3beta, and reduction of cyclin B1 expression.

  7. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  8. Impact of the array background pattern on cycling-induced threshold-voltage instabilities in nanoscale NAND Flash memories

    Science.gov (United States)

    Paolucci, G. M.; Bertuccio, M.; Monzio Compagnoni, C.; Beltrami, S.; Spinelli, A. S.; Lacaita, A. L.; Visconti, A.

    2015-11-01

    This paper highlights that cycling-induced threshold-voltage instabilities in nanoscale NAND Flash technologies display a non-negligible dependence on the background pattern of the memory array during idle/bake periods. Experimental results clearly reveal, in fact, that instabilities in a (victim) cell do not depend only on its memory state, but also on the memory state of its first neighboring (aggressor) cells. The magnitude of this new cell-to-cell interference effect, moreover, appears to depend on the memory state of the victim cell, decreasing with the increase of its threshold-voltage level. From all of the gathered experimental evidence a physical picture explaining the phenomenon is provided, which is, finally, confirmed with the help of numerical simulations.

  9. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Koramit Suppipat

    Full Text Available Acute lymphoblastic leukemia (ALL is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9, inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.

  10. Effects of surface-induced hypothermia and rewarming on canine cardiac contraction-relaxation cycle.

    Science.gov (United States)

    Lauri, T; Leskinen, M; Timisjärvi, J

    1997-04-01

    The aims of this study were to elucidate the effects of cooling and rewarming on cardiac contraction-relaxation cycle. Cardiac catheterization was carried out on eleven anaesthetized beagle dogs. The dogs were cooled between icebags until the temperature of the blood in the ascending aorta was 25 degrees C and then rewarmed. Heart rate increased transiently at the beginning of cooling down to 33 degrees C (P temperature of 33 degrees C was achieved but then decreased (P systolic period lengthened significantly (P temperature decreased from 37 degrees C to 25 degrees C. Cardiac relaxation slowed down linearly with temperature during cooling. The peak value of the first order derivative of the ventricular pressure curve (dP/dtmax) increased at the beginning of cooling down to 33 degrees C, indicating enhanced systolic pressure rise in left ventricle but returned to baseline values at lower temperatures. However the ejection fraction, systolic period and the systemic vascular resistance increased at the temperatures below 33 degrees C despite the unaltered peak dP/dt and thus we conclude that the contraction force is augmented in the hypothermia. All the parameters measured recovered to normal during rewarming and no signs of heart failure were noted during the experiments.

  11. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  12. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Zhu Hai-Bin

    2013-01-01

    Full Text Available Abstract Background p53 is the most frequently mutated tumor-suppressor gene in human cancers. It has been reported that mutations in p53 result not only in the loss of its ability as a tumor suppressor, but also in the gain of novel cancer-related functions that contribute to oncogenesis. The present study evaluated the potential of silencing of mutant p53 by small interfering RNA in the treatment of bladder cancer cells in vitro. Methods We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay to assess cell viability and flow cytometry to detect cell cycle alterations and apoptosis. The related molecular mechanisms were assessed by western blotting. We also used the MTT assay and flow cytometry to investigate if silencing of mutant p53 by knockdown with small interfering (siRNA would change the sensitivity to cisplatin treatment. Results Using 5637 and T24 human bladder cancer cell lines characterized by mutations in p53, we found that silencing of the mutant p53 by RNA interference induced evident inhibition of cell proliferation and viability, which was related to the induction of G2 phase cell cycle arrest and apoptosis. Moreover, our study also showed that the p53-targeting siRNA cooperated with cisplatin in the inhibition of bladder cancer cells. Conclusions These findings suggest that RNA interference targeting mutant p53 may be a promising therapeutic strategy for the treatment of bladder cancer.

  13. Metformin Induces Cell Cycle Arrest and Apoptosis in Drug-Resistant Leukemia Cells

    Directory of Open Access Journals (Sweden)

    A. Rodríguez-Lirio

    2015-01-01

    Full Text Available Recent epidemiological studies indicate that the antidiabetic drug metformin has chemosensitizing and chemopreventive effects against carcinogenesis. Here, we demonstrate that metformin exerts varying degrees of antitumor activity against human leukemia cells, as reflected by differences in growth inhibition, apoptosis, and alterations to metabolic enzymes. In metformin-sensitive cells, autophagy was not induced but rather it blocked proliferation by means of arresting cells in the S and G2/M phases which was associated with the downregulation of cyclin A, cyclin B1, and cdc2, but not that of cyclin E. In 10E1-CEM cells that overexpress Bcl-2 and are drug-resistant, the effect of metformin on proliferation was more pronounced, also inducing the activation of the caspases 3/7 and hence apoptosis. In all sensitive cells, metformin decreased the Δψm and it modified the expression of enzymes involved in energy metabolism: PKCε (PKCepsilon and PKCδ (PKCdelta. In sensitive cells, metformin altered PKCε and PKCδ expression leading to a predominance of PKCε over PKCδ which implies a more glycolytic state. The opposite occurs in the nonresponsive cells. In conclusion, we provide new insights into the activity of metformin as an antitumoral agent in leukemia cells that could be related to its capability to modulate energy metabolism.

  14. Metformin Induces Growth Inhibition and Cell Cycle Arrest by Upregulating MicroRNA34a in Renal Cancer Cells.

    Science.gov (United States)

    Xie, Wei; Wang, Lei; Sheng, Halei; Qiu, Jing; Zhang, Di; Zhang, Le; Yang, Fan; Tang, Dahai; Zhang, Kebin

    2017-01-03

    BACKGROUND Metformin is a widely used biguanide drug for the treatment of type 2 diabetes. It has been revaluated as a potential anti-cancer drug with promising activity in various tumors. However, the precise mechanisms underlying the suppression of cancer cells by metformin remain not well understood. MATERIAL AND METHODS In this study, human renal cell carcinoma cell line ACHN was used to investigate the anti-proliferation effect of metformin. A cell counting kit-8 assay was used to detect the cell viability. The cell cycle distribution and apoptosis were analyzed by flow cytometry. The expression of cyclin D1 and p27KIP1 was detected by Western blot. The underlying mechanism involving miRNA34a was further investigated by quantitative RT-PCR and transfection with miRNA inhibitor specific for miRNA34a in ACHN, 769-P, and A498 cells. RESULTS Metformin could significantly inhibit the proliferation of ACHN cells in a dose- and time-dependent manner. In addition, the results showed that metformin induced G0/G1 phase arrest and delayed entry into S phase in ACHN cells. It was shown that metformin downregulates the expression of cyclin D1 and increases the p27KIP1 level. Furthermore, metformin increased ACHN cell death. Lastly, miRNA34a was found to be upregulated by metformin in ACHN, 769-P, and A498 cells. Subsequently, it was demonstrated that inhibition of miRNA34a could partially attenuate the suppressive effect of metformin on renal cancer cell proliferation. CONCLUSIONS The study data revealed that metformin induced cell growth inhibition and cell cycle arrest partially by upregulating miRNA34a in renal cancer cells.

  15. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang, E-mail: lvguoqiangwuxivip@163.com

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  16. 6-shogaol, a neuroactive compound of ginger (jahe gajah) induced neuritogenic activity via NGF responsive pathways in PC-12 cells.

    Science.gov (United States)

    Seow, Syntyche Ling Sing; Hong, Sok Lai; Lee, Guan Serm; Malek, Sri Nurestri Abd; Sabaratnam, Vikineswary

    2017-06-24

    Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells. The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors. 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively. The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.

  17. Severe hypophosphatemia induced after first cycle of the ESHAP protocol for Hodgkin's lymphoma: a case report

    Directory of Open Access Journals (Sweden)

    Al Yafei S

    2013-01-01

    Full Text Available Shereen Elazzazy,1 Hager A El-Geed,2 Sumaya Al Yafei11Pharmacy Department, National Center for Cancer Care and Research, Hamad Medical Corporation, 2College of Pharmacy, Qatar University, Doha, QatarAbstract: The effect of the ESHAP (etoposide, methylprednisolone, cytarabine, cisplatin salvage protocol on serum electrolytes has been previously reported by individual observational studies. The most commonly described electrolyte affected by the ESHAP protocol is magnesium. In addition, hypophosphatemia has been studied and reported as a complication of cisplatin therapy, although it is usually asymptomatic. This is a case report of a 51-year-old woman with relapsed Hodgkin's lymphoma who developed severe hypophosphatemia following administration of the first cycle of the ESHAP protocol. The patient started to develop gradually decreasing phosphate levels 2 weeks after receiving chemotherapy, which needed to be corrected by phosphate supplementation. This case report raises concern regarding hypophosphatemia as a possible side effect of the ESHAP protocol and points to a need for close monitoring, taking into consideration vitamin D levels, urinary phosphate excretion, parathyroid hormone levels, and arterial blood gas analysis to rule out other contributing factors. Health care providers should be made aware of this possible toxicity. Critical monitoring of phosphate levels and considering supplementation is warranted with the ESHAP protocol, especially when it is used in combination with granulocyte colony-stimulating factor and diuretics, to prevent such possible hypophosphatemia. Further investigations may be required to confirm and evaluate the significance of this type of toxicity.Keywords: hypophosphatemia, ESHAP, salvage protocol, relapsed Hodgkin's lymphoma

  18. Bowman-Birk inhibitor and genistein among soy compounds that synergistically inhibit nitric oxide and prostaglandin E2 pathways in lipopolysaccharide-induced macrophages

    Science.gov (United States)

    Inflammation has an important role in the development of chronic diseases. In this study, we evaluated the anti-inflammatory properties of eight soybean bioactive compounds using lipopolysaccharide-induced RAW 264.7 macrophages. Genistein, daidzein, mix isoflavone glucosides, saponin A group glyco...

  19. Increased Na+/K(+)-pump activity and adenosine triphosphate utilization after compound 48/80-induced histamine secretion from rat mast cells

    DEFF Research Database (Denmark)

    Johansen, Torben; Praetorius, Birger Hans

    1994-01-01

    The Na+/K(+)-pump activity and the utilization of adenosine triphosphate (ATP) were studied in rat peritoneal mast cells after histamine secretion induced by compound 48/80. We measured the ouabain-sensitive K(+)-uptake by a radioactive technique (86Rb+). The ATP content and the glycolytic ATP...

  20. Effects of a candidate antifouling compound (medetomidine) on pheromone induced mate search in the amphipod Corophium volutator.

    Science.gov (United States)

    Krång, Anna-Sara; Dahlström, Mia

    2006-12-01

    Environmental hazards associated with traditional, toxic antifouling coatings based on heavy metals calls for the development of alternative, environmentally acceptable antifouling compounds. Medetomidine ((+/-)-4-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole) is a candidate antifouling biocide which impedes settlement of barnacles in the nanomolar range. Prior to introducing novel biocides it is of great importance to consider potential effects on non-target organisms. This study is the first to investigate the effects of medetomidine on the amphipod Corophium volutator, specifically effects on male mate search behaviour. In a laboratory, Y-maze bioassay, C. volutator males were allowed to follow female pheromones after 24 h exposure to 0 (control), 0.01 and 0.1 microg mL(-1) medetomidine. We found that exposure to medetomidine at both concentrations significantly reduced pheromone induced mate search (by 42-71%), with fewer males crawling towards female odour. The results obtained indicate that medetomidine may impair the reproductive fitness of non-target crustaceans, an aspect that needs to be considered before further commercialisation.

  1. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    Science.gov (United States)

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis. © 2014 by the American Diabetes Association.

  2. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  3. Skullcap (Scutellaria baicalensis Extract and Its Active Compound, Wogonin, Inhibit Ovalbumin-Induced Th2-Mediated Response

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2014-02-01

    Full Text Available Skullcap (Scutellaria baicalensis has been widely used as a dietary ingredient and traditional herbal medicine owing to its anti-inflammatory and anticancer properties. In this study, we investigated the anti-allergic effects of skullcap and its active compounds, focusing on T cell-mediated responses ex vivo and in vivo. Splenocytes from mice sensitized with ovalbumin (OVA were isolated for analyses of cytokine production and cell viability. Mice sensitized with OVA were orally administered skullcap or wogonin for 16 days, and then immunoglobulin (Ig and cytokine levels were measured by enzyme-linked immunosorbent assays. Treatment with skullcap significantly inhibited interleukin (IL-4 production without reduction of cell viability. Moreover, wogonin, but not baicalin and baicalein, suppressed IL-4 and interferon-gamma production. In vivo, skullcap and wogonin downregulated OVA-induced Th2 immune responses, especially IgE and IL-5 prediction. Wogonin as an active component of skullcap may be applied as a therapeutic agent for IgE- and IL-5-mediated allergic disorders.

  4. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    Science.gov (United States)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  5. Proanthocyanidin and fish oil potent activity against cisplatin-induced renal cell cycle arrest and apoptosis in rats.

    Science.gov (United States)

    Hassan, Hanaa A; Edrees, Gamal M; El-Gamel, Ezz M; El-Sayed, Elsamra A

    2015-01-01

    Cisplatin is an effective chemotherapeutic agent that displays dose-limiting nephrotoxicity. In the present study, the efficacy of grape seed proanthocyanidin extract (GSPE: 100 mg/kg/day) and fish oil (FO: 5 mL/kg/day) against cisplatin-induced nephrotoxicity was evaluated in terms of DNA damage, histopathological changes and expression levels of molecular markers of apoptosis. The administration of cisplatin (CP) (7 mg/kg) results in an increasing percentage of S-phase, G2/M and apoptosis. Furthermore, CP induces apoptosis as indicated by an elevation of renal caspase-3 and reduction in the expression of BCL-2. In addition to occurred renal histopathological changes as manifested by tubular degeneration, degenerative glomerulus, necrotic tubular cells, and cell debris. On the other hand, the administration of GSPE or FO pre-cisplatin treatment can be ameliorated the current DNA cell cycle alterations by the restoration of expression of proteins related to apoptosis and reduced the undesirable renal histopathological changes. So, it can be concluded that the consumption of GSPE or FO might be useful for minimizing nephrotoxicity caused by cisplatin chemotherapy through their anti-apoptotic and antioxidant properties.

  6. Chlorpyrifos Induces the Expression of the Epstein-Barr Virus Lytic Cycle Activator BZLF-1 via Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ling Zhao

    2015-01-01

    Full Text Available Organophosphate pesticides (OPs are among the most widely used synthetic chemicals for the control of a wide variety of pests, and reactive oxygen species (ROS caused by OPs may be involved in the toxicity of various pesticides. Previous studies have demonstrated that a reactivation of latent Epstein-Barr virus (EBV could be induced by oxidative stress. In this study, we investigated whether OPs could reactivate EBV through ROS accumulation. The Raji cells were treated with chlorpyrifos (CPF, one of the most commonly used OPs. Oxidative stress indicators and the expression of the EBV immediate-early gene BZLF-1 were determined after CPF treatment. Our results show that CPF induces oxidative stress as evidenced by decreased malondialdehyde (MDA level, accompanied by an increase in ROS production, DNA damage, glutathione (GSH level, and superoxide dismutase (SOD and catalase (CAT activity. Moreover, CPF treatment significantly enhances the expression of BZLF-1, and the increased BZLF-1 expression was ameliorated by N-acetylcysteine (NAC incubation. These results suggest that OPs could contribute to the reactivation of the EBV lytic cycle through ROS induction, a process that may play an important role in the development of EBV-associated diseases.

  7. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    Science.gov (United States)

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  8. Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts.

    Science.gov (United States)

    Inaba, Hiroaki; Kuboniwa, Masae; Sugita, Hideyuki; Lamont, Richard J; Amano, Atsuo

    2012-08-01

    Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.

  9. Modulating effect of Withania somnifera on TCA cycle enzymes and electron transport chain in azoxymethane-induced colon cancer in mice.

    Science.gov (United States)

    Muralikrishnan, Govidan; Amanullah, Safiullah; Basha, Mohamed I; Dinda, Amit K; Shakeel, Faiyaz

    2010-09-01

    The aim of the present investigation was to evaluate the efficacy of Withania somnifera on tricarboxylic acid (TCA) cycle enzymes and electron transport chain in azoxymethane-induced experimental colon cancer in mice. Azoxymethane at the dose of 15 mg/kg body weight was induced intraperitoneally once in a week for 28 days. The progression in colon tumor development was correlated with the appearance of the histological biomarker and aberrant crypt foci (ACF). Azoxymethane-induced colon cancer animals were treated with 400 mg/kg body weight of W. somnifera once in a week orally for 28 days. After the experimental period, the animals were killed and analyzed for TCA cycle key enzymes, such as isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and alpha-keto glutarate dehydrogenase (alpha-KGDH). The modulating effect of W. somnifera on TCA cycle key enzymes and electron transport chain complexes were investigated against colon cancer induced by azoxymethane in Swiss albino mice. Decreased activities of TCA cycle key enzymes such as ICDH, SDH, MDH, and alpha-KGDH in colon cancer bearing animals were observed. W. somnifera administration normalized these enzyme levels in azoxymethane-induced experimental mice. These results suggested that W. somnifera is the promising chemotherapeutic agent for the treatment of colon cancer.

  10. Manganese ions enhance mitochondrial H2O2emission from Krebs cycle oxidoreductases by inducing permeability transition.

    Science.gov (United States)

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    Science.gov (United States)

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  12. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death.

    Science.gov (United States)

    Kashyap, Trinayan; Argueta, Christian; Aboukameel, Amro; Unger, Thaddeus John; Klebanov, Boris; Mohammad, Ramzi M; Muqbil, Irfana; Azmi, Asfar S; Drolen, Claire; Senapedis, William; Lee, Margaret; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef

    2016-11-29

    The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent.

  13. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Degranulation of mast cells due to compound 48/80 induces concentration-dependent intestinal contraction in rainbow trout (Oncorhynchus mykiss Walbaum) ex vivo.

    Science.gov (United States)

    Manera, M; Giammarino, A; Borreca, C; Giari, L; Dezfuli, B S

    2011-10-01

    Rainbow trout (Oncorhynchus mykiss) intestinal strips (n = 10) were mounted in an isolated organ bath and the effect of incremental doses of compound 48/80 was recorded. Compound 48/80 induced concentration-related contraction in all the examined strips following a sigmoidal dose-response curve fit. Values for maximal contraction (E(max) , g cm(-2)), negative logarithm of the EC(50) (pD(2)), and hill slope were, respectively (mean±standard error), 12.88 ± 0.51, 1.88 ± 0.05, 1.49 ± 0.27. The histological modification induced on mast cells (MCs) due to compound 48/80 was characterized by mean of gray-levels and texture analysis. Significant differences were observed between gray-levels values (Linear mixed model, Pcompound 48/80-treated strips compared with MCs from untreated strips. Moreover, maximal intestinal contraction (due to compound 48/80) correlates positively and significantly (Pearson and Spearman correlations, Pcompound 48/80 induces the degranulation of trout intestinal MCs ex vivo, and that the aforementioned degranulation promotes a concentration-dependent intestinal contraction. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  15. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells

    Directory of Open Access Journals (Sweden)

    Wai Wing So

    2015-08-01

    Full Text Available Omega-3 (n-3 fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  16. Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Chao, Xu; Zhou, Xiaojun; Zheng, Gang; Dong, Changhu; Zhang, Wei; Song, Xiaomei; Jin, Tianbo

    2014-05-01

    Osthole [7-methoxy-8-(3-methyl-2-butenyl) coumarin] isolated from the fruit of Cnidium monnieri (L.) Cuss, one of the commonly used Chinese medicines listed in the Shennong's Classic of Materia Medica in the Han Dynasty, had remarkable antiproliferative activity against human hepatocellular carcinoma HepG2 cells in culture. This study evaluated the effects of osthole on cell growth, nuclear morphology, cell cycle distribution, and expression of apoptosis-related proteins in HepG2 cells. Cytotoxic activity of osthole was determined by the MTT assay at various concentrations ranging from 0.004 to 1.0 µmol/ml in HepG2 cells. Cell morphology was assessed by Hoechst staining and fluorescence microscopy. Apoptosis and cell-cycle distribution was determined by annexin V staining and flow cytometry. Apoptotic protein levels were assessed by Western blot. Osthole exhibited significant inhibition of the survival of HepG2 cells and the half inhibitory concentration (IC₅₀) values were 0.186, 0.158 and 0.123 µmol/ml at 24, 48 and 72 h, respectively. Cells treated with osthole at concentrations of 0, 0.004, 0.02, 0.1 and 0.5 μmol/ml showed a statistically significant increase in the G2/M fraction accompanied by a decrease in the G0/G1 fraction. The increase of apoptosis induced by osthole was correlated with down-regulation expression of anti-apoptotic Bcl-2 protein and up-regulation expression of pro-apoptotic Bax and p53 proteins. Osthole had significant growth inhibitory activity and the pro-apoptotic effect of osthole is mediated through the activation of caspases and mitochondria in HepG2 cells. Results suggest that osthole has promising therapeutic potential against hepatocellular carcinoma.

  17. PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available PFKFB3 (6-phosphofructo-2-kinase synthesizes fructose 2,6-bisphosphate (F2,6P2, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1, the rate-limiting enzyme of glycolysis. Overexpression of the PFKFB3 enzyme leads to high glycolytic metabolism, which is required for cancer cells to survive in the harsh tumor microenvironment. The objective of this study was to investigate the antitumor activity of PFK15 (1-(4-pyridinyl-3-(2-quinolinyl-2-propen-1-one, a small molecule inhibitor of PFKFB3, against gastric cancer and to explore its potential mechanisms. The effects of PFK15 on proliferation, apoptosis and cell cycle progression in gastric cancer cells were evaluated by cytotoxicity and apoptosis assays, flow cytometry, and western blotting. In addition, the invasion inhibition effects of PFK15 were measured by transwell invasion assay and western blot analysis, and a xenograft tumor model was used to verify the therapeutic effect of PFK15 in vivo. Results showed that PFK15 inhibited the proliferation, caused cell cycle arrest in G0/G1 phase by blocking the Cyclin-CDKs/Rb/E2F signaling pathway, and induced apoptosis through mitochondria in gastric cancer cells. Tumor volume and weight were also significantly reduced upon intraperitoneal injection with PFK15 at 25 mg/kg. In addition, PFK15 inhibited the invasion of gastric cancer cells by downregulating focal adhesion kinase (FAK expression and upregulating E-cadherin expression. Taken together, our findings indicate that PFK15 is a promising anticancer drug for treating gastric cancer.

  18. Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control.

    Science.gov (United States)

    Boh, Boon Kim; Ng, Mei Ying; Leck, Yee Chin; Shaw, Barry; Long, Jed; Sun, Guang Wen; Gan, Yunn Hwen; Searle, Mark S; Layfield, Robert; Hagen, Thilo

    2011-10-21

    Cycle inhibiting factor (Cif) is produced by pathogenic intracellular bacteria and injected into the host cells via a type III secretion system. Cif is known to interfere with the eukaryotic cell cycle by inhibiting the function of cullin RING E3 ubiquitin ligases (CRLs). Cullin proteins form the scaffold protein of CRLs and are modified with the ubiquitin-like protein Nedd8, which exerts important conformational control required for CRL activity. Cif has recently been shown to catalyze the deamidation of Gln40 in Nedd8 to Glu. Here, we addressed how Nedd8 deamidation inhibits CRL activity. Our results indicate that Burkholderia pseudomallei Cif (also known as CHBP) inhibits the deconjugation of Nedd8 in vivo by inhibiting binding of the deneddylating COP9 signalosome (CSN) complex. We provide evidence that the reduced binding of CSN and the inhibition of CRL activity by Cif are due to interference with Nedd8-induced conformational control, which is dependent on the interaction between the Nedd8 hydrophobic patch and the cullin winged-helix B subdomain. Of note, mutation of Gln40 to Glu in ubiquitin, an additional target of Cif, inhibits the interaction between the hydrophobic surface of ubiquitin and the ubiquitin-binding protein p62/SQSTM1, showing conceptually that Cif activity can impair ubiquitin/ubiquitin-like protein non-covalent interactions. Our results also suggest that Cif may exert additional cellular effects by interfering with the association between ubiquitin and ubiquitin-binding proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney

    Directory of Open Access Journals (Sweden)

    Katakura Masanori

    2012-07-01

    Full Text Available Abstract Background Reactive oxygen species (ROS production induced by α,β-dicarbonyl compounds and advanced glycation end products causes renal dysfunction in patients with type 2 diabetes and metabolic syndrome. Hydrogen-rich water (HRW increases the H2 level in blood and tissues, thus reducing oxidative stress in animals as well as humans. In this study, we investigated the effects of HRW on glucose- and α,β-dicarbonyl compound-induced ROS generation in vitro and in vivo. Methods Kidney homogenates from Wistar rats were incubated in vitro with glucose and α,β-dicarbonyl compounds containing HRW, following which ROS levels were measured. In vivo animal models of metabolic syndrome, SHR.Cg-Leprcp/NDmcr rats, were treated with HRW for 16 weeks, following which renal ROS production and plasma and renal α,β-dicarbonyl compound levels were measured by liquid chromatograph mass spectrometer. Results HRW inhibited glucose- and α,β-dicarbonyl compound-induced ROS production in kidney homogenates from Wistar rats in vitro. Furthermore, SHR.Cg-Leprcp/NDmcr rats treated with HRW showed a 34% decrease in ROS production. Moreover, their renal glyoxal, methylglyoxal, and 3-deoxyglucosone levels decreased by 81%, 77%, and 60%, respectively. Positive correlations were found between renal ROS levels and renal glyoxal (r = 0.659, p = 0.008 and methylglyoxal (r = 0.782, p = 0.001 levels. Conclusion These results indicate that HRW inhibits the production of α,β-dicarbonyl compounds and ROS in the kidneys of SHR.Cg-Leprcp/NDmcr rats. Therefore, it has therapeutic potential for renal dysfunction in patient with type 2 diabetes and metabolic syndrome.

  20. Human health damages due to indoor sources of organic compounds and radioactivity in life cycle impact assessment of dwellings - Part 1: Characterisation factors

    NARCIS (Netherlands)

    Meijer, A.; Huijbregts, M.A.J.; Reijnders, L.

    2005-01-01

    Goal, Scope and Background. Methodologies based on life cycle assessment have been developed to calculate the environmental impact of dwellings. Human health damage due to exposure to substances emitted to indoor air are not included in these methodologies. In order to compare this damage with human

  1. Rosmarinus officinalis L. essential oil and the related compound 1,8-cineole do not induce direct or cross-protection in Listeria monocytogenes ATCC 7644 cultivated in meat broth.

    Science.gov (United States)

    Gomes Neto, Nelson Justino; Luz, Isabelle Silva; Honório, Wanessa Gonçalves; Tavares, Adassa Gama; de Souza, Evandro Leite

    2012-08-01

    Listeria monocytogenes has the capability of adapting to 1 or more antimicrobial compounds or procedures applied by the food industry to control the growth and survival of microorganisms in foods. In this study, the effects of Rosmarinus officinalis essential oil (EO) and the related compound 1,8-cineole on the inhibition of the growth and survival of L. monocytogenes ATCC 7644 were determined. The ability of the R. officinalis EO and 1,8-cineole to induce direct and cross-protection of bacteria against various stresses (lactic acid, pH 5.2; NaCl, 3 g/100 mL; high temperature, 45 °C) was also determined. At all concentrations tested (minimum inhibitory concentration (MIC), ½ MIC, and ¼ MIC), both compounds inhibited the cell viability of L. monocytogenes over 120 min of exposure. Overnight exposure of L. monocytogenes to sublethal amounts of either the R. officinalis EO or 1,8-cineole in meat broth revealed no induction of direct or cross-protection against lactic acid, NaCl, or high temperature. Similarly, cells subjected to 24 h cycles of adaptation with increasing amounts (½ MIC to 2× MIC) of the EO and 1,8-cineole showed no increase in direct tolerance, as they were able to survive in growth medium containing up to ½ MIC of either substance. These results show the antimicrobial efficacy of R. officinalis EO and 1,8-cineole for use in systems, particularly as anti-L. monocytogenes compounds.

  2. Effect of Mantle Rheology on Viscous Heating induced during Ice Sheet Cycles

    Science.gov (United States)

    Huang, Pingping; Wu, Patrick; van der Wal, Wouter

    2017-04-01

    Hanyk et al. (2005) studied the viscous shear heating in the mantle induced by the surface loading and unloading of a parabolic-shaped Laurentide-size ice sheet. They found that for linear rheology, viscous heating is mainly concentrated below the ice sheet. The depth extent of the heating in the mantle is determined by the viscosity distribution. Also, the magnitude of viscous heating is significantly affected by the rate of ice thickness change. However, only one ice sheet has been considered in their work and the interactions between ice sheets and ocean loading have been neglected. Furthermore, only linear rheology has been considered, although they suggested that non-Newtonian rheology may have a stronger effect. Here we follow Hanyk et al. (2005) and computed the viscous dissipation for viscoelastic models using the finite element methodology of Wu (2004) and van der Wal et al. (2010). However, the global ICE6G model (Peltier et al. 2015) with realistic oceans is used here to provide the surface loading. In addition, viscous heating in non-linear rheology, composite rheology, in addition to linear rheology with uniform or VM5a profile are computed and compared. Our results for linear rheology mainly confirm the findings of Hanyk et al. (2005). For both non-linear and composite rheologies, viscous heating is also mainly distributed near and under the ice sheets, but, more concentrated; depending on the horizontal dimension of the ice sheet, it can extend into the lower mantle, but for some of the time, not as deep as that for linear rheology. For composite rheology, the viscous heating is dominated by the effect of non-linear relation between the stress and the strain. The ice history controls the time when the local maximum in viscous heating appears. However, the magnitude of the viscous heating is affected by mantle rheology as well as the ice loading. Due to viscosity stratification, the shape of the region with high viscous heating in model VM5a is a

  3. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  4. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  5. Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Formaldehyde is the inducing signal for the synthesis of the RuMP cycle enzyme hexulose phosphate synthase

    NARCIS (Netherlands)

    Croes, L.M.; Dijkhuizen, L.

    The inducing potential of formaldehyde on the synthesis of hexulose phosphate synthase, a key enzyme of the RuMP cycle in Arthrobacter P1, was investigated in resting cell suspensions. Induction of this enzyme only occurred at formaldehyde concentrations of 0.5 mM and below. No evidence was obtained

  6. Hydrogen sulfide - cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots.

    Science.gov (United States)

    Jia, Honglei; Wang, Xiaofeng; Dou, Yanhua; Liu, Dan; Si, Wantong; Fang, Hao; Zhao, Chen; Chen, Shaolin; Xi, Jiejun; Li, Jisheng

    2016-12-22

    Cadmium (Cd2+) is a common toxic heavy metal ion. We investigated the roles of hydrogen sulfide (H2S) and cysteine (Cys) in plant responses to Cd2+ stress. The expression of H2S synthetic genes LCD and DES1 were induced by Cd2+ within 3 h, and endogenous H2S was then rapidly released. H2S promoted the expression of Cys synthesis-related genes SAT1 and OASA1, which led to endogenous Cys accumulation. The H2S and Cys cycle system was stimulated by Cd2+ stress, and it maintained high levels in plant cells. H2S inhibited the ROS burst by inducing alternative respiration capacity (AP) and antioxidase activity. H2S weakened Cd2+ toxicity by inducing the metallothionein (MTs) genes expression. Cys promoted GSH accumulation and inhibited the ROS burst, and GSH induced the expression of phytochelatin (PCs) genes, counteracting Cd2+ toxicity. In summary, the H2S and Cys cycle system played a key role in plant responses to Cd2+ stress. The Cd2+ tolerance was weakened when the cycle system was blocked in lcddes1-1 and oasa1 mutants. This paper is the first to describe the role of the H2S and Cys cycle system in Cd2+ stress and to explore the relevant and specificity mechanisms of H2S and Cys in mediating Cd2+ stress.

  7. Identification of small molecule inhibitors of cisplatin-induced hair cell death: results of a 10,000 compound screen in the zebrafish lateral line.

    Science.gov (United States)

    Thomas, Andrew J; Wu, Patricia; Raible, David W; Rubel, Edwin W; Simon, Julian A; Ou, Henry C

    2015-03-01

    The zebrafish lateral line can be used to identify small molecules that protect against cisplatin-induced hair cell death. Cisplatin is a commonly used chemotherapeutic agent, which causes hearing loss by damaging hair cells of the inner ear. There are currently no FDA-approved pharmacologic strategies for preventing this side effect. The zebrafish lateral line has been used successfully in the past to study hair cell death and protection. In this study, we used the zebrafish lateral line to screen a library of 10,000 small molecules for protection against cisplatin-induced hair cell death. Dose-response relationships for identified protectants were determined by quantifying hair cell protection. The effect of each protectant on uptake of a fluorescent cisplatin analog was also quantified. From this screen, we identified 2 compounds exhibiting dose-dependent protection: cisplatin hair cell protectant 1 and 2 (CHCP1 and 2). CHCP1 reduced the uptake of a fluorescent cisplatin analog, suggesting its protective effects may be due to decreased cisplatin uptake. CHCP2 did not affect uptake, which suggests an intracellular mechanism of action. Evaluation of analogs of CHCP2 revealed 3 additional compounds that significantly reduced cisplatin-induced hair cell death, although none exceed the effectiveness or potency of the parent compound. The zebrafish lateral line was used to identify 2 small molecules that protected against cisplatin-induced hair cell death.

  8. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan

    2015-01-01

    The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group (oral terbutaline 5 mg∙30...... output during 30-s of maximal cycling increased (P≤0.01) by 32±8 and 25±9 W, respectively, with the intervention in TER compared to PLA. Maximal oxygen consumption (V̇o2 max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95±0.8 kg (P≤0...... and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans....

  9. Caenorhabditis elegans cyclin D/CDK4 and cyclin E/CDK2 induce distinct cell cycle re-entry programs in differentiated muscle cells.

    Directory of Open Access Journals (Sweden)

    Jerome Korzelius

    2011-11-01

    Full Text Available Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4 expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2, which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators.

  10. Amarogentin secoiridoid inhibits in vivo cancer cell growth in xenograft mice model and induces apoptosis in human gastric cancer cells (SNU-16) through G2/M cell cycle arrest and PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhao, Jian-Guo; Zhang, Ling; Xiang, Xiao-Jun; Yu, Feng; Ye, Wan-Li; Wu, Dong-Ping; Wang, Jian-Fang; Xiong, Jian-Ping

    2016-01-01

    To investigate the in vitro and in vivo antitumor effects of amarogentin in SNU-16 human gastric cancer cells as well as in nude mice xenograft model. The effects of this compound on cell apoptosis, cell cycle phase distribution and PI3K/Akt and m-TOR signalling pathways were also studied in detail. MTT assay was used to study the effect of amarogentin on SNU-16 cell viability while clonogenic assay indicated the effect of the compound on colony formation tendency of these cells. Phase contrast microscopy revealed the effect on cellular morphology while flow cytometry was engaged to study the effects on cell apoptosis and cell cycle arrest. SNU-16 cancer cells were subcutaneously inoculated into nude mice to investigate the in vivo antitumor effects of amarogentin. Amarogentin induced potent, dose-dependent as well as time-dependent cytotoxic effects on the growth of SNU-16 human gastric cancer cells. Amarogentin also inhibited the colony forming capability of these tumor cells and its treatment led to morphological alterations in these cells in which the cells became withered and rounded, detached from one another and adopted irregular shapes while floating freely in the culture medium. In comparison to untreated control cells, the amarogentin treated cells with 10, 50 and 75 μM exhibited 32.5, 45.2 and 57.1 % apoptotic cells, respectively. Amarogentin induced potent and dose-dependent G2/M cell cycle arrest in these cells and led to downregulation of m-TOR, p-PI3K, PI3K, p-Akt and Akt and upregulation of cyclin D1 and cyclin E protein expressions. The tumor tissues obtained from the amarogentin-treated mice were much smaller than the tumor tissues derived from the control group. Amarogentin exerts potent in vitro and in vivo antitumor effects in SNU-16 cell model as well as in nude mice xenograft model. These antitumor effects were found to be mediated through apoptosis induction, G2/M cell cycle arrest and downregulation of PI3K/Akt/m-TOR signalling pathways.

  11. Three-dimensional investigation of cycling-induced microstructural changes in lithium-ion battery cathodes using focused ion beam/scanning electron microscopy

    Science.gov (United States)

    Liu, Hanshuo; Foster, Jamie M.; Gully, Adam; Krachkovskiy, Sergey; Jiang, Meng; Wu, Yan; Yang, Xingyi; Protas, Bartosz; Goward, Gillian R.; Botton, Gianluigi A.

    2016-02-01

    For vehicle electrification, one of the biggest issues for lithium ion batteries is cycle life. Within this context, the mechanisms at the source of capacity degradation during cycling are not yet to be fully understood. In this work, we use state-of-the-art FIB-SEM serial sectioning and imaging techniques to determine the effect of cycling on lithium-ion battery cathodes. The three-dimensional (3D) microstructural study was performed on both pristine and cycled LiNixMnyCo1-x-yO2 (NMC) and Li(Li0.2Ni0.13Mn0.54Co0.13)O2 (HE-NMC) cathodes. The spatial distribution of active material, carbon-doped binder and pore spaces were successfully reconstructed by appropriate image processing. Comparisons of NMC and HE-NMC cathodes after different number of cycles showed only minor increases in the number of smaller active particles, possibly negligible, considering the intrinsic microstructure variation within the cathodes. However, the connectivity between carbon-doped binder additives and active particles in NMC and HE-NMC cathodes, assessed using a ;neighbor counting; method, showed an appreciable decrease after cycling which indicates a detachment of carbon-doped binder from active particles. This significant cycling-induced detachment effect between the two phases (e.g., ∼22% for HE-NMC) could indicate a loss in electrical connectivity, which may partially explain the capacity fade in the cells.

  12. Gene expression profiling analysis reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs.

    Science.gov (United States)

    Zhu, L H; Xu, J X; Zhu, S W; Cai, X; Yang, S F; Chen, X L; Guo, Q

    2014-03-01

    In swine production, weaning is a critical event for porcine weaning-associated disease, such as postweaning stress syndrome, which involves intestinal dysfunction. However, little is known about the molecular mechanisms of intestinal dysfunction in pigs during weaning. To gain new insight into the interaction between weaning stress and intestinal function, 4 pigs at 25 d of age for each of the weaning and the suckling groups for a total of 40 pigs were used to analyze changes in the genomic expression in the intestines of weaned pigs by microarray analysis. Four hundred forty-five genes showed altered expression after weaning treatment (286 upregulated and 159 downregulated) at the cutoff criteria of the fold change ≥1.5 or 0.05) were observed when compared with the suckling pigs. These selected genes likely indicate that weaning induced cell cycle arrest, enhanced apoptosis, and inhibited cell proliferation. The results of this study provide a basis for understanding the molecular pathogenesis of weaning treatment.

  13. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts.

    Science.gov (United States)

    Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O'Connor, Don; Duffield, James

    2017-12-15

    This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Downregulation of NIMA-related kinase-7 inhibits cell proliferation by inducing cell cycle arrest in human retinoblastoma cells.

    Science.gov (United States)

    Zhang, Jian; Wang, Li; Zhang, Yongkang

    2018-02-01

    NIMA-related kinase-7 (Nek7) is a centrosomal kinase involved in various types of cancer, including gallbladder cancer and hepatocellular carcinoma. However, the biological function and the potential underlying mechanism of Nek7 in retinoblastoma remain largely unknown. Therefore, the present study investigated the effects of Nek7 in retinoblastoma cells. The expression of Nek7 was initially determined and observed to be commonly upregulated in retinoblastoma cell lines (Y79, SO-RB50 and WERI-RB1) as compared with that in normal retinal pigment epithelium cells. Next, the endogenous expression of Nek7 was efficiently knocked down in Y79 and SO-RB50 cells using a lentivirus-mediated RNA interference approach, as confirmed by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Loss-of-function assays, including MTT, colony formation and flow cytometry, indicated that knockdown of Nek7 significantly inhibited cell growth, impaired the colony formation ability and induced cell cycle arrest at G0/G1 phase. Furthermore, mechanistic studies demonstrated that silencing of Nek7 resulted in reduced cyclin-dependent kinase 2, cyclin D1 and cyclin E levels in vitro . In conclusion, the present study highlights the crucial role of Nek7 in promoting retinoblastoma cell proliferation, and Nek7-silencing may serve as a novel therapeutic target for retinoblastoma.

  15. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/ mammalian target of rapamycin and p38 MAPK mediated pathways. Keywords: Plumbagin, pancreatic cancer, cell cycle, autophagy, EMT, Sirt1

  16. Epigenetic silencing of p21 by long non-coding RNA HOTAIR is involved in the cell cycle disorder induced by cigarette smoke extract.

    Science.gov (United States)

    Liu, Yi; Wang, Bairu; Liu, Xinlu; Lu, Lu; Luo, Fei; Lu, Xiaolin; Shi, Le; Xu, Wenchao; Liu, Qizhan

    2016-01-05

    Long noncoding RNAs (lncRNAs), which are epigenetic regulators, are involved in human malignancies. Little is known, however, about the molecular mechanisms for lncRNA regulation of genes induced by cigarette smoke. We recently found that, in human bronchial epithelial (HBE) cells, the lncRNA, Hox transcript antisense intergenic RNA (HOTAIR), is associated with changes in the cell cycle caused by cigarette smoke extract (CSE). In the present study, we report that increased expression of HOTAIR and enhancer of zeste homolog 2 (EZH2), and tri-methylation of Lys 27 of histone H3 (H3K27me3), affect cell cycle progression during CSE-induced transformation of HBE cells. Inhibition of HOTAIR and EZH2 by siRNAs attenuated CSE-induced decreases of p21 levels. Further, ChIP assays verified that HOTAIR and EZH2 were needed to maintain the interaction of H3K27me3 with the promoter regions of p21; combined use of a HOTAIR plasmid and EZH2 siRNA supported this observation. Thus, HOTAIR epigenetic silencing of p21 via EZH2-mediated H3K27 trimethylation contributes to changes in the cell cycle induced by CSE. These observations provide further understanding of the regulation of CSE-induced lung carcinogenesis and identify new therapeutic targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice.

    Science.gov (United States)

    Li, Zi-Wei; Kuang, Yi; Tang, Shu-Nan; Li, Kai; Huang, Yun; Qiao, Xue; Yu, Si-Wang; Tzeng, Yew-Min; Lo, Jen-Yu; Ye, Min

    2017-07-12

    Antrodia camphorata (AC) is a rare and precious fungus indigenous to Taiwan used as a traditional medicine for the treatment of liver injury. Triterpenoids are the major bioactive constituents of A. camphorata and have been reported to possess hepatoprotective activities. To meet the increasing demand, artificial cultivation techniques have been developed. This study aims to evaluate the hepatoprotective activities of AC samples derived from different cultivation techniques and to dissect the main active triterpenoid compounds. The ethanol extracts of five batches of AC samples, including wild growing fruiting bodies, cutting wood culture fruiting bodies, dish cultures, cutting wood culture mycelia, and submerged fermentation mycelia were orally administered (50mg/kg or 200mg/kg) to ICR mice for 7 days. On the last day, CCl 4 (0.2%, 7mL/kg, i.p.) was used to induce liver injury, and the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined 24h after the injection. Moreover, a HepG2 cell model treated with CCl 4 (0.35%) was used to screen the protective activities of 29 AC triterpenoids. After incubation for 6h, viabilities of the cells were tested using MTS assay. The in vivo hepatoprotective activities of antcin B and antcin K were further studied on the mice model by ALT and AST tests and histopathologic examinations. To elucidate the mechanisms, the mRNA levels of iNOS, COX2, TNF-α and IL-1β, and the protein levels of NF-κB (p65/p-p65), iNOS and COX2 in liver tissues were determined. The wild growing or cutting wood culture fruiting bodies, and the dish cultures of AC showed more potent activities than the mycelia (Pactivities, increasing HepG2 cell viability from 46% of the CCl 4 group to >90%. Antcin B and antcin K could dose-dependently (10 or 50mg/kg, 7 days, i.g.) decrease the serum levels of ALT and AST, and decrease the incidence of liver necrosis. The effects of 50mg/kg of antcin K or antcin B were

  18. Phenolic Compounds from the Roots of Rhodiola crenulata and Their Antioxidant and Inducing IFN-γ Production Activities

    OpenAIRE

    Zhou, Jiang-Tao; Li, Chen-Yang; Wang, Chun-Hua; Wang, Yue-Fei; Wang, Xiao-Dong; Wang, Hong-Tao; Zhu, Yan; Jiang, Miao-Miao; Gao, Xiu-Mei

    2015-01-01

    In the present study, two new phenolic compounds 1 and 11, a pair of lignan isomers 12 and 13 with their absolute configurations established for the first time, were isolated from the ethanol extract of the roots of Rhodiola crenulata, together with 13 known phenolic compounds, and their structures were elucidated via NMR, HRESIMS, UV, IR and CD analyses. All the isolated compounds were evaluated for their in vitro antioxidant activities using the 2,2-diphenyl-1-picryhydrazyl (DPPH) and 2,2′-...

  19. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells.

    Science.gov (United States)

    Ansems, Marleen; Søndergaard, Jonas Nørskov; Sieuwerts, Anieta M; Looman, Maaike W G; Smid, Marcel; de Graaf, Annemarie M A; de Weerd, Vanja; Zuidscherwoude, Malou; Foekens, John A; Martens, John W M; Adema, Gosse J

    2015-02-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells.

  20. Spontaneous and Dosing Route-related Lung Lesions in Beagle Dogs from Oral Gavage and Inhalation Toxicity Studies: Differentiation from Compound-induced Lesions.

    Science.gov (United States)

    Mukaratirwa, Sydney; Garcia, Begonya; Isobe, Kaori; Petterino, Claudio; Bradley, Alys

    2016-10-01

    This study was conducted to characterize lung microscopic lesions in control beagle dogs from inhalation and oral gavage toxicity studies, to determine differences associated with the route of administration, and to discuss distinguishing features from compound-induced lung lesions. Samples from 138 control dogs from oral gavage studies and 124 control dogs from inhalation (vehicle control) studies were evaluated microscopically. There was no significant sex-related difference in the incidence of all lesions. Perivascular mononuclear cell infiltration, centriacinar mixed cell infiltration, bronchopneumonia, subpleural septal fibrosis, and alveolar macrophage accumulation were the most common lesions. Aspiration pneumonia was more common in dogs from gavage studies, suggesting reflux after gavage dosing or accidental administration of test formulation as possible causes. Centriacinar mixed cell infiltration was more common in dogs from inhalation studies, suggesting mild irritation by the vehicles used. Vascular lesions, which included pulmonary arteriopathy and smooth muscle mineralization, were observed in a few animals. Some of the spontaneous lesions are similar to lesions induced by test compounds. Compared to spontaneous lesions, compound-induced lesions tend to be multifocal or diffuse, follow a pattern of distribution (e.g., centriacinar, perivascular, and interstitial), show a dose response in the incidence and severity, and may show cell-specific toxicity. © The Author(s) 2016.

  1. The Mechanism of Melanocytes-Specific Cytotoxicity Induced by Phenol Compounds Having a Prooxidant Effect, relating to the Appearance of Leukoderma

    Directory of Open Access Journals (Sweden)

    Takeshi Nagata

    2015-01-01

    Full Text Available Specific phenol compounds including rhododendrol (RD, a skin-brightening ingredient in cosmetics, are reported to induce leukoderma, inducing a social problem, and the elucidation of mechanism of leukoderma is strongly demanded. This study investigated the relationship among the cytotoxicities of six phenol compounds on B16F10 melanoma cells and HaCaT keratinocytes and generated reactive oxygen species (ROS. As a result, the cytotoxicity of RD on B16F10 cells was higher than that on HaCaT cells, and RD significantly increased intracellular ROS and hydrogen peroxide (H2O2 levels in B16F10 cells. Furthermore, although raspberry ketone (RK, RD derivative, also increased intracellular ROS in B16F10 cells, increase in ROS was suppressed by disodium dihydrogen ethylenediaminetetraacetate dehydrate (EDTA. The amounts of increased ROS with RK in HaCaT cells without melanocyte were further increased by tyrosinase. Therefore, tyrosinase, a metalloprotein having copper, was speculated to be one of causative agents allowing phenol compounds to work as a prooxidant. Hydroxyl radical was generated by adding a mixture of tyrosinase and H2O2 to RD, and the amount of the radical was further increased by UVB, indicating that RD cytotoxicity was caused by intracellularly increased ROS, which possibly related to phenol induced prooxidants.

  2. siRNA-mediated silencing of c-kit in mouse primary spermatogonial cells induces cell cycle arrest.

    Science.gov (United States)

    Sikarwar, Arun P; Reddy, K V R

    2008-06-01

    Several genes/gene products are known to act in a concert to regulate the process of spermatogenesis. One such gene is c-kit, a transmembrane tyrosine kinase receptor which plays an indispensable role in the maturation and differentiation of spermatogonial germ cells (SGCs). In the present study, siRNA approach was used to assess the role of c-kit in survival and proliferation of murine primary SGCs. The effect of different concentrations of anti-c-kit siRNA-1 and siRNA-2 (0.15, 0.315, 0.625, 1.25, 2.50, 5, and 10 nM) on c-kit protein and mRNA expression at post-transfection time (0, 6, 12, 24, 48, and 72 hours) was assessed using an array of techniques such as flow cytometry, ELISA, Western blot, and RT-PCR. Transfection of cells with anti-c-kit siRNAs (0.15-10 nM) at various time points after (0-72 hours) showed significant knockdown c-kit mRNA and protein expression. MTT, Alamar blue assays, and RT-PCR were used to investigate the effects of c-kit silencing on survival, proliferation, distribution, and apoptosis of cells. Experiments were also conducted to determine the effects of c-kit knockdown on cell cycle distribution, DNA laddering, and apoptosis. The results indicated that the transfection with anti-c-kit siRNA induces DNA fragmentation and cell cycle arrest at G(2)/M phase leading to significant reduction in cell viability and proliferation. In addition, enhanced suppression of c-kit protein in P815 cells was observed after transfection as compared to ES-E14TG2alpha cells, suggesting early onset of c-kit protein repression in P815 cells leading to prolongation in cell doubling time. In conclusion, our data provide the first evidence of specific knockdown of c-kit expression in mouse primary SGCs, which emphasizes the critical role played by c-kit in germ cell survival, proliferation, and apoptosis.

  3. Identification of Compounds from the Water Soluble Extract of Cinnamomum cassia Barks and Their Inhibitory Effects against High-Glucose-Induced Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2013-09-01

    Full Text Available The difficulty of diabetic nephropathy (DN treatment makes prevention the best choice. Cinnamomum cassia barks, known as Chinese cinnamon or Chinese cassia, is one of the most popular natural spices and flavoring agents in many parts of the World. Since previous reports indicated that Chinese cinnamon extract could be used for the treatment of diabetes, we proposed that this spice may be beneficial for the prevention of DN. However, the responsible compounds need to be further identified. In this study, we isolated three new phenolic glycosides, cinnacassosides A–C (1-3, together with fifteen known compounds from the water soluble extract of Chinese cinnamon. The structures of the new compounds were identified by comprehensive spectroscopic evidence. Eleven compounds (6-9, 11, 13-18 were isolated from this spice for the first time, despite extensive research on this species in the past, which added new facets for the chemical profiling of this spice. These isolates were purposely evaluated for their inhibitory effects on IL-6 and extracellular matrix production in mesangial cells which are definitely implicated in DN. The results showed that compounds 4-8 could inhibit over secretion of IL-6, collagen IV and fibronectin against high-glucose-induced mesangial cells at 10 mM, suggesting that Chinese cinnamon could be used as a functional food against DN.

  4. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    Science.gov (United States)

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  5. Identification of compounds from the water soluble extract of Cinnamomum cassia barks and their inhibitory effects against high-glucose-induced mesangial cells.

    Science.gov (United States)

    Luo, Qi; Wang, Shu-Mei; Lu, Qing; Luo, Jie; Cheng, Yong-Xian

    2013-09-05

    The difficulty of diabetic nephropathy (DN) treatment makes prevention the best choice. Cinnamomum cassia barks, known as Chinese cinnamon or Chinese cassia, is one of the most popular natural spices and flavoring agents in many parts of the World. Since previous reports indicated that Chinese cinnamon extract could be used for the treatment of diabetes, we proposed that this spice may be beneficial for the prevention of DN. However, the responsible compounds need to be further identified. In this study, we isolated three new phenolic glycosides, cinnacassosides A-C (1-3), together with fifteen known compounds from the water soluble extract of Chinese cinnamon. The structures of the new compounds were identified by comprehensive spectroscopic evidence. Eleven compounds (6-9, 11, 13-18) were isolated from this spice for the first time, despite extensive research on this species in the past, which added new facets for the chemical profiling of this spice. These isolates were purposely evaluated for their inhibitory effects on IL-6 and extracellular matrix production in mesangial cells which are definitely implicated in DN. The results showed that compounds 4-8 could inhibit over secretion of IL-6, collagen IV and fibronectin against high-glucose-induced mesangial cells at 10 mM, suggesting that Chinese cinnamon could be used as a functional food against DN.

  6. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway.

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Watrin, Claude; Samba-Louaka, Ascel; Oswald, Eric

    2006-12-01

    The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid-mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.

  7. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration

    National Research Council Canada - National Science Library

    To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming

    2013-01-01

    .... In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation...

  9. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately