WorldWideScience

Sample records for cycle impact assessment

  1. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  2. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  3. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  4. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  5. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  6. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  7. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  8. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  9. Life Cycle Impact Assessment in the Arctic: Challenges and Research Needs

    Directory of Open Access Journals (Sweden)

    Johan Berg Pettersen

    2017-09-01

    Full Text Available Life cycle assessment (LCA is increasingly used for environmental assessment of products and production processes to support environmental decision-making both worldwide and in the Arctic. However, there are several weaknesses in the impact assessment methodology in LCA, e.g., related to uncertainties of impact assessment results, absence of spatial differentiation in characterization modeling, and gaps in the coverage of impact pathways of different “archetypal” environments. Searching for a new resource base and areas for operation, marine and marine-based industries are continuously moving north, which underlines the need for better life cycle impact assessment in the Arctic, particularly to aid in industrial environmental management systems and stakeholder communications. This paper aims to investigate gaps and challenges in the application of the currently available impact assessment methods in the Arctic context. A simplified Arctic mining LCA case study was carried out to demonstrate the relevance of Arctic emissions at the midpoint and endpoint levels, as well as possible influences of the Arctic context on the impact assessment results. Results of this study showed that significant research gaps remain in Arctic-dependent life cycle impact assessment, particularly on: (i the possible influences of the Arctic-specific features on characterization factors for impact assessment (such as seasonality, cold climate, precipitation, and marine dependence; and (ii the coverage of impact pathways, especially on the under-addressed marine impacts and marine/near-shore dispersion processes. Addressing those identified research gaps and demand for future Arctic life cycle impact assessment could increase the credibility of LCA as an environmental decision-making support tool for Arctic industries and better support sustainable Arctic development.

  10. Health impact assessment of cycling network expansions in European cities.

    Science.gov (United States)

    Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark

    2018-04-01

    We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Site-dependent life-cycle impact assessment of acidification

    DEFF Research Database (Denmark)

    Potting, Josepha Maria Barbara; Schöpp, W.; Blok, Kornelis

    1998-01-01

    The lack of spatial differentiation in current life-cycle impact assessment (LCIA) affects the relevance of the assessed impact. This article first describes a framework for constructing factors relating the region of emission to the acidifying impact on its deposition areas. Next, these factors...... are established for 44 European regions with the help of the RAINS model, an integrated assessment model that combines information on regional emission levels with information on long-range atmospheric transport to estimate patterns of deposition and concentration for comparison with critical loads and thresholds...

  12. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  13. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    Science.gov (United States)

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2017-07-01

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.

  14. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA)

    OpenAIRE

    S. Khoramdel; J. Shabahang; A. Amin Ghafouri

    2017-01-01

    In order to evaluate life cycle assessment (LCA) for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha) during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic a...

  15. Assessing social impacts in a life cycle perspective-Lessons learned

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Jørgensen, Andreas; Dreyer, Louise Camilla

    2008-01-01

    In our globalised economy, important stakeholder groups nowadays hold companies responsible for the social impacts they cause in their product chain through activities like child labour, corruption or discrimination of employees. Many companies thus see themselves in need of a tool which can help...... LCA methodology supplements the traditional environment-oriented LCA and the life cycle costing tools in support of sustainability management addressing all three pillars of sustainability: people, planet and profit....... them make informed decisions about their social impacts throughout the life cycle of their products. The paper presents lessons learned from four years of work with industry on development of a methodology for social Life Cycle Assessment and implementation in the industrial product chain. The Social...

  16. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  17. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  19. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    Science.gov (United States)

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  1. Impacts of “metals” on human health: uncertainties in using different Life Cycle Impact Assessment (LCIA) methodologies

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Christensen, Per; Schmidt, Jannick Højrup

    This study looks into the uncertainties in determining the impact of “metals” emissions to human health, in Life Cycle Impact Assessment (LCIA). Metals are diverse substances, with different proprieties and characteristics, considered important in LCIA because of their toxicity to humans or ecosy......This study looks into the uncertainties in determining the impact of “metals” emissions to human health, in Life Cycle Impact Assessment (LCIA). Metals are diverse substances, with different proprieties and characteristics, considered important in LCIA because of their toxicity to humans...... be considered in an impact assessment focused on human health, and defined a list of 14 metals. We performed a contribution analysis in order to compare methods in relative terms; an approach successfully used in other studies. Various processes have been analyzed with 8 different LCIA methods in order...... to assess both how much each metal contributes to the total impact on human health, when only metal emissions are present, and how much metals in total contribute when also other toxic substances are included in the inventory of emissions. Differences between the methods are great and due...

  2. DEVELOPMENT OF THE METHOD AND U.S. NORMALIZATION DATABASE FOR LIFE CYCLE IMPACT ASSESSMENT AND SUSTAINABILITY METRICS

    Science.gov (United States)

    Normalization is an optional step within Life Cycle Impact Assessment (LCIA) that may be used to assist in the interpretation of life cycle inventory data as well as, life cycle impact assessment results. Normalization transforms the magnitude of LCI and LCIA results into relati...

  3. Impact assessment modelling of matter-less stressors in the context of Life Cycle Assessment

    NARCIS (Netherlands)

    Cucurachi, Stefano

    2014-01-01

    In the last three decades, the Life Cycle Assessment (LCA) framework has grown to establish itself as the leading tool for the assessment of the environmental impacts of product systems.LCA studies are now conducted globally both in and outside the academia and also used as a basis for policy

  4. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  5. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  6. Global guidance on environmental life cycle impact assessment indicators: Progress and case study

    DEFF Research Database (Denmark)

    Frischknecht, Rolf; Fantke, Peter; Tschümperlin, Laura

    2016-01-01

    Purpose The life cycle impact assessment (LCIA) guidance flagship project of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative aims at providing global guidance and building scientific consensus on environmental LCIA in...

  7. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    International Nuclear Information System (INIS)

    Josa, Alejandro; Aguado, Antonio; Cardim, Arnaldo; Byars, Ewan

    2007-01-01

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content

  8. Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ahmad Faiz Abd Rashid

    2017-02-01

    Full Text Available The building industry has a significant impact on the environment due to massive natural resources and energy it uses throughout its life cycle. This study presents a life cycle assessment of a semi-detached residential building in Malaysia as a case study and assesses the environmental impact under cradle-to-grave which consists of pre-use, construction, use, and end-of-life phases by using Centre of Environmental Science of Leiden University (CML 2001. Four impact categories were evaluated, namely, acidification, eutrophication, global warming potential (GWP, and ozone layer depletion (ODP. The building operation under use phase contributed the highest global warming potential and acidification with 2.41 × 103 kg CO2 eq and 1.10 × 101 kg SO2 eq, respectively. In the pre-use phase, concrete in the substructure has the most significant overall impact with cement as the primary raw material. The results showed that the residential building in Malaysia has a fairly high impact in GWP but lower in acidification and ODP compared to other studies.

  9. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  10. Life cycle assessment. Specific indicators for Italy in impact evaluation

    International Nuclear Information System (INIS)

    Masoni, P.

    1999-01-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described [it

  11. Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Wagendorp, Tim; Gulinck, Hubert; Coppin, Pol; Muys, Bart

    2006-01-01

    Life Cycle Assessment (LCA) studies of products with a major part of their life cycle in biological production systems (i.e. forestry and agriculture) are often incomplete because the assessment of the land use impact is not operational. Most method proposals include the quality of the land in a descriptive way using rank scores for an arbitrarily selected set of indicators. This paper first offers a theoretical framework for the selection of suitable indicators for land use impact assessment, based on ecosystem thermodynamics. According to recent theories on the thermodynamics of open systems, a goal function of ecosystems is to maximize the dissipation of exogenic exergy fluxes by maximizing the internal exergy storage under form of biomass, biodiversity and complex trophical networks. Human impact may decrease this ecosystem exergy level by simplification, i.e. decreasing biomass and destroying internal complexity. Within this theoretical framework, we then studied possibilities for assessing the land use impact in a more direct way by measuring the ecosystems' capacity to dissipate solar exergy. Measuring ecosystem thermal characteristics by using remote sensing techniques was considered a promising tool. Once operational, it could offer a quick and cheap alternative to quantify land use impacts in any terrestrial ecosystem of any size. Recommendations are given for further exploration of this method and for its integration into an ISO compatible LCA framework

  12. Preliminary assessment of the environmental and health impacts of nuclear and coal fuel cycles

    International Nuclear Information System (INIS)

    Yang Yin; Chen Zhuzhou; Pan Ziqiang

    1992-01-01

    The paper reports on the environmental impacts and health effects of coal and nuclear fuel cycles in China. Data of interest for China are presented in a comparative manner; epidemiological investigations in Shanxi province indicate that the incidences of chronic pulmonary diseases and infant cogenital malformation were apparently increased over the fall-out areas of coal-fired power stations and coal mines. The authors outline the framework of a research project on environmental assessment of nuclear energy and other energy systems. The main features of the project are: environmental and health impacts of coal and nuclear fuel cycles, environmental impact assessment of coal transportation, cost accounting of nuclear and other energy sources, health risk assessment. (author). 24 refs, 4 tabs

  13. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  14. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  15. Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts.

    Science.gov (United States)

    Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne

    2018-09-15

    Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All

  16. Social impact assessment of sugar production operations in South Africa : a social life cycle assessment perspective

    OpenAIRE

    2013-01-01

    M.Tech. (Quality and Operations Management) This paper focuses on the social impact of the sugar industry in South Africa. A social impact assessment is a method that aims to assess social features of the product and their positive and negative aspects in terms of its processing of raw material to the final stages of its disposal. The objectives of the study were guided by the guidelines on social life cycle assessment of products of the South African Sugar Industry developed by the United...

  17. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Antón, Assumpció; Boulay, Anne-Marie

    2018-01-01

    of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use......Purpose: Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA...... are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle...

  18. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA

    Directory of Open Access Journals (Sweden)

    S. Khoramdel

    2017-02-01

    Full Text Available In order to evaluate life cycle assessment (LCA for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic and tresstrial ecosystems and global warming. The results showed that the highest paddy yield was obtained 5.35 t.ha-1 in 190-200 kg N ha. The maximum aquatic eutrophication potential was computed for more than 220 kg N ha-1 with 0.79 PO4 equiv./t paddy. EcoX per one tone paddy and maximum environmental impacts was belonged to aquatic eutrophication (0.13 Eco-index per one tone paddy. It seems that system management including green manure, nitrogen fixing species and reduced tillage could be regarded to reduce problematic environmental impacts in rice production systems.

  19. Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling.

    Science.gov (United States)

    Raza, Wasif; Forsberg, Bertil; Johansson, Christer; Sommar, Johan Nilsson

    2018-01-01

    Promotion of active commuting provides substantial health and environmental benefits by influencing air pollution, physical activity, accidents, and noise. However, studies evaluating intervention and policies on a mode shift from motorized transport to cycling have estimated health impacts with varying validity and precision. To review and discuss the estimation of air pollution exposure and its impacts in health impact assessment studies of a shift in transport from cars to bicycles in order to guide future assessments. A systematic database search of PubMed was done primarily for articles published from January 2000 to May 2016 according to PRISMA guidelines. We identified 18 studies of health impact assessment of change in transport mode. Most studies investigated future hypothetical scenarios of increased cycling. The impact on the general population was estimated using a comparative risk assessment approach in the majority of these studies, whereas some used previously published cost estimates. Air pollution exposure during cycling was estimated based on the ventilation rate, the pollutant concentration, and the trip duration. Most studies employed exposure-response functions from studies comparing background levels of fine particles between cities to estimate the health impacts of local traffic emissions. The effect of air pollution associated with increased cycling contributed small health benefits for the general population, and also only slightly increased risks associated with fine particle exposure among those who shifted to cycling. However, studies calculating health impacts based on exposure-response functions for ozone, black carbon or nitrogen oxides found larger effects attributed to changes in air pollution exposure. A large discrepancy between studies was observed due to different health impact assessment approaches, different assumptions for calculation of inhaled dose and different selection of dose-response functions. This kind of assessments

  20. Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling

    Science.gov (United States)

    Raza, Wasif; Forsberg, Bertil; Johansson, Christer; Sommar, Johan Nilsson

    2018-01-01

    ABSTRACT Background: Promotion of active commuting provides substantial health and environmental benefits by influencing air pollution, physical activity, accidents, and noise. However, studies evaluating intervention and policies on a mode shift from motorized transport to cycling have estimated health impacts with varying validity and precision. Objective: To review and discuss the estimation of air pollution exposure and its impacts in health impact assessment studies of a shift in transport from cars to bicycles in order to guide future assessments. Methods: A systematic database search of PubMed was done primarily for articles published from January 2000 to May 2016 according to PRISMA guidelines. Results: We identified 18 studies of health impact assessment of change in transport mode. Most studies investigated future hypothetical scenarios of increased cycling. The impact on the general population was estimated using a comparative risk assessment approach in the majority of these studies, whereas some used previously published cost estimates. Air pollution exposure during cycling was estimated based on the ventilation rate, the pollutant concentration, and the trip duration. Most studies employed exposure-response functions from studies comparing background levels of fine particles between cities to estimate the health impacts of local traffic emissions. The effect of air pollution associated with increased cycling contributed small health benefits for the general population, and also only slightly increased risks associated with fine particle exposure among those who shifted to cycling. However, studies calculating health impacts based on exposure-response functions for ozone, black carbon or nitrogen oxides found larger effects attributed to changes in air pollution exposure. Conclusion: A large discrepancy between studies was observed due to different health impact assessment approaches, different assumptions for calculation of inhaled dose and different

  1. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  2. Background for spatial differentiation in life cycle impact assessment. The EDIP2003 methodology

    DEFF Research Database (Denmark)

    Potting, José; Hauschild, Michael Zwicky

    2004-01-01

    The code of practice of the Society of Environmental Toxicology and Chemistry and the recent international standards and technical reports from ISO are widely accepted as general frameworks for Life Cycle Assessment (LCA) but they are not detailed methodological references, since international...... between modelled impact and the occurrence of actual impact. This technical report aims to contribute to a solution of the poor accuracy of the assessed impact in typical LCA resulting from the present disregard of spatial information in LCA....

  3. assessment of environmental impacts in comfortable furniture production process using life cycle assessment (LCA technique

    Directory of Open Access Journals (Sweden)

    hejhar abbasi

    2016-12-01

    Full Text Available Furniture industry releases annually a large amount of volatile organic compound to the environment due to the use of adhesives, textiles, paints and coating materials. There are some different methods to measure the load of pollutions and the environmental impacts. Life cycle assessment (LCA is one of the best techniques. LCA is a technique in which all environmental impacts related to a product assessed all over its life cycle, from cradle to grave, and ultimately can be used to improve the production process and to prevent unsuitable environmental impacts. In summary, it can be concluded that the use of this technique is the basis for sustainable development and improving social, economic, and environmental indices. This study focused on the collecting of a comprehensive life cycle inventory data for comfortable furniture in two different production processes (B1 and B2 located in Tehran province, and analyzed the environmental impacts during the production process as gate to gate investigation. The results revealed that emissions in production process B1 were higher than that of production process B2. The reason for this is that basic operations such as sawing and frame assembling along with final operation have been done in the same unit for case B1. Textile production and usage, and polyurethane foam were identified as the main hotspots, respectively. Moreover, the results showed that comfortable furniture production process has the highest effects on ecosystem quality, human health, and resources (fossil fuels and mines, respectively.

  4. Life cycle impact assessment of biodiesel using the ReCiPe method

    Directory of Open Access Journals (Sweden)

    Kiss Ferenc E.

    2013-01-01

    Full Text Available This paper presents the life cycle impact assessment (LCIA results of biodiesel produced from rapeseed oil. The functional unit (FU is defined as 3750 km of distance traveled by a truck fuelled with biodiesel. The reference flow is 1000 kg of biodiesel. The LCIA method used in the study is the ReCiPe method. At midpoint level the ReCiPe method addresses environmental issues within 18 impact categories. Most of these midpoint impact categories are further converted and aggregated into 3 endpoint categories (damage to human health, damage to ecosystem diversity, damage to mineral resource availability. The total impact of biodiesel’s life cycle was estimated at 540 Pt/FU. The damage to ecosystem diversity (1.48E-04 species•year/FU, the damage to human health (7.48E-03 DALY/FU and the damage to mineral resource availability (8.11E+03 US$/FU are responsible for 63%, 27% and 10% of the total negative impact in the life cycle of biodiesel, respectively. The results have revealed that only 4 impact categories are responsible for most of the impacts within the specific endpoint categories. These are impacts associated with global warming (3000 kg CO2 ekv./FU, particulate matter formation (12.4 kg PM ekv./FU, agricultural land occupation (6710 m2a./FU and fossil fuel depletion (21168 MJ/FU. Greenhouse gases emitted in the life cycle of biodiesel (mainly N2O, CO2 are responsibly for 56% of the damage caused to human health and for 16% of the damage caused to ecosystem diversity. Airborne emissions which contribute to particulate matter formation (NOx, NH3, PM, SO2 are responsible for 43% of the damage caused to human health. Agricultural land occupation is responsible for 82% of the damage caused to the ecosystem diversity. Damage to mineral resource availability is almost entirely related to the depletion of fossil energy sources. The production chain of biodiesel and the combustion of biodiesel are responsible for 69% and 31% of the total impact of

  5. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  6. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  7. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    Science.gov (United States)

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018

  8. ESTIMATING INJURIOUS IMPACT IN CONSTRUCTION LIFE CYCLE ASSESSMENTS: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    McDevitt, James E.

    2012-04-01

    Full Text Available This paper is the result of a desire to include social factors alongside environmental and economic considerations in Life Cycle Assessment studies for the construction sector. We describe a specific search for a method to include injurious impact for construction Life Cycle Assessment studies, by evaluating a range of methods and data sources. A simple case study using selected Accident Compensation Corporation information illustrates that data relating to injury could provide a compelling evidence to cause changes in construction supply chains, and could provide an economic motive to pursue further research in this area. The paper concludes that limitations notwithstanding, the suggested approach could be useful as a fast and cheap high level tool that can accelerate the discussions and research agenda that will bring about the inclusion of social metrics in construction sector supply chain management and declarations.

  9. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  10. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  11. Life cycle assessment Part 2 : Current impact assessment practice

    NARCIS (Netherlands)

    Pennington, D.W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T.; Rebitzer, G.

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse,

  12. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  13. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    Science.gov (United States)

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sensitivity analysis of the use of Life Cycle Impact Assessment methods: a case study on building materials

    DEFF Research Database (Denmark)

    Bueno, Cristiane; Hauschild, Michael Zwicky; Rossignolo, Joao Adriano

    2016-01-01

    The main aim of this research is to perform a sensitivity analysis of a Life Cycle Assessment (LCA) case study to understand if the use of different Life Cycle Impact Assessment (LCIA) methods may lead to different conclusions by decision makers and stakeholders. A complete LCA was applied to non...

  15. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  16. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    Science.gov (United States)

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  17. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  19. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Heller, Martin C.; Fulgoni III, Victor L.

    2016-01-01

    of less healthy foods (sugar-sweetened beverages). Further studies are needed to test whether this conclusion holds within a more comprehensive assessment of environmental and nutritional health impacts. Conclusions This case study provides the first quantitative epidemiology-based estimate......Purpose While there has been considerable effort to understand the environmental impact of a food or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). Methods We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE......-LCA) framework that evaluates and compares in parallel the environmental and nutritional effects of foods or diets. We applied this framework to assess human health impacts, expressed in Disability Adjusted Life Years (DALYs), in a proof-of conceptcase study that investigated the environmental and nutritional...

  20. Indicators for human toxicity in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Krewitt, Wolfram; Pennington, David W.; Olsen, Stig Irving

    2002-01-01

    The main objectives of this task group under SETAC-Europe’s Second Working Group on Life Cycle Impact Assessment (LCIA-WIA2) were to identify and discuss the suitability of toxicological impact measures for human health for use in characterization in LCIA. The current state of the art of defining......, as well as potency. Quantitative severity-based indicators yield measures in terms of Years of Life Lost (YOLL), Disability Adjusted Life Years (DALY), Quality Adjusted Life Years (QALY) and other similar measures. DALYs and QALYs are examples of approaches that attempt to account for both years of life...... such as No Observed Effect Levels (NOEL). NOELs, and similar data, are determined in laboratory studies using rodents and are then extrapolated to more relevant human measures. Many examples also exist of measures and methods beyond potency-based indicators that attempt to account for differences in expected severity...

  1. Integrating nutritional benefits and impacts in a life cycle assessment framework: A US dairy consumption case study

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Fulgoni III, Victor; Heller, Martin

    2014-01-01

    Although essential to understand the overall health impact of a food or diet, nutrition is not usually considered in food-related life cycle assessments (LCAs). As a case study to demonstrate comparing environmental and nutritional health impacts we investigate United States dairy consumption....... Nutritional impacts, interpreted from disease burden epidemiology, are compared to health impacts from more tradi-tional impacts (e.g. due to exposure to particulate matter emissions across the life cycle) considered in LCAs. After accounting for the present consumption, data relating dairy intake to public...... to environmental impacts suggesting the need for investigat-ing the balance between dietary public health advantages and disadvantages in comparison to environmental impacts....

  2. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  3. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  4. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  5. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  6. Assessment of chemical emissions in life cycle impact assessment - focus on low substance data availability and

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2004-01-01

    impact approaches, i.e. the assessment factor-based PNEC approach and the PAF-based approach, shows pros and cons for both. However, taking the comparative nature of LCA and its aim for best estimate into account, and combining this with the possibilities for reducing the data demand of an EC50-based PAF......Life cycle assessment (LCA) studies on products or services seem generally to be carried out without a proper inclusion of potential toxic impacts from emissions of chemicals. The first goal of the thesis is to investigate this statement and to clarify whether or not the outcome of an LCA can...... of substance data on known emissions. To be able to characterize the potential toxic impacts on humans and the environment of chemical emissions, substance data on fate and effect are needed. The second goal of this thesis is to investigate how to deal with low substance data availability on especially effect...

  7. Characterisation factors for life cycle impact assessment of sound emissions.

    Science.gov (United States)

    Cucurachi, S; Heijungs, R

    2014-01-15

    Noise is a serious stressor affecting the health of millions of citizens. It has been suggested that disturbance by noise is responsible for a substantial part of the damage to human health. However, no recommended approach to address noise impacts was proposed by the handbook for life cycle assessment (LCA) of the European Commission, nor are characterisation factors (CFs) and appropriate inventory data available in commonly used databases. This contribution provides CFs to allow for the quantification of noise impacts on human health in the LCA framework. Noise propagation standards and international reports on acoustics and noise impacts were used to define the model parameters. Spatial data was used to calculate spatially-defined CFs in the form of 10-by-10-km maps. The results of this analysis were combined with data from the literature to select input data for representative archetypal situations of emission (e.g. urban day with a frequency of 63 Hz, rural night at 8000 Hz, etc.). A total of 32 spatial and 216 archetypal CFs were produced to evaluate noise impacts at a European level (i.e. EU27). The possibility of a user-defined characterisation factor was added to support the possibility of portraying the situation of full availability of information, as well as a highly-localised impact analysis. A Monte Carlo-based quantitative global sensitivity analysis method was applied to evaluate the importance of the input factors in determining the variance of the output. The factors produced are ready to be implemented in the available LCA databases and software. The spatial approach and archetypal approach may be combined and selected according to the amount of information available and the life cycle under study. The framework proposed and used for calculations is flexible enough to be expanded to account for impacts on target subjects other than humans and to continents other than Europe. © 2013 Elsevier B.V. All rights reserved.

  8. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    International Nuclear Information System (INIS)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier

    2013-01-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  9. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier [MINES ParisTech, Sophia Antipolis (France). Observation, Impacts, Energy Center

    2013-07-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  10. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Ometto, Aldo Roberto [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil)

    2016-09-15

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the

  11. Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors.

    Science.gov (United States)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui; Zeng, Xianlai

    2012-10-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    International Nuclear Information System (INIS)

    Song Qingbin; Wang Zhishi; Li Jinhui; Zeng Xianlai

    2012-01-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator’ 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step—the end-of-life stage—can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  13. Life Cycle Environmental Impact Assessment of Local Wine Production and Consumption in Texas: Using LCA to Inspire Environmental Improvements

    OpenAIRE

    Poupart, Ashley

    2017-01-01

    The future viability of wine production is directly linked to its environmental impacts and conditions in which it is required to operate. The environmental impacts related to the production of a food product are directly influenced by the amount of materials, energy, waste and the emissions the product releases throughout the products life cycle. A life cycle assessment (LCA) provides a framework that can identify a food products relative environmental impacts and provides insights into the ...

  14. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  15. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  16. Life cycle thinking in impact assessment—Current practice and LCA gains

    Energy Technology Data Exchange (ETDEWEB)

    Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  17. Life cycle thinking in impact assessment—Current practice and LCA gains

    International Nuclear Information System (INIS)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains

  18. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  19. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  20. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  1. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  2. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  4. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  5. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    International Nuclear Information System (INIS)

    Welz, Tobias; Hischier, Roland; Hilty, Lorenz M.

    2011-01-01

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  6. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    OpenAIRE

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  7. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption: Key learning points from pilot studies on tea and margarine

    NARCIS (Netherlands)

    Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Martinez-Aldaya, Maite; Ercin, Ertug; Milá i Canals, L.; Hoekstra, Arjen Ysbert

    2012-01-01

    Water accounting and environmental impact assessment across the product's life cycle is gaining prominence. This paper presents two case studies of applying the Life Cycle Assessment (LCA) and Water Footprint (WF) approaches to tea and margarine. The WF, excluding grey water, of a carton of 50 g tea

  8. Implementation of life cycle impact assessment methods. Data v2.0 (2007). Ecoinvent report No. 3

    International Nuclear Information System (INIS)

    Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Hischier, R.; Doka, G.; Bauer, Ch.; Dones, R.; Nemecek, T.; Hellweg, S.; Humbert, S.; Margni, M.; Koellner, T.; Loerincik, Y.

    2007-12-01

    The ecoinvent database offers life cycle inventory (LCI) and life cycle impact assessment (LCIA) results. The following LCIA methods are implemented in the ecoinvent data v2.0: CML 2001; Cumulative energy demand; Cumulative exergy demand; Eco-indicator 99; Ecological footprint; Ecological scarcity 1997; Ecosystem damage potential EDP; EDIP'97 and 2003 (Environmental design of industrial products); EPS 2000 (environmental priority strategies in product development (will be provided with ecoinvent data v2.1)); IMPACT 2002+; IPCC 2001 (climate change); TRACI; Selected life cycle inventory indicators. There is a range of methodological problems and questions while linking the LCIA methods with the elementary flows of a database. This lead to different results in the past, even if the same LCIA method was applied on the same inventory results. The aim of this report is to avoid such discrepancies. In the first part of this report the general assumptions for the implementation of impact assessment methods on the ecoinvent life cycle inventory data are described. For that purpose, general and harmonised rules were developed how to deal with a certain problem. The second part of this report contains a detailed description of the implementation of the above mentioned methods. Please refer to the original publications for a general description and the scientific background of the methods. It is strongly recommended to read the original publications before using the LCIA results from the ecoinvent database. It is recommended to follow these implementation guidelines also while using other or new LCIA methods, which are so far not implemented in ecoinvent data. (authors)

  9. Implementation of life cycle impact assessment methods. Data v2.0 (2007). Ecoinvent report No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Frischknecht, R. (ed.) [Ecoinvent Centre, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Jungbluth, N. (ed.) [ESU-services Ltd, Uster (Switzerland); Althaus, H.-J.; Hischier, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Doka, G. [Doka Life Cycle Assessments (LCA), Zuerich (Switzerland); Bauer, Ch.; Dones, R. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Nemecek, T. [Forschungsanstalt Agroscope Reckenholz-Taenikon (ART), Zuerich (Switzerland); Hellweg, S. [Swiss Federal Institute of Technology (ETHZ), Institute for Chemicals and Bioengineering (ICB), Zuerich (Switzerland); Humbert, S.; Margni, M. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Koellner, T. [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Loerincik, Y. [Ecointesys, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2007-12-15

    The ecoinvent database offers life cycle inventory (LCI) and life cycle impact assessment (LCIA) results. The following LCIA methods are implemented in the ecoinvent data v2.0: CML 2001; Cumulative energy demand; Cumulative exergy demand; Eco-indicator 99; Ecological footprint; Ecological scarcity 1997; Ecosystem damage potential EDP; EDIP'97 and 2003 (Environmental design of industrial products); EPS 2000 (environmental priority strategies in product development (will be provided with ecoinvent data v2.1)); IMPACT 2002+; IPCC 2001 (climate change); TRACI; Selected life cycle inventory indicators. There is a range of methodological problems and questions while linking the LCIA methods with the elementary flows of a database. This lead to different results in the past, even if the same LCIA method was applied on the same inventory results. The aim of this report is to avoid such discrepancies. In the first part of this report the general assumptions for the implementation of impact assessment methods on the ecoinvent life cycle inventory data are described. For that purpose, general and harmonised rules were developed how to deal with a certain problem. The second part of this report contains a detailed description of the implementation of the above mentioned methods. Please refer to the original publications for a general description and the scientific background of the methods. It is strongly recommended to read the original publications before using the LCIA results from the ecoinvent database. It is recommended to follow these implementation guidelines also while using other or new LCIA methods, which are so far not implemented in ecoinvent data. (authors)

  10. Green tourism supply chain management based on life cycle impact assessment

    Directory of Open Access Journals (Sweden)

    Alexandra V. Michailidou

    2016-06-01

    Full Text Available Tourism is one of the most dynamic and far-reaching economic sectors in the world. Numerous different and complex activities are involved in the efficient development of tourism. These activities interrelate economic, environmental, social, cultural and political dimensions in the overall supply chain. However, apart from its key role as a driver of socio-economic progress, tourism is responsible for environmental deterioration, not only in areas popular with tourists, but also by enhancing climate change globally. This paper presents a robust method based on the Green Tourism Supply Chain Management (GTSCM concept, which can be used to estimate the effect on the environment that can be attributed to each link of the supply chain. The overall approach is based on Life Cycle Impact Assessment (LCIA theory and corresponding models. A case study to demonstrate the applicability of this approach is presented for two large seaside hotels located in Chalkidiki, Greece. Chalkidiki is the most popular tourist destination in Northern Greece. A LCIA questionnaire was developed and input data for the Life Cycle Assessment (LCA obtained from the hotel managers. For this LCA SimaPro 8 software was used. The LCIA methods chosen were Eco-indicator 99 and CML 2001. The effect on fossil fuel consumption of both hotels due to their use of local transport and electricity was considerable but less than that needed for transporting the tourists by air to Chalkidiki. This paper clearly indicates that LCA and Life Cycle Thinking (LCT can form the basis for promoting GTSCM in the tourism industry.

  11. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-11-01

    Full Text Available This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  12. Life cycle assessment perspectives on delivering an infant in the US

    International Nuclear Information System (INIS)

    Campion, Nicole; Thiel, Cassandra L.; DeBlois, Justin; Woods, Noe C.; Landis, Amy E.; Bilec, Melissa M.

    2012-01-01

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. - Highlights: ► Life cycle assessment helps identify the environmental impacts of medical procedures. ► Disposable custom packs represent a large portion of environmental impacts of births. ► Electricity loading contributes to global warming potential and respiratory effects. ► Impact improvements should focus on heating, ventilation, and air conditioning and disposable custom packs.

  13. Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle

    International Nuclear Information System (INIS)

    Kirkinen, Johanna; Soimakallio, Sampo; Maekinen, Tuula; Savolainen, Ilkka

    2010-01-01

    New raw materials for transportation fuels need to be introduced, in order to fight against climate change and also to cope with increasing risks of availability and price of oil. Peat has been recognised suitable raw material option for diesel produced by gasification and Fischer-Tropsch (FT) synthesis. The energy content of Finnish peat reserves is remarkable. In this study, the greenhouse impact of peat-based FT diesel production and utilisation in Finland was assessed from the life-cycle point of view. In 100 year's time horizon the greenhouse impact of peat-based FT diesel is likely larger than the impact of fossil diesel. The impact can somewhat be lowered by producing peat from the agricultural peatland (strong greenhouse gas emissions from the decaying peatlayer are avoided) with new peat production technique, and utilising the produced biomass from the after-treatment area for diesel also. If diesel production is integrated with pulp and paper mill to achieve energy efficiency benefits and if the electricity demand can be covered by zero emission electricity, the greenhouse impact of peat-based FT diesel reduces to the level of fossil diesel when agricultural peatland is used, and is somewhat higher when forestry-drained peatland is used as raw material source.

  14. Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options

    International Nuclear Information System (INIS)

    Ercan, Tolga; Zhao, Yang; Tatari, Omer; Pazour, Jennifer A.

    2015-01-01

    Public transportation is one of the most promising transportation modes to reduce the environmental emissions of the transportation sector in the U.S. In order to mitigate the environmental impacts brought by the transit bus system, new energy buses are introduced into the vehicle market. The goal of this study is to find an optimal bus fleet combination for different driving conditions to minimize life cycle cost, greenhouse gas emissions, and conventional air pollutant emission impacts. For this purpose, a Multi-Objective Linear Programming approach is used to select the optimum bus fleet combinations. Given different weight scenarios, this method could effectively provide solutions for decision makers with various budget constraints or emission reduction requirements. The results indicate that in heavily congested driving cycles such as the Manhattan area, the battery electric bus is the dominant vehicle type, while the hybrid bus has more balanced performances in most scenarios because of its lower initial investment comparing to battery electric buses. Petroleum powered buses have seldom been selected by the model. The trade-off analysis shows that the overall greenhouse gas impact performance is sensitive to the life cycle cost after certain points, which could provide valuable information for the bus fleet combination planning. - Highlights: • Hybrid-Life Cycle Assessment analysis approach for transit bus operations. • Optimizing the economic and sustainability impacts of transit bus fleet operation. • CO 2 emissions and other air pollutants related health and environmental damage cost. • Trade-offs between CO 2 emissions and cost of transit bus fleet operation.

  15. Assessment of the external costs of the coal fuel cycle and the wind energy cycle in Spain

    International Nuclear Information System (INIS)

    Linares, P.; Montes, J.; Saez, R.M.

    1995-09-01

    This study is part of the ExternE Project, a joint effort of the European Commission and the US Dept. of Energy to assess the externalities of different fuel cycles, and quantify them in monetary terms, as kWh price adders. For Spain, this assessment has been carried out for a coal plant hypothetically sited in Valdecaballeros, in Southwestern Spain, and for an existing farm in Cabo Villano, in the Northwestern corner. In this first stage, only environmental externalities have been assessed. The first section contains a description of the methodology used in the European project, based mostly on a damage function approach, and its adaptation to Spanish conditions. In the last section, this methodology has been applied to the fuel cycles mentioned. The impacts assessed have been, for the coal fuel cycle, health effects, agricultural and forest production losses, and global warming. For wind energy, the main impacts considered have been noise, loss of visual amenity, accidents and global warning. The results obtained can only be considered as underestimates, as there are still impacts that have not been assessed or quantified, specially for the coal fuel cycle. Thus, further research is needed for a complete assessment

  16. Accounting of media conditions in the Life Cycle Impact Assessment of Metals on Aquatic Ecosystems

    DEFF Research Database (Denmark)

    Birkved, Morten; Payet, Jerome

    2003-01-01

    Impact from metals play a major role in all Life Cycle Impact Assessment (LCIA) studies. Nevertheless, LCIA methods are typically not adapted for such compounds ignoring problems of speciation and bioavailability. Current uncertainty on metal toxicity estimates are on average twice as high...... of the influence of media condition on the toxicity : Partial Least Square projection to latent Structure Regression (PLSR) was carried out to estimate the relative variable importance and linear regression was used to, identify the relation between media parameters the response of Daphnia magna....

  17. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    Science.gov (United States)

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the

  18. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  19. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-02-15

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  20. Life cycle assessment of construction and demolition waste management

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2015-01-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed...... of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most...... of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing...

  1. Life cycle assessment perspectives on delivering an infant in the US

    Energy Technology Data Exchange (ETDEWEB)

    Campion, Nicole [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); Thiel, Cassandra L., E-mail: clt31@pitt.edu [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); DeBlois, Justin [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); Woods, Noe C. [Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15235 (United States); Landis, Amy E. [Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306 (United States); Bilec, Melissa M. [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States)

    2012-05-15

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. - Highlights: Black-Right-Pointing-Pointer Life cycle assessment helps identify the environmental impacts of medical procedures. Black-Right-Pointing-Pointer Disposable custom packs represent a large portion of environmental impacts of births. Black-Right-Pointing-Pointer Electricity loading contributes to global warming potential and respiratory effects. Black-Right-Pointing-Pointer Impact improvements should focus on heating, ventilation, and air conditioning and disposable custom packs.

  2. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  3. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  4. Developing IAM for Life Cycle Safety Assessment

    NARCIS (Netherlands)

    Toxopeus, Marten E.; Lutters, Diederick; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This publication discusses aspects of the development of an impact assessment method (IAM) for safety. Compared to the many existing IAM’s for environmentally oriented LCA, this method should translate the impact of a product life cycle on the subject of safety. Moreover, the method should be

  5. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Assessing the impact of road traffic on cycling for leisure and cycling to work

    Directory of Open Access Journals (Sweden)

    Wareham Nicholas J

    2011-06-01

    Full Text Available Abstract Background To explore the relationship between leisure and commuter cycling with objectively measured levels of road traffic and whether any relationship was affected by traffic levels directly outside of home or in local neighbourhood. Findings We conducted a secondary analysis of data from the UK European Prospective Investigation of Cancer (EPIC Norfolk cohort in 2009. We used a geographical information system (GIS and gender specific multivariate models to relate 13 927 participants' reported levels of cycling with an index of road traffic volume (Road Traffic Volume Index Score - RTVIS. RTVIS were calculated around each participants home, using four distance based buffers, (0.5 km, 1 km, 2 km and 3.2 km. Models were adjusted for age, social status, education, car access and deprivation. Both genders had similar decreases in leisure cycling as traffic volumes increased at greater distances from home (OR 0.42, (95% CI 0.32-0.52, p Conclusions Traffic volumes appear to have greater impact on leisure cycling than commuter cycling. Future research should investigate the importance of traffic on different types of cycling and include psychosocial correlates.

  7. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  8. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  9. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  10. Coal mining and the resource community cycle: A longitudinal assessment of the social impacts of the Coppabella coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Lockie, S.; Franettovich, M.; Petkova-Timmer, V.; Rolfe, J.; Ivanova, G. [CQUniversity of Australia, Rockhampton, Qld. (Australia). Inst. of Health & Social Science Research

    2009-09-15

    Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002-2003 and 2006-2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects - the resource community cycle - was mediated by labour recruitment and social infrastructure policies that reduced the emphasis on localised employment and investment strategies. and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.

  11. Coal mining and the resource community cycle: A longitudinal assessment of the social impacts of the Coppabella coal mine

    International Nuclear Information System (INIS)

    Lockie, Stewart; Franettovich, Maree; Petkova-Timmer, Vanessa; Rolfe, John; Ivanova, Galina

    2009-01-01

    Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002-2003 and 2006-2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects-the resource community cycle-was mediated by labour recruitment and social infrastructure policies that reduced the emphasis on localised employment and investment strategies, and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.

  12. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  13. Conceptualising the effectiveness of impact assessment processes

    International Nuclear Information System (INIS)

    Chanchitpricha, Chaunjit; Bond, Alan

    2013-01-01

    This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria across the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria

  14. Conceptualising the effectiveness of impact assessment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chanchitpricha, Chaunjit, E-mail: chaunjit@g.sut.ac.th [School of Environmental Health, Suranaree University of Technology, 111 University Avenue, Maung District, Nakhon Ratchasima 30000 (Thailand); Bond, Alan, E-mail: alan.bond@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Unit for Environmental Sciences and Management School of Geo and Spatial Sciences, Internal Box 375, North West University (Potchefstroom campus) (South Africa)

    2013-11-15

    This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria across the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria.

  15. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  16. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  17. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues

    NARCIS (Netherlands)

    Zhao, X.; Yang, Jixian; Ma, Fang

    2018-01-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water

  18. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  19. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  20. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  1. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  2. Life cycle assessment of asphalt pavement maintenance.

    Science.gov (United States)

    2014-01-01

    This study aims at developing a life cycle assessment (LCA) model to quantify the impact of pavement preservation on energy consumption and greenhouse gas (GHG) emissions. The construction stage contains material, manufacture, transportation and plac...

  3. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  4. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2013-01-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  5. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  6. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  7. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  8. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  9. Life Cycle Assessment of fresh dairy packaging at ELOPAK

    OpenAIRE

    Ruttenborg, Vegard

    2017-01-01

    Nearly all food and drink products require some packaging, and the impact from production and consumption is causing a strain on the environment. To counteract the bad effects, business is emphasizing the environmental performance of products and therefore utilising Life Cycle Assessment as a tool to quantify the environmental impacts from a products life cycle. Elopak, which is an International supplier of paper-based packaging for liquid food, is a such company. This thesis i...

  10. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  11. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  12. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    OpenAIRE

    Portha J.-F.; Jaubert J.-N.; Louret S.; Pons M.-N.

    2010-01-01

    Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA) is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects du...

  13. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  14. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  15. Local systems, global impacts. Using life cycle assessment to analyse the potential and constraints of industrial symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, L.

    2011-08-15

    Human activities extract and displace different substances and materials from the earthAEs crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper 1). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle

  16. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  17. Integrating Life-cycle Assessment into Transport Cost-benefit Analysis

    DEFF Research Database (Denmark)

    Manzo, Stefano; Salling, Kim Bang

    2016-01-01

    Traditional transport Cost-Benefit Analysis (CBA) commonly ignores the indirect environmental impacts of an infrastructure project deriving from the overall life-cycle of the different project components. Such indirect impacts are instead of key importance in order to assess the long......-term sustainability of a transport infrastructure project. In the present study we suggest to overcome this limit by combining a conventional life-cycle assessment approach with standard transport cost-benefit analysis. The suggested methodology is tested upon a case study project related to the construction of a new...... fixed link across the Roskilde fjord in Frederikssund (Denmark). The results are then compared with those from a standard CBA framework. The analysis shows that indirect environmental impacts represent a relevant share of the estimated costs of the project, clearly affecting the final project evaluation...

  18. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique

  19. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique when it comes to

  20. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  1. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    Science.gov (United States)

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  2. Toxicological risk at workplace and toxicity as Life Cycle Assessment impact category: Substitution of solvents as an example.

    Science.gov (United States)

    Schupp, Thomas; Georg, Philipp Alexander; Kirstein, Guenter

    2017-01-01

    Substitution of hazardous substances against less hazardous ones is a central requirement of the European Chemical Regulation REACH (European Regulation 1907/2006/EC). Hazardous substances emitted from products may not only affect the worker; drift off and distribution in the environment may finally result in exposure of the general population. This potential threat to health is covered by the impact category "toxicity" in Life Cycle Assessments. In this paper, we present a case of a substitution of volatile organic compounds in a reactive varnish, and compare the "old" formulation with the "new" formulation against health risk to the worker, and concerning the Life Cycle Assessment impact category "toxicity". The "old" formulation contained Naphtha (petroleum), hydrodesulfurized, heavy and Solvent naphtha (petroleum), light, aromatic. In the new formulation, both naphthas were replaced by n-Butylacetate, 1-Ethoxy-2-propyl acetate and Ethyl-3-ethoxy propionate. In the European Union, the naphthas are classified as mutagens and carcinogens category 1, officially. However, if benzene is below 0.1 %, registrants in the EU proposed to omit this classification, and todays naptha products on the market obviously have benzene contents below 0.1 %. On a first glance, the improvement for workplace safety introduced by the substitution, therefore, is comparatively small, as it is for toxicity in Life Cycle Assessment. However, when background knowledge concerning chemical production processes of naphtha is included, benzene below a content of 0.1 % needs to be taken into consideration, and the benefit of substitution is more obvious.

  3. Methods for regionalization of impacts of non-toxic air pollutants in life-cycle assessments often tell a consistent story

    DEFF Research Database (Denmark)

    Djomo, Sylvestre Njakou; Knudsen, Marie Trydeman; Andersen, Mikael Skou

    2017-01-01

    There is an ongoing debate regarding the influence of the source location of pollution on the fate of pollutants and their subsequent impacts. Several methods have been developed to derive site-dependent characterization factors (CFs) for use in life-cycle assessment (LCA). Consistent, precise, a...

  4. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  5. Making Marine Noise Pollution Impacts Heard: The Case of Cetaceans in the North Sea within Life Cycle Impact Assessment

    Directory of Open Access Journals (Sweden)

    Heleen Middel

    2017-06-01

    Full Text Available Oceans represent more than 95% of the world’s biosphere and are among the richest sources of biodiversity on Earth. However, human activities such as shipping and construction of marine infrastructure pose a threat to the quality of marine ecosystems. Due to the dependence of most marine animals on sound for their communication, foraging, protection, and ultimately their survival, the effects of noise pollution from human activities are of growing concern. Life cycle assessment (LCA can play a role in the understanding of how potential environmental impacts are related to industrial processes. However, noise pollution impacts on marine ecosystems have not yet been taken into account. This paper presents a first approach for the integration of noise impacts on marine ecosystems into the LCA framework by developing characterization factors (CF for the North Sea. Noise pollution triggers a large variety of impact pathways, but as a starting point and proof-of-concept we assessed impacts on the avoidance behaviour of cetaceans due to pile-driving during the construction of offshore windfarms in the North Sea. Our approach regards the impact of avoidance behaviour as a temporary loss of habitat, and assumes a temporary loss of all individuals within that habitat from the total regional population. This was verified with an existing model that assessed the population-level effect of noise pollution on harbour porpoises (Phocoena phocoena in the North Sea. We expanded our CF to also include other cetacean species and tested it in a case study of the construction of an offshore windfarm (Prinses Amalia wind park. The total impact of noise pollution was in the same order of magnitude as impacts on other ecosystems from freshwater eutrophication, freshwater ecotoxicity, terrestrial acidification, and terrestrial ecotoxicity. Although there are still many improvements to be made to this approach, it provides a basis for the implementation of noise

  6. USEtox: The UNEP-SETAC consensus model for life-cycle impacts on human health and ecosystems

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; McKone, Tom; Huijbregts, Mark A.J.

    2007-01-01

    Life cycle impact assessment (LCIA) characterizes emissions for the life-cycle assessment (LCA) of a product by translating these emissions into their potential impacts on human health, ecosystems, global climate and other resources. This process requires substance-specific characterization factors...... (CFs) that represent the relative potential of specific chemical emissions to impact human disease burden and ecosystem health. Within the Life Cycle Initiative, a joint initiative of the United Nations Environment Program (UNEP) and of the Society of Environmental Toxicology and Chemistry (SETAC...... and transparent tool for making human health and ecosystem CF estimates. The consensus model has now been used to calculate CFs for several thousand substances and is intended to form the basis of the recommendations from UNEP-SETAC‘s Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle...

  7. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  8. Comparative assessment and management of the health and environmental impacts of energy systems. General framework and preliminary results for the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rostron, W; Schneider, T; Thieme, M; Dreicer, M

    1992-06-01

    The comparison of the effects of electricity producing systems is of growing importance in decision-making processes for energy planning. This report documents the preliminary results of a project for the CEC-DG XII Radiation Protection Programme on the comparative assessment and management of the health and environmental impacts of energy systems. The work reported in this document has also been supported by EDF - Mission Environnement. In order to profit from the comparative studies already existing, some of the most important ones were surveyed. The aim of these past energy comparison studies was mainly to obtain a global measure of the risks associated with an energy cycle, with a view to ranking the various electricity production systems; but this is now recognised as merely an academic exercise, with a limited impact in decision-making. For energy planning the development of a multi-dimensional approach seems more suitable, as this allows the different types of indicators and measures needed to assess the risks of different energy cycles to be compared. From the past studies it has been seen that health indicators are generally well established, but a weakness is noted with respect to indicators of environmental impacts. This remains a difficult subject, and until such indicators are established, surrogates like concentrations in the environment will have to be used, or qualitative comparisons must suffice. This report presents a general framework allowing for consistent comparisons between different energy systems. The key issues discussed are: assessment by fuel cycle, consideration of the dimensions of time and space, the impact pathway approach for assessing risk, and coherent indicators that can be used to measure the impacts. First results are presented for four activities of the nuclear fuel cycle according to the approach developed: (1) the construction and dismantling of a 900 MWe pressurized water reactor, (2) the transportation of materials between

  9. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions.

    Science.gov (United States)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-01

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk

  10. An attributional life cycle assessment for an Italian residential multifamily building.

    Science.gov (United States)

    Vitale, Pierluca; Arena, Umberto

    2017-09-06

    The study describes an attributional life cycle assessment carried out according to the ISO standards and focused on an Italian multifamily residential building. The aim was developing an exhaustive and reliable inventory of high-quality primary data, comparing the environmental impacts along the three stages of the building life cycle. The pre-use phase takes into account the production of all the construction materials, transportation, and on-site assembling. The use phase quantifies the resource consumptions for 50 years of the building utilization and ordinary maintenance. The end-of-life phase includes the building demolition and the management of generated wastes. The results quantify how the design criteria affect the environmental performances of the residential building along its life cycle. The role of the pre-use phase appears remarkable for global warming potential (GWP), due to the huge impacts of steel and concrete production processes. The use phase gives the largest contributions, which reach 77% and 84% of the total, for the categories of global warming and non-renewable energy. The end-of-life phase provides limited avoided impacts. A comparative analysis quantifies the improvements achievable with an alternative type of partitions and external walls. Acronyms: AC: air conditioning; C&DW: construction and demolition waste; CFL: compact fluorescent lamp; DHW: domestic hot water; EC: European Commission; EU: European Union; GDP: gross domestic product; GHG: greenhouse gases; GWP: global warming potential; LCA: life cycle assessment; LCI: life cycle inventory; LCIA: life cycle impact assessment; MFA: material flow analysis; NREP: non-renewable energy potential; RINP: respiratory inorganics potential; WFD: Waste Framework Directive.

  11. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  12. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  13. Methods for global sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.

    2017-01-01

    Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to

  14. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  15. Life cycle assessment of the Danish electricity distribution network

    DEFF Research Database (Denmark)

    Turconi, Roberto; Simonsen, Christian G.; Byriel, Inger P.

    2014-01-01

    Purpose This article provides life cycle inventory data for electricity distribution networks and a life cycle assessment (LCA) of the Danish transmission and distribution networks. The aim of the study was to evaluate the potential importance of environmental impacts associated with distribution...... complexity and material consumption. Infrastructure provided important contributions to metal depletion and freshwater eutrophication (copper and aluminum for manufacturing of the cables and associated recycling being the most important). Underground 50-kV lines had larger impacts than overhead lines, and 0...

  16. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Science.gov (United States)

    We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categori...

  17. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  18. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.

    Science.gov (United States)

    Alston, Sue M; Arnold, J Cris

    2011-11-01

    Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.

  19. Life cycle impacts of manufacturing redwood decking in Northern California

    Science.gov (United States)

    Richard D. Bergman; Elaine Oneil; Ivan L. Eastin; Han-Sup Han

    2014-01-01

    Awareness of the environmental footprint of building construction and use has led to increasing interest in green building. Defining a green building is an evolving process with life cycle inventory and life cycle impact assessment (LCIA) emerging as key tools in that evolution and definition process. This study used LCIA to determine the environmental footprint...

  20. Using Life Cycle Assessment to identify potential environmental impacts of an agrifood sector: Application to the PDO Beaujolais and Burgundia wine sector

    Directory of Open Access Journals (Sweden)

    Penavayre Sophie

    2016-01-01

    Full Text Available The environmental impacts of the production system of emblematic French product under official quality marks was investigated using the Life Cycle Assessment (LCA methodology. The study looks at the PDO Beaujolais and Burgundy sector from a broad perspective, i.e. encompassing all steps linked with the products themselves but also complementary activities that belong to this wine sector. To build the Life Cycle Inventory (LCI, a methodology deriving from both product and organizational LCA was developed and applied. The LCI was built using a bottom-up approach. Inventories were first built for a sample of 17 representative companies. Then, these inventories were scaled-up to complete the global LCI at the agrifood sector level. Potential environmental impacts were assessed for 8 indicators. The LCA results show potential environmental impacts for each life cycle step: grape production, wine making and aging, packaging, distribution and activity of stakeholders belonging to the “close environment”. It provided two main outcomes: (i a methodology for the construction of an LCI adapted to the perimeter of an agrifood sector and composed by high quality data; and (ii the identification of potential environmental impacts of the studied agrifood sector, providing assistance for the definition of their strategic orientations for the future.

  1. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  2. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John

    2012-01-01

    ), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic...

  3. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  4. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - a life cycle assessment

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used...... on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry...... separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house...

  5. Accident risk-based life cycle assessment methodology for green and safe fuel selection

    NARCIS (Netherlands)

    Khakzad, Sina; Khan, Faisal; Abbassi, Rouzbeh; Khakzad Rostami, N.

    2017-01-01

    Using the emissions produced during the entire life-cycle of a fuel or a product, Life-cycle assessment (LCA) is an effective technique widely used to estimate environmental impacts. However, most of the conventional LCA methods consider the impacts of voluntary releases such as discharged toxic

  6. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    International Nuclear Information System (INIS)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-01-01

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  7. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Oliver [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe (Germany); Bayer, Peter, E-mail: bayer@erdw.ethz.ch [Swiss Federal Institute of Technology Zurich, Geological Institute, Sonneggstrasse 5, 8092 Zurich (Switzerland); Juraske, Ronnie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Verones, Francesca [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Hellweg, Stefanie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland)

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  8. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Schöpp, Wolfgang; Verkuijlen, Evert; Heijungs, Reinout; Reijnders, Lucas

    2001-01-01

    Simple models are often used to assess the potential impact of acidifying and eutrophying substances released during the life cycle of products. As fate, background depositions, and ecosystem sensitivity are not included in these models, environmental life-cycle assessment of products (LCA) may

  9. Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2017-01-01

    Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication impacts at the endpoint level. This paper introduces a method...... to calculate spatially explicit characterization factors (CFs) at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine eutrophication impacts, modelled for 5772 river basins of the world....

  10. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  11. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  12. Life cycle assessment of energy products: environmental impact assessment of biofuels; Ecobilan d'agents energetiques. Evaluation ecologique de biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  13. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  14. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  15. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  16. Assessing the environmental impacts of freshwater consumption in LCA.

    Science.gov (United States)

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  17. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  18. Life cycle assessment. Specific indicators for Italy in impact evaluation; Life cycle assessment: sviluppo di indicatori specific per l'Italia per la fase di valutazione d'impatto

    Energy Technology Data Exchange (ETDEWEB)

    Masoni, P [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia; Scimia, E [Bologna Univ., Bologna (Italy)

    1999-07-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described. [Italian] Il lavoro analizza la fase centrale della metodologia denominata valutazione d'impatto, resentando una rassegna dello stato dell'arte e un'individuazione critica dei possibili indicatori ambientali, di criteri di normalizzazione e di attribuzione di pesi ai diversi temi ambientali specific per l'Italia. Viene descritta l'applicazione ad un caso concreto relativo alla produzione del burro nel consorzio Granterre di Modena.

  19. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  20. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  1. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  2. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  3. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  4. Monetary valuation in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Weidema, Bo Pedersen; Brandão, Miguel

    2015-01-01

    different impacts and/or with other economic costs and benefits. For this reason, monetary valuation has a great potential to be applied also in Life Cycle Assessment (LCA), especially in the weighting phase. However, several challenges limit its diffusion in the field, which resulted in only a few......Monetary valuation is the practice of converting measures of social and biophysical impacts into monetary units and is used to determine the economic value of non-market goods, i.e. goods for which no market exists. It is applied in cost benefit analysis to enable the cross-comparison between...

  5. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  6. Life Cycle Assessment of Polymers in Qatar

    OpenAIRE

    ÖZERKAN, Nesibe Gözde; ADEED, Mariam AIMa’; KAHRAMAN, Ramazan

    2011-01-01

    Life Cycle Assessment (LCA) is gaining wider acceptance as a method that evaluates the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and assesses the impact of those energy and material used and released to the environment. It is also considered as one of the best environmental management tools that can be used to compare alternative eco-performances of recycling or disposal...

  7. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment.

    Science.gov (United States)

    Dourmad, J Y; Ryschawy, J; Trousson, T; Bonneau, M; Gonzàlez, J; Houwers, H W J; Hviid, M; Zimmer, C; Nguyen, T L T; Morgensen, L

    2014-12-01

    Environmental impacts of 15 European pig farming systems were evaluated in the European Union Q-PorkChains project using life cycle assessment. One conventional and two non-conventional systems were evaluated from each of the five countries: Denmark, The Netherlands, Spain, France and Germany. The data needed for calculations were obtained from surveys of 5 to 10 farms from each system. The systems studied were categorised into conventional (C), adapted conventional (AC), traditional (T) and organic (O). Compared with C systems, AC systems differed little, with only minor changes to improve meat quality, animal welfare or environmental impacts, depending on the system. The difference was much larger for T systems, using very fat, slow-growing traditional breeds and generally outdoor raising of fattening pigs. Environmental impacts were calculated at the farm gate and expressed per kg of pig live weight and per ha of land used. For C systems, impacts per kg LW for climate change, acidification, eutrophication, energy use and land occupation were 2.3 kg CO2-eq, 44.0 g SO2-eq, 18.5 g PO4-eq, 16.2 MJ and 4.1 m2, respectively. Compared with C, differences in corresponding mean values were +13%, +5%, 0%, +2% and +16% higher for AC; +54%, +79%, +23%, +50% and +156% for T, and +4%, -16%, +29%, +11% and +121% for O. Conversely, when expressed per ha of land use, mean impacts were 10% to 60% lower for T and O systems, depending on the impact category. This was mainly because of higher land occupation per kg of pig produced, owing to feed production and the outdoor raising of sows and/or fattening pigs. The use of straw bedding tended to increase climate change impact per kg LW. The use of traditional local breeds, with reduced productivity and feed efficiency, resulted in higher impacts per kg LW for all impact categories. T systems with extensive outdoor raising of pigs resulted in markedly lower impact per ha of land used. Eutrophication potential per ha was substantially

  8. Life cycle assessment of construction and demolition waste management.

    Science.gov (United States)

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2015-10-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60-95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing that end-of-life impacts and leaching should not be disregarded when assessing environmental impacts from construction products and materials. CO2 uptake in the C

  9. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    1996-01-01

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  10. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

    Science.gov (United States)

    Heller, Martin C; Keoleian, Gregory A; Willett, Walter C

    2013-11-19

    Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.

  11. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  12. Life Cycle Assessment Of Hydrogen Production From Natural Gas Reforming Process

    International Nuclear Information System (INIS)

    Ozturk, M.

    2010-01-01

    Society has become concerned about the issues of natural resource depletion and environmental degradation. The environmental performance of products or processes has become a key issue, which is why ways to minimize the effects on the environment are investigated. The most effective tool for this purpose is called life cycle assessment (LCA). This concept considers the entire life cycle of product or process. The life cycle of a product begins with the extraction of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA makes it possible to estimate the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses. Therefore, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product selection. In the case of this study, life cycle assessments of hydrogen production via natural gas reforming process are investigated for environmental affect.

  13. Economic impact of reduced mortality due to increased cycling.

    Science.gov (United States)

    Rutter, Harry; Cavill, Nick; Racioppi, Francesca; Dinsdale, Hywell; Oja, Pekka; Kahlmeier, Sonja

    2013-01-01

    Increasing regular physical activity is a key public health goal. One strategy is to change the physical environment to encourage walking and cycling, requiring partnerships with the transport and urban planning sectors. Economic evaluation is an important factor in the decision to fund any new transport scheme, but techniques for assessing the economic value of the health benefits of cycling and walking have tended to be less sophisticated than the approaches used for assessing other benefits. This study aimed to produce a practical tool for estimating the economic impact of reduced mortality due to increased cycling. The tool was intended to be transparent, easy to use, reliable, and based on conservative assumptions and default values, which can be used in the absence of local data. It addressed the question: For a given volume of cycling within a defined population, what is the economic value of the health benefits? The authors used published estimates of relative risk of all-cause mortality among regular cyclists and applied these to levels of cycling defined by the user to produce an estimate of the number of deaths potentially averted because of regular cycling. The tool then calculates the economic value of the deaths averted using the "value of a statistical life." The outputs of the tool support decision making on cycle infrastructure or policies, or can be used as part of an integrated economic appraisal. The tool's unique contribution is that it takes a public health approach to a transport problem, addresses it in epidemiologic terms, and places the results back into the transport context. Examples of its use include its adoption by the English and Swedish departments of transport as the recommended methodologic approach for estimating the health impact of walking and cycling. Copyright © 2013 World Health Organization. Published by Elsevier Inc. All rights reserved.

  14. ENVIRONMENTAL ASSESSMENT OF ROAD TRANSPORT IN A PASSENGER CAR USING THE LIFE CYCLE APPROACH

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2017-06-01

    Full Text Available Environmental issues are an increasingly important aspect of management in the transport sector; new methods have been developed for assessment of the environment in the transport sector using the life cycle approach. The paper presents the application of Well to Wheel (WTW and Life Cycle Assessment (LCA in the transport sector. The WTW method focuses on energy analysis and greenhouse gas emissions during the life cycle of fuels. WTW is used to support decision-making on the environmental aspects of transport, particularly with regard to fuel life cycle management, but this method omits important stages in the life cycle, particularly the ones regarding important circular economy guidelines such as reduction of natural resource consumption, impact on human health, etc. The LCA method provides a much broader approach to environmental assessment than WTW. LCA takes into consideration environmental impact in the whole life cycle of the vehicle, from the stage of production, through the period of exploitation, and finally its disposal.

  15. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    Science.gov (United States)

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparative environmental life cycle assessment of composite materials

    International Nuclear Information System (INIS)

    De Vegt, O.M.; Haije, W.G.

    1997-12-01

    The aim of the present study is to compare and quantify the environmental impact of three rotorblades made of different materials and to establish which stage in the life cycle contributes most. The life cycle of a product can be represented by the production phase, including depletion of raw materials (mining) and production (machining) of products, the utilisation phase, including use of energy, maintenance and cleaning, and the disposal phase, including landfill, incineration, recycling, etc. The environmental impact of a product is not only determined by the materials selected but also by the function of the product itself. E.g. when natural fibres are applied in vehicles as a substitution for metals the environmental impact in the use phase will be reduced due to a lower energy consumption caused by a lower car weight. The influence on the environmental impact of the production phase must also be taken into account. The material relation between the production phase and the use phase and the disposal phase is complicated. In general the lifetime of a product use phase can be extended (positive aspect), e.g. by application of a coating onto the surface. Due to the coating the product can not easily be recycled, which is a negative aspect. The three types of composites used in the rotorblade of the wind energy converter considered in this study are: flaxfibre reinforced epoxy, carbon fibre reinforced epoxy and glassfibre reinforced polyester. The assessment is performed using the computer program Simapro 3, which is based on the Dutch CML method for the environmental life-cycle assessment of products using the Eco-Indicator 95 evaluation method. The CML method defines five phases for an LCA: goal definition and scoping; inventory; classification; impact assessment; and improvement analysis. The improvement analysis is not part of this work. Performing an LCA is a time-consuming process due to the detailed information that is required. In chapter five some

  17. Assessing the social impacts of the biofuel lifecycle

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Hauschild, Michael Zwicky

    In order to assess the social impacts of the biofuel lifecycle, Social Life Cycle Assessment (SLCA) may be a promising tool. However, as this review study points out, several problems are still to be solved. SLCA can be defined as a tool for assessing a product’s or service’s total impact on human...... health and well-being throughout its life cycle. During the recent years several different approaches towards SLCA have been developing. This review reveals a broad variety in how the SLCAs address all methodological steps. One of the main differences is in the choice and formulation of social indicators....... The indicators address a wide variety of issues; some approaches focus on impacts created in the very close proximity of the processes included in the product system, whereas others focus on the more remote societal consequences. The perception of social impacts is thus very varying. An assessment focussing...

  18. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Laurent, Alexis; Bjørn, Anders

    2014-01-01

    Purpose The European Commission has launched a recommended set of characterization models and factors for application in life cycle impact assessment (LCIA). However, it is not known how this recommended practice, referred to as the ILCD 2009, performs relative to some of the most frequently used...... and ecosystems, all studied methodologies consistently identify the same window option as having the lowest and the highest environmental impact. This is mainly because few processes, associated with production of heat, dominate the total impacts, and there is a large difference in demand for heat between...... categories. The differences are somewhat smaller (within 1 order of magnitude) for the impact categories respiratory inorganics and photochemical ozone formation, and are within a factor of 3 for the remaining impact categories. The differences in impact scores in our case study are brought about...

  19. Life cycle impact assessment of home energy management systems (HEMS) using dynamic emissions factors for electricity in Finland

    International Nuclear Information System (INIS)

    Louis, Jean-Nicolas; Pongrácz, Eva

    2017-01-01

    Decarbonising the European economy is a long-term goal in which the residential sector will play a significant role. Smart buildings for energy management are one means of decarbonisation, by reducing energy consumption and related emissions. This study investigated the environmental impacts of smart house automation using life cycle impact assessment. The ReCiPe method was selected for use, in combination with dynamic emissions factors for electricity in Finland. The results indicated that a high level of technology deployment may be counter-effective, due to high electricity consumption by the sensor network, automation system and computing devices. The results also indicated that number of inhabitants per household directly affected the environmental impacts of home automation. A single-person household saw its environmental impacts increase by 15%, while those of a five-person household increased by 3% in the worst-case scenario. The manufacturing phase contributed the major share of environmental impacts, exceeding the use phase in multiple categories. These findings indicate that finding the sweet spot in which technology can promote decarbonisation will be crucial to achieving the goal of a low‑carbon economy. - Highlights: •HEMS did not reduce the overall environmental impact of households. •Environmental impacts of HEMS are greater for single inhabitant households. •Energy efficiency of sensing devices must drastically increase to promote decarbonisation. •The highest life cycle environmental impacts of electronics are during the manufacturing phase. •Raising awareness is a critical part in decreasing the environmental impact of households.

  20. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  1. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  2. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...

  3. Methodology for the Life Cycle Assessment of a Car-sharing Service

    OpenAIRE

    Guyon, Olivier

    2017-01-01

    Nowadays, circular economy is becoming more relevant in society. In the context of the automotive industry, we no longer simply work on emissions emitted during the vehicle use phase but rather on the environmental impacts induced during all phases of the vehicle's life cycle (manufacturing, logistics, use, maintenance and end of life). For this purpose, many automakers, including the Group PSA, use life cycle assessment (LCA) to determine these environmental impacts. Also, the economy of sha...

  4. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  5. Land Use and Land-use Changes in Life Cycle Assessment

    DEFF Research Database (Denmark)

    De Rosa, Michele

    2017-01-01

    The assessment of Land Uses and Land-use Changes (LULUC) impacts has become increasingly complex. Sophisticated modelling tools such as Life Cycle Assessment (LCA) are employed to capture both direct and indirect damages. However, quantitative assessments are often incomplete, dominated...... by environmental aspects. Land uses are a multidisciplinary matter and environmental and sustainable development policies intertwine. Yet, LCAs mostly focus on environmental impacts excluding socioeconomic implications of land occupation. This paper investigates the limitations of current LULUC modelling practices....... Consequently, results informing land policies may be biased towards determined development strategies or hide indirect effects and socioeconomic damages caused by large-scale land acquisitions, such as violation of tenure rights, speculation and displacement. Quantitative assessments of LULUC impacts...

  6. Quantitative assessment of the environmental footprint of the French nuclear fuel cycle by life cycle assessment

    International Nuclear Information System (INIS)

    Poinssot, Christophe; Bourg, Stephane; Ouvrier, Noel; Serp, Jerome

    2015-07-01

    Full text of publication follows: Nuclear energy contributes to most than 75% of the French electricity thanks to the operation of 58 generation 2 reactors located on 19 sites built from the 70's to the end of the 90's. France also developed for a long time a fully integrated nuclear industry covering the whole nuclear fuel cycle, from the ore mining to the fabrication of the fuel for the front-end, from the reprocessing up to the MOX fuel fabrication and storage facility and in the near-future geological repository for the back-end. This investment allows France to produce a low-carbon electricity with the second lowest GHG emissions intensity, in the range of 90 g CO 2 /KWh. Such a very beneficial figure is directly related to the high contribution of nuclear in the electricity mix combined with renewables energies, in particular hydro. Greenhouse gases emissions are very relevant to assess the respective influence on the global climate change, but they do not address the whole potential environmental impact of any activity. However, such a question is crucial for assessing the respective sustainability of such an activity, in particular nuclear energy which is thought to be very detrimental by a large part of the public opinion. In order to address this question, we developed a dedicated life cycle assessment (LCA) tools referred to as NELCAS, the specificity of which is to focus on the first order parameters and avoiding any 'black-box' effect which can exist in commercial LCA tool. Thanks to the recent transparency and nuclear safety law (2006), in- and out- fluxes of matter and energy for any of the fuel cycle facilities are now publicly available. We hence used this significant set of measured data to feed our model and assess the most usual environmental indicators such as land use, different types of atmospheric emissions (GHG, SOx, NOx, particles...) and aqueous release (chemical effluents, eutrophication potential,...)... We also

  7. Life cycle assessment of offshore and onshore sited wind farms

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report makes up the final reporting for the project 'Life cycle assessment (LCA) of turbines Analysis of possibilities of product directed environmental optimisation'. The purpose of the project is to carry through a life cycle assessment of an offshore wind farm and an onshore wind farm, respectively, as a basis for assessment of environmental improvement possibilities for wind farms through their life cycles. Likewise, the results are used to elaborate an environmental declaration of contents for power delivered to the grid from both types of wind farms. The project states the environmental impact for electricity produced at Horns Reef offshore wind farm and Tjaereborg onshore wind farm, respectively, as representatives for contemporary Danish offshore wind farms and onshore wind farms, respectively. Tjaereborg onshore wind farm is placed at an utmost favourably location with regard to wind, which means that the production at this wind farm is high compared with other onshore wind farms in Denmark. The high production rate is a factor that is taken into account when assessing the impact on the environment emanating from this wind farm. The results of the environmental life cycle assessments that have been carried out for the two wind farms do not show significant variance. If it is taken into account that Tjaereborg onshore wind farm is placed utmost favourably, the comparison shows that power from an average located onshore wind farm would have a more adverse or corresponding environmental impact as an unfavourably located offshore wind farm. The results show that it is the turbines that causes the largest environmental impact and not to a very high extent the transmission grid. For the turbines, the all-important environmental contribution comes from manufacturing and removal of the turbines, as it is the materials that cause the large environmental strain. The operation of the wind farms gives practically no contribution to the total

  8. Life cycle assessment in wastewater treatment: : Influence of site-oriented normalization factors, life cycle impact assessment methods, and weighting methods

    NARCIS (Netherlands)

    Bai, Shunwen; Wang, Xiuheng; Zhang, X.; Zhao, Xinyue; Ren, N

    2017-01-01

    This present study aims to analyze the differences in results of different site-directional life cycle assessment
    (LCA) methods applied in the field of wastewater treatment. Site-generic methods were employed and
    compared with China-specific methods on a full-scale wastewater treatment case.

  9. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    Science.gov (United States)

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  10. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  11. Definition and construction of a first database for assessing the impacts on health and the environment of different strategies for the back end of the fuel cycle

    International Nuclear Information System (INIS)

    Muller, O.; Ouzounian, G.

    1998-01-01

    The life cycle assessment framework has been applied to the management of used fuel cycle to determine a general methodology to study the impacts on health and the environment of the back end of the fuel cycle. System definition starts with a definite waste fuel composition and covers all the industrial steps until all elements of the waste are stored. It is recommended to use electricity generation as a functional unit especially for comparing different strategies. In this case, as some parts of the nuclear waste may be recycled to produce electricity, systems have to be expanded to cover both front and back ends of the fuel cycle. A first bibliographical database covering different stages of the nuclear cycle has been constructed and stored with the standard Ecobilan format developed for environmental analysis and management. Data collection includes all steps from mining extraction to ultimate disposal. Together with the constitution of this database several typical strategies for PWR fuels have been assessed. A first list of criteria has been chosen to best represent the impacts of each strategy on both human health of population and workers and the environment. Data gathered for each step are ready to be reused for designing and assessing simulations on alternative nuclear cycles. (author)

  12. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  13. Enquiring into the roots of bioenergy - epistemic uncertainties in life cycle assessments

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo

    global warming impacts than the respective fossil fuels they replace unless planted on abandoned lands. With Papers I-II, the selection of the land-use references and time horizons involved in LCA of biofuels was demonstrated to be crucial for the characterization of the resulting environmental impacts......The research for this Thesis was originally framed around the “sustainability assessment of full chain bioenergy”. However, it is known for some years that the critical impacts of dedicated bioenergy relate to induced land use changes (LUC). Their criticality derives from their potential...... to dominate environmental impacts from a life-cycle perspective and from the uncertainty that accompanies them. On the other hand, continued land use may be a concern for soil’s long-term sustainability (understood as fertility), which has recently received attention in environmental life-cycle assessments...

  14. Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom county, Zanjan province

    Directory of Open Access Journals (Sweden)

    ehsan khodarezaie

    2017-10-01

    Full Text Available Introduction Horticulture industry consumes a significant part of the energy and materials and release pollutants into the environment. Olive (Olea europaea L. is one of the most cultivated plants in Iran, so the environmental impact assessment of these production systems is important. However, the consequences and environmental impacts of olive production systems have not been studied in Iran. Tarom County is one of the most important olive production centers in Iran. So, this study is performed to evaluate environmental impacts of olive production in Tarom region. Materials and Methods In this study, the LCA approach is used to assessment of environmental impacts of olive production. This study is conducted in Tarom County in 2012-2013. The aim of this study was to determine hot spots of olive life cycle and offering appropriate Solutions to reduce the related environmental impact in Tarom region. In this research, one ton of Olives was considered as functional unit. System boundary is defined as “from cradle to farm gate”. Primary data were collected through observation, sampling and questionnaires completing method. The climate and soil data were collected from the "Olive Research Center" located in the Tarom County. Data for the production of used inputs (Secondary data were taken from the EcoInvent®2.0 database, and SimaPro software was employed to analyze primary data. Impact categories were analyzed based on CML 2 baseline 2000 V2.04/ world, 1995/ characterization and SimaPro 7.2 software. CML 2 baseline 2000. Results and Discussion The obtained data from inventory are presented in the table 1. These data includes Inputs and outputs of olive production system in Tarom olive systems. Table 1- Inputs and outputs of olive production system (per 1 ton olive. Amount\tUnit\tInputs 48.04\tkg\tDiesel fuel Chemical fertilizer 62.8\tkg\tUrea 53.9\tkg\tTriple Super Phosphate 46.4\tkg\tPotassium sulphate 5.6\tkg\tPesticides 1222\tkg

  15. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  16. Using Life Cycle Assessment to Inform Decision-Making for Sustainable Buildings

    Directory of Open Access Journals (Sweden)

    Mieke Vandenbroucke

    2015-05-01

    Full Text Available Because the student residences of the Vrije Universiteit Brussel built in 1973 are not adapted to current comfort standards, the university decided to construct new accommodation facilities at the border of the campus. However, besides demolition, there was no strategy on how to deal with the existing ones. In the search for a more sustainable strategy, the university’s administration assigned the TRANSFORM research team to define various design strategies and to assess the long-term environmental consequences in order to select the best strategy by the use of Life Cycle Environmental Assessment. Current Life Cycle Environmental Assessments generally include maintenance, repair, replacement and operational energy consumption during use, but do not include future refurbishments. However, it is likely that their impact cannot be neglected either. Therefore, this article offers a framework which takes future refurbishments into account, in addition to the standard use impacts: initial and end-of-life impact. We report on the construction assemblies, the results of the assessments conducted and the advice provided. The results confirm that the impact of future refurbishments cannot be neglected. In addition, we observed that there were significant environmental savings when transforming the residences compared to new construction, and long-term benefits of a design enabling the reuse of building elements.

  17. Environmental life cycle assessment of water supply in South Africa ...

    African Journals Online (AJOL)

    The life cycle impact assessment (LCIA) phase of LCAs evaluates the ... considered where water is used in the manufacturing sector of South Africa, and to identify ... The boosting requirements attribute most to the electricity dependency of the ...

  18. Externalities of fuel cycles 'ExternE' project. Oil fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.; Trukenmueller, A.; Gressmann, A.; Runte, K.-H.; Kortum, G.; Weltschev, M.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include damage to health, forests, crops, natural ecosystems and the built environment. Traditional assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favor of technologies with significant environmental burdens. Concern over widespread degradation of the environment resulting from fuel cycle emissions has mounted since the late 1960s. In the early 1970s the potential for long range atmospheric transport of certain pollutants was recognized. The effects of acidifying pollutants, ozone precursors and greenhouse gases have caused particular concern. This is reflected in recent trends in economic thought, particularly the emphasis on sustainable development and the use of market mechanisms for environmental regulation. It has thus become increasingly clear that the external impacts of energy use are significant and should be considered by energy planners. Although the theoretical basis for including external costs in decision making processes has been generally agreed, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988), Ottinger et al. (1990) and Friedrich and Voss (1993) provide the background for such work, though they are of a somewhat preliminary nature. We need to improve the methods employed and the quality of models and data used so that planning decisions can be based at least partly on the results. It is particularly important that the site and project specificity of many impacts is recognized. In consequence of this a collaborative project between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy has been established to identify the most appropriate methodology for this type of work. The current study has three

  19. Externalities of fuel cycles 'ExternE' project. Lignite fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.; Trukenmueller, A.; Gressmann, A.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include damage to health, forests, crops, natural ecosystems and the built environment. Traditional assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favor of technologies with significant environmental burdens. Concern over widespread degradation of the environment resulting from fuel cycle emissions has mounted since the late 1960s. In the early 1970s the potential for long range atmospheric transport of certain pollutants was recognized. The effects of acidifying pollutants, ozone precursors and greenhouse gases have caused particular concern. This is reflected in recent trends in economic thought, particularly the emphasis on sustainable development and the use of market mechanisms for environmental regulation. It has thus become increasingly clear that the external impacts of energy use are significant and should be considered by energy planners. Although the theoretical basis for including external costs in decision making processes has been generally agreed, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988] and Ottinger et al. [1990] provide the background for such work, though they are of a somewhat preliminary nature [Friedrich, Voss, 1993]. We need to improve the methods employed and the quality of models and data used so that planning decisions can be based at least partly on the results. If is particularly important that the site and project specificity of many impacts is recognized. In consequence of this a collaborative project between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy has been established to identify the most appropriate methodology for this type of work. The current study has three

  20. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  1. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD Recommendations for Life Cycle Impact Assessment

    Directory of Open Access Journals (Sweden)

    Serenella Sala

    2012-06-01

    Full Text Available Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from “cradle to grave” have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA of products, in recent years, several methodologies have been developed for Life Cycle Impact Assessment (LCIA. The Joint Research Center of the European Commission (EC-JRC led a “science to decision support” process which resulted in the International Reference Life Cycle Data System (ILCD Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook is the result of a comprehensive process of evaluation and selection of existing methods based on a set of scientific and stakeholder acceptance criteria and involving review and consultation by experts, advisory groups and the public. In this study, we report the main features of the ILCD LCIA recommendation development highlighting relevant issues emerged from this “from science to decision support” process in terms of research needs and challenges for LCIA. Comprehensiveness of the assessment, as well as acceptability and applicability of the scientific developments by the stakeholders, are key elements for the design of new methods and to guarantee the mainstreaming of the sustainability concept.

  2. Scenario Development and Delphi Application in Life Cycle Assessment for Assessing Environmental Impact of New Technology Case Study: Removal of Wind Turbines Project

    Directory of Open Access Journals (Sweden)

    Devina Fitrika Dewi

    2016-05-01

    Full Text Available Certain technology is intended to create eco-efficient products or process or is developed as answer to the recent challenge. This kind of technology consequently can also create another impact therefore it shall be assessed and analyzed.The focus of the study is on assessment method namely Life Cycle Analysis (LCA, Scenario development and Delphi application. The objective is to understand benefits and drawbacks of the combined methodology and observe practicality of its implementation for assessing new technology. The distinctive feature comes from the combination of social and technological foresight (as Delphi application and future studies (as Scenario development which are applied in the environmental assessment of a product (by Life Cycle Analysis.The utilization of LCA-Scenario-Delphi case study as an explanatory example is presented in the Removal Wind Turbines Project by the Danish Energy Agency. The wind turbine is considered new technology with some of it phases are yet to occur, for example: removal of turbines after phase out stage. Technology Assessment by LCA-Scenario-Delphi is complicated procedure, but necessary to validate the results. The drawbacks of this procedure are extensive time it consumes and the dependency on public participation and/or expert willingness to participate. Nonetheless, its advantages are due to its interactive feature; integration of knowledge from different areas of expertise and its assessment’s characteristic which focuses on process.

  3. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  4. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparative life cycle assessment of industrial multi-product processes

    OpenAIRE

    Jung, Johannes

    2014-01-01

    The demand for environmentally safe industrial processes is increasing. Therefore, environmental impacts of new processes have to be examined at an early stage. A method for analyzing environmental impacts is life cycle assessment (LCA). A major trouble of LCA are multi-functionality problems. Multi-functionality problems can be fixed using alternative methods such as system expansion, avoided burden and allocation. Each of the three methods requires choices by the LCA-practitioner. The choic...

  6. Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas

    Directory of Open Access Journals (Sweden)

    Jesuina Chipindula

    2018-06-01

    Full Text Available The last decade witnessed a quantum increase in wind energy contribution to the U.S. renewable electricity mix. Although the overall environmental impact of wind energy is miniscule in comparison to fossil-fuel energy, the early stages of the wind energy life cycle have potential for a higher environmental impact. This study attempts to quantify the relative contribution of individual stages toward life cycle impacts by conducting a life cycle assessment with SimaPro® and the Impact 2002+ impact assessment method. A comparative analysis of individual stages at three locations, onshore, shallow-water, and deep-water, in Texas and the gulf coast indicates that material extraction/processing would be the dominant stage with an average impact contribution of 72% for onshore, 58% for shallow-water, and 82% for deep-water across the 15 midpoint impact categories. The payback times for CO2 and energy consumption range from 6 to 14 and 6 to 17 months, respectively, with onshore farms having shorter payback times. The greenhouse gas emissions (GHG were in the range of 5–7 gCO2eq/kWh for the onshore location, 6–9 CO2eq/kWh for the shallow-water location, and 6–8 CO2eq/kWh for the deep-water location. A sensitivity analysis of the material extraction/processing stage to the electricity sourcing stage indicates that replacement of lignite coal with natural gas or wind would lead to marginal improvements in midpoint impact categories.

  7. Life cycle assessment of construction and demolition waste management

    International Nuclear Information System (INIS)

    Butera, Stefania; Christensen, Thomas H.; Astrup, Thomas F.

    2015-01-01

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  8. Life cycle assessment of construction and demolition waste management

    Energy Technology Data Exchange (ETDEWEB)

    Butera, Stefania, E-mail: stbu@teknologisk.dk; Christensen, Thomas H.; Astrup, Thomas F.

    2015-10-15

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  9. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    Science.gov (United States)

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  10. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2016-01-01

    Alternative vehicle technologies have a great potential to minimize the transportation-related environmental impacts, reduce the reliance of the U.S. on imported petroleum, and increase energy security. However, they introduce new uncertainties related to their environmental, economic, and social impacts and certain challenges for widespread adoption. In this study, a novel method, uncertainty-embedded dynamic life cycle sustainability assessment framework, is developed to address both methodological challenges and uncertainties in transportation sustainability research. The proposed approach provides a more comprehensive, system-based sustainability assessment framework by capturing the dynamic relations among the parameters within the U.S. transportation system as a whole with respect to its environmental, social, and economic impacts. Using multivariate uncertainty analysis, likelihood of the impact reduction potentials of different vehicle types, as well as the behavioral limits of the sustainability potentials of each vehicle type are analyzed. Seven sustainability impact categories are dynamically quantified for four different vehicle types (internal combustion, hybrid, plug-in hybrid, and battery electric vehicles) from 2015 to 2050. Although impacts of electric vehicles have the largest uncertainty, they are expected (90% confidence) to be the best alternative in long-term for reducing human health impacts and air pollution from transportation. While results based on deterministic (average) values indicate that electric vehicles have greater potential of reducing greenhouse gas emissions, plug-in hybrid vehicles have the largest potential according to the results with 90% confidence interval. - Highlights: • Uncertainty-embedded dynamic sustainability assessment framework, is developed. • Methodological challenges and uncertainties are addressed. • Seven impact categories are quantified for four different vehicle types.

  11. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  12. Life-cycle assessment of computational logic produced from 1995 through 2010

    International Nuclear Information System (INIS)

    Boyd, S B; Horvath, A; Dornfeld, D A

    2010-01-01

    Determination of the life-cycle environmental and human health impacts of semiconductor logic is essential to a better understanding of the role information technology can play in achieving energy efficiency or global warming potential reduction goals. This study provides a life-cycle assessment for digital logic chips over seven technology generations, spanning from 1995 through 2010. Environmental indicators include global warming potential, acidification, eutrophication, ground-level ozone (smog) formation, potential human cancer and non-cancer health effects, ecotoxicity and water use. While impacts per device area related to fabrication infrastructure and use-phase electricity have increased steadily, those due to transportation and fabrication direct emissions have fallen as a result of changes in process technology, device and wafer sizes and yields over the generations. Electricity, particularly in the use phase, and direct emissions from fabrication are the most important contributors to life-cycle impacts. Despite the large quantities of water used in fabrication, across the life cycle, the largest fraction of water is consumed in generation of electricity for use-phase power. Reducing power consumption in the use phase is the most effective way to limit impacts, particularly for the more recent generations of logic.

  13. Life cycle assessment. Specific indicators for Italy in impact evaluation; Life cycle assessment: sviluppo di indicatori specific per l'Italia per la fase di valutazione d'impatto

    Energy Technology Data Exchange (ETDEWEB)

    Masoni, P. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia; Scimia, E. [Bologna Univ., Bologna (Italy)

    1999-07-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described. [Italian] Il lavoro analizza la fase centrale della metodologia denominata valutazione d'impatto, resentando una rassegna dello stato dell'arte e un'individuazione critica dei possibili indicatori ambientali, di criteri di normalizzazione e di attribuzione di pesi ai diversi temi ambientali specific per l'Italia. Viene descritta l'applicazione ad un caso concreto relativo alla produzione del burro nel consorzio Granterre di Modena.

  14. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  15. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Patricia M., E-mail: pmg24@drexel.edu [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States); Spatari, Sabrina; Cucura, Jeffrey [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States)

    2013-04-15

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  16. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    International Nuclear Information System (INIS)

    Gallagher, Patricia M.; Spatari, Sabrina; Cucura, Jeffrey

    2013-01-01

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  17. Externalities of fuel cycles 'ExternE' project. Natural gas fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Holland, M.; Watkiss, P.; Berry, J.; Johnson, C.; Lee, D.

    1994-01-01

    This document assesses the progress made in quantifying environmental and health damages associated with the natural gas fuel cycle for electricity generation. The methodology developed in the ExternE Project is described in more detail elsewhere (European Commission, 1994a; 1995, in preparation). The reader is referred to these earlier reports for wider discussion of many of the issues underlying this type of work. The increased desire for economic assessment of environmental damage reflects growing awareness of problems such as global warming, ozone depletion and the acidification and nutrification of ecosystems. A wide range of receptors are affected, including human health, forests, crops, and buildings. Such damages are typically not accounted for by the producers and consumers of the good in question (in this case energy). They are thus referred to as 'external costs' or 'externalities', to distinguish them from the private costs which account for the construction of plant, cost of fuel, wages, etc. At the political level there are a variety of reasons for the growing interest in the quantification of the environmental impacts of energy use and the related external costs. These include the need to integrate environmental concerns when selecting between different fuels and energy technologies and the need to evaluate the costs and benefits of stricter environmental standards. These issues are reflected in European Union policy, through, for example, the Maastricht Treaty, the 5th Environmental Action Programme 'towards sustainability', the European Commission's White Paper 'Growth, competitiveness, employment and ways forward to the 21st century' and the establishment of the European Environmental Agency. The proposal for an Energy-Carbon tax is the first concrete proposal by the European Union for the direct use of economic instruments in environmental policy in the energy sector. An agreed methodology for calculation and integration of external costs has not

  18. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Houshyar, E.

    2017-07-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  19. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    International Nuclear Information System (INIS)

    Houshyar, E.

    2017-01-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  20. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  1. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  2. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  3. Life cycle based dynamic assessment coupled with multiple criteria decision analysis

    DEFF Research Database (Denmark)

    Sohn, Joshua; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    the service life of the building. This case study uses both the established and the coupled MCDA assessment methods to quantify and assess the balance of impacts between the production of mineral wool insulation versus the production of space heat. The use of TOPSIS method for calculating single scores......This work looks at coupling Life cycle assessment (LCA) with a dynamic inventory and multiple criteria decision analysis (MCDA) to improve the validity and reliability of single score results for complex systems. This is done using the case study of a representative Danish single family home over...... not matter which impact assessment is applied. However, for the scenarios where other impact categories vary inversely or independently from the climate change impact indicator, such as with renewable energy production, there is need for a more unconventional method, such as the TOPSIS method...

  4. Life cycle assessment study of a Chinese desktop personal computer.

    Science.gov (United States)

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  5. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Duan Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li Jinhui

    2009-01-01

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  6. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  7. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke

    2017-01-01

    and certain cationic metals is included in existing characterization models within life cycle impact assessment (LCIA). However, a variety of additional inorganic substances used e.g. in the textile, personal care, and building and construction industry are included neither in current life cycle inventory...... databases, nor current LCIA methods. Without the integration of the various economically relevant and potentially human toxic and/or ecotoxic inorganic substances such as inorganic salts, acids, bases and elements, however, no satisfying conclusions regarding the environmental sustainability of any......Life cycle assessment (LCA) is used to compare products and product systems in terms of their environmental sustainability and for that LCA needs to include all potential impacts on humans and the environment. Currently, quantifying the toxicity potential of several thousand organic substances...

  8. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  9. Health impact assessment of increasing public transport and cycling use in Barcelona: a morbidity and burden of disease approach.

    Science.gov (United States)

    Rojas-Rueda, D; de Nazelle, A; Teixidó, O; Nieuwenhuijsen, M J

    2013-11-01

    Quantify the health impacts on morbidity of reduced car trips and increased public transport and cycling trips. A health impact assessment study of morbidity outcomes related to replacing car trips in Barcelona metropolitan (3,231,458 inhabitants). Through 8 different transport scenarios, the number of cases of disease or injuries related to physical activity, particulate matter air pollution public transport and cycling trips resulted in annual reductions of 127 cases of diabetes, 44 of cardiovascular diseases, 30 of dementia, 16 minor injuries, 0.14 major injuries, 11 of breast cancer and 3 of colon-cancer, amounting to a total reduction of 302 Disability Adjusted Life Years per year in travelers. The reduction in PM2.5 exposure in the general population resulted in annual reductions of 7 cases of low birth weight, 6 of preterm birth, 1 of cardiovascular disease and 1 of lower respiratory tract infection. Transport policies to reduce car trips could produce important health benefits in terms of reduced morbidity, particularly for those who take up active transportation. © 2013.

  10. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    International Nuclear Information System (INIS)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.; Simonsen, Christian G.; Astrup, Thomas

    2014-01-01

    Highlights: • Environmental impact of a power system with a high share of wind power assessed. • LCI data for electricity supply in Denmark in 2010 and 2030 (low carbon) provided. • Focus on GHG reduction may lead to increase in other impact categories. • Imported biomass might cause high GHG emissions form Land Use Change. • Need for guidelines for LCA of electricity supply (cogeneration and power import). - Abstract: The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed. The results showed that consumption of fossil resources and global warming impacts from the Danish electricity sector could be reduced significantly compared with 2010. Nevertheless, a reduction in GHG may be at the expense of other environmental impacts, such as the increased depletion of abiotic resources. Moreover, the results were very dependent upon biomass origin: when agricultural land was affected by biomass import, and land use changes and transportation were included, GHG emissions from imported biomass were comparable to those from fossil fuels. The results were significantly influenced by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants in 2010 and 2030 (including corresponding

  11. Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment

    OpenAIRE

    Petit, Anna

    2014-01-01

    In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. Th...

  12. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    International Nuclear Information System (INIS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-01-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals. (letter)

  14. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    Science.gov (United States)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  15. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  16. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    International Nuclear Information System (INIS)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio

    2017-01-01

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  17. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Life cycle assessment of onshore and offshore wind energy - from theory to application

    DEFF Research Database (Denmark)

    Bonou, Alexandra; Laurent, Alexis; Olsen, Stig Irving

    2016-01-01

    material requirements for capital infrastructure. In both markets the bigger turbines with more advanced direct drive generator technology is shown to perform better than the smaller geared ones. Capital infrastructure is the most impactful life cycle stage across impacts. It accounts for more than 79......This study aims to assess the environmental impacts related to the provision of 1 kWh to the grid from wind power in Europe and to suggest how life cycle assessment can inform technology development and system planning. Four representative power plants onshore (with 2.3 and 3.2 MW turbines......) and offshore (4.0 and 6.0 MW turbines) with 2015 state-of-the-art technology data provided by Siemens Wind Power were assessed. The energy payback time was found to be less than 1 year for all technologies. The emissions of greenhouse gases amounted to less than 7 g CO2-eq/kWh for onshore and 11 g CO2-eq...

  19. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  20. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  1. New methodology in life cycle impact assessment (LCIA) of waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Wenzel, Henrik; Hauschild, Michael Zwicky

    chose among different waste water treatments? Which ones are most beneficial in a holistic perspective? Here, the life cycle assessment (LCA) approach as a decision supporting tool may help because its goal is to allow quantification and direct comparison of characteristics as diverse as energy...

  2. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies

    Directory of Open Access Journals (Sweden)

    Andi Mehmeti

    2018-02-01

    Full Text Available A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2 economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented and endpoint (3 damage-oriented levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas, coal gasification, water electrolysis via proton exchange membrane fuel cell (PEM, solid oxide electrolyzer cell (SOEC, biomass gasification and reforming, and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope, Water scarcity footprint (WSF quantified using Available WAter REmaining (AWARE method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway, identify the drivers of environmental impact, quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.

  3. Understanding Life Cycle Assessment: Applications for OSWER's Land and Materials Managment

    Science.gov (United States)

    The Office of Superfund Remediation and Technology Innovation (OSRTI) is hosting an informative webcast presentation by Jane Bare, expert on Life Cycle Impact Assessment (LCIA) in EPA's Office of Research and Development. Ms. Bare's presentation will provide an overview of LCIA, ...

  4. Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes.

    Science.gov (United States)

    Luján-Ornelas, Cristina; Mancebo Del C Sternenfels, Uriel; Güereca, Leonor Patricia

    2018-02-23

    This study compares the environmental performance of Mexican banknotes printed on high-durability cotton paper (HD paper) and thermoplastic polymer (polymer) through a life cycle assessment to appraise the environmental impacts from the extraction of raw materials to the final disposal of the banknotes. The functional unit was defined considering the next parameters: 1) lifespan of the banknotes, stablished in 31.5 and 54months for HD paper and polymer, respectively; 2) denomination, selecting $200 pesos banknotes; 3) a 5year time frame and 4) a defined amount of money, in this case stablished as the monthly cash supply of an average Mexican household, equaling $12,708 pesos. Accordingly, 121 pieces for the HD paper and 71 pieces for the polymer banknotes were analyzed. The results favor the banknotes printed on polymer substrate primarily because of the longer lifespan of this type of material; however, there is a considerable environmental impact in the stages of distribution, followed by the extraction of the raw materials (crude oil) during manufacturing. Regarding the HD cotton paper, the major impact corresponds to extraction of the raw materials, followed by the distribution of the banknotes. The inclusion of the automatic teller machines (ATMs) in the life cycle assessment of banknotes shows that the electricity required by these devices became the largest contributor to the environmental impacts. Additionally, the sensitivity analysis that the average lifetime of the banknotes is a determining factor for the environmental impacts associated with the whole life cycle of this product. The life cycle stages that refer to the extraction of the raw materials, combined with the average lifetime of the banknotes and the electricity required during the usage stage, are determining factors in the total environmental impact associated with Mexican banknotes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Study on the impact assessment for the life cycle assessment (LCA); Kankyo fuka bunseki ni okeru impact assessment ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the impact assessment which is an important step for LCA. For classification of the impact assessment, the existing literature was reviewed and a skeleton for the classification was proposed. The weighting factors for nine selected impact categories, which were used to calculate environmental load point (ELP) for the valuation, were obtained for two overseas groups, i.e., students of Amsterdam University and SETAC Europe members. It was found that the former provided the similar trends to general Japanese, however that the latter gave high weighting in the global warming and depletion of ozone layer. The ELP was proposed and applied to automatic washing machine, coffee maker, waste incineration power generation system, and co-generation system. As a result, its effectiveness was demonstrated. This report also describes problems for the LCA of thermal and material recycling of PS trays. 99 refs., 96 figs., 73 tabs.

  6. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    Directory of Open Access Journals (Sweden)

    Portha J.-F.

    2010-10-01

    Full Text Available Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects due to inorganics compounds. The influence of different process parameters (feed composition, reaction temperature is determined with respect to environmental impacts. Two allocation methods are analysed (mass and exergetic allocation and two different process versions are compared in order to determine the effect of some improvements on environmental impact. Les considérations liées à l’environnement doivent de plus en plus être prises en compte par les ingénieurs et les scientifiques afin de juger de la durabilité des procédés chimiques dans l’industrie pétrolière et gazière. Parmi les différentes méthodes d’analyse environnementale, l’Analyse de Cycle de Vie (ACV est très utilisée. Dans cette étude, l’ACV est appliquée au procédé de reformage catalytique du naphta en utilisant la méthode Eco-Indicateur 99 comme méthode d’analyse des impacts du cycle de vie. Les principaux impacts environnementaux du procédé sont la consommation de combustibles fossiles, le changement climatique et les effets sur la respiration liés aux composés organiques. L’influence de différents paramètres (composition de l’alimentation, température de réaction sur les impacts environnementaux est testée. Deux méthodes d’allocation sont analysées (allocation massique et énergétique et deux versions du procédé de reformage catalytique sont comparées afin de déterminer les améliorations possibles permettant de minimiser les impacts.

  7. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  8. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  9. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    Science.gov (United States)

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  10. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    Science.gov (United States)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  11. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  12. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  14. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    Science.gov (United States)

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  15. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment

    DEFF Research Database (Denmark)

    Ryberg, Morten Walbech; Rosenbaum, Ralph K.; Mosqueron, Luc

    2018-01-01

    Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders...... magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural...... to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation...

  16. Area of Concern: a new paradigm in life cycle assessment for ...

    Science.gov (United States)

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res

  17. Detailed Life Cycle Assessment of Bounty Paper Towel ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and activities' impacts. Methods that build on LCA strengths and illuminate other connected but less understood facets, related to social and economic impacts, would provide greater value to decision-makers. This study is a LCA that calculates the potential impacts associated with Bounty® paper towels from two facilities with different production lines, an older one (Albany, Georgia) representing established technology and the other (Box Elder, Utah), a newer state-of-the-art platform. This is unique in that it includes use of Industrial Process Systems Assessment (IPSA), new electricity and pulp data, modeled in open source software, and is the basis for the development of new integrated sustainability metrics (published separately). The new metrics can guide supply chain and manufacturing enhancements, and product design related to environmental protection and resource sustainability. Results of the LCA indicate Box Elder had improvements on environmental impact scores related to air emission indicators, except for particulate matter. Albany had lower water use impacts. After normalization of the results, fossil fuel depletion is the most critical environmental indicator. Pulp production, e

  18. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, Ali, E-mail: almakhsme@gmail.com; Serradj, Tayeb; Cheniti, Hamza

    2015-01-15

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10{sup 3} MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO{sub 2} eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10{sup −6} t NMVOC eq and 259.3 × 10{sup −6} t SO{sub 2} eq respectively.

  19. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    International Nuclear Information System (INIS)

    Makhlouf, Ali; Serradj, Tayeb; Cheniti, Hamza

    2015-01-01

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10 3 MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO 2 eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10 −6 t NMVOC eq and 259.3 × 10 −6 t SO 2 eq respectively

  20. Impact of advanced fuel cycles on uncertainty associated with geologic repositories

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Lee, Joon; Sutton, Mark; Greenberg, Harris R.; Robinson, Bruce A.; Nutt, W. Mark

    2013-01-01

    This paper provides a qualitative evaluation of the impact of advanced fuel cycles, particularly partition and transmutation of actinides, on the uncertainty associated with geologic disposal. Based on the discussion, advanced fuel cycles, will not materially alter (1) the repository performance (2) the spread in dose results around the mean (3) the modeling effort to include significant features, events, and processes in the performance assessment, or (4) the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the United States. (authors)

  1. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    Directory of Open Access Journals (Sweden)

    Sonia Longo

    2015-05-01

    Full Text Available The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause energy and environmental impacts during their life cycle, and in particular they are responsible of air pollutant emissions. In this context, the paper assesses the energy and environmental impacts of a 46 kW biomass boiler by applying the Life Cycle Assessment methodology, as regulated by the international standards of series ISO 14040, ISO 21930 and EN 15804. The following life-cycle steps are included in the analysis: raw materials and energy supply, manufacturing, installation, operation, transport, and end-of-life. The results of the analysis, showing a life-cycle primary energy consumption of about 2,622 GJ and emissions of about 21,664 kg CO2eq, can be used as a basis for assessing the real advantages due to the use of biomass boilers for heating and hot water production.

  2. Life cycle assessment as a method of limitation of a negative environment impact of castings

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-07-01

    Full Text Available Casting production constitutes environmental problems going far beyond the foundry plant area. Applying a notion of the life cycle the input (suppliers side and output factors (clients side can be identified. The foundry plant activities for the environment hazard mitigation can be situated on various stages of the casting life cycle. The environment impact of motorisation castings made of different materials – during the whole life cycle of castings – are discussed in the paper. It starts from the charge material production, then follows via the casting process, car assembly, car exploitation and ends at the car breaking up for scrap.

  3. Rethinking the area of protection "natural resources" in life cycle assessment.

    Science.gov (United States)

    Dewulf, Jo; Benini, Lorenzo; Mancini, Lucia; Sala, Serenella; Blengini, Gian Andrea; Ardente, Fulvio; Recchioni, Marco; Maes, Joachim; Pant, Rana; Pennington, David

    2015-05-05

    Life cycle impact assessment (LCIA) in classical life cycle assessment (LCA) aims at analyzing potential impacts of products and services typically on three so-called areas of protection (AoPs): Natural Environment, Human Health, and Natural Resources. This paper proposes an elaboration of the AoP Natural Resources. It starts with analyzing different perspectives on Natural Resources as they are somehow sandwiched in between the Natural Environment (their cradle) and the human-industrial environment (their application). Reflecting different viewpoints, five perspectives are developed with the suggestion to select three in function of classical LCA. They result in three safeguard subjects: the Asset of Natural Resources, their Provisioning Capacity, and their role in Global Functions. Whereas the Provisioning Capacity is fully in function of humans, the global functions go beyond provisioning as they include nonprovisioning functions for humans and regulating and maintenance services for the globe as a whole, following the ecosystem services framework. A fourth and fifth safeguard subject has been identified: recognizing the role Natural Resources for human welfare, either specifically as building block in supply chains of products and services as such, either with or without their functions beyond provisioning. But as these are far broader as they in principle should include characterization of mechanisms within the human industrial society, they are considered as subjects for an integrated sustainability assessment (LCSA: life cycle sustainability assessment), that is, incorporating social, economic and environmental issues.

  4. Review on Suitability of Available LCIA Methodologies for Assessing Environmental Impact of the Food Sector

    Directory of Open Access Journals (Sweden)

    Pegah Amani

    2011-12-01

    Full Text Available Production, processing, distribution, and consumption of a wide variety of products in the food sector have different ranges of environmental impacts. Methodologies used in environmental impact assessment differ in which set of impact categories is covered and which models are used to assess them. In the food sector, life cycle assessment results are mostly presented without any clear distinction of the principles applied to selecting the relevant methodology. In this paper, the most relevant life cycle impact assessment methodologies are determined from the list of recommended methodologies published recently in the international reference life cycle data system (ILCD handbook. The range of the relevant impacts covered is considered as the main indicator decisive in selecting a methodology. The selection of the relevant set of impact categories is performed through an overview of more than 50 recent LCA case studies of different products in the sector. The result of the research is a short list of three LCIA methodologies recommended to be used for environmental impact assessment of products in the food sector.

  5. Evaluating Environmental Governance along Cross-Border Electricity Supply Chains with Policy-Informed Life Cycle Assessment: The California-Mexico Energy Exchange.

    Science.gov (United States)

    Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B

    2018-05-01

    This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.

  6. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  7. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  8. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  9. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    International Nuclear Information System (INIS)

    Brunet, Robert; Cortés, Daniel; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2012-01-01

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: ► Novel framework for the optimal design of thermdoynamic cycles. ► Combined use of simulation and optimization tools. ► Optimal design and operating conditions according to several economic and LCA impacts. ► Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  10. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Robert; Cortes, Daniel [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Guillen-Gosalbez, Gonzalo [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Jimenez, Laureano [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Boer, Dieter [Departament d' Enginyeria Mecanica, Escola Tecnica Superior d' Enginyeria, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007, Tarragona (Spain)

    2012-12-15

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: Black-Right-Pointing-Pointer Novel framework for the optimal design of thermdoynamic cycles. Black-Right-Pointing-Pointer Combined use of simulation and optimization tools. Black-Right-Pointing-Pointer Optimal design and operating conditions according to several economic and LCA impacts. Black-Right-Pointing-Pointer Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  11. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    Science.gov (United States)

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana

    NARCIS (Netherlands)

    Agyekum, Eric Ofori; Fortuin, K.P.J.; Harst-Wintraecken, van der E.J.M.

    2017-01-01

    This case study assessed the environmental and social impact of bicycle frames made from wild Ghanaian bamboo. The environmental life cycle assessment (LCA) of the bamboo frame was compared to the LCA results of an aluminium frame and a steel frame. The results show that the overall environmental

  13. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  14. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  15. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  16. Occupational Health Impacts Due to Exposure to Organic Chemicals over an Entire Product Life Cycle.

    Science.gov (United States)

    Kijko, Gaël; Jolliet, Olivier; Margni, Manuele

    2016-12-06

    This article presents an innovative approach to include occupational exposures to organic chemicals in life cycle impact assessment (LCIA) by building on the characterization factors set out in Kijko et al. (2015) to calculate the potential impact of occupational exposure over the entire supply chain of product or service. Based on an economic input-output model and labor and economic data, the total impacts per dollar of production are provided for 430 commodity categories and range from 0.025 to 6.6 disability-adjusted life years (DALY) per million dollar of final economic demand. The approach is applied on a case study assessing human health impacts over the life cycle of a piece of office furniture. It illustrates how to combine monitoring data collected at the manufacturing facility and averaged sector specific data to model the entire supply chain. This paper makes the inclusion of occupational exposure to chemicals fully compatible with the LCA framework by including the supply chain of a given production process and will help industries focus on the leading causes of human health impacts and prevent impact shifting.

  17. Life-Cycle Assessment of Prototype Unit of Emergency Housing. The search for the zero impact

    Directory of Open Access Journals (Sweden)

    J. M. Ros García

    2017-09-01

    Full Text Available Prototype Unit of Emergency Housing (PUEH is the result of the Applied Research Project VEM (Military Emergency Housing developed in collaboration with Escuela Politécnica Superior (Universidad CEU and the company Air-bus Defense & Space. It is designed as a modular and industrialized unit of basic habitability, with programmed and expandable growth, designed to provide shelter and protection in environments of humanitarian crises or contingencies of social vulnerability in order to ensure sustainable habitat for emergencies.The influence of the construction processes and materials involved in the manufacture of this PUEH have on the environment, analyzed using the methodology of life-cycle assessment (LCA, considered especially critical recycling the mate-rials used. Thus, in order to reduce the environmental impact environmental, each of the component parts of the developed prototype unit are quantified, evaluating the benefits resulting from the methodology DfMA (Design for Manufacturing and Assembly.

  18. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  20. A First Case Study of a Life Cycle-Based Alternatives Assessment (LCAA)

    DEFF Research Database (Denmark)

    Fantke, Peter; Huang, L.; Overcash, Michael

    2017-01-01

    cycle impacts. Our approach is evaluated in a case study, through which we outline future research needs to fully operationalize a consistent and Life Cycle-based Alternatives Assessment (LCAA). We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions...... and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. When combined with chemical masses in products and further with toxicity information, this approach is a resourceful way to inform AA. Our case study reveals that replacing...... various population groups including workers, consumers and the general public, while life cycle impacts need to focus on categories relevant for a given AA chemical-product application. We systematically define the scope of AA and identify key elements for quantitatively considering exposure and life...

  1. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  2. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, Niels [ESU-services, Environmental Consultancy for Business and Authorities, Uster (Switzerland)

    2005-07-01

    This paper describes the life cycle assessment (LCA) for photovoltaic (PV) power plants in the new ecoinvent database. Twelve different, grid-connected photovoltaic systems were studied for the situation in Switzerland in the year 2000. They are manufactured as panels or laminates, from monocrystalline or polycrystalline silicon, installed on facades, slanted or flat roofs, and have 3 kW{sub p} capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, mounting structure, 30 years operation and dismantling. In contrast to existing LCA studies, country-specific electricity mixes have been considered in the life cycle inventory (LCI) in order to reflect the present market situation. The new approach for the allocation procedure in the inventory of silicon purification, as a critical issue of former studies, is discussed in detail. The LCI for photovoltaic electricity shows that each production stage is important for certain elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g., process emissions of NO{sub x} from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The presented life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology (until 2010) helps to assess the relative influence of technology improvements for some processes. The very detailed ecoinvent database forms a good basis for similar studies in other European countries or for other types of solar cells. (Author)

  3. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  4. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  5. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  6. Greenhouse gas impacts of ethanol from Iowa corn: Life cycle assessment versus system wide approach

    International Nuclear Information System (INIS)

    Feng, Hongli; Rubin, Ofir D.; Babcock, Bruce A.

    2010-01-01

    Life cycle assessment (LCA) is the standard approach used to evaluate the greenhouse gas (GHG) benefits of biofuels. However, the need for the appropriate use of LCA in policy contexts is highlighted by recent findings that corn-based ethanol may actually increase GHG emissions. This is in contrary to most existing LCA results. LCA estimates can vary across studies due to heterogeneities in inputs and production technology. Whether marginal or average impacts are considered can matter as well. Most important of all, LCA is product-centered. The determination of the impact of biofuels expansion requires a system wide approach (SWA) that accounts for impacts on all affected products and processes. This paper presents both LCA and SWA for ethanol based on Iowa corn. LCA was conducted in several different ways. Growing corn in rotation with soybean generates 35% less GHG emissions than growing corn after corn. Based on average corn production, ethanol's GHG benefits were lower in 2007 than in 2006 because of an increase in continuous corn in 2007. When only additional corn was considered, ethanol emitted about 22% less GHGs than gasoline. SWA was applied to two simple cases. Using 2006 as a baseline and 2007 as a scenario, corn ethanol's benefits were about 20% of the emissions of gasoline. If geographical limits are expanded beyond Iowa, then corn ethanol could generate more GHG emissions than gasoline. These results highlight the importance of boundary definition for both LCA and SWA.

  7. Greenhouse gas impacts of ethanol from Iowa corn: Life cycle assessment versus system wide approach

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hongli [Department of Economics, 377 Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States); Rubin, Ofir D. [Department of Economics, 573 Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States); Babcock, Bruce A. [Center for Agricultural and Rural Development (CARD), Iowa State University, Ames, IA 50011-1070 (United States); Department of Economics, 578F Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States)

    2010-06-15

    Life cycle assessment (LCA) is the standard approach used to evaluate the greenhouse gas (GHG) benefits of biofuels. However, the need for the appropriate use of LCA in policy contexts is highlighted by recent findings that corn-based ethanol may actually increase GHG emissions. This is in contrary to most existing LCA results. LCA estimates can vary across studies due to heterogeneities in inputs and production technology. Whether marginal or average impacts are considered can matter as well. Most important of all, LCA is product-centered. The determination of the impact of biofuels expansion requires a system wide approach (SWA) that accounts for impacts on all affected products and processes. This paper presents both LCA and SWA for ethanol based on Iowa corn. LCA was conducted in several different ways. Growing corn in rotation with soybean generates 35% less GHG emissions than growing corn after corn. Based on average corn production, ethanol's GHG benefits were lower in 2007 than in 2006 because of an increase in continuous corn in 2007. When only additional corn was considered, ethanol emitted about 22% less GHGs than gasoline. SWA was applied to two simple cases. Using 2006 as a baseline and 2007 as a scenario, corn ethanol's benefits were about 20% of the emissions of gasoline. If geographical limits are expanded beyond Iowa, then corn ethanol could generate more GHG emissions than gasoline. These results highlight the importance of boundary definition for both LCA and SWA. (author)

  8. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  9. Life cycle assessment of products and technologies. LCA Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, H.; Nors, M. (eds.)

    2009-12-15

    VTT Technical Research Centre of Finland organised a Symposium 'Life Cycle Assessment of Products and Technologies' on the 6th of October, 2009. The Symposium gave a good overview of methods, tools and applications of Life Cycle Assessment developed and utilised in several technology fields of VTT. The 12 Symposium papers deal with recent LCA studies on products and technologies. The scope ranges from beverage cups to urban planning, from inventory databases to rating systems. Topical issues relating to climate change concern biorefineries and the overall impacts of the utilisation of biomass. The calculation of carbon footprints is also introduced through paper products and magazines. One example of LCA tools developed at VTT addresses cement manufacturing. VTT's transport emission database, LIPASTO, was introduced in detail. The use of LCA methods and life cycle thinking is described in various contexts: product development in relation to precision instruments; selection of materials and work processes in relation to sediment remediation project; and procedures of sustainability rating through VTT's office building Digitalo. The Climate Bonus project presented a demonstrated ICT support that informs about the greenhouse gas emissions and carbon footprints of households. (orig.)

  10. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  11. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    Science.gov (United States)

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  12. A systematic review of bioenergy life cycle assessments

    International Nuclear Information System (INIS)

    Muench, Stefan; Guenther, Edeltraud

    2013-01-01

    Highlights: • We conducted a systematic literature review of bioenergy LCAs. • We provide a detailed overview of GWP, AP, and EP for biomass electricity and heat. • We discuss methodological choices that can lead to variations in results. • Relevant choices are functional unit, allocation method, system boundary, and carbon modelling. - Abstract: On a global scale, bioenergy is highly relevant to renewable energy options. Unlike fossil fuels, bioenergy can be carbon neutral and plays an important role in the reduction of greenhouse gas emissions. Biomass electricity and heat contribute 90% of total final biomass energy consumption, and many reviews of biofuel Life Cycle Assessments (LCAs) have been published. However, only a small number of these reviews are concerned with electricity and heat generation from biomass, and these reviews focus on only a few impact categories. No review of biomass electricity and heat LCAs included a detailed quantitative assessment. The failure to consider heat generation, the insufficient consideration of impact categories, and the missing quantitative overview in bioenergy LCA reviews constitute research gaps. The primary goal of the present review was to give an overview of the environmental impact of biomass electricity and heat. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of biomass electricity and heat LCAs. We conducted a quantitative analysis of the environmental impact of biomass electricity and heat. There is a significant variability in results of biomass electricity and heat LCAs. Assumptions regarding the bioenergy system and methodological choices are likely reasons for extreme values. The secondary goal of this review is to discuss influencing methodological choices. No general consensus has been reached regarding the optimal functional unit, the ideal allocation of environmental impact between co-products, the definition of the system boundary

  13. Comparative study on life cycle environmental impact assessment of copper and aluminium cables

    Science.gov (United States)

    Bao, Wei; Lin, Ling; Song, Dan; Guo, Huiting; Chen, Liang; Sun, Liang; Liu, Mei; Chen, Jianhua

    2017-11-01

    With the rapid development of industrialization and urbanization in China, domestic demands for copper and aluminium resources increase continuously and the output of copper and aluminium minerals rises steadily. The output of copper in China increased from 0.6 million tons (metal quantity) in 2003 to 1.74 million tons (metal quantity) in 2014, and the output of bauxite increased from 21 million tons in 2006 to 59.21 million tons in 2014. In the meantime, the import of copper and aluminium minerals of China is also on a rise. The import of copper concentrate and bauxite increased from 4.94 million tons and 9.68 million tons in 2006 to 10.08 million tons and 70.75 million tons in 2013 respectively. Copper and aluminium resources are widely applied in fields such as construction, electrical and electronics, machinery manufacturing, and transportation, and serve as important material basis for the national economic and social development of China. Cable industry is a typical industry where copper and aluminium resources are widely used. In this paper, a product assessment model is built from the perspective of product life cycle. Based on CNLCD database, differences in environmental impacts of copper and aluminium cables are analyzed from aspects such as resource acquisition, product production, transportation, utilization, and resource recycling. Furthermore, the advantages and disadvantages of products at different stages with different types of environmental impact are analyzed, so as to provide data support for cable industry in terms of product design and production, etc.

  14. Life cycle assessment of Portland cement concrete interstate highway rehabilitation and replacement.

    Science.gov (United States)

    2010-02-01

    Life Cycle Assessment (LCA) is a tool that can be used to identify ways to decrease the environmental impact of a product or process and to inform decision makers of the consequences of changes to the product or process. LCA encompasses all aspects o...

  15. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    Science.gov (United States)

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  16. An approach to incorporate risks into a product's life-cycle assessment

    International Nuclear Information System (INIS)

    Pirhonen, P.

    1995-01-01

    Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products' life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can be compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied

  17. Comparison between major repair and replacement options for a bridge deck life cycle assessment: A case study

    Directory of Open Access Journals (Sweden)

    Abu Dabous Saleh

    2017-01-01

    Full Text Available Material production, manufacturing, transportation, usage, and end of lifeprocessing are usually the main contributors defining the life cycle assessment (LCA. Bridge infrastructure is important to the economy and the society. Over their life cycle, highway bridges experience several stressors that can significantly affect their structural performance and therefore require rehabilitation. This paper discusses the life cycle analysis of bridge rehabilitation decisions and demonstrates the analysis with a case study of a bridge located in Ontario, Canada. The LCA of the bridge deck is analyzed for two rehabilitation strategies: major repair and replacement. The study focuses on evaluating the different life cycle phases of the bridge deck by assessing their carbon dioxide emission, energy consumption and cost. Also, the paper presents the impact of the different elements within each phase to identify the most contributing elements. The LCA of the bridge deck is analyzed and estimated with the aid of CES EduPack 2016 software that includes a database of more than 4000 different materials and more than 200 manufacturing processes. Analysis of the case study shows that material phase causes significant life cycle impact. The study concluded that the deck replacement yields higher environmental impact and life cycle cost compared to repairing and strengthening the deck.

  18. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  19. Methods for land use impact assessment: A review

    International Nuclear Information System (INIS)

    Perminova, Tataina; Sirina, Natalia; Laratte, Bertrand; Baranovskaya, Natalia; Rikhvanov, Leonid

    2016-01-01

    Many types of methods to assess land use impact have been developed. Nevertheless a systematic synthesis of all these approaches is necessary to highlight the most commonly used and most effective methods. Given the growing interest in this area of research, a review of the different methods of assessing land use impact (LUI) was performed using bibliometric analysis. One hundred eighty seven articles of agricultural and biological science, and environmental sciences were examined. According to our results, the most frequently used land use assessment methods are Life-Cycle Assessment, Material Flow Analysis/Input–Output Analysis, Environmental Impact Assessment and Ecological Footprint. Comparison of the methods allowed their specific features to be identified and to arrive at the conclusion that a combination of several methods is the best basis for a comprehensive analysis of land use impact assessment. - Highlights: • We identified the most frequently used methods in land use impact assessment. • A comparison of the methods based on several criteria was carried out. • Agricultural land use is by far the most common area of study within the methods. • Incentive driven methods, like LCA, arouse the most interest in this field.

  20. Methods for land use impact assessment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Perminova, Tataina, E-mail: tatiana.perminova@utt.fr [Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes, CNRS UMR 6281, 12 Rue Marie Curie CS 42060, F-10004 Troyes Cedex (France); Department of Geoecology and Geochemistry, Institute of Natural Resources, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation); Sirina, Natalia, E-mail: natalia.sirina@utt.fr [Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes, CNRS UMR 6281, 12 Rue Marie Curie CS 42060, F-10004 Troyes Cedex (France); Laratte, Bertrand, E-mail: bertrand.laratte@utt.fr [Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes, CNRS UMR 6281, 12 Rue Marie Curie CS 42060, F-10004 Troyes Cedex (France); Baranovskaya, Natalia, E-mail: natalya.baranovs@mail.ru [Department of Geoecology and Geochemistry, Institute of Natural Resources, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation); Rikhvanov, Leonid, E-mail: rikhvanov@tpu.ru [Department of Geoecology and Geochemistry, Institute of Natural Resources, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2016-09-15

    Many types of methods to assess land use impact have been developed. Nevertheless a systematic synthesis of all these approaches is necessary to highlight the most commonly used and most effective methods. Given the growing interest in this area of research, a review of the different methods of assessing land use impact (LUI) was performed using bibliometric analysis. One hundred eighty seven articles of agricultural and biological science, and environmental sciences were examined. According to our results, the most frequently used land use assessment methods are Life-Cycle Assessment, Material Flow Analysis/Input–Output Analysis, Environmental Impact Assessment and Ecological Footprint. Comparison of the methods allowed their specific features to be identified and to arrive at the conclusion that a combination of several methods is the best basis for a comprehensive analysis of land use impact assessment. - Highlights: • We identified the most frequently used methods in land use impact assessment. • A comparison of the methods based on several criteria was carried out. • Agricultural land use is by far the most common area of study within the methods. • Incentive driven methods, like LCA, arouse the most interest in this field.

  1. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  2. Life cycle assessment in support of sustainable transportation

    Science.gov (United States)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  3. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  4. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    Science.gov (United States)

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  5. Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2015-05-01

    Full Text Available The combustion of peat for energy generation accounts for approximately 4.1% of Ireland’s overall greenhouse gas (GHG emissions, with current levels of combustion resulting in the emission of 2.8 Mt of CO2 per annum. The aim of this research is to evaluate the life cycle environmental impacts of peat use for energy generation in Ireland, from peatland drainage and industrial extraction, to transportation, combustion, and subsequent after-use of the cutaway area, utilising Irish-specific emission factors. The environmental impacts considered are global warming potential, acidification potential, and eutrophication potential. In addition, the cumulative energy demand of the system is evaluated. Previous studies on the environmental impact of peat for energy in Ireland relied on default Intergovernmental Panel on Climate Change (IPCC emission factors (EFs. This research utilises Irish-specific EFs and input data to reduce uncertainty associated with the use of default IPCC EFs, and finds that using default IPCC EFs overestimates the global warming potential when compared to Irish-specific EFs by approximately 2%. The greatest contribution to each of the environmental impacts considered arises from emissions generated during peat combustion, which accounts for approximately 95% of each of the environmental impact categories considered. Other stages of the life-cycle, such as impacts emanating from the peat extraction area, fossil fuel usage in harvesting and transportation machinery, and after-use of the cutaway area have much smaller effects on overall results. The transformation of cutaway peatlands to different after-use alternatives has the potential to mitigate some of the effects of peatland degradation and peat combustion.

  6. Detailed Life Cycle Assessment of Bounty Paper Towel Operations in the United States

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and ac...

  7. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  9. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  10. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  11. The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour.

    Science.gov (United States)

    Heesch, Kristiann C; Langdon, Michael

    2016-02-01

    Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.

  12. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  13. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  14. Environmental impact assessment and eco-friendly decision-making in civil structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Moon-Seock; Mha, Ho-Seong; Joung, Jung-Yeun

    2013-09-15

    This study develops two useful procedures in performing an environmental-impact assessment. One is the advanced life-cycle assessment (LCA) method, which effectively tracks the flow of materials and considers the recycling and demolition of a civil structure. The other is an eco-friendly decision-making procedure, which may effectively apply when determining the prototype of a civil structure. The advanced LCA method differs from traditional LCA procedure, as it classifies the input material prior to the impact assessment. Classification work is performed to establish independent life-cycle stages for each material. The processes of recycling and demolition are appropriately added to the life-cycle stages. The impact assessment is performed separately for the materials, and results are aggregated at the end of the analysis. The eco-friendly decision-making procedure enables designers to choose an economical, and environmentally friendly, alternative during the planning phase of the construction project. This procedure rationally amalgamates economical value and environmental effects into a single indicator. The life cycle cost (LCC) of a structure can be analysed by using conventional LCC tools, whereas the environmental impact is estimated by LCA. The results from LCC and LCA are then integrated by using either a CO2 conversion method or an analytical hierarchy process (AHP). The CO2 conversion method presents the result as a monetary value, whereas the AHP presents the result as a non-dimensional value. A practical example using a steel box girder bridge and a pre-stressed concrete (PSC) box-girder bridge is also given in order to aid the understanding of the presented procedure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Life cycle impact assessment (LCIA) of paper making process in Iran

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... advantage of reducing deforestation (Ekvall, 1999). Due to the fact that ... LCA is the assessment of the environmental impacts of a given product or process ..... energy: Replacing mazut with nuclear energy, hydro- electricity or ...

  16. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  17. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  18. Software Integration of Life Cycle Assessment and Economic Analysis for Process Evaluation

    DEFF Research Database (Denmark)

    Kalakula, Sawitree; Malakula, Pomthong; Siemanonda, Kitipat

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design...... of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, to definedesign/retrofit targets for process improvements. Economic analysis is performed to evaluate the profitability of the process........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...

  19. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  20. Assessing the impact of Narasin on biogeochemical N-cycling in unsaturated soil.

    Science.gov (United States)

    Devries, S. L.; Loving, M.; Logozzo, L. A.; Zhang, P.

    2016-12-01

    Agricultural soils are exposed to Narasin, an anti-coccidiodal drug, when poultry litter is applied as a nitrogen fertilizer. Though it has a relatively short half-life in soil, narasin may persist at concentrations ranging from pg·kg-1 to ng·kg-1. A recent study reported that that exposure in this range affect the composition of soil microbial communities, leading to delayed or modified rates of biogeochemical nitrogen redox reactions. The objective of this experiment was to conduct a comprehensive examination into the effects of 1-1000 ng kg-1 Narasin on the rates of nitrogen mineralization, nitrification, and denitrification as well as the associated impacts on soil N availability and N2O losses. Soils tested at 40%, 60%, and 80% WFPS showed that ultralow doses of narasin (1-1000 ng kg-1) can significantly alter one or more steps in the N cycle in ways that may impact N availability to crop plants and increase non-point source N pollution.

  1. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming; TOPICAL

    International Nuclear Information System (INIS)

    Spath, P. L.; Mann, M. K.

    2000-01-01

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes

  2. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?

    Science.gov (United States)

    Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J

    2016-04-05

    Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.

  3. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison...... will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  4. A Comparative Assessment of Life-Cycle Greenhouse Gas Emissions from Hypothetical Electric Airport Transportation Services in Thailand

    Science.gov (United States)

    Koiwanit, J.

    2018-05-01

    Global warming is an increase of average temperature in the atmosphere, which causes adverse effects on the environment. Carbon dioxide (CO2) from transportation sector is one of the main contributors of the overall greenhouse gases (GHG). To cope with this issue, electric car services are increasingly seen as popular alternative modes of green transportation especially for urban cities as it is more flexible, more environmentally-friendly, and less expensive than the use of conventional vehicles. The study analyses and compare the hypothetical electric car systems from airport transportation services. Center of Environmental Science of Leiden University (CML) 2001, the Life Cycle Impact Assessment (LCIA) method, is applied to convert life cycle inventory data into environmental impacts. The observed results showed that the electric shuttle bus had the highest impact in global warming potential (GWP) compared to other transportation types. Alternatively, this Life Cycle Assessment (LCA) study that evaluated different transportations provided important information for decision makers on quantifying the differences between each scenario.

  5. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  6. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    Science.gov (United States)

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE.

  7. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  8. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  9. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  10. Life cycle assessment of onshore and offshore wind energy-from theory to application

    International Nuclear Information System (INIS)

    Bonou, Alexandra; Laurent, Alexis; Olsen, Stig I.

    2016-01-01

    Highlights: • An LCA of 2 onshore and 2 offshore wind power plants was performed. • Onshore wind power performs better than offshore per kWh delivered to the grid. • Materials are responsible for more than 79% and 70% of climate change impacts onshore and offshore respectively. • The bigger, direct drive turbines perform better than the smaller geared ones. • Climate change is a good KPI for wind power plant hotspot identification. - Abstract: This study aims to assess the environmental impacts related to the provision of 1 kWh to the grid from wind power in Europe and to suggest how life cycle assessment can inform technology development and system planning. Four representative power plants onshore (with 2.3 and 3.2 MW turbines) and offshore (4.0 and 6.0 MW turbines) with 2015 state-of-the-art technology data provided by Siemens Wind Power were assessed. The energy payback time was found to be less than 1 year for all technologies. The emissions of greenhouse gases amounted to less than 7 g CO_2-eq/kWh for onshore and 11 g CO_2-eq/kWh for offshore. Climate change impacts were found to be a good indicator for overall hotspot identification however attention should also be drawn to human toxicity and impacts from respiratory inorganics. The overall higher impact of offshore plants, compared to onshore ones, is mainly due to larger high-impact material requirements for capital infrastructure. In both markets the bigger turbines with more advanced direct drive generator technology is shown to perform better than the smaller geared ones. Capital infrastructure is the most impactful life cycle stage across impacts. It accounts for more than 79% and 70% of climate change impacts onshore and offshore respectively. The end-of-life treatment could lead to significant savings due to recycling, ca. 20–30% for climate change. In the manufacturing stage the impacts due to operations at the case company do not exceed 1% of the total life cycle impacts. This finding

  11. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Mezzullo, William G.; McManus, Marcelle C.; Hammond, Geoff P.

    2013-01-01

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  12. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    Science.gov (United States)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  13. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems.

    Science.gov (United States)

    Taelman, Sue Ellen; Schaubroeck, Thomas; De Meester, Steven; Boone, Lieselot; Dewulf, Jo

    2016-04-15

    Terrestrial land and its resources are finite, though, for economic and socio-cultural needs of humans, these natural resources are further exploited. It highlights the need to quantify the impact humans possibly have on the environment due to occupation and transformation of land. As a starting point of this paper (1(st) objective), the land use activities, which may be mainly socio-culturally or economically oriented, are identified in addition to the natural land-based processes and stocks and funds that can be altered due to land use. To quantify the possible impact anthropogenic land use can have on the natural environment, linked to a certain product or service, life cycle assessment (LCA) is a tool commonly used. During the last decades, many indicators are developed within the LCA framework in an attempt to evaluate certain environmental impacts of land use. A second objective of this study is to briefly review these indicators and to categorize them according to whether they assess a change in the asset of natural resources for production and consumption or a disturbance of certain ecosystem processes, i.e. ecosystem health. Based on these findings, two enhanced proxy indicators are proposed (3(rd) objective). Both indicators use net primary production (NPP) loss (potential NPP in the absence of humans minus remaining NPP after land use) as a relevant proxy to primarily assess the impact of land use on ecosystem health. As there are two approaches to account for the natural and productive value of the NPP remaining after land use, namely the Human Appropriation of NPP (HANPP) and hemeroby (or naturalness) concepts, two indicators are introduced and the advantages and limitations compared to state-of-the-art NPP-based land use indicators are discussed. Exergy-based spatially differentiated characterization factors (CFs) are calculated for several types of land use (e.g., pasture land, urban land). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Including biodiversity in life cycle assessment – State of the art, gaps and research needs

    International Nuclear Information System (INIS)

    Winter, Lisa; Lehmann, Annekatrin; Finogenova, Natalia; Finkbeiner, Matthias

    2017-01-01

    Purpose: For over 20 years the feasibility of including man-made impacts on biodiversity in the context of Life Cycle Assessment (LCA) has been explored. However, a comprehensive biodiversity impact assessment has so far not been performed. The aim of this study is to analyse how biodiversity is currently viewed in LCA, to highlight limitations and gaps and to provide recommendations for further research. Method: Firstly, biodiversity indicators are examined according to the level of biodiversity they assess (genetic, species, ecosystem) and to their usefulness for LCA. Secondly, relevant pressures on biodiversity that should be included in LCA are identified and available models (in and outside of an LCA context) for their assessment are discussed. Thirdly, existing impact assessment models are analysed in order to determine whether and how well pressures are already integrated into LCA. Finally, suggestions on how to include relevant pressures and impacts on biodiversity in LCA are provided and the necessary changes in each LCA phase that must follow are discussed. Results: The analysis of 119 indicators shows that 4% of indicators represent genetic diversity, 40% species diversity and 35% ecosystem diversity. 21% of the indicators consider further biodiversity-related topics. Out of the indicator sample, 42 indicators are deemed useful as impact indicators in LCA. Even though some identified pressures are already included in LCA with regard to their impacts on biodiversity (e.g. land use, carbon dioxide emissions etc.), other proven pressures on biodiversity have not yet been considered (e.g. noise, artificial light). Conclusion: Further research is required to devise new options (e.g. impact assessment models) for integrating biodiversity into LCA. The final goal is to cover all levels of biodiversity and include all missing pressures in LCA. Tentative approaches to achieve this goal are outlined. - Highlights: •Calculating man-made impacts highlights

  15. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  16. Life cycle assessment: Existing building retrofit versus replacement

    Science.gov (United States)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  17. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  18. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  19. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning; Yang, Yang; Cai, Hao; Liu, Jingru; Ren, Lantian; Yang, Jianxin; Xie, Guang Hui

    2017-09-01

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well to wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.

  20. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    Science.gov (United States)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  1. Environmental Performance of Kettle Production: Product Life Cycle Assessment

    Science.gov (United States)

    Marcinkowski, Andrzej; Zych, Krzysztof

    2017-12-01

    The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  2. ENVIRONMENTAL PERFORMANCE OF KETTLE PRODUCTION: PRODUCT LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Andrzej MARCINKOWSKI

    2017-10-01

    Full Text Available The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach where the main function is boiling 3360 l of water during 4- year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g. The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste sce-nario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix which determined final comparison results. Basing on LCA results, some im-provements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  3. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  4. Environmental impact assessment of conventional and organic milk production

    NARCIS (Netherlands)

    Boer, de I.J.M.

    2003-01-01

    Organic agriculture addresses the public demand to diminish environmental pollution of agricultural production. Until now, however, only few studies tried to determine the integrated environmental impact of conventional versus organic production using life cycle assessment (LCA). The aim of this

  5. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  6. Investigation on life cycle assessment of lead and zinc production

    Directory of Open Access Journals (Sweden)

    Sabere Nazari

    2015-12-01

    Full Text Available Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion of water resources were collected and discussed. It was concluded that depletion of water resources affected the environment and this was the main issue of the lead and zinc production of this plant. According to the results, in the global warming’s impact category, the proportion of carbon dioxide is more than that of methane. The results also showed that in the acidification’s impact category, the nitrogen oxide proportion is greater compared to that of the sulfur dioxide.

  7. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  8. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory M.

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range...... of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...... on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil...

  9. Evaluation of Selection Methods for use in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Birkved, Morten; Hauschild, Michael Zwicky

    2003-01-01

    Today very few LCA studies include ecotoxicity and human toxicity in the impact assessment and if they do it is typically highly incomplete. The reason for this seems to be that in many cases an extremely high number of chemical emissions from the inventory potentially contribute to the toxicity...

  10. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  11. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  12. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  13. Considering capital goods in life cycle assessments by input-output analysis. Offshore wind farm as an application example

    International Nuclear Information System (INIS)

    Eickelkamp, Timo

    2013-01-01

    Capital goods are not normally taken into consideration in assessing the sustainability of products on the basis of life cycle assessments. Capital goods are machines and buildings that are used for production purposes over the course of a product's life cycle. Using an offshore wind farm as an example the present study shows how capital goods can be taken into account via a methodologically expanded input-output analysis and thus factored into the life cycle assessment. Besides comparing different calculation methods the author performs a detailed analysis of those parameters with the greatest influence on the outcome. The results show that capital goods have a substantial impact on sustainability in both energy-related and environmental terms. Capital goods should therefore be taken into consideration in life cycle assessments.

  14. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  15. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  16. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment

    DEFF Research Database (Denmark)

    Müller, Nienke; de Zwart, Dick; Hauschild, Michael Zwicky

    2017-01-01

    Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources, such as the Eur......Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources......, such as the European Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) database. The present study explored REACH as a potential data source for LCIA based on matching reported ecotoxicity data for substances that are currently also included in the United Nations Environment Programme....../Society for Environmental Toxicology and Chemistry (UNEP/SETAC) scientific consensus model USEtox for characterizing toxicity impacts. Data are evaluated with respect to number of data points, reported reliability, and test duration, and are compared with data listed in USEtox at the level of hazardous concentration for 50...

  17. Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution.

    Science.gov (United States)

    Pourzahedi, Leila; Vance, Marina; Eckelman, Matthew J

    2017-06-20

    Increasing use of silver nanoparticles (AgNPs) in consumer products as antimicrobial agents has prompted extensive research toward the evaluation of their potential release to the environment and subsequent ecotoxicity to aquatic organisms. It has also been shown that AgNPs can pose significant burdens to the environment from life cycle emissions associated with their production, but these impacts must be considered in the context of actual products that contain nanosilver. Here, a cradle-to-gate life cycle assessment for the production of 15 different AgNP-enabled consumer products was performed, coupled with release studies of those same products, thus providing a consistent analytical platform for investigation of potential nanosilver impacts across a range of product types and concentrations. Environmental burdens were assessed over multiple impact categories defined by the United States Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) method. Depending on the product composition and silver loading, the contribution of AgNP synthesis to the overall impacts was seen to vary over a wide range from 1% to 99%. Release studies found that solid polymeric samples lost more silver during wash compared to fibrous materials. Estimates of direct ecotoxicity impacts of AgNP releases from those products with the highest leaching rates resulted in lower impact levels compared to cradle-to-gate ecotoxicity from production for those products. Considering both cradle-to-gate production impacts and nanoparticle release studies, in conjunction with estimates of life cycle environmental and health benefits of nanoparticle incorporation, can inform sustainable nanoenabled product design.

  18. Life cycle assessment of a multi-megawatt wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E.; Pellegrini, S. [Grupo Eolicas Riojanas, R and D Division, Carretera de Laguardia, 91-93, 26006 Logrono, La Rioja (Spain); Sanz, F.; Blanco, J. [Department of Mechanical Engineering, University of La Rioja, Logrono, La Rioja (Spain); Jimenez, E. [Department of Electrical Engineering, University of La Rioja, Logrono, La Rioja (Spain)

    2009-03-15

    At the present moment in time, renewable energy sources have achieved great significance for modern day society. The main reason for this boom is the need to use alternative sources of energy to fossil fuels which are free of CO{sub 2} emissions and contamination. Among the current renewable energy sources, the growth of wind farms has been spectacular. Wind power uses the kinetic energy of the wind to produce a clean form of energy without producing contamination or emissions. The problem it raises is that of quantifying to what extent it is a totally clean form of energy. In this sense we have to consider not only the emissions produced while they are in operation, but also the contamination and environmental impact resulting from their manufacture and the future dismantling of the turbines when they come to the end of their working life. The aim of this study is to analyse the real impact that this technology has if we consider the whole life cycle. The application of the ISO 14040 standard [ISO. ISO 14040. Environmental management - life cycle assessment - principles and framework. Geneva, Switzerland: International Standard Organization; 1998.] allows us to make an LCA study quantifying the overall impact of a wind turbine and each of its components. Applying this methodology, the wind turbine is analysed during all the phases of its life cycle, from cradle to grave, with regard to the manufacture of its key components (through the incorporation of cut-off criteria), transport to the wind farm, subsequent installation, start-up, maintenance and final dismantling and stripping down into waste materials and their treatment. (author)

  19. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  20. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil.

    Science.gov (United States)

    Piekarski, Cassiano Moro; de Francisco, Antonio Carlos; da Luz, Leila Mendes; Kovaleski, João Luiz; Silva, Diogo Aparecido Lopes

    2017-01-01

    Brazil is one of the largest producers of medium-density fibreboard (MDF) in the world, and also the MDF has the highest domestic consumption and production rate in the country. MDF applications are highlighted into residential and commercial furniture design and also a wide participation in the building sector. This study aimed to propose ways of improving the environmental cradle-to-gate life-cycle of one cubic meter MDF panel by means of a life-cycle assessment (LCA) study. Complying with requirements of ISO 14040 and 14,044 standards, different MDF manufacturing scenarios were modelled using Umberto® v.5.6 software and the Ecoinvent v.2.2 life-cycle inventory (LCI) database for the Brazilian context. Environmental and human health impacts were assessed by using the CML (2001) and USEtox (2008) methods. The evaluated impact categories were: acidification, global warming, ozone layer depletion, abiotic resource depletion, photochemical formation of tropospheric ozone, ecotoxicity, eutrophication and human toxicity. Results identified the following hotspots: gas consumption at the thermal plant, urea-formaldehyde resin, power consumption, wood chip consumption and wood chip transportation to the plant. The improvement scenario proposals comprised the following actions: eliminate natural gas consumption at the thermal plant, reduce electrical power consumption, reduce or replace urea-formaldehyde resin consumption, reduce wood consumption and minimize the distance to wood chip suppliers. The proposed actions were analysed to verify the influence of each action on the set of impact categories. Among the results, it can be noted that a joint action of the proposed improvements can result in a total reduction of up to 38.5% of impacts to OD, 34.4% to AD, 31.2% to ET, and 30.4% to HT. Finally, MDF was compared with particleboard production in Brazil, and additional opportunities to improve the MDF environmental profile were identified. Copyright © 2016 Elsevier B

  1. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    Energy Technology Data Exchange (ETDEWEB)

    Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Braet, Johan, E-mail: johan.braet@uantwerpen.be [Department Engineering Management, Faculty of Applied Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp (Belgium)

    2016-09-15

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  2. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    International Nuclear Information System (INIS)

    Anthonissen, Joke; Van den bergh, Wim; Braet, Johan

    2016-01-01

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  3. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  4. A comparative life cycle assessment of marine power systems

    International Nuclear Information System (INIS)

    Ling-Chin, Janie; Roskilly, Anthony P.

    2016-01-01

    Highlights: • Correlation among resources, emissions, key components and processes was attained. • Environmental benefits of innovative power systems were verified. • New-build system showed a great advantage over retrofit and conventional systems. • Relative contribution of significant components remained or became more profound. • Influence of fuel consumption quantity over the estimates varied with impact types. - Abstract: Despite growing interest in advanced marine power systems, knowledge gaps existed as it was uncertain which configuration would be more environmentally friendly. Using a conventional system as a reference, the comparative life cycle assessment (LCA) study aimed to compare and verify the environmental benefits of advanced marine power systems i.e. retrofit and new-build systems which incorporated emerging technologies. To estimate the environmental impact attributable to each system, a bottom-up integrated system approach was applied, i.e. LCA models were developed for individual components using GaBi, optimised operational profiles and input data standardised from various sources. The LCA models were assessed using CML2001, ILCD and Eco-Indicator99 methodologies. The estimates for the advanced systems were compared to those of the reference system. The inventory analysis results showed that both retrofit and new-build systems consumed less fuels (8.28% and 29.7% respectively) and released less emissions (5.2–16.6% and 29.7–55.5% respectively) during operation whilst more resources were consumed during manufacture, dismantling and the end of life. For 14 impact categories relevant to global warming, acidification, eutrophication, photochemical ozone creation and PM/respiratory inorganic health issues, reduction in LCIA results was achieved by retrofit (2.7–6.6%) and new-build systems (35.7–50.7%). The LCIA results of the retrofit system increased in ecotoxicity (1–8%), resource depletion (1–2%) and fossil fuel depletion

  5. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.

    Science.gov (United States)

    Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier

    2006-07-01

    The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.

  6. Effects of co-products on the life-cycle impacts of microalgal biodiesel.

    Science.gov (United States)

    Soratana, Kullapa; Barr, William J; Landis, Amy E

    2014-05-01

    Microalgal biodiesel production has been investigated for decades, yet it is not commercially available. Part of the problem is that the production process is energy and chemical intensive due, in part, to the high portion of microalgal biomass left as residues. This study investigated cradle-to-gate life-cycle environmental impacts from six different scenarios of microalgal biodiesel and its co-products. Ozone depletion, global warming, photochemical smog formation, acidification and eutrophication potentials were assessed using the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI). Monte Carlo Analysis was conducted to investigate the processes with major contribution in each impact category. The market opportunity for each co-product was examined based on supply, demand and prices of the products that could potentially be substituted by the co-products. The results indicated that the scenario with the least life-cycle environmental impacts in all the five impact categories with the highest net energy ratio was the scenario utilizing a multitude of co-products including bioethanol from lipid-extracted microalgae (LEA), biomethane (to produce electricity and heat) from simultaneous saccharification-fermentation (SSF) residues, land-applied material from SSF residue anaerobic digestion (AD) solid digestate, recycling nutrients from SSF residue AD liquid digestate and CO2 recovered from SSF process contributed. Decreasing the energy consumption of the centrifuge in the land-applied material production process and increasing the lipid content of microalgae can reduce environmental footprints of the co-products. The same scenario also had the highest total income indicating their potential as co-products in the market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    Science.gov (United States)

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N 2 /CO 2 : 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  9. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  10. Combined nutritional and environmental life cycle assessment of fruits and vegetables

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Fantke, Peter; Jolliet, Olivier

    2016-01-01

    -LCA) framework that compares environmental and nutritional effects of foods in a common end -point metric, Disability Adjusted Life Years (DALY). In the assessment, environmental health impact categories include green house gases, particulate matter (PM), and pesticide residues on fruits and vegetables, while......; 35 μDALY/serving fruit benefit compared to a factor 10 lower impact. Replacing detrimental foods, such as trans-fat and red meat, with fruits or vegetables further enhances health benefit. This study illustrates the importance of considering nutritional effects in food-LCA.......Nutritional health effects from the ‘use stage’ of the life cycle of food products can be substantial, especially for fruits and vegetables. To assess potential one-serving increases in fruit and vegetable consumption in Europe, we employ the Combined Nutritional and Environmental LCA (CONE...

  11. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation.

    Science.gov (United States)

    Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie

    2012-01-17

    We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.

  12. An integrated life cycle sustainability assessment of electricity generation in Turkey

    International Nuclear Information System (INIS)

    Atilgan, Burcin; Azapagic, Adisa

    2016-01-01

    This paper presents for the first time an integrated life cycle sustainability assessment of the electricity sector in Turkey, considering environmental, economic and social aspects. Twenty life cycle sustainability indicators (11 environmental, three economic and six social) are used to evaluate the current electricity options. Geothermal power is the best option for six environmental impacts but it has the highest capital costs. Small reservoir and run-of-river power has the lowest global warming potential while large reservoir is best for the depletion of elements and fossil resources, and acidification. It also has the lowest levelised costs, worker injuries and fatalities but provides the lowest life cycle employment opportunities. Gas power has the lowest capital costs but it provides the lowest direct employment and has the highest levelised costs and ozone layer depletion. Given these trade-offs, a multi-criteria decision analysis has been carried out to identify the most sustainable options assuming different stakeholder preferences. For all the preferences considered, hydropower is the most sustainable option for Turkey, followed by geothermal and wind electricity. This work demonstrates the importance for energy policy of an integrated life cycle sustainability assessment and how tensions between different aspects can be reconciled to identify win-win solutions. - Highlights: •First integrated life cycle sustainability assessment of the electricity sector in Turkey. •11 environmental, three economic and six social sustainability indicators estimated. •Multi-criteria decision analysis carried out to identify most sustainable options. •Hydro is the most sustainable option for Turkey, followed by geothermal and wind. •This work demonstrates how tensions among sustainability aspects can be reconciled.

  13. A complete life cycle assessment of high density polyethylene plastic bottle

    Science.gov (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  14. Externalities of fuel cycles 'ExternE' project. Hydro fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Navrud, S.; Riise, J.; Strand, J.

    1994-01-01

    The aim of the External Costs of Fuel Cycles (ExternE) study is to develop methods to measure and monetize all the externalities associated with incremental investments in electric power production, taking account of the different stages of the fuel cycles. Since fuel cycle externalities are characterised by being very site-specific, the impact pathway damage function approach, developed in ExternE, has been implemented in different European countries for each of the selected fuel cycles. This is done to demonstrate that this methodological framework can be used at different locations, to motivate further development of the methods, and to look at the sensitivity of the estimates to different locations. Electricite de France (EdF) in France and ENCO Environmental Consultants a.s. in Norway have taken on a joint responsibility for adapting the methodological framework for hydroelectric fuel cycle analyses in Europe. We report the first implementation of the hydroelectric fuel cycle within ExternE. Choice of reference site and technology Two stages of the hydroelectric fuel cycle have been identified: 1. Electricity generation 2. Transmission There are three phases of each of these stages: construction, operation and dismantling. We have assumed a construction period of 5 years (starting in 1990) and an operation period of 40 years. Dismantling after 40 years is not a realistic option. Therefore, we have focused on the construction and operation phases, of both electricity generation and transmission. The Sauda Hydroelectric Development Project (SHDP) was selected, because it illustrates upgrading and extention of an existing hydro power project. Such projects are likely to be the dominating strategy for future hydroelectric development in Norway, many other European countries and in the U.S., due to the lack of new sites available for development. SHDP consists of an extention of a previously developed area (Basis project) and six new diversion projects. The

  15. Comparative life cycle assessment (LCA) of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Spirinckx, C.; Xeuterick, D.

    1997-01-01

    Complementary to VlTO's demonstration project on the use of biodiesel as engine fuel (including on the road emission measurements) in Flanders, Belgium, a comparative life cycle assessment (LCA) has been carried out for rapeseed methyl ester (RME) and fossil diesel fuel. The primary concern of this study is the question as to whether or not the production of biodiesel is comparable to the production of fossil diesel fuel from an environmental point of view, taking into account all stages of the life cycle of these two products. The study covers: (1) a description of the LCA methodology used; (2) a definition of the goal and scope of the study: (3) an inventory of the consumption of energy and materials and the discharges to the environment, from the cradle to the grave, for both alternative fuels: (4) a comparative impact assessment; and (5) the interpretation of the results. The results of this comparative LCA can be used in the final decision making process next to the results of a social and economical assessment. 6 refs

  16. Application of the HBV model for assessment of climate change impacts on the elements of hydrological cycle for the Struma River Basin

    International Nuclear Information System (INIS)

    Stanev, Krassimir

    2004-01-01

    The model used in this report is a version of the HBV model developed for the project Climate Change and Energy Production, a Nordic project aimed at evaluating the impacts of climate change on the water resources. It has a simple vegetation parametrization including interception, temperature based evapotranspiration. calculations, lake evaporation, lake routing, glacier mass balance simulation, special functions for climate change simulations etc. The HBV model, originally developed at the Swedish Meteorological and Hydrological Institute in the first half of the seventies (Bergstroem 1976) has gained widespread use for a large range of applications both in Scandinavia and beyond. It can be classified as a semi-distributed conceptual model. The version described in this report was developed for the Nordic project 'Climate change and Energy Production' (Saelthun 1996), as a synthesis of several versions used in the different Nordic countries. The main input variables are the average daily temperature, daily totals of the precipitation, the potential evapotranspiration and the daily discharges. The HBV model was applied for assessment of climate change impacts on the elements of hydrological cycle for the Struma river basin. The river Struma flows from North to South up to the Aegean Sea. Considerable part of the river basin is situated in northwest part of Bulgaria, heaving an area of more than 10 000 km 2 and average elevation about 900m asl (cross-section Marino pole). The period of 16 years (1973-1988), four precipitation and temperature stations were used for the model parameters evaluation. The achieved value of R 2 (Nash criterion) is 0.55. The climate change impact calculations (monthly values of temperatures change in o C and precipitation change in %) for two scenarios were used for the input data correction to the HBV model. The obtained results are promising and they show the potential possibility for the HBV model use to assess the climate change

  17. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

    2013-07-01

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

  18. Effect of feeding strategy on environmental impacts of pig fattening in different contexts of production: evaluation through life cycle assessment.

    Science.gov (United States)

    Monteiro, A N T R; Garcia-Launay, F; Brossard, L; Wilfart, A; Dourmad, J-Y

    2016-11-01

    Life cycle assessment (LCA) has been used in many studies to evaluate the effect of feeding strategy on the environmental impact of pig production. However, because most studies have been conducted in European conditions, the question of possible interactions with the context of production is still under debate. The objective of this study was to evaluate these effects in 2 contrasted geographic contexts of production, South America (Brazil) and Europe (France). The LCA considered the process of pig fattening, including production and transport of feed ingredients and feed, raising of fattening pigs, and manure storage, transport, and spreading. Impacts were calculated at the farm gate, and the functional unit considered was 1 kg of BW gain over the fattening period. The performances of pigs were simulated for each scenario using the InraPorc population model (2,000 pigs per scenario considering between-animal variability). The LCA calculations were performed for each pig according to its own performance and excretion, and the results were subjected to variance analysis. The results indicate that for some impacts there are clear interactions between the effects of the feeding program, the origin of soybean, and the location of production. For climate change, interest in phase feeding and incorporation of crystalline AA (CAA) is limited and even counterproductive in Brazil with soybeans from the South (without deforestation), whereas they appear to be efficient strategies with soybeans from the Center West (with deforestation), especially in France. Rather similar effects, as those for climate change, were observed for cumulative energy demand. Conversely, potential eutrophication and acidification impacts were reduced by phase feeding and CAA addition in a rather similar way in all situations. Individual daily feeding, the only strategy that took into account between-animal variability, was the most effective approach for reducing the life cycle impact of pig

  19. Cradle-to-gate life cycle impacts of redwood forest resource harvesting in northern California

    Science.gov (United States)

    Han-Sup Han; Elaine Oneil; Richard D. Bergman; Ivan L. Eastin; Leonard R. Johnson

    2015-01-01

    The first life cycle impact assessment for redwood (Sequoia sempervirens) forest management activities (i.e. a cradle-to-sawmill gate input) including the growing, harvesting, and hauling of redwood sawlogs to a sawmill was completed. In the stump-to-truck timber harvesting analysis, primary transport activities such as skidding and yarding consumed...

  20. Methodological Approach for the Sustainability Assessment of Development Cooperation Projects for Built Innovations Based on the SDGs and Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Stephanie D. Maier

    2016-10-01

    Full Text Available This paper describes a methodological approach for a sustainability assessment of development cooperation projects. Between the scientific disciplines there is no agreement on the term of “sustainability”. Whereas the definition of sustainability within the context of development cooperation frequently highlights the long-term success of an intervention, the United Nations herald the inclusion of social, economic and environmental aspects. This paper proposes to bridge this gap by providing an analytical framework that uses nine impact category groups based on thematic priorities of sustainable development derived from the Sustainable Development Goals. Additionally, the long-term effectiveness of a project is taken into consideration. These impact category groups comprise the analytical framework, which is investigated by the Life Cycle Assessment and an indicator-based analysis. These data are obtained through empirical social research and the LCA inventory. The underlying concept is based on life cycle thinking. Taking up a multi-cycle model this study establishes two life cycles: first, the project management life cycle; and, second, the life cycle of a project’s innovation. The innovation’s life cycle is identified to have the greatest impact on the target region and the local people and is consequently of primary interest. This methodological approach enables an ex-post sustainability assessment of a built innovation of a development cooperation project and is tested on a case study on Improved Cooking Stoves in Bangladesh.

  1. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    Science.gov (United States)

    Kittipongvises, Suthirat

    2017-11-01

    Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, `resources' and `climate change' categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  2. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  4. Impact on environmental qualification from a longer fuel cycle

    International Nuclear Information System (INIS)

    Sanwarwalla, M.H.; Akhtar, S.; Drankhan, D.A.

    1996-01-01

    There is a general trend in the nuclear industry towards longer fuel cycles because of the economic benefits. The economic benefits for increasing the fuel cycle from eighteen to twenty four months is estimated by the industry to be about $5.05 million per unit year based on a two week mid-cycle maintenance outage. Equipment with a unique characteristic may require maintenance and/or inspection more frequently than can be accommodated in a longer cycle. The maintenance and surveillance (M ampersand S) requirements for these equipment need to be reviewed to accommodate a longer cycle and avoid any unplanned outage. ComEd's LaSalle Station is considering a move to a longer fuel cycle. A study was done to determine the impact of a longer fuel cycle on their current environmental qualification (EQ) program, and the feasibility of implementing changes to their program to accommodate a longer fuel cycle. This paper discusses (1) the impact, if any, the longer fuel cycle will have on the maintenance and surveillance requirements of the 50.49 or environmentally qualified equipment at LaSalle Station, (2) the various techniques, i.e., partial testing, performance based monitoring etc., employed to extend the existing maintenance and surveillance requirements, and (3) the estimated economic savings, if any, from the extended M ampersand S interval

  5. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR) 1 and Integral Fast Reactor (IF) 2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  6. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.

    Science.gov (United States)

    Arvidsson, Rickard; Nguyen, Duong; Svanström, Magdalena

    2015-06-02

    Nanocellulose is a bionanomaterial with many promising applications, but high energy use in production has been described as a potential obstacle for future use. In fact, life cycle assessment studies have indicated high life cycle energy use for nanocellulose. In this study, we assess the cradle-to-gate environmental impacts of three production routes for a particular type of nanocellulose called cellulose nanofibrils (CNF) made from wood pulp. The three production routes are (1) the enzymatic production route, which includes an enzymatic pretreatment, (2) the carboxymethylation route, which includes a carboxymethylation pretreatment, and (3) one route without pretreatment, here called the no pretreatment route. The results show that CNF produced via the carboxymethylation route clearly has the highest environmental impacts due to large use of solvents made from crude oil. The enzymatic and no pretreatment routes both have lower environmental impacts, of similar magnitude. A sensitivity analysis showed that the no pretreatment route was sensitive to the electricity mix, and the carboxymethylation route to solvent recovery. When comparing the results to those of other carbon nanomaterials, it was shown that in particular CNF produced via the enzymatic and no pretreatment routes had comparatively low environmental impacts.

  7. Life cycle assessment of four municipal solid waste management scenarios in China

    International Nuclear Information System (INIS)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-01-01

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  8. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems

    Science.gov (United States)

    Li, Yi; Huang, Youyi; Ye, Quanliang; Zhang, Wenlong; Meng, Fangang; Zhang, Shanxue

    2018-03-01

    The major limitation of optimization models applied previously for rainwater harvesting (RWH) systems is the systematic evaluation of environmental and human health impacts across all the lifecycle stages. This study integrated life cycle assessment (LCA) into a multi-objective optimization model to optimize the construction areas of green rooftops, porous pavements and green lands in Beijing of China, considering the trade-offs among 24 h-interval RWH volume (QR), stormwater runoff volume control ratio (R), economic cost (EC), and environmental impacts (EI). Eleven life cycle impact indicators were assessed with a functional unit of 10,000 m2 of RWH construction areas. The LCA results showed that green lands performed the smallest lifecycle impacts of all assessment indicators, in contrast, porous pavements showed the largest impact values except Abiotic Depletion Potential (ADP) elements. Based on the standardization results, ADP fossil was chosen as the representative indicator for the calculation of EI objective in multi-objective optimization model due to its largest value in all RWH systems lifecycle. The optimization results for QR, R, EC and EI were 238.80 million m3, 78.5%, 66.68 billion RMB Yuan, and 1.05E + 16 MJ, respectively. After the construction of optimal RWH system, 14.7% of annual domestic water consumption and 78.5% of maximum daily rainfall would be supplied and controlled in Beijing, respectively, which would make a great contribution to reduce the stress of water scarcity and water logging problems. Green lands have been the first choice for RWH in Beijing according to the capacity of rainwater harvesting and less environmental and human impacts. Porous pavements played a good role in water logging alleviation (R for 67.5%), however, did not show a large construction result in this study due to the huge ADP fossil across the lifecycle. Sensitivity analysis revealed the daily maximum precipitation to be key factor for the robustness of the

  9. Life cycle assessment as a tool to evaluate the impact of reducing crude protein in pig diets

    Directory of Open Access Journals (Sweden)

    Alessandra Nardina Trícia Rigo Monteiro

    Full Text Available ABSTRACT: Environmental impacts of livestock systems, especially pig production, have come under increasing debate in recent years. The challenge is in meeting the growing demand for food at an affordable cost, without compromising environmental integrity. Previous studies have shown that feed production is responsible for the majority of CO2-eq. emission resulting from pig farming systems. This seems to indicate that feed strategies could be an effective tool to achieve the sustainability of the pork chain. Therefore, dietary crude protein reduction, through the addition of industrial amino acids, lessens the nitrogen excretion by pigs and, consequently, could mitigate the effects on the environment of pig production. In this sense, to effectively evaluate the environmental impacts of pig production systems, life cycle assessment has been widely used in agriculture, but the effects of feed are still understudied in Brazilian conditions. Owing to the importance and the great concern in this research area, we presented in this paper an updated review focusing on the nutritional techniques and their potential to reduce the global warming potential of pig production, considering both the direct effects, related to the choice of feed ingredients and the indirect effects, related to changes in the efficiency of use of nutrient by the animals.

  10. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  12. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  13. Life Cycle Assessment of Soybean-Based Biodiesel in Argentina for Export

    OpenAIRE

    Panichelli, Luis; Dauriat, Arnaud; Gnansounou, Edgard

    2009-01-01

    Background, aim and scope. Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel producti...

  14. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  15. Comparative evaluation of life cycle assessment models for solid waste management

    International Nuclear Information System (INIS)

    Winkler, Joerg; Bilitewski, Bernd

    2007-01-01

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different

  16. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  17. Robustness of life cycle assessment results : influence of data variation and modelling choices on results for beverage packaging materials

    NARCIS (Netherlands)

    Harst-Wintraecken, van der E.J.M.

    2015-01-01

    Life cycle assessment (LCA) is a well-established method to evaluate the potential environmental impacts of product and service systems throughout their life cycles. However, it can happen that LCAs for the same product have different and even conflicting outcomes. LCA results need to be robust

  18. Externalities of fuel cycles 'ExternE' project. Wind fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Eyre, N.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include physical damage to natural and built environment as well as impacts on recreation, amenity, aesthetics and other contributors to individual utility. Traditional economic assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favour of technologies with significant environmental impacts. Concern over widespread degradation of the environment resulting from the major electricity generating fuel cycle emissions has mounted since the early 1970s. The impacts of acidifying pollutants and ozone precursors have been studied extensively. More recently, the accumulation of greenhouse gases in the atmosphere and the consequential changes to the Earth's climate have caused even more concern. At the same time, the environmental problems of nuclear power - ionising radiation, catastrophic consequences of accidents and unresolved problems of storing highly active waste - have increasingly been recognised. Electricity generation based on renewable energy sources is generally considered to be more environmentally benign, because the major pollution effects of the fossil fuel and nuclear fuel cycles are avoided. However, even the renewables are not impact free, although the impacts tend to be more local in character. This report evaluates in detail the environmental impacts, and their costs, of one of those sources - wind energy. It is the first attempt at a comprehensive assessment of the monetary values of the environmental impacts of wind energy. Although the theoretical basis for including external costs in decision making processes is well understood, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988) and Ottinger et al (1990) are examples of attempts to calculate the environmental externalities of

  19. Development of Comparative Toxicity Potentials of TiO2 Nanoparticles for Use in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Ettrup, Kim; Kounina, Anna; Hansen, Steffen Foss

    2017-01-01

    for TiO2 nanoparticles (TiO2-NP) for use in LCA. We adapted the USEtox 2.0 consensus model to integrate the SimpleBox4Nano fate model, and we populated the resulting model with TiO2-NP specific data. We thus calculated CTP values for TiO2 nanoparticles for air, water, and soil emission compartments...... in earlier studies. Assumptions, which were performed in those previous studies because of lack of data and knowledge at the time they were made, primarily explain such discrepancies. For future assessment of potential toxic impacts of TiO2 nanoparticles in LCA studies, we therefore recommend the use of our......Studies have shown that releases of nanoparticles may take place through the life cycle of products embedding nanomaterials, thus resulting in potential impacts on ecosystems and human health. While several life cycle assessment (LCA) studies have assessed such products, only a few of them have...

  20. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Oscar O. Ortíz-Rodríguez

    2017-12-01

    Full Text Available Life Cycle Assessment methodology has been applied to estimate diverse environmental impacts of different usage alternatives for worn-out tires at the end of their useful life in a case study at the Department of Valle del Cauca, Colombia. Different real scenarios were compared, which allowed for the assessment of the best environmental option for the management of worn-out tires. A method developed in the Institute of Environmental Sciences at University of Leiden, better known as CML-2001, was used to calculate the environmental impact indicators. The results show that the incineration of whole tires in cement plants, and the activities of grinding and floor manufacturing from granulated rubber, exhibited the best indicators, especially in terms of environmental load avoidance through the recovery of materials. Finally, the categories of depletion of the ozone layer, acidification, global warming potential, depletion of abiotic resources, and photochemical ozone formation revealed that the strongest environmental impacts are associated with retreading and the production of multipart asphalt. This is due to the use of synthetic rubber in the former alternative, and of liquid asphalt, gravel, and diesel consumption in the latter.

  1. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues.

    Science.gov (United States)

    Zhao, Xinyue; Yang, Jixian; Ma, Fang

    2018-02-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water pollution, has not been given much consideration in current LCA systems. This paper investigates the necessity of setting a regionalized impact category to reflect the local impact of organic pollution. A case study is conducted concerning an upgraded wastewater treatment plant (WWTP) in China, which is assumed to meet different sewage control strategies. Chemical oxygen demand (COD) is selected to represent the organic pollution and treated as an individual impact category. CML 2002 is used to quantify the environmental impacts of different strategies. Results show that abnormal LCA results are generated with the traditional eutrophication impact category, and after the introduction of COD, more reasonable LCA results are obtained, making the entire comparison of different control strategies more meaningful and compelling. Moreover, BEES, Ecovalue 08, and Chinese factors are adopted here as different weighting methods. Different weighting results exhibited various trade-offs for the increasingly strict control strategies; the results of BEES and Ecovalue08 underlined the potential environmental burden, but the results of Chinese factors only emphasized the local environmental improvement. It is concluded that setting regionalized impact category for organic pollution can make LCA results more reasonable in wastewater treatment, especially in evaluating Chinese cases because of the serious water pollution caused by large quantities of COD emission.

  2. Chinese life cycle impact assessment factors.

    Science.gov (United States)

    Yang, J X; Nielsen, P H

    2001-04-01

    The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990 (EP(j)90) divided by the population. The weighting factor was determined as the normalization reference (ER(j)90) divided by society's target contribution in the year 2000 based on Chinese political reduction plans, ER(j)T2000. This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes.

  3. Life Cycle Assessment of concrete manufacturing in small isolated states: the case of Cyprus

    Science.gov (United States)

    Chrysostomou, Chrystalla; Kylili, Angeliki; Nicolaides, Demetris; Fokaides, Paris A.

    2017-10-01

    Life Cycle Assessment (LCA) is an effective and valuable methodology for identifying the holistic sustainable behaviour of materials and products. It is also useful in analysing the impact a structure has over the course of its life cycle. Currently, there is no sufficient knowhow regarding the life cycle performance of building materials used in the case of small isolated states. This study focuses on the LCA of the production of concrete for the investigation of its environmental impact in isolated island states, using the case of Cyprus as an example. Four different scenarios for the production of 1 tonne of concrete are examined: (i) manufacturing of concrete by transporting raw materials from different locations around the island, (ii) manufacturing of concrete using alternative energy resources, (iii) manufacturing of concrete with reduced transportation needs, and (iv) on-site manufacturing of concrete. The results, in terms of environmental impacts of concrete produced, indicated that the use of renewable electricity instead of fossil-fuelled electricity in isolated states can drastically improve the environmental performance of the end product. Also, the minimisation of transportation distances and the use of locally available resources can also affect, to a degree, the environmental impact of concrete production.

  4. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  5. Impact Assessment of Abiotic Resources in LCA: Quantitative Comparison of Selected Characterization Models

    DEFF Research Database (Denmark)

    Rørbech, Jakob Thaysen; Vadenbo, Carl; Hellweg, Stefanie

    2014-01-01

    Resources have received significant attention in recent years resulting in development of a wide range of resource depletion indicators within life cycle assessment (LCA). Understanding the differences in assessment principles used to derive these indicators and the effects on the impact assessment...... results is critical for indicator selection and interpretation of the results. Eleven resource depletion methods were evaluated quantitatively with respect to resource coverage, characterization factors (CF), impact contributions from individual resources, and total impact scores. We included 2247...... groups, according to method focus and modeling approach, to aid method selection within LCA....

  6. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  7. Life cycle assessment (LCA) as a decision-suppport tool for the evaluation of environmental impacts of site remediation on the global, regional and local scale

    DEFF Research Database (Denmark)

    Lemming, Gitte; Bulle, C.; Margni, Manuele

    2010-01-01

    Life cycle assessment (LCA) was used to compare the environment al impacts of three alternatives for remediating a TCE-contaminated site: (i) enhanced reductive dechlorination (ERD); (ii) in situ thermal desorption (ISTD) and (iii) excavation with off-site soil treatment. In addition......, the remediation alternatives were compared to a no action scenario, where only monitoring and natural attenuation takes place. A numerical reactive fracture model was used to predict the timeframes for the ERD and the no action scenarios. Moreover, the model was used to estimate the mass discharge of TCE...... of the LCA showed that of the three remediation methods compared, the ERD had the lowest total environmental impacts, even though it had significant primary impacts due to its long timeframe. The environmental impacts of ERD were comparable or only slightly higher than those of the no action scenario. ISTD...

  8. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  9. The radiological impact associated with the recycling of actinides and fission products. A global assessment

    International Nuclear Information System (INIS)

    Dodd, D.H.

    1996-05-01

    This report describes the results of a literature study performed to identify any significant differences in the public radiological impact associated with existing nuclear fuel cycles and partitioning and transmutation (P and T) based fuel cycles. The study was performed in the framework of ECN Nuclear Energy's RAS (Recyclage van Actiniden en Splijtingsprodukten) research programme. Two reference 'once through' cycles and five 'advanced' fuel cycles were analysed. The five 'advanced' fuel cycles all incorporate technologies for the partitioning and transmutation of the long-lived radionuclides present in high level radioactive waste. Currently, only a limited amount of information on these 'advanced' fuel cycles is available. The assessment of the radiological impact associated with these cycles is therefore by necessity of a general nature. (orig./WL)

  10. Simplified life cycle assessment models: methodological framework and applications to energy pathways

    International Nuclear Information System (INIS)

    Padey, Pierryves

    2013-01-01

    The energy transition debate is a key issue for today and the coming years. One of the challenges is to limit the environmental impacts of electricity production. Decision support tools, sufficiently accurate, simple to use, accounting for environmental aspects and favoring future energetic choices, must be implemented. However, the environmental assessment of the energy pathways is complex, and it means considering a two levels characterization. The 'energy pathway' is the first level and corresponds to its environmental distribution, to compare overall pathways. The 'system pathway' is the 2. level and compares environmental impacts of systems within each pathway. We have devised a generic methodology covering both necessary characterization levels by estimating the energy pathways environmental profiles while allowing a simple comparison of its systems environmental impacts. This methodology is based on the definition of a parameterized Life Cycle Assessment model and considers, through a Global Sensitivity Analysis, the environmental impacts of a large sample of systems representative of an energy pathway. As a second step, this methodology defines simplified models based on few key parameters identified as inducing the largest variability in the energy pathway environmental impacts. These models assess in a simple way the systems environmental impacts, avoiding any complex LCAs. This reduction methodology has been applied to the onshore wind power energy pathway in Europe and the photovoltaic energy pathway in France. (author)

  11. Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment.

    Science.gov (United States)

    Wang, Xiaoqin; Ledgard, Stewart; Luo, Jiafa; Guo, Yongqin; Zhao, Zhanqin; Guo, Liang; Liu, Song; Zhang, Nannan; Duan, Xueqin; Ma, Lin

    2018-06-01

    Life cycle assessment methodology was used to quantify the environmental impacts and resource use of milk production on the North China Plain, the largest milk production area in China. Variation in environmental burden caused by cow productivity was evaluated, as well as scenario analysis of the effects of improvement practices. The results indicated that the average environmental impact potential and resource use for producing 1kg of fat and protein corrected milk was 1.34kgCO 2 eq., 9.27gPO 4 3- eq., 19.5gSO 2 eq., 4.91MJ, 1.83m 2 and 266L for global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), non-renewable energy use (NREU), land use (LU) and blue water use (BWU; i.e. water withdrawal), respectively. Feed production was a significant determinant of GWP, NREU, LU and BWU, while AP and EP were mainly affected by manure management. Scenario analysis showed that reducing use of concentrates and substituting with alfalfa hay decreased GWP, EP, AP, NREU and LU (by 1.0%-5.5%), but caused a significant increase of BWU (by 17.2%). Using imported soybean instead of locally-grown soybean decreased LU by 2.6%, but significantly increased GWP and NREU by 20% and 6.9%, respectively. There was no single perfect manure management system, with variable effects from different management practices. The environmental burden shifting observed in this study illustrates the importance of assessing a wide range of impact categories instead of single or limited indicators for formulating environmental policies, and the necessity of combining multiple measures to decrease the environmental burden. For the North China Plain, improving milking cow productivity and herd structure (i.e. increased proportion of milking cows), combining various manure management systems, and encouraging dairy farmers to return manure to nearby crop lands are promising measures to decrease multiple environmental impacts. Copyright © 2017 Elsevier B.V. All rights

  12. Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis

    Science.gov (United States)

    Chatterjee, R.; Sharma, V.; Mukherjee, S.; Kumar, S.

    2014-04-01

    This work deals with the comparative analysis of environmental impacts of bio-diesel produced from Jatropha curcas, Rapeseed and Palm oil by applying the life cycle assessment and eco-efficiency concepts. The environmental impact indicators considered in the present paper include global warming potential (GWP, CO2 equivalent), acidification potential (AP, SO2 equivalent) and eutrophication potential (EP, NO3 equivalent). Different weighting techniques have been used to present and evaluate the environmental characteristics of bio-diesel. With the assistance of normalization values, the eco-efficiency was demonstrated in this work. The results indicate that the energy consumption of bio-diesel production is lowest in Jatropha while AP and EP are more in case of Jatropha than that of Rapeseed and Palm oil.

  13. Life cycle assessment applied to nanomaterials in solid waste management

    DEFF Research Database (Denmark)

    Laurent, Alexis

    While the generation of solid waste is globally increasing, much effort is concentrated to minimise the environmental impacts related to their management. With respect to nanoproducts (products containing nanomaterials), a growing amount of ‘nanowaste’ can be expected to enter the waste streams...... on specific waste types and waste management systems, all primarily reflecting situations in economicallydeveloped countries. At the same time, methodological practice was found in many studies not to be compliant with current reference guidance, such as the ISO standards and the ILCD Handbook. Likewise......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...

  14. [Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].

    Science.gov (United States)

    Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe

    2003-05-01

    In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.

  15. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    Energy Technology Data Exchange (ETDEWEB)

    Achten, Wouter M.J. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Almeida, Joana [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Grupo de Disciplinas da Ecologia da Hidrosfera, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Fobelets, Vincent; Bolle, Evelien; Muys, Bart [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Mathijs, Erik [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Singh, Virendra P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Tewari, Dina N. [Utthan NGO, Centre for Sustainable Development and Poverty Alleviation, 18-A, Auckland Road, Civil Lines, Allahabad 211 001 (India); Verchot, Louis V. [Centre for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000 (Indonesia)

    2010-12-15

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH{sub 4} emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options. (author)

  16. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    International Nuclear Information System (INIS)

    Achten, Wouter M.J.; Almeida, Joana; Fobelets, Vincent; Bolle, Evelien; Mathijs, Erik; Singh, Virendra P.; Tewari, Dina N.; Verchot, Louis V.; Muys, Bart

    2010-01-01

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH 4 emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options.

  17. Printed and tablet e-paper newspaper from an environmental perspective - A screening life cycle assessment

    International Nuclear Information System (INIS)

    Moberg, Asa; Johansson, Martin; Finnveden, Goeran; Jonsson, Alex

    2010-01-01

    Viable alternatives to conventional newspapers, such as electronic papers, e-papers or e-readers, are intended to have many of the qualities of paper, such as reading using reflective light, high resolution, 180 deg. viewing angle. It has been suggested that the environmental impact of e-paper can be lower than for printed and internet-based newspapers. However, in order to find the facts of the matter, a thorough life cycle perspective covering raw material acquisition, production, use and disposal should preferably be used to study the environmental performance of the different products. A screening life cycle assessment was performed to describe the potential environmental impacts of two product systems; printed on paper and tablet e-paper newspapers. Results show that the most significant phase of the life cycle for both product systems was the production of substrate or platform. Accordingly, key aspects that may affect the resulting environmental performance of newspaper product systems were for the printed newspaper number of readers per copy and number of pages per issue and for the tablet e-paper newspaper lifetime and multi-use of the device. The printed newspaper in general had a higher energy use, higher emissions of gases contributing to climate change and several other impact categories than the tablet e-paper newspaper. It was concluded that tablet e-paper has the potential to decrease the environmental impact of newspaper consumption. However, further studies regarding the environmental impact of production and waste management of electronic devices and internet use, as well as more comprehensive assessment of toxicological impacts are needed. As the data on the electronic devices becomes more comprehensive this may prove to be a major limitation of electronic newspaper systems. Developers are suggested to strive towards minimisation of toxic and rare substances in production.

  18. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    Directory of Open Access Journals (Sweden)

    Kittipongvises Suthirat

    2017-11-01

    Full Text Available Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, ‘resources’ and ‘climate change’ categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  19. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  20. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  1. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish...... cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34......-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts...

  2. Development of substance flow based Life Cycle Assessment tool for sewage sludge treatment and disposal

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte

    Life Cycle Assessment (LCA) is a method to quantify environmental impacts of products or systems. It is often done by correlating material and energy demands with certain input characteristics. An attempt was made to evaluate the robustness of the substance flow based LCA for wastewater and sludg...

  3. Using Support Vector Machine on EEG for Advertisement Impact Assessment

    Directory of Open Access Journals (Sweden)

    Zhen Wei

    2018-03-01

    Full Text Available The advertising industry depends on an effective assessment of the impact of advertising as a key performance metric for their products. However, current assessment methods have relied on either indirect inference from observing changes in consumer behavior after the launch of an advertising campaign, which has long cycle times and requires an ad campaign to have already have been launched (often meaning costs having been sunk. Or through surveys or focus groups, which have a potential for experimental biases, peer pressure, and other psychological and sociological phenomena that can reduce the effectiveness of the study. In this paper, we investigate a new approach to assess the impact of advertisement by utilizing low-cost EEG headbands to record and assess the measurable impact of advertising on the brain. Our evaluation shows the desired performance of our method based on user experiment with 30 recruited subjects after watching 220 different advertisements. We believe the proposed SVM method can be further developed to a general and scalable methodology that can enable advertising agencies to assess impact rapidly, quantitatively, and without bias.

  4. Using Support Vector Machine on EEG for Advertisement Impact Assessment.

    Science.gov (United States)

    Wei, Zhen; Wu, Chao; Wang, Xiaoyi; Supratak, Akara; Wang, Pan; Guo, Yike

    2018-01-01

    The advertising industry depends on an effective assessment of the impact of advertising as a key performance metric for their products. However, current assessment methods have relied on either indirect inference from observing changes in consumer behavior after the launch of an advertising campaign, which has long cycle times and requires an ad campaign to have already have been launched (often meaning costs having been sunk). Or through surveys or focus groups, which have a potential for experimental biases, peer pressure, and other psychological and sociological phenomena that can reduce the effectiveness of the study. In this paper, we investigate a new approach to assess the impact of advertisement by utilizing low-cost EEG headbands to record and assess the measurable impact of advertising on the brain. Our evaluation shows the desired performance of our method based on user experiment with 30 recruited subjects after watching 220 different advertisements. We believe the proposed SVM method can be further developed to a general and scalable methodology that can enable advertising agencies to assess impact rapidly, quantitatively, and without bias.

  5. Life cycle assessment of four municipal solid waste management scenarios in China.

    Science.gov (United States)

    Hong, Jinglan; Li, Xiangzhi; Zhaojie, Cui

    2010-11-01

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Environmental Life Cycle Assessment of long-term organic rice production in a Subtropical area of China

    DEFF Research Database (Denmark)

    Xueqing, He; Qiao, Yuhui; Liang, Long

    2018-01-01

    a considerable environmental impact and changing from conventional to organic rice cultivation might therefore have a potentially great impact. Meanwhile, it takes time for the organic farming systems to reach a new steady state after conversion to organic. Thus, the environmental profile of the organic products...... will change over time and it is therefore important to examine whether the difference to conventional will be reduced (and disappear) or be increased over time. The aim of the present study was therefore to assess the environmental impact of organic rice production 5 (OR5), 10 (OR10) and 15 (OR15) years since...... conversion and compare it to conventional rice (CR) in subtropical China. The life cycle assessment (LCA) method was used to assess environmental impact of rice production systems with regard to nine environmental impact categories: Non-renewable Energy Depletion (NED), Water Depletion (WD), Land Occupation...

  7. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  8. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  9. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  10. Life cycle assessment study on polishing units for use of treated wastewater in agricultural reuse.

    Science.gov (United States)

    Büyükkamacı, Nurdan; Karaca, Gökçe

    2017-12-01

    A life cycle assessment (LCA) approach was used in the assessment of environmental impacts of some polishing units for reuse of wastewater treatment plant effluents in agricultural irrigation. These alternative polishing units were assessed: (1) microfiltration and ultraviolet (UV) disinfection, (2) cartridge filter and ultrafiltration (UF), and (3) just UV disinfection. Two different energy sources, electric grid mix and natural gas, were considered to assess the environmental impacts of them. Afterwards, the effluent of each case was evaluated against the criteria required for irrigation of sensitive crops corresponding to Turkey regulations. Evaluation of environmental impacts was carried out with GaBi 6.1 LCA software. The overall conclusion of this study is that higher electricity consumption causes higher environmental effects. The results of the study revealed that cartridge filter and UF in combination with electric grid mix has the largest impact on the environment for almost all impact categories. In general, the most environmentally friendly solution is UV disinfection. The study revealed environmental impacts for three alternatives drawing attention to the importance of the choice of the most appropriate polishing processes and energy sources for reuse applications.

  11. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  12. Life-cycle assessment of typical Portuguese cork oak woodlands.

    Science.gov (United States)

    González-García, Sara; Dias, Ana Cláudia; Arroja, Luis

    2013-05-01

    Cork forest systems are responsible for making an important economic contribution to the Mediterranean region, especially Portugal where the cork oak woodlands or montados contain about 32% of the world's area. The environmental profile derived from reproduction cork production and extraction in two Portuguese regions (Tagus valley and Alentejo) representative of the Portuguese sector were assessed in detail using the Life-Cycle Assessment (LCA) methodology from a cradle-to-gate perspective. The production line was divided into four stages considering all the processes involved: stand establishment, stand management, cork stripping and field recovery. According to the environmental results, there were remarkable differences between the two production scenarios mainly due to the intensity and repetition of forest activities even though the cork yield was reported to be the same. The management system in the Alentejo region presented the worse environmental profile in almost all the impact categories under assessment, mainly due to the shorter cycle duration of the mechanical cleaning and pruning processes. Cork stripping was identified in both scenarios as the production stage with the highest contribution to the environmental profile due to the cleaning and pruning processes. A sensitivity assessment concerning the cork yield was performed since the average production yields in the Portuguese montados are lower than the ones used in this study. Thus, if the cork yield is reduced, the environmental profile in both scenarios gets worse since almost all the forest activities involved are the same. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Analysis of environmental impact phase in the life cycle of a nuclear power plant; Analisis de la fase de impacto ambiental en el ciclo de vida de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez del M, C.

    2015-07-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  14. Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Moritz Wagner

    2017-06-01

    Full Text Available In recent years, considerable progress has been made in miscanthus research: improvement of management practices, breeding of new genotypes, especially for marginal conditions, and development of novel utilization options. The purpose of the current study was a holistic analysis of the environmental performance of such novel miscanthus-based value chains. In addition, the relevance of the analyzed environmental impact categories was assessed. A Life Cycle Assessment was conducted to analyse the environmental performance of the miscanthus-based value chains in 18 impact categories. In order to include the substitution of a reference product, a system expansion approach was used. In addition, a normalization step was applied. This allowed the relevance of these impact categories to be evaluated for each utilization pathway. The miscanthus was cultivated on six sites in Europe (Aberystwyth, Adana, Moscow, Potash, Stuttgart and Wageningen and the biomass was utilized in the following six pathways: (1 small-scale combustion (heat—chips; (2 small-scale combustion (heat—pellets; (3 large-scale combustion (CHP—biomass baled for transport and storage; (4 large-scale combustion (CHP—pellets; (5 medium-scale biogas plant—ensiled miscanthus biomass; and (6 large-scale production of insulation material. Thus, in total, the environmental performance of 36 site × pathway combinations was assessed. The comparatively high normalized results of human toxicity, marine, and freshwater ecotoxicity, and freshwater eutrophication indicate the relevance of these impact categories in the assessment of miscanthus-based value chains. Differences between the six sites can almost entirely be attributed to variations in biomass yield. However, the environmental performance of the utilization pathways analyzed varied widely. The largest differences were shown for freshwater and marine ecotoxicity, and freshwater eutrophication. The production of insulation material

  15. Wave Engine Topping Cycle Assessment

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  16. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    the validity of these hypotheses. Results: Three in some cases potentially overlapping SLCA approaches are presented, assumed to create a beneficial effect in the life cycle in different ways. However, empirical and theoretical findings show that the beneficial effects proposed to arise from the use of each......Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address...

  17. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.

    Science.gov (United States)

    Nabavi-Pelesaraei, Ashkan; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinzadeh-Bandbafha, Homa; Chau, Kwok-Wing

    2018-08-01

    Prediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS). The amounts of energy input and output are 51,585.61MJkg -1 and 66,112.94MJkg -1 , respectively, in paddy production. Life Cycle Assessment (LCA) is used to evaluate environmental impacts of paddy production. Results show that, in paddy production, in-farm emission is a hotspot in global warming, acidification and eutrophication impact categories. ANN model with 12-6-8-1 structure is selected as the best one for predicting energy output. The correlation coefficient (R) varies from 0.524 to 0.999 in training for energy input and environmental impacts in ANN models. ANFIS model is developed based on a hybrid learning algorithm, with R for predicting output energy being 0.860 and, for environmental impacts, varying from 0.944 to 0.997. Results indicate that the multi-level ANFIS is a useful tool to managers for large-scale planning in forecasting energy output and environmental indices of agricultural production systems owing to its higher speed of computation processes compared to ANN model, despite ANN's higher accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes.

    Science.gov (United States)

    Sherman, Jodi D; Raibley, Lewis A; Eckelman, Matthew J

    2018-01-09

    Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased

  19. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chiara A. Penati

    2013-12-01

    Full Text Available The aim of the study was to analyze environmental impact of cow milk production in an alpine area through a cradle-to-farm-gate Life Cycle Assessment and to identify farming strategies that can improve environmental sustainability without negatively affecting profitability. Data were collected from farmers in 28 dairy farms in an Italian alpine valley. The production of 1 kg of fat protein corrected milk (FPCM needed 3.18 m2 of land; land use on-farm was high because a large part of farm land consisted of pastures in the highland, used extensively during summer. Also the use of energy from non-renewable sources was high, 5.14 MJ kg FPCM-1 on average. Diesel for production and transportation of feed purchased off-farm was mainly used, especially concentrates which were entirely purchased. The average emission of greenhouse and acidification causing gases was 1.14 kg CO2-eq and 0.021 kg SO2-eq kg FPCM-1. Eutrophication was on average 0.077 kg of nitrate-eq kg FPCM-1. Farms with low producing cows had higher environmental impact per kg of milk and lower gross margin per cow compared to the others. Low stocking rate farms had the best results regarding acidification and eutrophication per kg FPCM. Farms with high feed self-sufficiency had significantly lower acidification potential than the others. Increasing milk yield per cow, by selection and feeding, and enhancing feed self-sufficiency, by higher forage production and quality and more exploitation of highland pastures, seem to be the best strategies to improve ecological performances of dairy farms in the Alps while maintaining their profitability.

  20. Life cycle assessment of metals: a scientific synthesis.

    Directory of Open Access Journals (Sweden)

    Philip Nuss

    Full Text Available We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining. For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use, and report the shares for all metals to both impact categories.

  1. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit; Wang, Wei-Cheng; Teah, Heng Yi

    2016-01-01

    . This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling

  2. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.E.; Lee, K.J. [Korea Advanced Institute of Science and Technology, Dept. of Nuclear Engineering, Taejon (Korea, Republic of)

    2001-07-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO{sub 2} emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  3. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.; Lee, K.J.

    2001-01-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO 2 emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  4. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Directory of Open Access Journals (Sweden)

    Santosh R. Ghimire

    2017-03-01

    Full Text Available We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S. using life cycle assessment (LCA and life cycle cost assessment. Life cycle impact assessment (LCIA categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water, green water (rainwater use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2–39 Mm3, cumulative energy savings of 12–210 TJ, and reduced global warming potential of 600–10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

  5. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  6. Life cycle assessment of two biowaste management systems for Barcelona, Spain

    International Nuclear Information System (INIS)

    Gueereca, Leonor Patricia; Gasso, Santiago; Baldasano, Jose Maria; Jimenez-Guerrero, Pedro

    2006-01-01

    A life cycle assessment (LCA) is performed in this study in order to evaluate the environmental implications of the management of the fermentable fraction of waste in the Barcelona Metropolitan Area (BMA), comparing the present management system with the system proposed for the future. The energy and water consumption were quantified, as well as the used area and the emissions to the atmosphere and water. The software TRACI was used in order to assess the potential impact on the categories of acidification, eutrophication, toxicity and harm to the human health (under the criteria of cancer, non-cancer and pollutants), global warming, depletion of the ozone layer, formation of photochemical smog, water use, land use and fossil fuel use. The results show that the management system proposed for the future reduces 7 out of the 12 potential impacts analyzed, due mainly to the change in the technology of landfill (baling-wrapping landfill). However, this system requires of further research to assess the impacts on a long term. The worst option for biowaste management is the traditional landfill, based on the multibarrier concept. The results of this work suggest that the future biowaste management system is better in environmental terms than the present system. (author)

  7. Environmental impact assessment for energy pathways: an integrated methodology

    International Nuclear Information System (INIS)

    Sommereux-Blanc, Isabelle

    2010-01-01

    This document presents the synthesis of my research work contributing to the development of an integrated methodology of environmental impact assessment for energy pathways. In the context of world globalization, environmental impact assessments issues are highly linked with the following questioning: Which environmental impacts? for which demand? at which location? at which temporal scale? My work is built upon the definition of a conceptual framework able to handle these issues and upon its progressive implementation. The integration of the spatial and temporal issues within the methodology are key elements. Fundamental cornerstones of this framework are presented along the DPSIR concept (Driving forces, Pressures, State, Impacts, Responses). They cover a comprehensive analysis of the limits and the relevance of life cycle analysis and the development of a geo-spatialized environmental performance approach for an electrical production pathway. Perspectives linked with the development of this integrated methodology are detailed for energy pathways. (author)

  8. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  9. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    Science.gov (United States)

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  10. Life cycle assessment of disposal of residues from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Birgisdottir, Harpa; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase...... layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals...... and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment...

  11. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    Science.gov (United States)

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  13. Green Net Value Added as a Sustainability Metric Based on Life Cycle Assessment: An Application to Bounty® Paper Towel

    Science.gov (United States)

    Sustainability measurement in economics involves evaluation of environmental and economic impact in an integrated manner. In this study, system level economic data are combined with environmental impact from a life cycle assessment (LCA) of a common product. We are exploring a co...

  14. Assessing Prinary School; Second Cycle Social Science Textbooks ...

    African Journals Online (AJOL)

    Assessing Prinary School; Second Cycle Social Science Textbooks in ... second cycle primary level social science textbooks vis-à-vis the principles of multiculturalism. ... Biases were disclosed in gender, economic and occupational roles.

  15. Integrated approach for characterizing and comparing exposure-based impacts with life cycle impacts

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier

    2016-01-01

    ions that involve burden shifting or that result in only incremental improvement. Focusing in the life cycle impacts on widely accepted and applied impact categories like global warming potential or cumulative energy demand aggregating several impact categories will lead to underestimations of life...... to the environment from product-related processes along the product life cycle. We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical...... in a product. When combined chemical masses in products and further with toxicity information, this approach is a resourceful way to inform CAA and minimize human exposure to toxic chemicals in consumer products through both product use and environmental emissions. We use an example of chemicals in consumer...

  16. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Science.gov (United States)

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  17. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    Science.gov (United States)

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  18. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  19. Life Cycle Assessment on a 765 kV Venezuelan Transmission System

    International Nuclear Information System (INIS)

    Wang, Wenlu; Tremouille, Gilles; Beroual, Abderrahmane; Bessede, Jean-Luc

    2011-03-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in T and D industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, in this paper, an LCA using SimaPro (one kind of LCA software) is conducted on a whole Venezuelan 765 kV AC transmission system, which transmits 8000 MW hydro-electrical power through 760 km to this country's load centers, with total 7 substations, i.e. one sending end, 2 intermediate substations and 4 receiving ends. This LCA includes both transmission lines and substations, and then the environmental impacts of the whole transmission system are investigated. (authors)

  20. Biofuel or excavation? - Life cycle assessment (LCA) of soil remediation options

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal; Andersson-Skoeld, Yvonne [Swedish Geotechnical Institute, 58193 Linkoeping (Sweden)

    2011-02-15

    The environmental consequences of soil remediation through biofuel or through dig-and-dump were compared using life cycle assessment (LCA). Willow (Salix viminalis) was actually grown in-situ on a discontinued oil depot, as a phytoremediation treatment. These data were used for the biofuel remediation, while excavation-and-refill data were estimated from experience. The biofuel remediation had great environmental advantages compared to the ex situ excavation remediation. With the ReCiPe impact assessment method, which included biodiversity, the net environmental effect was even positive, in spite of the fact that the wood harvest was not utilised for biofuel production, but left on the contaminated site. Impact from the Salix viminalis cultivation was mainly through land use for the short rotation coppice, and through journeys of control personnel. The latter may be reduced when familiarity with biofuel as a soil treatment method increases. The excavation-and-refill remediation was dominated by the landfill and the transport of contaminated soil and backfill. (author)

  1. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    because of the large energy use forrunning the demineralization process. Local and regional environmental impacts were shown to improve from demineralization for low ranking coals or lignite where the ash content is above ≈25 % and the carboncontent is less than ≈50 %. Overall, it can be concluded...... in alkaline and acidic solution to dissolve and remove the ash. This process is well-studied on lab scale but has only to a small extent been tried on a full scale. This assessment is conducted as an aid for further developing thetechnology, allowing for early identification of environmental impacts...... cycle perspective, to assessthe environmental impacts from removing ash in coal, and assess how this affects the combustion in terms of higher thermal efficiency. We assess 260 different data points applying alkali-acid leaching or acidleaching and assess how the treatment and subsequent energy...

  2. Life cycle assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects

    International Nuclear Information System (INIS)

    Kloepffer, W.; Renner, I.; Schmidt, E.; Tappeser, B.; Gensch, C.O.; Gaugitsch, H.

    2001-01-01

    In the preceding project 'Life Cycle Assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects' for the first time the risks of deliberate release of genetically modified organisms (GMOs) into the environment have been taken into account in a Life Cycle Assessment (LCA). This was performed by a risk assessment in addition to a quantitative impact assessment. As from a methodological perspective this was not satisfactory, the Federal Environment Agency commissioned the C.A.U. GmbH and the Institute of Applied Ecology Freiburg to further develop the impact assessment methodology for the risks of GMOs. Any further development of the methodology of impact assessment in LCAs has to be performed on the basis of the standard EN/ISO 14042. There are 2 options for taking into account risks of deliberate release of GMOs: 1. allocation of the potential effects resulting from the genetic modification on human beings and the environment to existing categories of the impact assessment and attempt to quantify within those existing methods of characterization; 2. development of a new category, e.g. 'effects of genetically modified crop plants'. In order to asses the possibilities under option 1 various models of characterization within the categories human toxicity, ecotoxicity and land use (appropriation of environmental space) have been analyzed. The risks of GMOs identified and dealt with in the preceding study were allocated to these categories. It seemed to be impossible to integrate the risks in existing models of characterization for human toxicity and ecotoxicity, as these are based on exposure and impact factors. The development of a factor for exposure seems possible for GMOs, however a suitable impact factor is not possible to generate. In addition it was analyzed if in other impact categories which are difficult to quantify any solutions for operationalization exist. This does not seem to be the case. As a

  3. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  4. Life cycle assessment of the application of nanoclays in wire coating

    International Nuclear Information System (INIS)

    Tellaetxe, A; Blázquez, M; Unzueta, I; Arteche, A; Egizabal, A; Ermini, V; Rose, J; Chaurand, P

    2012-01-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life

  5. Anaerobic digestion and related best management practices : utilizing life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Venczel, M.Z. [Clarkson Univ., Potsdam, NY (United States); Powers, S.E. [Clarkson Univ., Potsdam, NY (United States)

    2010-07-01

    This paper reported on a life cycle assessment (LCA) study that compared the environmental impacts of business-as-usual manure management with those of a manure management operation incorporating anaerobic digestion with combined heat and power generation. The case study was based on a medium sized dairy farm in northern New York State. The study identified the benefits resulting from the displacement of fossil fuels, and reduction of related emissions. Although anaerobic digestion of dairy manure with energy recovery through biogas combustion is viewed as a positive environmental approach to increase the use of renewable energy, there are potential negative impacts that can counteract the environmental benefits. The negative impacts are associated with emissions of methane and nitrogen species during digestion and after spreading of digester effluent. The environmental impacts and their causes should be evaluated in order to promote best management practices. Knowledge gained from an LCA was used in this study to assess the benefits associated with various management practices. The study showed that the design and construction of biogas systems must minimize the potential for fugitive emissions of biogas that can readily outweigh the benefits associated fossil fuel displacement. The environmental trade-offs associated with various manure management and energy recovery systems were also described.

  6. Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature

    NARCIS (Netherlands)

    Corsten, M.A.M.; Ramirez, C.A.; Shen, L.; Koornneef, A.; Faaij, A.P.C.

    2013-01-01

    This study performs an assessment of existing LCA literature to obtain insights into potential environmental impacts over the complete life cycle of fossil fuel fired power plants with CCS. CCS results in a net reduction of the GWP of power plants through their life cycle in the order of 65–84%

  7. Review of Life Cycle Sustainability Assessment and Potential for Its Adoption at an Automotive Company

    Directory of Open Access Journals (Sweden)

    Peter Tarne

    2017-04-01

    Full Text Available The aim of this paper is to guide the next steps of a PhD thesis through a structured review of the state of the art and implementation of Life Cycle Sustainability Assessment (LCSA, and to identify challenges and potentials for its adoption at an automotive company. First, the structured literature review was conducted on LCSA to screen the current methodological and practical implementations and to identify the main research needs in the field. Second, a research on the current status of LCSA within the automotive industry was carried out by means of investigation of published sources of 15 Original Equipment Manufacturers (OEM. By combining the results of both steps and consulting with decision makers, the challenges and potential for adopting LCSA at an automotive company were identified. The main challenges for adoption of LCSA were found to be: (1 the consistent execution of the three life cycle based assessment methods; (2 the comparatively low maturity of Social Life Cycle Assessment (S-LCA; and (3 the adequate presentation and interpretation of results. Next steps towards implementation would be a case study to gather experience on the combined execution of the three life cycle based assessments at an automotive company. Furthermore, it should be determined what the needs of decision makers at an automotive company are regarding the aggregation and interpretation of environmental, social, and economic impacts.

  8. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  9. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    Science.gov (United States)

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  10. Area of Concern: A new paradigm in life cycle assessment for the development of footprint metrics

    DEFF Research Database (Denmark)

    Ridoutt, Bradley G.; Pfister, Stephan; Manzardo, Alessandro

    2016-01-01

    As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force...... operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related...... terminology as well as to discuss modelling implications. The task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA...

  11. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.

    2010-01-01

    for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO......The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...

  12. Life cycle assessment of four potable water treatment plants in northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz Rodriguez

    2016-04-01

    Full Text Available There is currently great concern about the processes that directly or indirectly contribute to the potential for global warming, such as stratospheric ozone depletion or acidification. In this context, and provided that treated water is a basic public utility in urban centers around the world as well as in some rural areas, its impact on the environment is of great interest. Therefore, this study applied the environmental methodology of Life Cycle Assessment (LCA to evaluate the environmental loads of four potable water treatment plants (PWTPs located in northeastern Colombia following the international guidelines delineated in ISO 14040. The different stages of the drinking water process were thoroughly assessed, from the catchment point through pumping to the distribution network. The functional unit was defined as 1 m3 of drinking water produced at the plant. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results showed that in plants PLA-CA and PLA-PO, the flocculation process has the highest environmental load, which is mostly attributable to the coagulant agent, with a range between 47-73% of the total impact. In plants PLA-TON and PLA-BOS, electricity consumption was identified as the greatest impact source, with percentages ranging from 67 to 85%. Treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior varied from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operational cycle.

  13. Life cycle considerations for improving sustainability assessments in seafood awareness campaigns.

    Science.gov (United States)

    Pelletier, Nathan; Tyedmers, Peter

    2008-11-01

    It is widely accepted that improving the sustainability of seafood production requires efforts to reverse declines in global fisheries due to overfishing and to reduce the impacts to host ecosystems from fishing and aquaculture production technologies. Reflective of on-going dialogue amongst participants in an international research project applying Life Cycle Assessment to better understand and manage global salmon production systems, we argue here that such efforts must also address the wider range of biophysical, ecological, and socioeconomic impacts stemming from the material and energetic throughput associated with these industries. This is of particular relevance given the interconnectivity of global environmental change, ocean health, and the viability of seafood production in both fisheries and aquaculture. Although the growing popularity of numerous ecolabeling, certification, and consumer education programs may be making headway in influencing Western consumer perceptions of the relative sustainability of alternative seafood products, we also posit that the efficacy of these initiatives in furthering sustainability objectives is compromised by the use of incomplete criteria. An emerging body of Life Cycle Assessment research of fisheries and aquaculture provides valuable insights into the biophysical dimensions of environmental performance in alternative seafood production and consumption systems, and should be used to inform a more holistic approach to labeling, certifying, and educating for sustainability in seafood production. More research, however, must be undertaken to develop novel techniques for incorporating other critical dimensions, in particular, socioeconomic considerations, into our sustainability decision-making.

  14. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    OpenAIRE

    Breunig, Hanna Marie

    2015-01-01

    There is a global need for energy technologies that reduce the adverse impacts of societal progress and that address today's challenges without creating tomorrow's problems. Life cycle impact assessment (LCIA) can support technology developers in achieving these prerequisites of sustainability by providing a systems perspective. However, modeling the early-stage scale up and impacts of technology systems may lead to unreliable or incomplete results due to a lack of representative technical, s...

  15. Social Life Cycle Assessment as a Management Tool: Methodology for Application in Tourism

    Directory of Open Access Journals (Sweden)

    Roberto Merli

    2013-08-01

    Full Text Available As is widely known, sustainability is an important factor in competition, increasing the added value of a company in terms of image and credibility. However, it is important that sustainability assessments are effectively addressed in a global perspective. Therefore, life cycle tools are adopted to evaluate environmental and social impacts. Among these, and of particular significance, appears the Social Life Cycle Assessment (SLCA, which, although in its early stage of development, seems to have extremely promising methodological features. For this reason, it seemed interesting to propose a first application to the tourism sector, which could be better than other methods, studied in terms of social sustainability data. The particular characteristics of service delivery lend themselves more to the development of data related to social sustainability than other sectors. In this paper the results of a case study carried out using social accounting and business management tools are shown.

  16. Chinese life cycle impact assessment factors

    DEFF Research Database (Denmark)

    Yang, Jianxin; Nielsen, Per Henning

    2001-01-01

    The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization...... was determined as the normalization reference (ER ( j)90) divided by society's target contribution in the year 2000 abased on Chinese political reduction plans, ER ( j)(T2000). This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming...

  17. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 1: a diurnally forced OGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Met Office Hadley Centre, Exeter, EX1 3PB (United Kingdom); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Madec, G. [Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Slingo, J.M.; Woolnough, S.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom)

    2007-11-15

    The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden-Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model. (orig.)

  18. Life cycle assessment and evaluation of sustainable product design strategies for combined cycle power plants; Lebenszyklusanalyse und Bestimmung von Einflussfaktoren zur nachhaltigen Produktgestaltung von GuD-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Falko

    2010-03-26

    The growth of the national GDP on a worldwide level and the associated increasing demand for primary energy inevitably result in higher emissions levels. According to recent international scientific studies the energy sector (including electricity generation, industrial activities and traffic) contributes up to 83 % to the worldwide greenhouse gas emissions. Climate change and the projection of its impacts have been acknowledged also on the political level and concise measures are being considered. Since access to electricity and sustainable development are inseparable, the question arises whether and how adequate answers can be given within the coming years. Furthermore, the definite lifetime of the existing power plant fleet will result in a gap of up to 12.000 MWh in 2020, depending on the scenario. One part of the answer lies in the sustainable design of power plants. The main contribu-tion of this work is therefore the life cycle analysis of a combined cycle power plant from of a manufacturer's perspective. The visualisation of the entire product system and the re-sults of the impact assessment facilitate the determination of improvement potential. The system boundaries for this study include all relevant phases of the product life cycle (materials, manufacturing, transport, operation, service and end of life). The life cycle inventory consists of all bills of materials and energy consumption for all components and life cycle phases. The interpretation of the results of the impact assessment showed the expected significant contribution in kg CO{sub 2}e for the emission of the full load operation. Nevertheless, the results for all impact categories over the entire lifecycle are given. Various operation scenarios and configurations can now be analysed based on the elaborated modules, and can now serve as decision support already during product development. The visualisation of impacts of design decisions on the ecological footprint of the product system in

  19. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  20. Spatial differentiated effect assessment for aquatic eutrophication in Life Cycle Assessment.

    NARCIS (Netherlands)

    Penailillo, Reinaldo

    2005-01-01

    The conventional evaluation of aquatic eutrophication in Life Cycle Assessment (LCA) expresses the contribution of nitrogen and/or phosphorus emissions to biomass production in terms of the equivalent emission of a reference substance. This assessment doe