WorldWideScience

Sample records for cycle fatigue mechanisms

  1. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  2. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  3. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  4. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  5. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  6. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  7. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  8. Influence of microstructure of different stainless steels on their low cycle fatigue damage mechanisms

    International Nuclear Information System (INIS)

    Baffie, Natacha

    2002-01-01

    The present study is focused on understanding low cycle fatigue damage mechanisms in three different kind of stainless steels. In all structures, crack propagation is conditioned by microstructural barriers. In single phase austenitic alloys, short cracks initiation and growth are crystallographic. Cracks are arrested by grain and twin boundaries both at surface and in the bulk. Grain size refinement improve the fatigue life at applied Δε p . The second barrier in the bulk is shown to be very efficient because of the important number of misoriented grains. In the metastable austenitic alloy, the martensitic transformation induced by cyclic straining leads to significant modifications of damage mechanisms. The fatigue behaviour has been investigated between -50 deg. C and 120 deg. C. The γ→α' transformation takes place at the surface, in the bulk (except at 120 deg. C) and locally at the crack tip. At all temperatures, the amount of martensite formed and the fatigue life increase as the grain size decreases, even if at the same Δε p , the maximal stresses are considerably higher than in a stable γ. Short cracks growth takes place in transformed regions, γ→α' transformation being assisted by strain concentrations at the crack tip. This mechanism consumes a part of plastic deformation, which would have been available for crack propagation. Such a dynamic barrier can decrease crack propagation rate. The austenite grain size is shown to have a decisive influence both on the amount of martensite formed and on the fatigue resistance through the effect of γ grain boundaries as indirect barriers to the crack propagation. The fatigue life of the 475 deg. C aged α/γ alloy decreases sharply at high applied Δε p compared to the solution annealed one. This behaviour is explained by the modification of short cracks nucleation sites. Indeed, cleavage occurs in the hard and brittle α phase, even if plastic deformation is concentrated in γ phase. Then, easy

  9. Resistance of heat resisting steels and alloys to thermal and mechanical low-cycle fatigue

    International Nuclear Information System (INIS)

    Tulyakov, G.A.

    1980-01-01

    Carried out is a comparative evalUation of resistance of different materials to thermocyclic deformation and fracture on the base of the experimental data on thermal and mechanical low-cycle fatigUe. Considered are peculiarities of thermal fatigue resistance depending on strength and ductility of the material. It is shown, that in the range of the cycle small numbers before the fracture preference is given to the high-ductility cyclically strengthening austenitic steels of 18Cr-10Ni type with slight relation of yield strength to the σsub(0.2)/σsub(B) tensile strength Highly alloyed strength chromium-nickel steels, as well as cyclically destrengthening perlitic and ferritic steels with stronger σsub(0.2)/σsub(B) relation as compared with simple austenitic steels turn to be more long-lived in the range of the cycle great numbers berore fracture. Perlitic steels are stated to have the lowest parameter values of the K crack growth intensity under the similar limiting conditions of the experiment, while steels and alloys with austenite structure-higher values of the K parameter

  10. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  11. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Retraint, D., E-mail: delphine.retraint@utt.fr [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Baudin, T.; Helbert, A.L.; Brisset, F. [ICMMO, Univ Paris-Sud, Université Paris-Saclay, UMR CNRS 8182, 91405 Orsay Cedex (France); Chemkhi, M.; Zhou, J. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Kanouté, P. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); ONERA, The French Aerospace Lab, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France)

    2017-02-15

    Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with the presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.

  12. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

    International Nuclear Information System (INIS)

    Sun, Z.; Retraint, D.; Baudin, T.; Helbert, A.L.; Brisset, F.; Chemkhi, M.; Zhou, J.; Kanouté, P.

    2017-01-01

    Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with the presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.

  13. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  14. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  15. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  16. Non local approach in crystalline plasticity: study of mechanical behaviour of AISI 316LN stainless steel during low cycle fatigue

    International Nuclear Information System (INIS)

    Schwartz, J.

    2011-01-01

    If fatigue crack initiation is currently quite well understood for pure single crystals, its comprehension and prediction in cases of polycrystal alloys such as AISI 316LN stainless steel remain complicated. Experimentally our study focuses on the characterisation of the mechanical behaviour and on the study at different scales of the phenomenon leading to low cycle fatigue crack initiation in 316LN stainless steel. For straining amplitudes of?e/2 = 0,3 and 0,5%, the cyclic softening observed during testing has been related to the organisation of dislocations in band structures. These bands, formed due to the activation of slip systems having the greatest Schmid's factor, carry the most part of the deformation. Their emergence at free surfaces leads to the formation of intrusions and extrusions which help cracks initiate and spread. Numerically we worked on the mesoscopic scale, proposing a new model of crystalline plasticity. This model integrates geometrically necessary dislocations (GND) directly computed from the lattice curvature. Implemented in the finite element code Abaqus TM and Cast3m TM , it is based on single crystal finite deformations laws proposed by Peirce et al. (1983) and Teodosiu et al. (1993). Extended for polycrystals by Hoc (2001) and Erieau (2003), it has been improved by the introduction of GND (Acharya and Bassani, 2000). The simulations performed on different types of aggregates (2D/3D) have shown that taking GND into account enables:- the prediction of the grain size effect on a macroscopic and on a local scale,- a finer computation of local stress field.The influence of the elasticity and interaction matrices on the values and the evolution of the isotropic and kinematic mean stresses has been shown. The importance of boundary conditions on computed mechanical fields could also be pointed out. (author)

  17. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  18. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  19. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  20. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Kuznetsov, A.N.; Schreiber, J.; Bomas, H.; Stoeberl, Ch.; Rathjen, P.; Vorster, W.J.J.; Korsunsky, A.M.

    2007-01-01

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  1. Fatigue diminishes motoneuronal excitability during cycling exercise.

    Science.gov (United States)

    Weavil, Joshua C; Sidhu, Simranjit K; Mangum, Tyler S; Richardson, Russell S; Amann, Markus

    2016-10-01

    Exercise-induced fatigue influences the excitability of the motor pathway during single-joint isometric contractions. This study sought to investigate the influence of fatigue on corticospinal excitability during cycling exercise. Eight men performed fatiguing constant-load (80% W peak ; 241 ± 13 W) cycling to exhaustion during which the percent increase in quadriceps electromyography (ΔEMG; vastus lateralis and rectus femoris) was quantified. During a separate trial, subjects performed two brief (∼45 s) nonfatiguing cycling bouts (244 ± 15 and 331 ± 23W) individually chosen to match the ΔEMG across bouts to that observed during fatiguing cycling. Corticospinal excitability during exercise was quantified by transcranial magnetic, electric transmastoid, and femoral nerve stimulation to elicit motor-evoked potentials (MEP), cervicomedullary evoked potentials (CMEP), and M waves in the quadriceps. Peripheral and central fatigue were expressed as pre- to postexercise reductions in quadriceps twitch force (ΔQ tw ) and voluntary quadriceps activation (ΔVA). Whereas nonfatiguing cycling caused no measureable fatigue, fatiguing cycling resulted in significant peripheral (ΔQ tw : 42 ± 6%) and central (ΔVA: 4 ± 1%) fatigue. During nonfatiguing cycling, the area of MEPs and CMEPs, normalized to M waves, similarly increased in the quadriceps (∼40%; P fatiguing cycling. As a consequence, the ratio of MEP to CMEP was unchanged during both trials (P > 0.5). Therefore, although increases in muscle activation promote corticospinal excitability via motoneuronal facilitation during nonfatiguing cycling, this effect is abolished during fatigue. We conclude that the unaltered excitability of the corticospinal pathway from start of intense cycling exercise to exhaustion is, in part, determined by inhibitory influences on spinal motoneurons obscuring the facilitating effects of muscle activation.

  2. Specific features of high-cycle and ultra-high-cycle fatigue

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík

    2002-01-01

    Roč. 25, - (2002), s. 747-753 ISSN 8756-758X R&D Projects: GA AV ČR KSK1010104; GA AV ČR IAA2041002 Institutional research plan: CEZ:AV0Z2041904 Keywords : ultra high cycle fatigue * fatigue mechanisms * cyclic plastic deformation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.701, year: 2002

  3. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  4. Crack growth prediction for low-cycle fatigue regime

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2017-01-01

    The objective of this study is to show a crack growth prediction procedure for the low-cycle fatigue regime. First, fatigue crack growth tests using Type 316 stainless steel specimens at room temperature were reviewed. It was seen that the crack growth rates correlated well with the equivalent stress intensify factor, which was derived using strain range instead of stress range. Furthermore, the effective equivalent stress intensify factor derived using the effective strain range exhibited excellent correlation with the crack growth rates obtained under various specimen geometries and loading conditions including high and low-cycle regimens. The obtained crack growth rates were also compared with the growth rate prescribed in the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME). The test results agreed with the growth rate of JSME code. Finally, the procedure for predicting the low-cycle fatigue crack growth was shown. Although the JSME code is aimed at predicting fatigue crack growth for the so-called small scale yielding condition (high-cycle fatigue regime), the material constants determined for the high-cycle fatigue regime can be used even for the low-cycle fatigue regime. (author)

  5. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  6. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  7. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  8. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  9. Fatigue analysis through automated cycle counting using ThermAND

    International Nuclear Information System (INIS)

    Burton, G.R.; Ding, Y.; Scovil, A.; Yetisir, M.

    2008-01-01

    The potential for fatigue damage due to thermal transients is one of the degradation mechanisms that needs to be managed for plant components. The original design of CANDU stations accounts for projected fatigue usage for specific components over a specified design lifetime. Fatigue design calculations were based on estimates of the number and severity of expected transients for 30 years operation at 80% power. Many CANDU plants are now approaching the end of their design lives and are being considered for extended operation. Industry practice is to have a comprehensive fatigue management program in place for extended operation beyond the original design life. A CANDU-specific framework for fatigue management has recently been developed to identify the options for implementation, and the critical components and locations requiring long-term fatigue monitoring. An essential element of fatigue monitoring is to identify, count and monitor the number of plant transients to ensure that the number assumed in the original design is not exceeded. The number and severity of actual CANDU station thermal transients at key locations in critical systems have been assessed using ThermAND, AECL's health monitor for systems and components, based on archived station operational data. The automated cycle counting has demonstrated that actual transients are generally less numerous than the quantity assumed in the design basis, and are almost always significantly less severe. This paper will discuss the methodology to adapt ThermAND for automated cycle counting of specific system transients, illustrate and test this capability for cycle-based fatigue monitoring using CANDU station data, report the results, and provide data for stress-based fatigue calculations. (author)

  10. Low-cycle compression fatigue of reinforced concrete structures

    NARCIS (Netherlands)

    Stroeven, P.

    2010-01-01

    Paper reports on experiments performed in the low-cycle compression fatigue domain, considering two relatively high upper load levels and several lower ones. Two frequency levels were emphasized, i.e. 17.5 Hz and 0.175 Hz. An overview is given of characteristics of mechanical behaviour and of the

  11. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    Science.gov (United States)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  12. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  13. Identification of low cycle fatigue parameters

    Directory of Open Access Journals (Sweden)

    Balda M.

    2009-12-01

    Full Text Available The article describes a new approach to the processing of experimental data coming from low-cycle fatigue (LCF tests. The data may be either tables from the standard tests, or a time series of loading processes and corresponding numbers of cycles to damage. A new method and a program for the evaluation of material parameters governing the material behavior under a low cycle loading have been developed. They exploit a minimization procedure for an appropriate criterion function based on differences of measured and evaluated damages.

  14. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  15. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  16. Fatigue cycles evaluation of 500 MWe PHWR coolant channel sealdisc

    International Nuclear Information System (INIS)

    Chawla, D.S.; Vaze, K.K.; Kushwaha, H.S.; Gupta, K.S.; Bhambra, H.S.

    1998-07-01

    At each end of coolant channel there is one sealing plug assembly. The sealdisc is a part of sealing plug assembly. The sealdisc is used to avoid leakage of heavy water. The importance of sealdisc can be understood by the fact that there are 784 sealdiscs in one 500 MWe PHWR unit. During the life time of reactor the sealdisc will be subjected to cyclic loads due to reactor startup, shutdown, power setback and also due to refuelling operations. Excessive reversal of stresses may lead to fatigue failure. The sealdisc failure may cause loss of coolant accidents. Since sealdisc is safety class 1 component, it has to be qualified according to ASME Section III Division 1 NB. For cyclic loads, the fatigue analysis is essential to assess the allowable number of cycles and also to check the total usage factor due to different cyclic loads. To evaluate the allowable fatigue cycles, the analysis is carried out using finite element method. The present report deals with the fatigue cycles evaluation of 500 MWe PHWR sealdisc. The finite element model having eight noded axisymmetric elements is used for the analysis. The various loads considered in the analysis are mechanical loads arising due to refuelling operations and number of temperature-pressure transients. During refuelling, the sealdisc is removed and reinstalled back by use of fuelling machine ram which applies load at centre as well as at rocker point of sealdisc. The stress analysis is carried out for each stage of loading during refuelling and fatigue cycles are evaluated. For temperature transient, decoupled thermal analysis is carried out. At various instants of time, the stresses are computed using temperatures calculated in thermal analysis. The pressure variation is also considered along with temperature variation. The fatigue cycles are evaluated for each transient using maximum alternating stress intensities. The usage factors are calculated for various temperature/pressure transients and refuelling loads

  17. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Science.gov (United States)

    Zuo, Li; Diaz, Philip T; Chien, Michael T; Roberts, William J; Kishek, Juliana; Best, Thomas M; Wagner, Peter D

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  18. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr followed by a high oxygen level (550 Torr, can reduce intracellular reactive oxygen species (ROS as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  19. Mechanisms of aging and fatigue in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A. [Sonderforschungsbereich 595, Institut für Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Glaum, Julia [Department of Materials Science and Engineering, University of New South Wales, Sydney (Australia); Hoffmann, Michael J. [Institut für keramische Werkstoffe, Haid-und-Neu Str. 7, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Albe, Karsten, E-mail: albe@mm.tu-darmstadt.de [Sonderforschungsbereich 595, Institut für Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2015-02-15

    Highlights: • Experiments on aging and fatigue of bulk ferroelectrics are thoroughly reviewed. • Lead-based PZT and lead-free BNT–BT and KNN materials are covered. • Various fatigue regimes and factors are classified. • Defect associate formation and alignment are analyzed by density functional theory. • Emerging of internal bias field is studied within drift-diffusion approach. - Abstract: A comprehensive review of aging and fatigue phenomena in bulk polycrystalline ferroelectrics is presented. Three material classes are covered, namely the most widely used Pb[Zr{sub 1−x}Ti{sub x}]O{sub 3} (PZT) ceramics and lead-free materials, including those based on bismuth sodium titanate Bi{sub 1/2}Na{sub 1/2}TiO{sub 3} (BNT) and alkali niobate [K{sub x}Na{sub 1−x}]NbO{sub 3} (KNN). Aging is studied in poled and unpoled states both experimentally and theoretically. The variety of different loading regimes for fatigue includes DC electric field, unipolar, sesquipolar and bipolar cycling and all these differently combined with mechanical loading at different frequencies and temperatures. The role of device geometries and electrode materials is addressed and models describing charge migration and defect dipole re-orientation are discussed in the context of recent experimental studies.

  20. Mechanisms of aging and fatigue in ferroelectrics

    International Nuclear Information System (INIS)

    Genenko, Yuri A.; Glaum, Julia; Hoffmann, Michael J.; Albe, Karsten

    2015-01-01

    Highlights: • Experiments on aging and fatigue of bulk ferroelectrics are thoroughly reviewed. • Lead-based PZT and lead-free BNT–BT and KNN materials are covered. • Various fatigue regimes and factors are classified. • Defect associate formation and alignment are analyzed by density functional theory. • Emerging of internal bias field is studied within drift-diffusion approach. - Abstract: A comprehensive review of aging and fatigue phenomena in bulk polycrystalline ferroelectrics is presented. Three material classes are covered, namely the most widely used Pb[Zr 1−x Ti x ]O 3 (PZT) ceramics and lead-free materials, including those based on bismuth sodium titanate Bi 1/2 Na 1/2 TiO 3 (BNT) and alkali niobate [K x Na 1−x ]NbO 3 (KNN). Aging is studied in poled and unpoled states both experimentally and theoretically. The variety of different loading regimes for fatigue includes DC electric field, unipolar, sesquipolar and bipolar cycling and all these differently combined with mechanical loading at different frequencies and temperatures. The role of device geometries and electrode materials is addressed and models describing charge migration and defect dipole re-orientation are discussed in the context of recent experimental studies

  1. Low cycle fatigue of alloy 718 in cryogenic environment

    International Nuclear Information System (INIS)

    Vergara Aimone, J.

    1989-01-01

    A specially processed Ni-Fe base superalloy 718 has been selected as a structural material for a critical component in ALCATOR C-MOD, the new fusion experimental facility at the Massachusetts Institute of Technology. Draw bars made out of this material will be subjected to large alternating loads while operating at 77 0 K. Monotonic and cyclic mechanical properties were determined in order to evaluate the reactor's maintenance schedule with special emphasis in developing a Low Cycle Fatigue database for this special alloy. Improved monotonic properties over conventionally heat treated alloy 718 were observed. Partial hardening was observed at 77 0 K at 1% of the fatigue life, while softening was observed at room temperature, both relative to their respective monotonic stress strain curves. The fatigue curves were corrected for non-zero mean stress allowing satisfactory safety margin for the expected alternating stress. (author)

  2. Thermo-Mechanical Fatigue Crack Growth of RR1000

    OpenAIRE

    Christopher John Pretty; Mark Thomas Whitaker; Steve John Williams

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechan...

  3. Fatigue mechanisms during physical exercise

    Directory of Open Access Journals (Sweden)

    Monique Gevaerd

    2006-03-01

    Full Text Available Fatigue can be defined as incapacity to maintain the required power output, with concomitant impairment of exercise performance, and it can be divided into chronic or acute. In acute fatigue a subdivision has been used to delimitate experimental studies. Thus, acute fatigue can be central or peripheral. We began the review process with a search on the Pubmed database, followed by selection of classical and more recent articles. As the fatigue mechanisms are linked to the predominant energy metabolism in the activity, the purpose of this paper was to review the main acute fatigue theories in activities with different metabolic demands. From this literature review, it was possible to infer that important metabolic alterations occurring during exercise, impair normal cellular activities,therefore, decreasing the speed of contraction and as well as energy replenishment. Many of those alterations give information to the central nervous system, limiting the time length of exercise. Theoretically, the elongation of exercise beyond biological limits can cause irreversible damages to the organism. RESUMO Fadiga pode ser definida como uma incapacidade na manutenção de uma determinada potência, com conseqüente redução no desempenho, podendo ser considerada como crônica ou aguda. Na fadiga aguda, uma subdivisão vem sendo utilizada para maior delimitação dos estudos experimentais. Nesse sentido, fadiga aguda pode ser descrita como central ou periférica. Nós iniciamos o processo de revisão sobre o assunto com uma busca no banco de dados Pubmed, seguido da seleção dos artigos clássicos e mais recentes. Como os mecanismos de fadiga estão intimamente ligados ao metabolismo energético predominante da atividade, a presente revisão destinou-se a levantar as principais teorias sobre fadiga aguda em atividades com diferentes exigências metabólicas. A partir desse apanhado bibliográfico podemos inferir que importantes alterações metab

  4. Study of Mechanical Features for Low Cycle Fatigue Samples of Metastable Austenitic Steel AISI 321 by Neutron Stress Analysis under Applied Load

    CERN Document Server

    Taran, Yu V; Eifler, D; Nebel, Th; Schreiber, J

    2002-01-01

    The elastoplastic properties of the austenitic matrix and martensitic volume areas induced during cyclic tensile-compressive loading of low carbon metastable austenitic stainless steel were studied in an in situ neutron diffraction stress rig experiment on the ENGIN instrument at the ISIS pulsed neutron facility. Samples prepared from the steel AISI 321 annealed at 1050 ^{\\circ}C and quenched in water were subjected to low-cycle fatigue under total-strain control with an amplitude of 1 % at a frequency of 0.5 Hz. Subsequent applied stress?elastic strain responses of the austenitic and martensitic phases were obtained by Rietveld and Le Bail refinements of the neutron diffraction spectra, and were used to determine the elastic constants of the phases as a function of fatigue level. The results of modified refinements accounting for the elastic anisotropy in polycrystalline materials under load are also presented. The residual strains in the austenitic matrix were determined as a function of fatigue cycling, us...

  5. Synthesis of low cycle fatigue test results

    International Nuclear Information System (INIS)

    Andrews, R.M.

    1990-01-01

    Axial strain controlled cycle fatigue tests were carried out on type 316 stainless steel parent metal, vacuum and non-vacuum electron beams welds, submerged arc welds and gas shielded metal arc welds. Testing covered total strains in the range 0.6% to 2%, and was at room temperature and 550 0 C. Parent metal and the electron beam welds showed rapid cyclic hardening, while arc welds showed little hardening. The weld metal cyclic stress-strain response was above that obtained for the parent metal, although below data obtained by other workers for similar parent materials. Weld metal endurances were above the ASME N47 continuous cycling design line at both temperatures, and comparable with parent metal data. However, the weld metal data approached the design line at low strain ranges (around 0.5%). Endurances were predicted from crack growth rates estimated from striation spacings, giving acceptable results except for the gas shielded metal arc weldments. (author)

  6. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  7. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  8. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  9. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF regime up to 109 cycles

    Directory of Open Access Journals (Sweden)

    Eric eWycisk

    2015-12-01

    Full Text Available Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles.For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  10. Analysis of fatigue crack initiation in cycled austempered ductile cast irons

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Dluhoš, J.; Zouhar, Michal; Ševčík, Martin

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2337-2346 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI * Finite element modelling * Neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  11. Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Tesařová, H.; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2307-2316 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ferritic ductile cast iron * ADI * nickel alloying * neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  12. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  13. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  14. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  15. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  16. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  17. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  18. Strength calculation of NPP equipment and pipelines during operation. Low- and high-cycle corrosion fatigue

    International Nuclear Information System (INIS)

    Filatov, V.M.; Evropin, S.V.

    2004-01-01

    This paper presents empirical equations and design curves for structural steels employed in nuclear power facilities with light water reactors. These equations allow to take into account the effects of cycle asymmetry, water coolant and ductility decrease during operation. The fatigue curves cover the low-cycle and high-cycle regions (up to 10 12 cycles). The equations include the mechanical characteristics of steels under static tension. The coolant effect on steel fatigue is allowed for using a model developed at the Argonne National Laboratory

  19. Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Daliang [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Zhang, Dingfei, E-mail: zhangdingfei@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Yuanxin [College of Mechanical Engineering, Chongqing University, Chongqing 400030 (China); Sun, Jing; Xu, Junyao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2016-03-21

    Microstructure evolution during high cycle fatigue in extruded Mg–6Zn–1Mn alloy was investigated by servo-hydraulic fatigue testing machine with pull–push sinusoidal loading. The results show that in high stress cycles (cyclic stress≥129 MPa) high cycle fatigue tests promote deformation; however, in low stress cycles (cyclic stress≤125 MPa) high cycle fatigue tests make a contribution to room temperature recrystallization in Mg–6Zn–1Mn alloy. The grain refinement increased with increasing cycles. Electron Back-Scattered Diffraction (EBSD) analyses showed that dynamic recrystallization (DRX) has occurred in post-fatigued alloys, accompanied by the presence of a high number density of low-angle grain boundaries (LAGBs). LAGBs generated in the vicinity of initiation grain boundaries and subdivided coarse grains. In the specimens that subjected to higher cycles, the fraction of LAGBs decreased and high-angle grain boundaries (HAGBs) gradually increased. With the cyclic number increasing the texture intensity was significantly weakened. The DRX in post-fatigued specimens was related to Continuous DRX (CDRX) mechanism.

  20. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  1. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  2. Thermal and isothermal low cycle fatigue of MANET I and II

    International Nuclear Information System (INIS)

    Petersen, C.; Schmitt, R.; Garnier, D.

    1996-01-01

    Structural components of a DEMO-blanket are subjected during service to alternating thermal and mechanical stresses as a consequence of the pulsed reactor operation. Of particular concern is the fatigue endurance of martensitic steels like MANET under cyclic strains and stresses produced by these temperature changes. In order to design such structures, operating under combined mechanical and thermal cycling, fatigue life has to be calculated with reasonable accuracy. This paper proposes a description of thermal and isothermal mechanical low-cycle fatigue of MANET I and II steels using a single damage model, including plastic strain, temperature and strain rate as variables. This model presents notable advantages for the designer. As it corresponds to a single and continuous 'fatigue strength surface', it enables a reliable interpolation to be made throughout the studied domain of strains and temperatures, and allows for a reasonable extrapolation out of this domain, provided that no different metallurgical phenomena occur. (orig.)

  3. Recent Advances in High Cycle Fatigue

    National Research Council Canada - National Science Library

    Nicholas, Ted

    2003-01-01

    .... In this paper, in addition to developing approaches for predicting fatigue limits under various mean stresses and biaxial stress states, methods are presented for accounting for service-induced damage...

  4. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  5. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  6. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  7. Thermomechanical fatigue – Damage mechanisms and mechanism ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    varied linearly with time and synchronously in-phase (IP) and out-of-phase (OP) to the plas- tic strain. The tests were always started at the mean temperature and at zero plastic strain with the strain increasing. The majority of the fatigue tests were conducted in laboratory air; though some experiments were carried out in high ...

  8. Effect of microstructure on low cycle fatigue properties of ODS steels

    Czech Academy of Sciences Publication Activity Database

    Kuběna, Ivo; Fournier, B.; Kruml, Tomáš

    2012-01-01

    Roč. 424, 1-3 (2012), s. 101-108 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z20410507 Keywords : ODS steels * low cycle fatigue * fusion energy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.211, year: 2012

  9. High-cycle fatigue of Ni-base superalloy Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.

    2010-01-01

    Roč. 32, č. 6 (2010), s. 908-913 ISSN 0142-1123 R&D Projects: GA MPO FT-TA4/023; GA MŠk MEB080812 Institutional research plan: CEZ:AV0Z20410507 Keywords : IN 713LC * High-cycle fatigue * Effect of mean stress * Fractography * Casting defetcts * Extreme value statistics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  10. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  11. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  12. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    Science.gov (United States)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  13. Low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xue [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Huang, Lixin [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yan, Wei; Wang, Wei [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast BT9 5AG (United Kingdom); Shan, Yiyin, E-mail: yyshan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2014-09-08

    China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10{sup −3} s{sup −1}. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M{sub 23}C{sub 6} carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.

  14. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  15. Fatigue mechanisms in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 1-9 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * effect of purity * effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.345, year: 2007

  16. Predominantly elastic crack growth under combined creep-fatigue cycling

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1979-01-01

    A rationalization of the various observed effects of combined creep-fatigue cycling upon predominantly elastic fatigue-crack propagation in austenitic steel is presented. Existing and new evidence is used to show two main groups of behaviour: (i) material and cycling conditions which lead to modest increases (6-8 times) in the rate of crack growth are associated with relaxation-induced changes in the material deformation characteristics, and (ii) material and cycling conditions severe enough to generate internal fracture damage lead to significant (up to a factor of 30) increases in crack growth rate when compared with fast-cycling crack propagation rates at the same temperature. A working hypothesis is presented to show that the boundary between the two groups occurs when the scale of the nucleated creep damage is of the same magnitude as the crack tip opening displacement. This leads to the possibility of unstable crack advance. Creep crack growth rates are shown to provide an upper bound to creep-fatigue crack growth rates when crack advance is unstable. If the deformation properties only are affected by the creep-fatigue cycling then creep crack growth rates provide a lower bound. The role of intergranular oxygen corrosion in very low frequency crack growth tests is also briefly discussed. (author)

  17. Low cycle fatigue testing in flowing sodium at elevated temperatures

    International Nuclear Information System (INIS)

    Flagella, P.N.; Kahrs, J.R.

    1976-01-01

    The paper describes equipment developed to obtain low cycle strain-controlled fatigue data in flowing sodium at elevated temperatures. Operation and interaction of the major components of the system are discussed, including the calibration technique using remote strain measurement and control. Confirmation of in-air results using the special technique is demonstrated, with data presented for Type 316 stainless steel tested in high purity flowing sodium at 593 0 C. The fatigue life of the material in sodium is essentially the same as that obtained in air for delta epsilon/sub t/= 1 percent. On the other hand, sodium pre-exposure at 650 0 C for 5000 hours increased the fatigue life in-sodium by a factor of two, and sodium pre-exposure at 718 0 C for 5000 hours increased the fatigue life in-sodium by a factor of three

  18. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  19. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  20. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  1. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  2. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Kim, S.W.; Tanigawa, H.; Hirose, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  3. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  4. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. Published by Elsevier Ltd.

  5. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  6. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  7. Fatigue characterization of mechanical components in service

    Directory of Open Access Journals (Sweden)

    G. Fargione

    2013-10-01

    Full Text Available The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor (i is difficult to evaluate especially when it is in service.In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress.The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods, has helped to determine the causes of failure of the tie rods.The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded may also help to understand the causes of failure of mechanical components.

  8. PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation

    OpenAIRE

    Zuo, Li; Diaz, Philip T.; Chien, Michael T.; Roberts, William J.; Kishek, Juliana; Best, Thomas M.; Wagner, Peter D.

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monito...

  9. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.; Moons, F.

    1994-12-01

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  10. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  11. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  12. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  13. The low cycle fatigue factor in the construction of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Petrequin, Pierre; Mottot, Michel; Valibus, Louis; Grattier, Georges

    1976-01-01

    The working conditions of fast neutron reactors are such that it is essential to know the resistance of the component steels to low cycle fatigue. The behavior of Z2CND17-13 type austenitic stainless steels and of welds was studied in three laboratories. The steels offer an excellent resistance to low cycle fatigue, in keeping with their good ductility and very strong aptitude for cyclic strain hardening. Increasing the testing temperature from 20 to 600 deg C reduces the resistance to some extent (about an order of magnitude on the number of cycles to failure). Steels possessing improved mechanical properties without loss of ductility show greater fatigue resistance. Welds characterized by an austenitic ferritic structure and a slightly cold-hardened state are less ductile than laminated steels. Their resistance to low cycle fatigue is lower at strong deformations. At high temperature (600 deg C) a reduced test frequency or a pause at each cycle leads to a considerable drop in the number of cycles to failure and the appearance of intergranular cracking [fr

  14. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  15. Model-experiment dialog in low cycle fatigue of stainless steels

    International Nuclear Information System (INIS)

    Aubin, Veronique

    2008-01-01

    In this HDR report (accreditation to supervise research), the author first proposes a synthesis of her research activities in the study of the mechanical behaviour in low cycle fatigue (cyclic hardening, plasticity surfaces), of modelling of the fatigue mechanical behaviour (phenomenological modelling, modelling with scale change), of progressive deformation (experimental analysis, analysis and simulation of plasticity at the microstructure scale). The second part addresses other activities in the field of research (behaviour and damage characterization of an austenitic-ferritic stainless steel), publication and education supervising, teaching

  16. Fatigue behaviour and failure analysis of IN 713LC in high-cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Mintách, R.; Kunz, Ludvík; Bokůvka, O.

    2009-01-01

    Roč. 16, 3a (2009), s. 37-40 ISSN 1335-0803 R&D Projects: GA MPO FT-TA4/023 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ni base superalloy * casting defect * high-cycle fatigue Subject RIV: JG - Metallurgy

  17. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  18. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  19. Basic Mechanisms Leading to Fatigue Failure of Structural Materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika

    2016-01-01

    Roč. 69, č. 2 (2016), s. 289-294 ISSN 0972-2815. [International Conference on CREEP , FATIGUE and CREEP -FATIGUE INTERACTION /7./. Kalpakkam, 19.01.2016-22.01.2016] R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Damage mechanism * Fatigue crack initiation * Austenitic steel * Oxide cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  20. Effect of microstructure on low cycle fatigue properties of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubena, Ivo, E-mail: kubena@ipm.cz [IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic); Fournier, Benjamin [CEA/DEN/DANS/DMN/SRMA, Bat. 453, 91191 Gif-sur-Yvette Cedex (France); Kruml, Tomas [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Three various ODS steels are studied and compared. Black-Right-Pointing-Pointer Low cycle fatigue data at RT, 650 Degree-Sign C and 750 Degree-Sign C are given. Black-Right-Pointing-Pointer Microstructural characterization. Black-Right-Pointing-Pointer Detailed discussion of strengthening mechanisms. - Abstract: Low cycle fatigue properties at room temperature, 650 Degree-Sign C and 750 Degree-Sign C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  1. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  2. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    Science.gov (United States)

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  3. Low cycle fatigue studies on a type 304 stainless steel

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Ray, S.K.; Rodriguez, P.

    The effects of temperature and strain rate on the low cycle fatigue behaviour were investigated for an AISI 304 stainless steel under total axial strain control mode at 823 and 923 K. The fatigue life was strongly dependent on cyclic deformation rate for this material at these temperatures, decreasing markedly with decreasing strain rate. The cyclic stress-strain response recorded in the form of hysterisis loops exhibited serrations at low strain rates at 823 and 923 K. Cyclic stress-strain response at 823 K has shown an increase in saturation stress and decrease in plastic strain range whereas there is an increase in plastic strain range without marked variation in saturation stress level at 923 K with decreasing strain rate. It has been observed that there are three simultaneous effects namely environment, creep and cyclic strain ageing which contribute to the observed degradation in fatigue life at low strain rates. At 823 K, where the creep damage as well as environmental damage is relatively small, the fatigue life is considered mainly to be affected by dynamic strain ageing effect which depends on strain rate. At 923 K, on the other hand, the strain rate dependence of fatigue life is considered to be determined by the combination of creep and environmental effects. Deformation and fracture studies have also confirmed that the wedge type crack propagation is accelerated by oxidation effect. (author)

  4. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  5. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  6. Crack propagation under conditions of low cycle fatigue

    International Nuclear Information System (INIS)

    Hellmann, D.

    1988-01-01

    A literature review is given of convenient concepts describing the mechanical behaviour of a cracked body under cyclic loading. Only the range of high growth rates is considered. However, caused by large scale yielding in this range, the application of linear elastic fracture mechanics is no longer possible. Mechanical parameters which control fatigue crack growth are a modified stress intensity factor, the J-integral, the crack tip opening displacement and a suitable strain amplitude. (orig.) With 20 figs [de

  7. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  8. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  9. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  10. Low cycle fatigue characteristics of duplex stainless steel with degradation under pure torsional load

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul

    2002-01-01

    Monotonic torsional and pure torsional low cycle fatigue (LCF) test with artificial degradation were performed on duplex stainless steel (CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430 degree C for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties (i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life (N f ) decreases with degradation of material. The relationship between shear strain amplitude (γ α ) and N f was proposed

  11. Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Thomas

    2016-07-01

    Materials in many modern small-scale applications are under complex cyclic stress states and undergo up to 10{sup 9} cycles. Fatigue mechanisms limit their lifetime and lead to failure. Therefore, the Very High Cycle Fatigue (VHCF) regime needs to be studied. This thesis investigates the fatigue mechanisms and crack initiation of nickel, aluminum and copper on a small-scale in the VHCF regime by means of innovative fatigue experimentation. Firstly, the development and implementation of a novel custom-built resonant fatigue setup showed that the resonant frequency of bending micro-samples changes with increasing cycle number due to the accumulating fatigue damage. Then, additional insights on early damage formation have been explored. Mechanisms, prior to crack initiation, such as slip band formation at a state where it appears in only a few grains, have been observed. Cyclic hardening, vacancy formation and oxidation formation may be considered as possible explanations for early fatigue mechanisms. In addition, the new experimental setup can be used to define parameters needed for crack initiation models. Finally, these crack initiation processes have been experimentally examined for pure aluminum and pure copper.

  12. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  13. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  14. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  15. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model......, in which continuum damage mechanics is incorporated to model fatigue damage evolution. This material model uses a superposition of kinematic and isotropic hardening, and is able to account for the Bauschinger effect as well as ratchetting, mean stress relaxation, and cyclic hardening or softening. The cell...... model represents a material with transversely staggered fibres. With focus on low cyclic fatigue, the effect of different fibre aspect ratios, different triaxial stress states, and balanced as well as unbalanced cyclic loading is studied....

  16. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  17. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    Science.gov (United States)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  18. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  19. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-06-01

    In the paper, different morphologies of bainite were obtained through isothermal quenching at 320 °C and 395 °C in a medium-carbon carbide-free bainitic steel. The cyclic deformation mechanism was explored by using low cycle fatigue testing. The volume fraction of retained austenite was measured by X-ray diffraction and the space partitioning of the solute atoms was constructed by three-dimensional atom probe. Results showed that the fatigue life at 320 °C was always higher than that at 395 °C under low and high total strain amplitude. The cyclic softening at the early fatigue stage increased the plastic strain of the sample which was responsible for the reduction of the fatigue life at 395 °C. Strain-induced retained austenite to martensite contributed to initial cyclic hardening, but almost having no effect on the subsequent cyclic stable/softening behaviors. The finer bainitic ferrite sheaves obtained at 320 °C changed the small fatigue crack propagation direction and delayed the crack propagation rate, which was beneficial for the fatigue properties. In addition, the substitutional atoms did not redistribute between the retained austenite and bainitic ferrite before and after cyclic deformation.

  20. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  1. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  2. High cycle fatigue of austenitic stainless steels under random loading

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Petrequin, P.

    1987-08-01

    To investigate reactor components, load control random fatigue tests were performed at 300 0 C and 550 0 C, on specimens from austenitic stainless steels plates in the transverse orientation. Random solicitations are produced on closed loop servo-hydraulic machines by a mini computer which generates random load sequence by the use of reduced Markovian matrix. The method has the advantage of taking into account the mean load for each cycle. The solicitations generated are those of a stationary gaussian process. Fatigue tests have been mainly performed in the endurance region of fatigue curve, with scattering determination using stair case method. Experimental results have been analysed aiming at determining design curves for components calculations, depending on irregularity factor and temperature. Analysis in term of mean square root fatigue limit calculation, shows that random loading gives more damage than constant amplitude loading. Damage calculations following Miner rule have been made using the probability density function for the case where the irregularity factor is nearest to 100 %. The Miner rule is too conservative for our results. A method using design curves including random loading effects with irregularity factor as an indexing parameter is proposed

  3. Fatigue behaviour of the austenitic steel 1.4550 under mechanical and thermal cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, D.; Fingerhuth, J.; Varfolomeev, I.; Moroz, S. [Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg (Germany)

    2014-07-01

    Fatigue behaviour of the austenitic steel 1.4550 (X6CrNiNb18-10) under low-cycle fatigue and high-cycle thermal fatigue was investigated with in two research projects supported by the Federal Ministry of Economic Affairs and Energy and the Ministry of Education and Research. The objectives of the projects were the gain of deep understanding of the damage mechanisms under mechanical and thermal cyclic loading and the development of material models and simulation procedures for an improved lifetime assessment. In comparison to the advanced mechanism based material models engineering computational procedures were proven with respect to their applicability and conservatisms. For thermal cyclic loading, test equipment and technique were developed which allow for cyclic thermal loading with temperature ranges between 1 00 C and 300 C and frequencies between 0.1 and 1 Hz. As a result, tests with a temperature range of 150 C and lower showed no crack formation up to 300,000 cycles. For temperature ranges of 200 C and higher multiple crack patterns were observed with the deepest crack of about 1.3 mm after 1,000,000 cycles, whereas the difference in crack depth between 300,000 and 1,000,000 cycles was negligibly small. To model the fatigue lifetime, the D{sub TMF} damage parameter was applied to the low-cycle fatigue and the thermal, high frequent fatigue tests. For thermal fatigue, the analyses predicted in agreement with the tests crack initiation followed by crack propagation, subsequent retardation and arrest. This behaviour can be explained qualitatively and quantitatively using the methods of linear-elastic fracture mechanics, whereas the consideration of the interaction of multiple cracks is essential to describe the experimentally observed crack retardation. The results for thermal fatigue are in the scatterband of the mechanical p and thermo-mechanical fatigue results and the cycles to failure are 10 times higher than those estimated according to the KTA fatigue

  4. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  5. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  6. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  7. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  8. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  9. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  10. Low-cycle fatigue of welded joints: coupled initiation propagation model

    International Nuclear Information System (INIS)

    Madi, Yazid; Recho, Naman; Matheron, Philippe

    2004-01-01

    This paper deals with the low-cycle fatigue (LC) design of welded structures, the aim being the critical analysis of the rule used in the RCC-MR [Design and construction rules for mechanical components of FBR nuclear islands, AFCEN, 1993], for the design and construction of fast breeder reactors. The study takes into account the evolution of the material behavior laws and damage accumulation during the fatigue loading. The adopted model consists of analyzing separately the behavior and the damage evolutions. It allows us to determine the damage ratio corresponding to initiation and propagation of a significant crack in order to determine the life duration. This model suggests the existence of a threshold level of loading, above which micro-cracks initiate. The initiation fatigue life can then be neglected below the threshold level. This work shows also that the RCC-MR rules are valid below this threshold load level

  11. Study of crack initiation in low-cycle fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Mu, P.

    2011-03-01

    The material studied is an austenitic stainless steel, that is widely used in nuclear equipment for its very high corrosion resistance combined to good mechanical properties. Although crack initiation is proved to play an important role in fatigue, its mechanisms have not been fully understood. Some crack initiation criteria based on physical mechanisms of plastic deformation have been defined. However, these criteria are not easy to use and valid, as they need local variables at the grain scale. The present study aims at establishing a crack initiation criterion in low-cycle fatigue, which should be usable under variable amplitude loading conditions. Tension-compression fatigue tests were first carried out to characterize the mechanical behavior of the stainless steel AISI 316L. The mechanical behavior was simulated using a self-consistent model using a crystalline plastic law based on dislocation densities. The evolution of surface damage was observed during a fatigue test using an in situ optical microscopic device. Cracks were analyzed after 2000 cycles and their crystallographic characteristics calculated. As surface grains exhibit larger strain because they are less constraint by neighbor grains, a specific numerical frame is necessary to determine stress state in surface grains. A localization law specific to surface grains under cyclic loading was identified from finite element simulations. The proposed form needs an intergranular accommodation variable, on the pattern of the localization law of Cailletaud-Pilvin. Stress-strain state in surface grains was simulated. Potential indicators for crack initiation were then compared on a same experimental data base. Indicators based on the equivalent plastic strain were found to be suitable indicators of fatigue damage. (author)

  12. Application of fracture mechanics to fatigue in pressure vessels

    International Nuclear Information System (INIS)

    Ghavami, K.

    1982-01-01

    The methods of application of fracture mechanics to predict fatigue crack propagation in welded structures and pressure vessels are described with the following objectives: i) To identify the effect of different variables such as crack tip plasticity, free surface, finite plate thickness, stress concentration and type of the structure, on the magnitude of stress intensity factor K in Welded joint. ii) To demonstrate the use of fracture mechanics for analysing fatigue crack propagation data. iii) To show how a law of fatigue crack propagation based on fracure mechanics, may be used to predict fatigue behavior of welded structures such as pressure vessel. (Author) [pt

  13. A new lease of life for turbine rotors subject to low-cycle fatigue at elevated temperature

    International Nuclear Information System (INIS)

    Coulon, P.A.; Knosp, B.; Saisse, H.

    1989-01-01

    The purpose of the study was to determine the depth of the zone damaged during fatigue crack initiation at the notch root in a Cr Mo V ferritic steel used for the manufacture of steam turbine rotors. Low cycle fatigue tests were conducted at 500 and 550 0 C (932 0 F and 1022 0 F) and the Manson - Coffin curves have been plotted. The results showed firstly that for Na * = 10,000 cycles (Number of cycles for crack initiation Na = 12,500 cycles) the damaged zone in the test-pieces the authors used corresponded to h ≅0.4 mm, and secondly that this zone had the same order of magnitude as the cyclic plastic zone determined according to the mechanical properties of the material studied. Conclusion is clear: if the turbine rotors are remachined over a depth h greater than ≅0.4 mm, their initial low cycle fatigue properties are considered as largely restored

  14. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  15. Cancer-related fatigue: Mechanisms, risk factors, and treatments

    Science.gov (United States)

    Bower, Julienne E.

    2015-01-01

    Fatigue is one of the most common and distressing side effects of cancer and its treatment, and may persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and may be a risk factor for reduced survival. The prevalence and course of fatigue in cancer patients has been well characterized, and there is growing understanding of underlying biological mechanisms. Inflammation has emerged as a key biological pathway for cancer-related fatigue, with studies documenting links between markers of inflammation and fatigue before, during, and particularly after treatment. There is considerable variability in the experience of cancer-related fatigue that is not explained by disease- or treatment-related characteristics, suggesting that host factors may play an important role in the development and persistence of this symptom. Indeed, longitudinal studies have begun to identify genetic, biological, psychosocial, and behavioral risk factors for cancer-related fatigue. Given the multi-factorial nature of cancer-related fatigue, a variety of intervention approaches have been examined in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. Although there is currently no gold standard for treating fatigue, several of these approaches have shown beneficial effects and can be recommended to patients. This report provides a state of the science review of mechanisms, risk factors, and interventions for cancer-related fatigue, with a focus on recent longitudinal studies and randomized trials that have targeted fatigued patients. PMID:25113839

  16. Thermal stress analysis and thermo-mechanical fatigue for gas turbine blade

    International Nuclear Information System (INIS)

    Hyun, J. S.; Kim, B. S.; Kang, M. S.; Ha, J. S.; Lee, Y. S.

    2002-01-01

    The numerical analysis for gas turbine blades were carried out under several conditions by compounding temperature field, velocity field, thermal conduction of blade, and cooling heat transfer. The three types of 1,100 deg. C class 1st-stage gas turbine blades were analyzed. The analysis results are applied to the study on evaluating the remaining life for thermo-mechanical fatigue life. The thermo-mechanical fatigue experiments under out-of-phase and in-phase have been performed. The physical-based life prediction models which considered the contribution of different damage mechanisms have been applied. These models were applied to the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives

  17. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  18. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  19. High cycle fatigue of Type 422 stainless steel

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.; Sabatini, R.L.

    1978-01-01

    High cycle fatigue testing has been carried out on Type 422 stainless steel to determine the performance of cyclically stressed disks and blades in the main and auxiliary HTGR helium circulators. Tests were performed at 316, 482, and 538 0 C (600, 900, and 1000 0 F) in air for the fully reversible and mean load conditions. Goodman's analysis is shown to be valid in predicting failure at 316 0 C (600 0 F), marginally valid at 482 0 C (900 0 F), and probably invalid at 538 0 C (1000 0 F). Metallographic analyses were conducted to characterize the nature of failure for the temperatures and loading conditions investigated

  20. Sensitivity study on Duty cycles for Actuator fatigue analysis

    OpenAIRE

    Jacamon, Pauline

    2016-01-01

    During the aircraft's ight, the control surfaces that enable the aircraft to perform the required maneuvers and the actuator that control them have to withstand loads. Those loads will a ect the actuators lifetime and that is why it is very important to be able to predict their amplitude in order to make sure the actuators will last long enough and be ecient enough during the aircraft lifetime. Duty cycles are thus computed in order to compute the actuators fatigue severity and endurance crit...

  1. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    International Nuclear Information System (INIS)

    Aicheler, Markus

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10 11 . Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue life

  2. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  3. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    After low cycle fatigue tests of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water, the fatigue surface and the sectioned area of specimens were observed to understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors. From the fatigue crack morphologies of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and blunt crack tip were observed. So, metal dissolution could be the main cracking mechanism of the material at the strain rate. On the other hand, on the fatigue surface of the specimen tested at strain rates of 0.04 and 0.4 %/s, the brittle cracks and the flat facets, which are the evidence of the hydrogen induced cracking, were observed. Also, the tendency of linkage between the main crack and micro-cracks was observed on the sectioned area. Therefore, the main cracking mechanism at the strain rates of 0.04 and 0.4 %/s could be the hydrogen induced cracking. Additionally, the evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. So, despite of the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water. Additionally, our experimental fatigue life data of SA508 Gr.1a low alloy steel (heat A) showed a consistent difference with statistical model produced in argon national laboratory. So, additional low cycle fatigue tests of other heat SA508 Gr.1a (heat B) and SA508 Gr.3 low alloy steels were performed to investigate the effect of material variability on fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water. In results, the fatigue lives of three low alloy steels were increased following order: SA508 Gr.1a low alloy steel - heat A, SA508 Gr.3 low alloy steel, and SA508 Gr.1a low alloy steel - heat B. From microstructure observation, the fatigue surface of SA508 Gr.1a low alloy

  4. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  5. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  6. Low cycle fatigue of austempered ductile cast iron alloyed with nickel at room and at depressed temperature

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla; Tesařová, H.

    2009-01-01

    Roč. 16, 3a (2009), s. 1-6 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2009. Tatranská Lomnica, 02.09.2009-04.09.2009] R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI with nickel alloying * Neutron diffraction * Fatigue crack initiation * Depressed temperature Subject RIV: JL - Materials Fatigue , Friction Mechanics

  7. Fracture Mechanics Prediction of Fatigue Life of Aluminum Highway Bridges

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2015-01-01

    Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations. The fati......Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations...... against fatigue in aluminum bridges, may give results which are unconservative. Furthermore, it was in both investigations found that the validity of the results obtained from Miner's rule will depend on the distribution of the load history in tension and compression....

  8. Fatigue life estimation on coke drum due to cycle optimization

    Science.gov (United States)

    Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi

    2018-04-01

    In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.

  9. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  10. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    Science.gov (United States)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  11. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  12. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  13. Influence of microstructure on low cycle fatigue in some single phase and biphasic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, J. [Ecole Nationale Superieure des Mines, Centre SMS, URA CNRS 1884, Saint-Etienne (France)

    2004-07-01

    This overview deals with the effects of microstructural parameters in different single phase and biphasic stainless steels on short crack behaviour and on fatigue life in the low cycle regime. The effect of the grain size is investigated in a single phase austenitic stainless steel. Under plastic strain control, the fatigue life increases when the grain size decreases. The results are discussed by analysing the distributions of crack depths as a function of the grain size. The second type of material is a metastable austenitic steel which partially transforms into martensite during LCF at temperatures between -50 C and +120 C. The grain size of the initially single phase austenitic microstructure has a combined influence on the volume fraction of martensite produced during fatigue and on the fatigue life. In this case, the grain size effect is still considerable but totally indirect because all fatigue cracks grow exclusively in the martensite. The cyclic behaviour analysis in biphasic alloys in which two phases undergo plastic deformation during LCF is considerably more complex because the conventional concept of microstructural barriers cannot be applied. The possible damage patterns in a pair of grains with different mechanical properties are discussed on the example of a solution treated and aged superduplex austenitic-ferritic stainless steel (SDSS). The hardening of one phase (ferrite) through ageing at 475 C changes the cyclic behaviour of the initial ''quasi single phase'' microstructure. Consequently, the fatigue life under plastic strain control decreases compared with the solution treated SDSS. The discussion is focussed on LCF damage mechanisms at the microstructure size scale with a particular accent put on the propagation of short cracks in the bulk. All the microstructures exhibit some common features with respect to the behaviour of short cracks. In particular a strong effect of microstructural barriers in the bulk and the

  14. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behaviour of cast superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel

    2017-01-01

    Roč. 185, NOV (2017), s. 92-100 ISSN 0013-7944. [ICMFM 2016 - International Colloquium on Mechanical Fatigue of Metals /18./. Gijón, 05.09.2016-07.09.2016] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Nickel-based superalloy * High-temperature low-cycle fatigue * Tensile dwell * Fatigue life * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  15. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  16. Shot-Peening Effect on High Cycling Fatigue of Al-Cu Alloy

    Science.gov (United States)

    Fouad, Yasser; Metwally, Mostafa El

    2013-12-01

    The present work was aimed at evaluating the effects of shot-peening on the high cycle fatigue performance of the age-hardening aircraft alloy Al 2024 at different almen intensities. Shot-peening to full coverage (100 pct) was performed using spherically conditioned cut wire (SCCW 14) with an average shot size of 0.36 mm and at almen intensities of 0.1, 0.2, and 0.3 mmA. After applying the various mechanical surface treatments, the changes in the surface and near-surface layer properties such as microhardness, residual stress-depth profiles, and surface roughness were determined. The microhardness, surface roughness, and the residual stresses increased proportionally with the almen intensity. Electropolitically polished conditions were used as reference in the mechanically surface treated specimens. A significant improvement was seen in the fatigue performance of the 0.1 mmA.

  17. Fatigue during maximal sprint cycling: unique role of cumulative contraction cycles.

    Science.gov (United States)

    Tomas, Aleksandar; Ross, Emma Z; Martin, James C

    2010-07-01

    Maximal cycling power has been reported to decrease more rapidly when performed with increased pedaling rates. Increasing pedaling rate imposes two constraints on the neuromuscular system: 1) decreased time for muscle excitation and relaxation and 2) increased muscle shortening velocity. Using two crank lengths allows the effects of time and shortening velocity to be evaluated separately. We conducted this investigation to determine whether the time available for excitation and relaxation or the muscle shortening velocity was mainly responsible for the increased rate of fatigue previously observed with increased pedaling rates and to evaluate the influence of other possible fatiguing constraints. Seven trained cyclists performed 30-s maximal isokinetic cycling trials using two crank lengths: 120 and 220 mm. Pedaling rate was optimized for maximum power for each crank length: 135 rpm for the 120-mm cranks (1.7 m x s(-1) pedal speed) and 109 rpm for the 220-mm cranks (2.5 m x s(-1) pedal speed). Power was recorded with an SRM power meter. Crank length did not affect peak power: 999 +/- 276 W for the 120-mm crank versus 1001 +/- 289 W for the 220-mm crank. Fatigue index was greater (58.6% +/- 3.7% vs 52.4% +/- 4.8%, P < 0.01), and total work was less (20.0 +/- 1.8 vs 21.4 +/- 2.0 kJ, P < 0.01) with the higher pedaling rate-shorter crank condition. Regression analyses indicated that the power for the two conditions was most highly related to cumulative work (r2 = 0.94) and to cumulative cycles (r2 = 0.99). These results support previous findings and confirm that pedaling rate, rather than pedal speed, was the main factor influencing fatigue. Our novel result was that power decreased by a similar increment with each crank revolution for the two conditions, indicating that each maximal muscular contraction induced a similar amount of fatigue.

  18. Cancer-related fatigue--mechanisms, risk factors, and treatments.

    Science.gov (United States)

    Bower, Julienne E

    2014-10-01

    Fatigue is one of the most common adverse effects of cancer that might persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and might be a risk factor of reduced survival. The prevalence and course of fatigue in patients with cancer have been well characterized and there is growing understanding of the underlying biological mechanisms. Inflammation seems to have a key role in fatigue before, during, and after cancer-treatment. However, there is a considerable variability in the presentation of cancer-related fatigue, much of which is not explained by disease-related or treatment-related characteristics, suggesting that host factors might be important in the development and persistence of this symptom. Indeed, longitudinal studies have identified genetic, biological, psychosocial, and behavioural risk factors associated with cancer-related fatigue. Although no current gold-standard treatment for fatigue is available, a variety of intervention approaches have shown beneficial effects in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. This Review describes the mechanisms, risk factors, and possible interventions for cancer-related fatigue, focusing on recent longitudinal studies and randomized trials that have targeted fatigued patients.

  19. Application of Mathematica Software for Estimate the Fatigue Life Time Duration of Mechanical System

    Directory of Open Access Journals (Sweden)

    Petru Florin Minda

    2010-10-01

    Full Text Available The paper present how we can use Mathematica to solve the equations types usually used to determinate the maximum stress cycles that can be support by a mechanical system until he will be out of use. To illustrate the type of equations used in specialized literature to estimate fatigue life time duration was chosen a specific case of mechanical structure applied to fatigue. It is about lever button of runner blade mechanism of Kaplan turbine, that in function support a very intensive alternative strain.

  20. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  1. Fatigue in Persian Gulf Syndrome - Physiologic Mechanisms

    National Research Council Canada - National Science Library

    Haller, Ronald

    2000-01-01

    ...)Veterans matched for age, height and weight. Serum OK, incidence of elevated OK, and muscle histology and fatigue rate and level of oxygen uptake relative to 02 delivery during forearm exercise were similar in both groups...

  2. Influence of the mechanical fatigue progress on the magnetic properties of electrical steel sheets

    Directory of Open Access Journals (Sweden)

    Karthaus Jan

    2017-06-01

    Full Text Available The purpose of this paper is to study the variation of the magnetic properties of non-oriented electrical steel sheets with the fatigue state during cyclic mechanical loading. The obtained results are central to the design of variable drives such as traction drives in electric vehicles in which varying mechanical loads, e.g. in the rotor core (centrifugal forces, alter the magnetic properties. Specimens of non-oriented electrical steel are subject to a cyclically varying mechanical tensile stress with different stress amplitudes and number of cycles. The specimens are characterised magnetically at different fatigue states for different magnetic flux densities and magnetising frequencies. The measurements show a variation in magnetic properties depending on the number of cycles and stress magnitude which can be explained by changes in the material structure due to a beginning mechanical fatigue process. The studied effect is critical for the estimation of the impact of mechanical material fatigue on the operational behaviour of electrical machines. Particularly in electrical machines with a higher speed where the rotor is stressed by high centrifugal forces, material fatigue occurs and can lead to deterioration of the rotor’s stack lamination.

  3. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  4. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  5. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  6. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: giordana@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Alvarez-Armas, I., E-mail: alvarez@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Armas, A., E-mail: armas@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina)

    2012-05-15

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 Degree-Sign C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 Degree-Sign C. The evolution of the flow stress during cycling was studied by analyzing the so-called 'back' and 'friction' stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  7. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    International Nuclear Information System (INIS)

    Giordana, M.F.; Alvarez-Armas, I.; Armas, A.

    2012-01-01

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 °C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 °C. The evolution of the flow stress during cycling was studied by analyzing the so-called “back” and “friction” stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  8. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae in [University of Ulsan, Ulsan (Korea, Republic of)

    2014-07-15

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10{sup -3} /s and 2X10{sup -4} /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  9. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae in

    2014-01-01

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10"-"3 /s and 2X10"-"4 /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  10. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  11. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Czech Academy of Sciences Publication Activity Database

    Petráš, Roman; Škorík, Viktor; Polák, Jaroslav

    2016-01-01

    Roč. 650, JAN (2016), s. 52-62 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : thermomechanical fatigue * Sanicro 25 steel * damage mechanism * FIB cutting * localized oxidation-cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  12. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  13. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2012-03-01

    Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  15. Low-cycle fatigue of welded joints of alloy AMg5

    International Nuclear Information System (INIS)

    Modestova, R.V.; Borisenko, V.A.; Parfenova, I.N.; Stepanov, S.V.

    1986-01-01

    The authors study the low-cycle fatigue of welded joints of aluminum alloy AMg5 in order to determine the cyclic strength coefficient of welded seams. Tests were carried out on cylindrical specimens of the parent metal, welded specimens, and models of welded vessels. The average values of mechanical properties of the specimens and the parent metal are shown. It is shown that when designing welded vessels of aluminum alloy AMg5, the permissible amplitudes of conventional compressive stresses are recommended to be determined as the lower of the two values calculated using the equations presented

  16. A methodology for on line fatigue life monitoring : rainflow cycle counting method

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1992-01-01

    Green's function technique is used in on line fatigue life monitoring to convert plant data to stress versus time data. This technique converts plant data most efficiently to stress versus time data. To compute the fatigue usage factor the actual number of cycles experienced by the component is to be found out from stress versus time data. Using material fatigue properties the fatigue usage factor is to be computed from the number of cycles. Generally the stress response is very irregular in nature. To convert an irregular stress history to stress frequency spectra rainflow cycle counting method is used. This method is proved to be superior to other counting methods and yields best fatigue estimates. A code has been developed which computes the number of cycles experienced by the component from stress time history using rainflow cycle counting method. This postprocessor also computes the accumulated fatigue usage factor from material fatigue properties. The present report describes the development of a code to compute fatigue usage factor using rainflow cycle counting technique and presents a real life case study. (author). 10 refs., 10 figs

  17. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  18. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  19. Mechanical behavior and fatigue in polymeric composites at low temperatures

    International Nuclear Information System (INIS)

    Katz, Y.; Bussiba, A.; Mathias, H.

    1986-01-01

    Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractograhic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods

  20. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

    Science.gov (United States)

    Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan

    2018-06-01

    This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

  1. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  2. Low cycle fatigue properties of CLAM steel at 450 °C and 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun; Zhai, Xiangwei; Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn

    2016-11-15

    Highlights: • Low cycle fatigue properties of CLAM steel were investigated at 450 °C and 550 °C. • CLAM steel showed the continuous softening up to fail failure under cyclic loading. The degree of softening increased with increasing temperature. • Dislocation density decrease and subgrain coarsening during the test process were the possible reasons for the cyclic softening of the CLAM steel. - Abstract: The low cycle fatigue behavior of China Low Activation Martensitic (CLAM) steel has been studied using a constant strain rate of 8 × 10{sup −3}/s with the strain amplitudes ranging from 0.3% to 0.8% at 450 °C and 550 °C. Cyclic stress response showed a gradual softening until complete failure. The fatigue life decreased with increasing test temperature, and the effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed according to the hysteresis loop, and the mechanism of cyclic softening was interpreted in view of the changes taking place in dislocation density and lath structures. Evaluation of low cycle fatigue properties of CLAM steel at 450 °C and 550 °C can help in design of the Chinese Test Blanket Module (TBM) for the International Thermonuclear Experimental Reactor (ITER) and a future fusion power plant.

  3. Contact fatigue of human enamel: Experiments, mechanisms and modeling.

    Science.gov (United States)

    Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D

    2016-07-01

    Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Results from low cycle fatigue testing of 316L plate and weld material

    International Nuclear Information System (INIS)

    Kaellstroem, R.; Josefsson, B.; Haag, Y.

    1993-01-01

    Specimens for low cycle fatigue testing from the second heat of the CEC reference 316L plate and from Tungsten Inert Gas (TIG) weld material have been neutron irradiated near room temperature to a displacement dose of approximately 0.3 dpa. The low cycle fatigue testing of both irradiated and unirradiated specimens was performed at 75, 250 and 450 degrees C, and with strain ranges of 0.75, 1.0 and 1.5%. There is no clear effect of the irradiation on low cycle fatigue properties. For the weld material the endurance is shorter than for plate, and the dependences on temperature and strain range are not clear

  5. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  6. Influences of overload on low cycle fatigue behaviors of elbow pipe with local wall thinning

    International Nuclear Information System (INIS)

    Sato, Kyohei; Ogino, Kanako; Takahashi, Koji; Ando, Kotoji; Urabe, Yoshio

    2011-01-01

    Low cycle fatigue tests were conducted using 100A elbow pipe specimens with or without local wall thinning. Local wall thinning was machined on the inside of the extrados of test elbows to simulate metal loss due to flow-accelerated corrosion or liquid droplet impingement erosion. Low cycle fatigue tests were carried out under displacement control with an inner pressure of 9 MPa. To simulate seismic events, low cycle fatigue tests were carried out on elbow pipe subjected to cyclic overloads. Regardless of local wall thinning, fatigue life of overload pipe was not so different from that of the non-overload pipe in appearance. Miner's rule can be applied to evaluate fatigue life of the elbow pipes with and without wall thinning, even if overload is applied. (author)

  7. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Yoshitsugu, Nekomoto; Satoshi, Kiriyama; Moritatsu, Nishimura; Kenji, Matsumoto; Eiji, O'shima

    2001-01-01

    Nuclear power plants have a large number of pipes. Of these small-diameter pipe branches in particular are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect the fatigues in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a 'high-cycle fatigue diagnostic system with non-contact vibration sensing', where the vibration of the pipe branch is measured using a non-contact sensor. Since the contents of the developed sensor technology has already been reported, this paper mainly describes the newly developed high-cycle fatigue diagnostic system. (authors)

  8. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  9. In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xudong, E-mail: lxdong0700@hotmail.com; Du, Jinhui; Deng, Qun

    2013-12-20

    High temperature tension and low cycle fatigue experiments of IN718 alloy have been performed in the electro-hydraulic servo system with scanning electron microscope at 455 °C. Fatigue crack initiation and propagation process are investigated in situ. Results show that the carbide and twin grain are the crack source of the low cycle fatigue of IN718 alloy, and the low cycle fatigue life of the alloy increases with the decrease in grain size.

  10. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  11. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  12. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  13. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  14. The effect of advanced ultrasonic forging on fatigue fracture mechanisms of welded Ti-6A1-4V alloy

    Science.gov (United States)

    Smirnova, A.; Pochivalov, Yu.; Panin, V.; Panin, S.; Eremin, A.; Gorbunov, A.

    2017-12-01

    The current study is devoted to application of advanced postwelding ultrasonic forging to joints formed by laser welding of Ti-6A1-4V alloy in order to enhance their mechanical properties and fatigue durability. Low cycle fatigue tests were performed via digital image correlation technique used to obtain strain fields and in situ characterization of deformation, crack growth and fracture. Fracture surfaces were studied by SEM analysis accompanied with calculation of fracture patterns percentage. The fatigue tests demonstrate the high increase in the number of cycles until fracture (from 17 000 to 32 000 cycles) which could be explained by high ductility of welded material after treatment. This leads to lower fatigue crack growth rate due to higher energy dissipation. The obtained effect is attributable only for small cracks on micro-/mesoscales and fails to play a significant role for macro cracks.

  15. Fatigue fracture of steel after mechanical and ultrasonic strengthening

    International Nuclear Information System (INIS)

    Stotskij, I.M.

    1978-01-01

    Fatigue fracture surfaces of samples after mechanical and ultrasonic strengthening have been studied metallographically and by electron fractography. Studied was the 40Kh steel hardened from 850 deg and then tempered at 180 deg or at 550 deg C. The ultrasound power was 25 kWt, the frequency was 20 kHz, the sample rotation velocity was 39.5 m/min. Mechanical and ultrasonic treatment was found to cause structural changes (formation of a white layer) and deformation of the material under the layer. The fatigue cracks were extending beyond the white layer; their propagation involved generation and coalescence of microcracks on account of segregation of carbides. It is concluded that mechanical and ultrasonic treatment should be used for increasing the fatigue strength of low and average strength materials rather than hardened or low-tempered ones

  16. Mechanisms of fatigue in LIGA Ni MEMS thin films

    International Nuclear Information System (INIS)

    Yang, Y.; Imasogie, B.I.; Allameh, S.M.; Boyce, B.; Lian, K.; Lou, J.; Soboyejo, W.O.

    2007-01-01

    This paper presents the results of an experimental study of the mechanisms of fatigue in LIGA Ni micro-electro-mechanical systems (MEMS) thin films with micro-scale columnar and nano-scale equiaxed grains. Stress-life behavior is reported for films with thicknesses of 70 and 270 μm. The stress-life data are compared with previously reported data for Ni MEMS films and bulk Ni. The films with the nano-scale grains (15 nm average grain size) are shown to have higher strength and fatigue resistance (stress-life data) than those with columnar grain structures. The thicker films (with a columnar microstructure) are also shown to have comparable fatigue life to annealed Ni, while the thinner films (with a columnar microstructure) have comparable fatigue life to wrought Ni. The underlying mechanisms of crack nucleation and growth are elucidated via scanning and transmission electron microscopy. These reveal the formation of slip bands and surface oxides and crystallographic surface/sub-surface crack nucleation and growth in the films with the columnar structures. Surface and corner crack nucleations (from pre-existing defects) are observed in the nanostructured films. The implications of the results are discussed for the analyses of fatigue in nickel MEMS structures

  17. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  18. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    Energy Technology Data Exchange (ETDEWEB)

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  19. High cycle fatigue test and regression methods of S-N curve

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-11-01

    The fatigue design curve in the ASME Boiler and Pressure Vessel Code Section III are based on the assumption that fatigue life is infinite after 106 cycles. This is because standard fatigue testing equipment prior to the past decades was limited in speed to less than 200 cycles per second. Traditional servo-hydraulic machines work at frequency of 50 Hz. Servo-hydraulic machines working at 1000 Hz have been developed after 1997. This machines allow high frequency and displacement of up to ±0.1 mm and dynamic load of ±20 kN are guaranteed. The frequency of resonant fatigue test machine is 50-250 Hz. Various forced vibration-based system works at 500 Hz or 1.8 kHz. Rotating bending machines allow testing frequency at 0.1-200 Hz. The main advantage of ultrasonic fatigue testing at 20 kHz is performing Although S-N curve is determined by experiment, the fatigue strength corresponding to a given fatigue life should be determined by statistical method considering the scatter of fatigue properties. In this report, the statistical methods for evaluation of fatigue test data is investigated

  20. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  1. Effect of pre-strain history on small crack growth under low cycle fatigue for JIS SFVQ1A steel

    International Nuclear Information System (INIS)

    Hasunuma, Shota; Miyata, Yohei; Sakaue, Kenichi; Ogawa, Takeshi

    2011-01-01

    Low cycle fatigue tests were performed for a low alloy steel, JIS SFVQ1A, used for pressure vessels of nuclear power plants. The effect of pre-strain history on the small crack initiation and growth was investigated in detail using cellulose acetate replicas. Under the tests in which the total strain range, Δε, is constant, surface crack length, 2c, was smaller for the tests with larger Δε due to the different numbers of small crack initiation and coalescence. The pre-strain histories were applied at Δε of 8 or 16% with its fatigue usage factor, UF, of less than 0.2, followed by fatigue loading at Δε=2% until fracture. In these tests, the relationships between 2c and UF agreed with each other unless crack coalescence occurred. The scatter in fatigue life was attributed to the coalescences of small cracks. Fracture mechanics approach was applied to predict the fatigue lives and to characterize the growth behavior of small fatigue cracks. (author)

  2. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    Science.gov (United States)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  3. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  4. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  5. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  6. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  7. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  8. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  9. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  10. Half-cycle slip activity of persistent slip bands at different stages of fatigue life of polycrystalline nickel

    Czech Academy of Sciences Publication Activity Database

    Weidner, A.; Man, Jiří; Tirschler, W.; Klapetek, P.; Blochwitz, C.; Polák, Jaroslav; Skrotzki, W.

    2008-01-01

    Roč. 492, č. 1-2 (2008), s. 118-127 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : persistent slip band * slip activity * half-cycle deformation * atomic force microscopy * scanning electron microscopy * nickel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.806, year: 2008

  11. Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jongdae; Cho, Pyungyeon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Pyungyeon [Khalifa Univ., Abu Dhabi (United Arab Emirates); Kim, Tae Soon; Lee, Yong Sung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, environmental fatigue tests for these materials were performed and the new prediction model of fatigue life of Alloy 690 and weld in primary water condition was proposed. To evaluate the fatigue life of Alloy 690 and 52M in a PWR environment, low cycle fatigue tests were performed and revised fatigue life prediction models and environmental factor were proposed. With the revised Fen model for Alloy 690 and 52M, the reliability of the fatigue life prediction has been improved. The reduction of low cycle fatigue life of metallic materials in the primary coolant water environments has been the subject of debate between the utility and regulator since 1980s. It became the significant licensing problem since the issue of RG-1.207 by U. S. NRC. The statistical model for the environmental factor, Fen, specified in RG-1.207 was based on the extensive test results accumulated by the ANL and Japanese national program. Of the materials, the limited fatigue life data of Ni-Cr-Fe alloys were used to develop the Fen for the alloys. Furthermore, test data for Alloy 690 and its weld are limited. Considering that Alloy 690 will be extensively used in the new nuclear power plants, additional effort to validate or improve current Fen model is required.

  12. The Neural Mechanisms of Re-Experiencing Mental Fatigue Sensation: A Magnetoencephalography Study

    OpenAIRE

    Ishii, Akira; Karasuyama, Takuma; Kikuchi, Taiki; Tanaka, Masaaki; Yamano, Emi; Watanabe, Yasuyoshi

    2015-01-01

    There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present s...

  13. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  14. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    of describing the elastic-plastic material behaviour under cyclic loadings is used to study the effects of different pre-stressing concepts on the accumulation of plastic strain and the development of fatigue damage. The results show, that the accumulation of plastic strain in the critical region can......Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  15. Surface crack nucleation and propagation in electrodeposited nanocrystalline Ni-P alloy during high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)

    2010-07-01

    The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.

  16. Multiaxial Cycle Deformation and Low-Cycle Fatigue Behavior of Mild Carbon Steel and Related Welded-Metal Specimen

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available The low-cycle fatigue experiments of mild carbon Q235B steel and its related welded-metal specimens are performed under uniaxial, in-phase, and 90° out-of-phase loading conditions. Significant additional cyclic hardening for 90° out-of-phase loading conditions is observed for both base metal and its related weldment. Besides, welding process produces extra additional hardening under the same loading conditions compared with the base metal. Multiaxial low-cycle fatigue strength under 90° out-of-phase loading conditions is significantly reduced for both base-metal and welded-metal specimens. The weldment has lower fatigue life than the base metal under the given loading conditions, and the fatigue life reduction of weldment increases with the increasing strain amplitude. The KBM, FS, and MKBM critical plane parameters are evaluated for the fatigue data obtained. The FS and MKBM parameters are found to show better correlation with fatigue lives for both base-metal and welded-metal specimens.

  17. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Heczko, Milan; Kuběna, Ivo; Kruml, Tomáš; Chai, G.

    2014-01-01

    Roč. 615, OKT (2014), s. 175-182 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Cyclic plasticity * Dislocation structure * Fatigue life * Effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.567, year: 2014

  18. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  19. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue

    International Nuclear Information System (INIS)

    Nagesha, A.; Goyal, Sunil; Nandagopal, M.; Parameswaran, P.; Sandhya, R.; Mathew, M.D.; Mannan, Sarwan K.

    2012-01-01

    Highlights: ► Low cycle fatigue (LCF) and tensile tests were performed on Inconel ® Alloy 783. ► A stable cyclic stress response followed by continuous softening was noted under LCF. ► Material exhibited DSA in the temperature range, 573–723 K. ► Occurrence of DSA reduced the extent of cycling softening in LCF. ► Both interstitial and substitutional atoms were found to be responsible for DSA. - Abstract: Low cycle fatigue (LCF) tests were performed on Inconel ® Alloy 783 at a strain rate of 3 × 10 −3 s −1 and a strain amplitude of ±0.6%, employing various temperatures in the range 300–923 K. A continuous reduction in the LCF life was observed with increase in the test temperature. The material generally showed a stable stress response followed by a region of continuous softening up to failure. However, in the temperature range of 573–723 K, the alloy was seen to exhibit dynamic strain ageing (DSA) which was observed to reduce the extent of cyclic softening. With a view to identifying the operative mechanisms responsible for DSA, tensile tests were conducted at temperatures in the range, 473–798 K with strain rates varying from 3 × 10 −5 s −1 to 3 × 10 −3 s −1 . Interaction of dislocations with interstitial (C) and substitutional (Cr) atoms respectively, in the lower and higher temperature regimes was found to be responsible for DSA. Further, the friction stress, as determined using the stabilised stress–strain hysteresis loops, was seen to show a more prominent peak in the DSA range, compared to the maximum tensile stress.

  20. Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Mu, P. [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, F-59650 Villeneuve d’Ascq (France); CNRS, UMR 8107, UMR 8579 (France); Aubin, V., E-mail: veronique.aubin@ecp.fr [ECP, MSSMat, F-92295 Châtenay-Malabry (France); CNRS, UMR 8107, UMR 8579 (France); Alvarez-Armas, I.; Armas, A. [IFIR, CONICET, Universidad Nacional de Rosario (Argentina)

    2013-06-20

    Present study aims at analyzing the crack initiation in an austenitic stainless steel in low-cycle fatigue. A fatigue test was carried out using a polished specimen. The surface of the specimen was observed in situ during the fatigue test, in order to establish the time of slip activity or crack initiation. After a number of cycles sufficient to initiate small cracks, the test was stopped and the surface observed by scanning electron microscopy. The electron backscattered diffraction technique (EBSD) was used to identify the orientations of surface grains in the central zone of the fatigue specimen. Crack-initiation sites and slip systems associated to the initiated microcracks were identified. The criterion of the maximum Schmid factor explains two-thirds of the cracks initiated in slip systems; however if the favorably oriented slip band with respect to this criterion makes an angle of around 45° to the loading direction, a crack may initiate in another slip system.

  1. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Nekomoto, Yoshitsugu; Tanaka, Masanori; Nishimura, Moritatsu; Matsumoto, Kenji; O'shima, Eiji

    2004-01-01

    Nuclear power plants have a large number of pipes. These small-diameter pipe branches in particles are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect fatigue damages in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a ''high-cycle fatigue diagnostic system with non-contact vibration sensing'', which measures the vibration of the pipe branch using a non-contact sensor. (author)

  2. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  3. Low Cycle Fatigue Behavior of Alloy617 Weldment at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Jun; Kim, Seon Jin [Pukyong Nat’l Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of 850℃, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

  4. Effect of the structure on the low-cycle fatigue behaviour of alloy 800

    International Nuclear Information System (INIS)

    Robert, G.; Mathiot, A.; Regnard, C.; Dessus, J.; Claret, J.

    1982-04-01

    Alloy 800 (grade I) is used for making the steam generators of liquid metal fast breeder reactors. At working temperature (525 0 C) alloy 800 is strengthned by γ' (Ni 3 (Ti,Al)) precipitation which occurs during thermal aging. The mechanical properties of this alloy depend on the parameters which define the γ' precipitation and obviously on the structural characteristics due to the thermomechanical treatments which govern the manufacture of the product. For one cast of alloy 800 this work aims to analyse the influence, on low cycle fatigue behaviour at 550 0 C, of structural and microstructural variations originating either in different elaboration procedures or in γ' precipitation obtained by a thermal aging of 3000h at 550 0 C with or without a preceeding cold working of 10% [fr

  5. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  6. Application of a Cycle Jump Technique for Acceleration of Fatigue Crack Growth Simulation

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Karlsson, A.M.

    2010-01-01

    A method for accelerated simulation of fatigue crack growth in a bimaterial interface is proposed. To simulate fatigue crack growth in a bimaterial interface a routine is developed in the commercial finite element code ANSYS and a method to accelerate the simulation is implemented. The proposed m...... of the simulation show that with fair accuracy, using the cycle jump method, more than 70% reduction in computation time can be achieved....

  7. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  8. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  9. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  10. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  11. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  12. High-cycle fatigue properties of small-bore socket-welded pipe joint

    International Nuclear Information System (INIS)

    Maekawa, Akira; Noda, Michiyasu; Suzuki, Michiaki

    2009-01-01

    Piping and equipment in nuclear power plants are structures including many welded joints. Reliability of welded joints is one of high-priority issues to improve the safety of nuclear power plants. However, occurrence of fatigue failures in small-bore socket-welded pipe joints by high-cycle vibrations is still reported. In this study, fatigue experiments on a socket-welded joint of austenitic stainless steel pipe was conducted under excitation conditions similar to those in actual plants to investigate vibration characteristics and fatigue strength. It was found that the natural frequency of pipe with socket-welded joint gradually decreased as fatigue damage developed, according to the Miner rule for fatigue life evaluation. The results indicate that the fatigue life of the welded pipe joint could be estimated by monitoring the decreasing ratio of the natural frequency of the pipe. The evaluation of decreasing ratio of the natural frequency in addition to fatigue damage evaluation by the Miner rule could enhance the accuracy of fatigue life evaluation. (author)

  13. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  14. Analytical Method to Estimate Fatigue Life Time Duration in Service for Runner Blade Mechanism of Kaplan Turbines

    Directory of Open Access Journals (Sweden)

    Ana – Maria Budai

    2010-10-01

    Full Text Available The paper present an analytical method that can be used to determianted fatigue life time duration in service for runner blade mechanism of Kaplan turbines. The study was made for lever button of runer blade mechanism using two analytical relation to calculate the maximum number of stress cycles whereupon the mechanism work without any damage. To estimate fatigue life time duration will be used a formula obtained from one of most comon cumulative damage methodology taking in consideration the real exploatation conditions of a specified Kapaln turbine.

  15. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  16. Effects of environment on the low-cycle fatigue behavior of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Maiya, P.S.; Burke, W.F.

    1979-12-01

    The low-cycle fatigue behavior of Type 304 stainless steel has been investigated at 593 0 C in a dynamic vacuum of better than 1.3 x 10 -6 Pa (10 -8 torr). The results concerning the effects of strain range, strain rate and tensile hold time on fatigue life are presented and compared with results of similar tests performed in air and sodium environments. Under continuous symmetrical cycling, fatigue life is significantly longer in vacuum than in air; in the low strain range regime, the effect of sodium on fatigue life appears to be similar to that of vacuum. Strain rate (or frequency) strongly influences fatigue life in both air and vacuum. In compressive hold-time tests, the effect of environment on life is similar to that in a continuous-cycling test. However, tensile hold times are nearly as damaging in vacuum as in air. Thus, at least for austenitic stainless steels, the influence of the environment of fatigue life appears to depend on the loading waveshape

  17. Comparison of low-cycle fatigue data of 2 1/4 % CrMo steels

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Petrequin, P.; Nieuwland, H.C.D.; Breuer, H.J.

    1983-01-01

    Data files have been produced on international strain-controlled fatigue information available for 2 1/4 %CrMo steels. The available data have been considered generally in terms of total strain range vs. cycles to failure (Nsub(f)), tensile stress at Nsub(f)/2 vs. cycles to failure and time to failure vs. cycles to failure. Where possible the continuous cycling data been statistically analysed in terms of the elastic and plastic strain components and cycles to failure to yield best-fit equations over defined temperature (T) regime viz: T 0 C, 427 0 C 0 C and 550 0 C 0 C. Increasing test temperatures result in a progressive decrease in continuous cycling fatigue endurance and sustainable stress range

  18. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    Science.gov (United States)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept

  19. Assessment, mechanisms, prevention, and measures for quick recovery of military operation-associated fatigue

    OpenAIRE

    Zhao-shen LI; Wen HUANG

    2012-01-01

    Fatigue is a worldwide problem. Military members frequently feel fatigue in military operations, which hinders the successful completion of their tasks. In complicated international military environments, military fatigue has received great attention from the armed forces in all countries. The present paper elaborates the performances, assessment, and mechanism of fatigue in military operations. In addition, the current study discusses the prevention and rapid recovery of fatigue, aiming at p...

  20. Effects of exercise-induced fatigue on postural balance: a comparison of treadmill versus cycle fatiguing protocols.

    Science.gov (United States)

    Wright, Katherine E; Lyons, Thomas S; Navalta, James W

    2013-05-01

    The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.

  1. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    Science.gov (United States)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  2. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  3. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  4. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  5. Electrically-induced muscle fatigue affects feedforward mechanisms of control.

    Science.gov (United States)

    Monjo, F; Forestier, N

    2015-08-01

    To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, pcontrol trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. A cycle combining method for creep fatigue analysis

    International Nuclear Information System (INIS)

    Debaene, J.P.; Permezel, P.

    1987-01-01

    In codes such as RCC-Mr (2) or code case N 47, rules are written against the creep fatigue damage. During the design phase, the order of succession of transients is not known. In that case, the codes require to take the order of events which leads to the maximum damage, but they don't give the detailed rules to perform it. The method we present here consists in building the totality of possible loading histories. For each loading history we calculate the creep fatigue damage V+W. The choice of the most severe loading history is done a posteriori. In practice, we are lead to uncouple the calculation of V and W. We proceed as follows: 1. Build all the loading histories able to masimize V. 2. For each of these loading histories, maximize W. 3. Choose a posteriori the most damaging loading history. (orig./GL)

  7. Surveillance of evolution of defects in stainless steel piping subject to fatigue cycles in temperature

    International Nuclear Information System (INIS)

    Marini, J.

    1976-01-01

    The surveillance of internal crack growth in austenitic ICL 167 CN steel is possible by using ultrasonic techniques. The fracture mechanics allows to predict the evolution of these cracks under fatigue loading [fr

  8. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Petitjean, S.

    2003-06-01

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  9. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  10. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    Science.gov (United States)

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling. Copyright © 2015 the American Physiological Society.

  11. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  12. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    Science.gov (United States)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  13. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  14. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    Science.gov (United States)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  15. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  16. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  17. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT Technical Research Centre of Finland (Finland)

    2006-04-15

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  18. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2006-04-01

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  19. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  20. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Ratcheting and low cycle fatigue (LCF) experiments have been conducted at 25 o C temperature in laboratory environment under different loading conditions. SA333 steel exhibits cyclic hardening throughout its life during LCF. It is found that ratcheting strain increases with both increasing mean stress and stress amplitude. It has also been noticed that plastic strain amplitude and plastic strain energy decrease with increase in mean stress at constant stress amplitude. Ratcheting and LCF life in the range of 10 2 -10 5 cycles have been predicted with the help of a mean stress-based fatigue lifing equation.

  1. Structural evolution and mechanisms of fatigue in polycrystalline brass

    International Nuclear Information System (INIS)

    Vejloe Carstensen, J.

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au)

  2. Structural evolution and mechanisms of fatigue in polycrystalline brass

    Energy Technology Data Exchange (ETDEWEB)

    Vejloe Carstensen, J

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au) 9 tabs., 94 ills., 177 refs.; The thesis is also available as DCAMM-R-S80 and as an electronic document on http://www.risoe.dk/rispubl

  3. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through

  4. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    International Nuclear Information System (INIS)

    Poncelet, M.; Hild, F.; Doudard, C.; Calloch, S.; Weber, B.

    2010-01-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  5. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, M.; Hild, F. [Univ Paris 11, PRES, Univ Paris 06, LMT Cachan, ENS Cachan, CNRS, F-94235 Cachan (France); Doudard, C.; Calloch, S. [Univ Brest, ENIB, ENSIETA, LBMS EA 4325, F-29806 Brest, (France); Weber, B. [ArcelorMittal Maizieres Res Voie Romaine, F-57283 Maizieres Les Metz (France)

    2010-07-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  6. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  7. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.

    Science.gov (United States)

    Glaister, Mark; Stone, Michael H; Stewart, Andrew M; Hughes, Michael; Moir, Gavin L

    2004-08-01

    The purpose of the present study was to assess the reliability and validity of fatigue measures, as derived from 4 separate formulae, during tests of repeat sprint ability. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 6 trials of 1 of 2 maximal (20 x 5 seconds) intermittent cycling tests with contrasting recovery periods (10 or 30 seconds). All trials were conducted on a friction-braked cycle ergometer, and fatigue scores were derived from measures of mean power output for each sprint. Apart from formula 1, which calculated fatigue from the percentage difference in mean power output between the first and last sprint, all remaining formulae produced fatigue scores that showed a reasonably good level of test-retest reliability in both intermittent test protocols (intraclass correlation range: 0.78-0.86; 95% likely range of true values: 0.54-0.97). Although between-protocol differences in the magnitude of the fatigue scores suggested good construct validity, within-protocol differences highlighted limitations with each formula. Overall, the results support the use of the percentage decrement score as the most valid and reliable measure of fatigue during brief maximal intermittent work.

  8. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    International Nuclear Information System (INIS)

    De, P.S.; Mishra, R.S.; Baumann, J.A.

    2011-01-01

    Highlights: → Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. → Preferential crack propagation in T3 state at specific orientations was analyzed. → Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. → The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. → Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  9. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    Science.gov (United States)

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  10. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    De, P.S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Mishra, R.S., E-mail: rsmishra@mst.edu [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Baumann, J.A. [Boeing Company, St. Louis, MO 631666 (United States)

    2011-09-15

    Highlights: {yields} Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. {yields} Preferential crack propagation in T3 state at specific orientations was analyzed. {yields} Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. {yields} The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. {yields} Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  11. Effect of sodium environment on the creep-rupture and low-cycle fatigue behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, D.K.; Zeman, G.J.; Smith, D.L.; Kassner, T.F.

    1977-01-01

    Austenitic stainless steels used for in-core structural components, piping, valves, and the intermediate heat exchanger in Liquid-Metal Fast-Breeder Reactors (LMFBRs) are subjected to sodium at elevated temperatures and to complex stress conditions. As a result, the materials can undergo compositional and microstructural changes as well as mechanical deformation by creep and cyclic fatigue processes. In the present paper, information is presented on the creep-rupture and low-cycle fatigue behavior of Types 304 and 316 stainless steel in the solution-annealed condition and after long-term exposure to flowing sodium. The nonmetallic impurity-element concentrations in the sodium were controlled at levels similar to those in EBR-II primary sodium. Strain-time relationships developed from the experimental creep data were used to generate isochronous stress-creep strain curves as functions of sodium-exposure time and temperature. The low-cycle fatigue data were used to obtain relationships between plastic strain range and cycles-to-failure based on the Coffin-Manson formalism and a damage-rate approach developed at ANL. An analysis of the cyclic stress-strain behavior of the materials showed that the strain-hardening rates for the sodium-exposed steels were larger than those for the annealed material. However, the sodium-exposed specimens showed significant softening, as evidenced by the lower stress at half the fatigue life. Microstructural information obtained from the different specimens suggests that crack initiation is more difficult in the long-term sodium-exposed specimens when compared with the solution-annealed material. Based on the expected carbon concentrations in LMFBR primary system sodium, moderate carburization of the austenitic stainless steels will not degrade the mechanical properties to a significant extent, and therefore, will not limit the performance of out-of-core components. (author)

  12. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Akira Ishii

    Full Text Available There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  13. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Science.gov (United States)

    Ishii, Akira; Karasuyama, Takuma; Kikuchi, Taiki; Tanaka, Masaaki; Yamano, Emi; Watanabe, Yasuyoshi

    2015-01-01

    There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG) session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA) 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  14. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  15. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.

    Science.gov (United States)

    Homaei, Ehsan; Farhangdoost, Khalil; Tsoi, James Kit Hon; Matinlinna, Jukka Pekka; Pow, Edmond Ho Nang

    2016-06-01

    The aim of this study was to measure the mechanical properties and fatigue behavior of three contemporary used dental ceramics, zirconia Cercon(®) (ZC), lithium disilicate e.max(®) CAD (LD), and polymer-infiltrated ceramic Enamic(®) (PIC). Flexural strength of each CAD/CAM ceramic was measured by three point bending (n=15) followed by Weibull analysis. Elastic modulus was calculated from the load-displacement curve. For cyclic fatigue loading, sinusoidal loading with a frequency of 8Hz with minimum load 3N were applied to these ceramics (n=24) using three point bending from 10(3) to 10(6) cycles. Fatigue limits of these ceramics were predicted with S-N fatigue diagram. Fracture toughness and Vickers hardness of the ceramics were measured respectively by single edge V-notch beam (SEVNB) and microindentation (Hv 0.2) methods. Chemical compositions of the materials׳ surfaces were analyzed by EDS, and microstructural analysis was conducted on the fracture surfaces by SEM. One-way ANOVA was performed and the level of significance was set at 0.05 to analyze the numerical results. The mean flexural strength of ZC, LD, and PIC was respectively 886.9, 356.7, and 135.8MPa. However, the highest Weibull modulus belonged to PIC with 19.7 and the lowest was found in LD with 7.0. The fatigue limit of maximum load for one million cycles of ZC, LD, and PIC was estimated to be 500.1, 168.4, and 73.8GPa. The mean fracture toughness of ZC, LD, and PIC was found to be respectively 6.6, 2.8, and 1.4MPam(1/2), while the mean Vickers hardness was 1641.7, 676.7, and 261.7Hv. Fracture surfaces followed fatigue loading appeared to be smoother than that after monotonic loading. Mechanical properties of ZC were substantially superior to the two other tested ceramics, but the scattering of data was the least in PIC. The fatigue limit was found to be approximately half of the mean flexural strength for all tested ceramics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  17. High temperature low cycle fatigue behavior of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The cyclic stress-strain response and the low cycle fatigue life behavior of solution treated Ni-base superalloy M963 were studied. Fully reversed strain-controlled tests were performed at temperature range from 700 to 950 deg. C in air at a constant total strain rate. The dislocation characteristics and failed surface observation were evaluated through scanning electron microscopy and transmission electron microscopy, respectively. The alloy exhibited the cyclic hardening, softening, or stable cyclic stress response, which was dependent on the temperature and total strain range. The fracture surface observation revealed that fatigue crack initiation was transgranular and closely related to the total strain range; however, fatigue crack propagation exhibited a strong dependence on testing temperature. The dramatic reduction in fatigue life and intergranular cracking observed at 900 and 950 deg. C were attributed to oxidation

  18. A simple approximative procedure for taking into account low cycle fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G; Thomsen, K

    1996-09-01

    In this paper a simple approximative algorithm for taking into account low cycle fatigue loads is presented. Traditionally, the fatigue life consumption of a wind turbine is estimated by considering a number of (independent) load cases and performing a rainflow counting analysis on each of those. These results are then subsequently synthesized into a total load spectrum by performing a weighed sum of the number of individual load case ranges. The fatigue life consumption is thus obtained by applying the Palmgren-Miner rule on the total load spectrum. However, due to the assumption of isolated basic load cases, the above procedure fail to represent the low-frequency contributions related to the transition between those load cases. The procedure to be described in the following aims at taking the fatigue contribution, related to the transitions between the defined load cases, into account in an approximative manner. (au)

  19. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  20. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  1. Study on high-cycle fatigue behavior of candidate Fe-Cr-Ni alloys for SCWR

    International Nuclear Information System (INIS)

    Zhao Yuxiang; Liu Guiliang; Tang Rui; Xiong Ru; Qiao Yingjie

    2014-01-01

    In the design for supercritical water reactor (SCWR), the operating temperature, pressure, burn up and irradiation damage are very high, so it seems vital to make correct choice of structural materials in core and obtain their key application behavior which would beneficial the research and development of SCWR. In this paper, the high cycle fatigue (HCF) tests of commerce austenite alloys including 6XN and 825 were conducted under bending and rotating loads at room temperature (RT) as well as at 550 ℃ in air. The experimental data were analyzed and the S-N curves were processed, the fracture morphology was also observed by SEM. The results indicate that the fatigue limited stresses at RT for the 2 Fe-Cr-Ni alloy were in such order of 825 < 6XN, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation of the specimen and therefore the fatigue life would decrease, among them 6XN was more sensitive to high temperature with the larger decreasing tendency which make the fatigue limited stress of the two alloys more closer at 550 ℃. While 825 is more sensitive to the stress cycles. All the two alloys have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the fracture area has much dimples. This work can be applied to the conceptional design for SCWR. (authors)

  2. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    International Nuclear Information System (INIS)

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  3. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  4. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Science.gov (United States)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  5. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  6. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-01-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  7. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  9. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  10. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  11. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    Science.gov (United States)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

  12. Pacing Strategy, Muscle Fatigue and Technique in 1500m Speed Skating and Cycling Time-Trials

    NARCIS (Netherlands)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-01-01

    PURPOSE: To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500m speed skating and cycling time-trials, when a faster or slower start is instructed. METHODS: Nine speed skaters and nine cyclists, all competing at regional or national level, performed two 1500m

  13. Interaction of high cycle fatigue with high temperature creep in superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2002-01-01

    Roč. 93, č. 7 (2002), s. 661-665 ISSN 0044-3093 R&D Projects: GA AV ČR IAA2041002; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z2041904 Keywords : Single crystals * Creep/fatigue interaction * Persistent slip bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.636, year: 2002

  14. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  15. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  16. Effect of Tantalum content on the low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xiangwei [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Zhao, Yanyun; Wang, Kun [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. • The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles. • The grain size and M{sub 23}C{sub 6} were closely associated with the Ta content. • The crack distribution was quite sensitive to the Ta content. - Abstract: The effect of tantalum (Ta) content on the low cycle fatigue (LCF) properties of CLAM steel at 823 K was investigated in this paper. Low cycle fatigue tests were carried out on four ingots of CLAM steel with Ta contents of 0.027 wt%, 0.078 wt%, 0.15 wt% and 0.18 wt%, respectively. The results showed that the fatigue life and softening behavior of CLAM steel were influenced by Ta content. The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles.

  17. Monitoring fatigue loads on wind turbines using cycle counting data acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H; Seifert, H [Deutsches Windenergie-Institut (Germany); Fragoulis, A; Vionis, P; Foussekis, D [Center for Renewable Energy Sources (Greece); Dahlberg, J A; Poppen, M [The Aeronautical Research Institue of Sweden (Sweden)

    1996-09-01

    As in any industrial application, the duration of a wind turbine`s life is a key parameter for the evaluation of its economic potential. Assuming a service life of 20 years, components of the turbine have to withstand a number of load cycles of up to 10{sup 8}. Such numbers of load cycles impose high demands on the fatigue characteristics of both, the used materials and the design. Nevertheless, fatigue loading of wind turbine components still remains a parameter of high uncertainty in the design of wind turbines. The specific features of these fatigue loads can be expected to vary with the type of turbine and the site of operation. In order to ensure the reliability of the next generation of larger scale wind turbines improved load assumptions will be of vital importance. Within the scope of the presented research program DEWI, C.R.E.S. and FFA monitored fatigue loads of serial produced wind turbines by means of a monitoring method that uses on-line cycle counting techniques. The blade root bending moments of two pitch controlled, variable speed wind turbines operating in the Hamswehrum wind farm, and also that of a stall controlled, fixed speed wind turbine operating in CRES` complex terrain test site, were measured by DEWI and CRES. In parallel FFA used their database of time series measurements of blade root bending moments on a stall controlled, fixed speed turbine at Alsvik Windfarm in order to derive semi-empirical fatigue load data. The experience gained from application of the on-line measurement technique is discussed with respect to performance, data quality, reliability and cost effectiveness. Investigations on the effects of wind farm and complex terrain operation on the fatigue loads of wind turbine rotor blades are presented. (au)

  18. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue

    International Nuclear Information System (INIS)

    Huang Zhiyong; Wagner, Daniele; Bathias, Claude; Paris, Paul C.

    2010-01-01

    In the very high cycle regime (N f > 10 7 cycles) cracks can nucleate on inclusions, 'supergrains' and pores, which leads to fish-eye propagation around the defect. The initiation from an inclusion or other defect is almost equal to the total crack growth lifetime, perhaps much more than 99% of this lifetime in many cases. Integration of the Paris law allows one to predict the number of cycles to crack initiation. A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number of cycles to crack initiation. A thermo-mechanical model has been developed. In this study several fish-eyes from various materials have been observed by scanning electron microscopy, and the fractographic results analyzed as they related to the mechanical and thermo-mechanical models.

  19. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  20. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-12-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  1. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    Science.gov (United States)

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  2. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    International Nuclear Information System (INIS)

    Roth, M; Biermann, H

    2010-01-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 0 C to 800 0 C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P SWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750 0 C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P SWT cannot be applied for the live prediction.

  3. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [now at IAV GmbH, Kauffahrtei 25, D-09120 Chemnitz (Germany); Biermann, H, E-mail: marcel.roth@iav.d [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany)

    2010-07-01

    The cyclic deformation and fatigue behavior of the {gamma}-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400{sup 0}C to 800{sup 0}C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P{sub SWT} is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750{sup 0}C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P{sub SWT} cannot be applied for the live prediction.

  4. Mechanical factors affecting reliability of pressure components (fatigue, cracking)

    International Nuclear Information System (INIS)

    Lebey, J.; Garnier, C.; Roche, R.; Barrachin, B.

    1978-01-01

    The reliability of a pressure component can be seriously affected by the formation and development of cracks. The experimental studies presented in this paper are devoted to three different aspects of crack propagation phenomena which have been relatively little described. In close connection with safety analyses of PWR, the authors study the influence of the environment by carrying out fatigue tests with samples bathed in hot pressurized water. Ferritic, austenitic and Incolloy 800 steels were used and the results are presented in the form of fatigue curves in the oligocyclic region. The second part of the paper relates to crack initiation cirteria in ductile steels weakened by notches. The CT samples used make it possible to study almost all types of fracture (ductile, intermediate and brittle). The use of two criteria based on the load limit and on the toughness of the material constitutes a practical way of evaluating crack propagation conditions. A series of tests carried out on notched spherical vessels of different size shows that large vessels are relatively brittle; fast unstable fracture is observed as size increases. Crack growth rate in PWR primary circuits (3/6 steel) is studied on piping elements (0.25 scale) subjected to cyclic stress variations (285 0 C and with pressure varying between 1 and 160 bar in each cycle). By calculating the stress intensity factor, correlation with results obtained in the laboratory on CT samples is possible. (author)

  5. Thermoelastoviscoplastic modeling of RAFM steel JLF-1 using tensile and low cycle fatigue experiments

    Energy Technology Data Exchange (ETDEWEB)

    Msolli, S., E-mail: sabeur.msolli@univ-lorraine.fr

    2014-08-01

    In this paper, a modeling of the elastoviscoplastic behavior of a Reduced Activation Ferritic Martensitic (RAFM) steel JLF-1 is presented. The modeling of this material was based on various Low Cycle Fatigue (LCF) and tensile tests performed in air and vacuum using different imposed strain rates and temperature ranges going from ambient temperature to 873 K. The coupled viscoplastic model is coded in FORTRAN program, implemented into the finite elements code ABAQUS and used to predict the thermomechanical behavior of a fatigue specimen made of RAFM steel JLF-1. Good agreements were found between numerical results and experimental data.

  6. Evaluation of notch effects in low cycle fatigue of alloy 718 using critical distances

    Directory of Open Access Journals (Sweden)

    Eriksson Robert

    2018-01-01

    Full Text Available Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 °C and 550 °C. It was found that, for lives shorter than 5000–10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000–10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance. An expression for calculating the critical distance based on the notch root strain was suggested.

  7. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  8. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    Science.gov (United States)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  9. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  10. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  11. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  12. Study on high-cycle fatigue behavior of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Xiong Ru; Zhao Yuxiang; Zhang Qiang; Wang Hao; Tang Rui; Qiao Yingjie

    2013-01-01

    The fatigue experiments of commerce stainless steels including 347, 316Ti and 310 were conducted under bending and rotating loadings. The environments were at room temperature (RT) as well as at 550℃ in air. The fracture morphology was observed by SEM, and the S-N curves were processed according to the experimental data. The results indicate the fatigue limited stresses for the 3 stainless steels were in the order of 347 < 316Ti < 310, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation and therefore the fatigue life would decrease, among them 347 was more sensitive to temperature with the maximum decreasing tendency. All the 3 stainless steels have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the width of fatigue ripples is about 1 μm, the fracture area has much dimples, and 347 presents much cavities of different sizes in dimples. (authors)

  13. Tuning Low Cycle Fatigue Properties of Cu-Be-Co-Ni Alloy by Precipitation Design

    Directory of Open Access Journals (Sweden)

    Yanchuan Tang

    2018-06-01

    Full Text Available As material for key parts applied in the aerospace field, the Cu-Be-Co-Ni alloy sustains cyclic plastic deformation in service, resulting in the low cycle fatigue (LCF failure. The LCF behaviors are closely related to the precipitation states of the alloy, but the specific relevance is still unknown. To provide reasonable regulation of the LCF properties for various service conditions, the effect of precipitation states on the LCF behaviors of the alloy was investigated. It is found that the alloy composed fully of non-shearable γ′ precipitates has higher fatigue crack initiation resistance, resulting in a longer fatigue life under LCF process with low total strain amplitude. The alloy with fine shearable γ′I precipitates presents higher fatigue crack propagation resistance, leading to a longer fatigue life under LCF process with high total strain amplitude. The cyclic stress response behavior of the alloy depends on the competition between the kinematic hardening and isotropic softening. The fine shearable γ′I precipitates retard the decrease of effective stress during cyclic loading, causing cyclic hardening of the alloy. The present work would help to design reasonable precipitation states of the alloy for various cyclic loading conditions to guarantee its safety in service.

  14. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  15. Development of a Fatigue Model for Low Alloy Steels Using a Cycle-Dependent Cohesive Zone Law

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2014-03-01

    Full Text Available A fatigue model for SAE 4130 steels is developed using a cycle-dependent cohesive zone law. Reduction of fracture energy and degradation of stiffness are considered to describe failure resistance after certain number of cycles. The reduction rate of fracture energy is determined with experimental stress (S- number of cycles to failure (N scatter found in the literature. Three-dimensional finite element models containing a cohesive zone are generated with commercial software (ABAQUS. Calculated fatigue lives at different stress ratios are in good agreement with experimental ones. In addition, fatigue behavior of hardened SAE 4130 steels is predicted with that of normalized material.

  16. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    Directory of Open Access Journals (Sweden)

    Lu Cai

    Full Text Available The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1 critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2 active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3 excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4 with repeated step tests, white muscle (anaerobic metabolism began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.

  17. Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Takamoto Itoh

    2015-10-01

    Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.

  18. Cycle counting procedure for fatigue failure preditions for complicated multi-axial stress histories

    International Nuclear Information System (INIS)

    Jones, D.P.; Friedrich, C.M.; Hoppe, R.G.

    1977-12-01

    A procedure has been developed to determine the cumulative fatigue damage in structures experiencing complicated multi-axial stress histories. The procedure is a generalization of the rainflow method developed by Matsuishi and Endo for one-dimensional situations. It provides a consistent treatment of three-dimensional stress states that is especially suited to computer programming applications for the post-processing of finite element stress data. The procedure includes a unique method to account for the rotation of principal stresses with time during the stress history and for the cumulative fatigue damage resulting from partial stress reversals within a stress cycle. The general procedure and necessary equations for programming are presented. Comparisons are made with life predictions using Section III of the ASME Boiler and Pressure Vessel Code for two hypothetical multi-axial stress histories for which the principal stresses are rotating with time. These comparisons show that the cycle counting method provides a consistent unambiguous interpretation of the fatigue design procedure in the ASME Code for these cases. Finally, the fatigue life of a perforated plate, as analyzed by finite elements, is computed for the combination of several hypothetical stress histories. This example demonstrates the utility of the proposed method when used in conjunction with finite element programs

  19. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  20. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  1. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes...

  2. Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC

    Science.gov (United States)

    Al-Matar, Basem Jawad

    The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.

  3. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  4. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  5. Fatigue

    Science.gov (United States)

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... Call your provider right away if you have any of the following: Confusion or dizziness Blurred vision Little or no urine, or recent ...

  6. Design optimization and fatigue testing of an electronically-driven mechanically-resonant cantilever spring mechanism

    International Nuclear Information System (INIS)

    Kheng, Lim Boon; Kean, Koay Loke; Gitano-Briggs, Horizon

    2010-01-01

    A light scanning device consisting of an electronically-driven mechanically-resonant cantilever spring-mirror system has been developed for innovative lighting applications. The repeated flexing of the cantilever spring during operation can lead to premature fatigue failure. A model was created to optimize the spring design. The optimized spring design can reduce stress by approximately one-third from the initial design. Fatigue testing showed that the optimized spring design can operate continuously for over 1 month without failure. Analysis of failures indicates surface cracks near the root of the spring are responsible for the failures.

  7. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    Science.gov (United States)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  8. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  9. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  10. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  11. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  12. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Wan Aoshuang

    2016-10-01

    Full Text Available A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading at four stress ratios of −1, −0.3, 0.5 and 0.9 in three environments of room temperature (i.e., about 25 °C and elevated temperatures of 530 °C and 620 °C, and the interaction mechanisms between the elevated temperature and stress ratio are deduced and compared with each other from fractographic studies. Finally, the model is applied to experimental data, demonstrating the practical and effective use of the proposed model. It is shown that new model has good correlation with experimental results.

  13. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  14. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  15. Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Ricardo Branco

    2018-01-01

    Full Text Available Selective laser melting has received a great deal of attention in recent years. Nevertheless, research has been mainly focused on the technical issues and their relationship with the final microstructure and monotonic properties. Fatigue behaviour has rarely been addressed, and the emphasis has been placed on high-cycle regimes. The aim of this paper is, therefore, to study, in a systematic manner, the cyclic plastic behaviour of AISI 18Ni300 maraging steel manufactured by selective laser melting. For this purpose, low-cycle fatigue tests, under fully-reversed strain-controlled conditions, with strain amplitudes ranging from 0.3% to 1.0%, were performed. After testing, fracture surfaces were examined by scanning electron microscopy to identify the main fatigue damage mechanisms. The analysis of results showed a non-Masing material, with a slight strain-softening behaviour, and non-linear response in both the elastic and plastic regimes. In addition, this steel exhibited a very low transition life of about 35 reversals, far below the values of conventional materials with equivalent monotonic mechanical properties, which can be attributed to the combination of high strength and low ductility. The total strain energy density, irrespective of strain amplitude, revealed itself to be a quite stable parameter throughout the lifetime. Finally, the SEM analysis showed for almost all the tested samples cracks initiated from the surface and inner defects which propagated through the rest of the cross section. A ductile/brittle fracture, with a predominance of brittle fracture, was observed in the samples, owing to the presence of defects which make it easier to spread the microcracks.

  16. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  17. Low Cycle Fatigue of Composite Materials in Army Structural Applications: A Review of Literature and Recommendations for Research

    National Research Council Canada - National Science Library

    Harik, Vasyl Michael

    2000-01-01

    Low cycle fatigue (LCF) of laminate composite structures used in Army applications is assessed to identify the key physical phenomena occurring during LCF processes and to determine their main characteristics...

  18. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  19. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  20. An Exercise Model to Study Progressive Muscle Fatigue During Constant Work Rate Exercise on a Cycle Ergometer

    National Research Council Canada - National Science Library

    Fulco, Charles

    2003-01-01

    ... of the same muscles during the activity. However, conventional ergometric testing modes such as stationary cycling or treadmill exercise do not readily lend themselves to quantitating the progressive increase in muscle fatigue...

  1. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  2. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  3. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  4. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  5. Effect of temperature on low cycle fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan Rao, G., E-mail: srgundi@yahoo.co.in [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Srinath, J. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Ganesh Sundara Raman, S. [Dept of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Sharma, V.M.J.; Narayana Murthy, S.V.S.; Narayanan, P. Ramesh [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Tharian, K. Thomas [Materials and Manufacturing Entity, Liquid Propulsion Systems Center, Valiamala, Trivandrum (India); Kumar, P. Ram; Venkita Krishnan, P.V. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India)

    2017-04-24

    Isothermal low cycle fatigue (LCF) properties of Cu-Cr-Zr-Ti alloy were evaluated at different temperatures (300 °C, 450 °C and 600 °C) in high purity argon atmosphere. The cyclic stress response (CSR) was highly dependent on the test temperature. CSR at 300 °C showed primary hardening and secondary hardening at lower strain amplitudes from 0.25% to 0.8% and primary hardening followed by continuous softening at 1.2% strain amplitude. At 450 °C, the alloy exhibited a higher degree of primary hardening followed by saturation of stress. Transmission electron microscopic observations made on the samples tested upto different number of cycles indicate that precipitation of fine Cr precipitates was the main reason for the secondary hardening at 300 °C and extensive primary hardening at 450 °C. Even though precipitation was assisted by mechanical working during cycling, it is observed that the secondary hardening occurred almost at the same time irrespective of the strain amplitude used in the tests. At 450 °C and higher strain amplitudes, precipitates nucleated at the dislocations within a few initial cycles causing pinning of the dislocations thereby increasing the stress response. CSR at 600 °C showed continuous softening without any hardening. It is found that the precipitates nucleated during heating and soaking at the test temperature itself before the start of the strain cycling and coarsening of precipitates as well as loss of coherency with the matrix caused continuous softening at 600 °C. With an increase in test temperature, a reduction in fatigue life is observed and the life reduction is significant at higher strain amplitudes. Microstructural observations and fractographic studies indicated that cracks initiated predominantly at surface and propagated inward. Intergranular cracking was observed at higher strain amplitudes at all temperatures.

  6. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  7. Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyun-Bo [Yeungnam Univ., Daegu (Korea, Republic of); Kim, Young-Kyun [KOGAS Research Institute, Seoul (Korea, Republic of); Suh, Chang-Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-07-15

    The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of 10{sup 6}, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

  8. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  9. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  10. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  11. Low cycle fatigue strength of austenitic stainless steel under large strain regime

    International Nuclear Information System (INIS)

    Sakai, Michiya; Saito, Kiyoshi; Matsuura, Shinichi

    1998-01-01

    In order to establish realistic seismic safety of nuclear power plants, it is necessary to clarify the failure mode of each components and prepare a damage evaluation method. The authors have proposed the damage evaluation method based on the fully numerical approach to evaluate the low cycle fatigue (LCF) failure under seismic loadings. This method has been validated by comparison with the dynamic failure tests of thin elbows which should be the one of the important components of the FBR primary piping system. However, since there exists limited LCF data, fatigue lives under large strain regime have been extrapolated by available fatigue data. In this study, LCF tests have been conducted over a large strain range from 2% to 10% on austenitic stainless steel SUS304. From the results, the regressive LCF curve has been proposed to modify the Wada's best-fit LCF curve under large strain regime. The usage factors calculated by author's numerical approach using proposed LCF curve have been improved to correct the underestimation of the fatigue damage. (author)

  12. Crack growth behaviour of aluminium wrought alloys in the Very High Cycle Fatigue regime

    Directory of Open Access Journals (Sweden)

    Bülbül Fatih

    2018-01-01

    Full Text Available Investigations have shown that in the regime of Very High Cycle Fatigue (VHCF “natural” crack initiation often takes place underneath the material surface leading to crack propagation without contact to atmospheric components. In order to elucidate the environmental damage contribution and its effect on the VHCF long crack propagation, fatigue experiments with alternating environment (vacuum and laboratory air were performed. An ultrasonic fatigue testing system (USFT equipped with a small vacuum chamber was applied that enables the in-situ examination of the long fatigue crack propagation at a resonance frequency of about 20 kHz by using a long distance microscope. By means of the Focused-Ion-Beam technique, micro-notches were prepared in the USFT specimens. The tests were carried out on the aluminium alloys EN-AW 6082 and 5083 in different conditions. It has been found that the atmosphere has a significant influence on the VHCF long crack propagation which manifests itself in the crack path as well as in the crack growth rates. Because of pronounced single sliding in vacuum, shear-stress-controlled crack propagation was detected whereas in laboratory air normal-stress-controlled crack propagation occurred. Furthermore, it has been proven that the secondary precipitation state of the aluminium alloy significantly influences the VHCF long crack propagation in vacuum.

  13. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

    Science.gov (United States)

    Eder, M. A.; Haselbach, P. U.; Mishin, O. V.

    2018-05-01

    In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

  14. Study on low cycle fatigue behavior of two titanium alloy materials with elevated temperature effects

    International Nuclear Information System (INIS)

    Cai Lixun; Sun Yafang; Wang Li; Huang Shuzhen

    2000-01-01

    A serial of tensional and low cycle fatigue tests for two titanium alloy materials:T42NG and T225NG under room temperature and 350 degree C elevated temperature are carried out. Based on the test results, four monotonic constitutive relationships between stress and strain and four relationships between life Nf and strain amplitude controlled are given. By three ratio λ σ , λ Δσ and λ Nf of the materials related to the elevated temperature, systematical investigations about the influence of the elevated temperature on monotonic tensional intensity, cyclic intensity and fatigue life are performed. According to the important rule opened out that it exists a linearity relationship between the ratio λ Nf and strain amplitude Δε/2, the author present a λ-M-C model for predicting the fatigue life of a exponential material under R= -1 and an elevated temperature. To get the λ-M-C model, the authors give available discussion about the method simplified test and regression. The authors know from test results that T42NG steel has better fatigue and tensional behaviors than those of T225NG steel

  15. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junfeng; Yu, Dunji; Zhao, Zizhen; Zhang, Zhe; Chen, Gang; Chen, Xu, E-mail: xchen@tju.edu.cn

    2016-06-14

    A series of uniaxial strain-controlled fatigue and creep-fatigue tests of the bainitic 2.25Cr1Mo steel forging were performed at 455 °C in air. Three different hold periods (30 s, 120 s, 300 s) were employed at maximum tensile strain and compressive strain under fully reversed strain cycling. Both tensile and compressive holds significantly reduce the fatigue life. Fatigue life with tensile hold is shorter than that with compressive hold. A close relationship is found between the reduction of fatigue life and the amount of stress relaxation. Microstructural examination by scanning electron microscope reveals that strain hold introduces more crack sources, which can be probably ascribed to the intensified oxidation and the peeling-off of oxide layers. A modified plastic strain energy approach considering stress relaxation effect is proposed to predict the creep-fatigue life, and the predicted lives are in superior agreement with the experimental results.

  16. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6−x)Si–xAl TRIP/TWIP alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, Ilya, E-mail: nikulin.i.a@gmail.com [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Belgorod State University, Pobeda 85, Belgorod 308015 (Russian Federation); Sawaguchi, Takahiro [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Tsuzaki, Kaneaki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2013-12-10

    The change in low-cycle fatigue (LCF) properties and deformation microstructure due to the alteration of aluminum and silicon contents was studied in relation with the tensile properties in Fe–30Mn–(6−x)Si–xAl (x=0, 1, 2, 3, 4, 5, 6 wt%) alloys, which are high-Mn austenitic TRIP/TWIP alloys. Austenite to ε-martensite transformation took place during LCF deformation in the TRIP alloys with x≤2 while mechanical twinning was not observed by electron-backscattering diffraction (EBSD) analysis in the TWIP alloys with x>2 after LCF deformation. The fatigue resistance of the alloys was shown to be correlated with the tensile proof strength and the hardening rate. Superior fatigue life of 8×10{sup 3} cycles at a total strain range Δε=2% was found in the Fe–30Mn–4Si–2Al TRIP alloy with a low fraction of ε-martensite, high tensile proof strength and low hardening rate at both tensile and fatigue deformations. On the other hand, a considerable decrease in the fatigue properties was observed in the alloys with decreasing proof strength and increasing hardening rate. Proof strength provided by the solid solution of Al and Si, represents the hampering of plastic deformation, and the hardening rate reflects the strain reversibility affected by the stacking fault energy (SFE) through the rate of austenite to martensite transformation in the TRIP alloys and the substructure formation in the TWIP alloys.

  17. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  18. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  19. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  20. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  1. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  2. Effects of microstructures on low cycle fatigue behavior in Al-Si-Mg cast alloys

    International Nuclear Information System (INIS)

    Han, Sang Won; Kim, Sug Won

    2002-01-01

    Low cycle fatigue tests were carried out using four kinds of Al-7%Si-0.4Mg cast alloys, i.e., two kinds of sand mold casts, permanent mold cast and semi-solid die cast. They were heat-treated in the condition of under aging and over aging to investigate effects of precipitates on fatigue. All tests were conducted under axial plastic strain amplitude control. Stress level of cyclic hardening curves increased sensitively with needle like eutectic Si particle, refine grain size and dendrite arm spacing (DAS). In particular, the refined grain structure of under aged matrix was more effective encourager for cyclic hardening compared with DAS and eutectic Si particle size. After rapid increase in cyclic hardening during several number of cycles, the stress amplitude kept increasing steadily until fracture in under aged alloys strengthened by shearable G.P. zone. On the other hand, over aged alloys strengthened by non-shearable β ' precipitates generated more drastic initial hardening and the stress amplitude reached the saturation state in quite early stage of the fatigue

  3. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  4. Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture

    Directory of Open Access Journals (Sweden)

    Sorochak Andriy

    2015-06-01

    Full Text Available The main regularities in fatigue fracture of the railway axle material - the OSL steel - are found in this paper. Micromechanisms of fatigue crack propagation are described and systematized, and a physical-mechanical interpretation of the relief morphology at different stages of crack propagation is proposed for fatigue cracks in specimens cut out of the surface, internal and central layers of the axle.

  5. Experimental qualification of mechanical and electrical sub-systems of a complex mechanism against fatigue failure

    International Nuclear Information System (INIS)

    Patri, Sudheer; Vijayashree, R.; Rajan Babu, V.; Suresh Kumar, S.; Chandramouli, S.; Meikandamurthy, C.; Prakash, V.; Rajan, K.K.; Srinivasan, G.

    2016-01-01

    Absorber rod drive mechanisms (ARDM) play an important role in ensuring safety of a reactor by rapid insertion of an Absorber rod (AR) during abnormal conditions. Various components/sub-systems of ARDMs, both mechanical and electrical, are subjected to different cyclic loadings during service life. Thus, qualifying these systems against fatigue is an important step for gaining confidence in their safe operation for the design life. ASME in Sec. III, Div. 1, Appendices (Para II - 1500) provides guidelines for the experimental evaluation of the capability of components to withstand cyclic loading. These rules are developed for static components like pressure vessels. Since no such rules are available for moving components like mechanisms, the same were adopted for the ARDMs, with an understanding that the effect of inertia loads of a moving component are to be accounted in the experiments. In application of these rules to a complex mechanisms such as ARDM, various special cases arise which are not addressed explicitly in the code. The paper describes the intelligent adoption of the fatigue life rules given in ASME to various special cases and their extension to electrical systems. The paper also outlines the experiments carried out for qualifying the ARDM against fatigue. (author)

  6. Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304

    International Nuclear Information System (INIS)

    Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.

    1995-01-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user's experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book

  7. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  8. High-cycle fatigue characteristics of weldable steel for light-water reactors

    International Nuclear Information System (INIS)

    Klesnil, M.; Polak, J.; Obrtlik, K.; Troshchenko, V.T.; Mishchenko, Yu.I.; Khamaza, L.A.

    1982-01-01

    Czechoslovak and Soviet 15Kh2NMFA steel was used for running fatigue tests at temperatures of 20, 350 and 400 degC in the high-cycle range with various loading regimes. The results show that at the given temperatures in this type of steel a cyclic softening occurs. The fatigue characteristics were measured with great dispersion of results, but within this dispersion they are almost identical for various steels at the same temperature. Increased temperature results in the decrease in the amplitude of cyclic deformation stress and in the increase in the amplitude of plastic deformation. The diversity in the values of cyclic plasticity and stress response measured in the given mode may be explained by the lower level of softening and the non-homogeneous cyclic plastic deformation of material under the given constant conditions. (J.B.)

  9. Correction for Poisson's effect in an elastic analysis of low cycle fatigue

    International Nuclear Information System (INIS)

    Roche, R.; Moulin, D.

    1984-05-01

    Fatigue behaviour is essentially dependent on the real strain range, but the current practice is the use of elastic analysis. In low cycle fatigue conditions where inelastic strains predominate, elastic analysis never gives the real value of the strain range. In order to use these results some corrections are necessary. One of these corrections is due to the Poisson's effect (the Poisson ratio in inelastic behaviour is higher than in elastic behaviour). In this paper a method of correction of this effect is proposed. It consists in multiplying the results of the elastic analysis by a coefficient called Kν. A method to draw curves giving this coefficient Kν as a function of results of elastic analysis is developped. Only simple analytical computations using the unixial cyclic curve are needed to draw these curves. Examples are given. The proposed method is very convenient and low cost effective [fr

  10. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  11. Prediction of mechanical fatigue caused by multiple random excitations

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    2004-01-01

    A simulation method is presented for the fatigue analysis of automotive and other products that are subjected to multiple random excitations. The method is denoted as frequency domain stress-life fatigue analysis and was implemented in the automotive industry at DAF Trucks N.V. in Eindhoven, The

  12. Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Welded Joints at Room Temperature and 850 .deg. C for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dew, Rando T. [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Min Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Low cycle fatigue (LCF) is an important design consideration for high temperature IHX components. Moreover, some of the components are joined by welding techniques and therefore the welded joints are unavoidable in the construction of mechanical structures. Since Alloy 617 was introduced in early 1970s, many attempts have been made in the past two decades to evaluate the LCF and creep-fatigue behavior in Alloy 617 base metal at room temperature and high temperature. However, little research has focused on the evaluation and characterization of the Alloy 617 welded joints. butt-welded joint specimens was performed at room temperature and 850 .deg. C. Fatigue lives of GTAW welded joint specimens were lower than those of base metal specimens. LCF cracking and failure in welded specimens initiated in the weld metal zone and followed transgranluar dendritic paths for both at RT and 850 .deg. C.

  13. Energy flow and mineral cycling mechanisms

    International Nuclear Information System (INIS)

    Rogers, L.E.

    1977-01-01

    Analysis of energy flow patterns and mineral cycling mechanisms provides a first step in identifying major transport pathways away from waste management areas. A preliminary food web pattern is described using results from ongoing and completed food habit studies. Biota possessing the greatest potential for introducing radionuclides into food chains leading to man include deer, rabbits, hares, waterfowl, honeybees and upland game birds and are discussed separately

  14. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Park, H. B.; Chopra, O. K.

    2000-01-01

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of ΔJ and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values

  15. Mechanisms of fretting-fatigue of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Antoniou, R A; Radtke, T C [Defence Sci. and Technol. Organ., Melbourne, Vic. (Australia). Aeronautical and Maritime Res. Lab.

    1997-09-30

    The effect of continuous fretting in air at 20 C on fatigue performance has been studied for Ti-17 and Ti-6Al-4V, high strength titanium alloys used for gas-turbine fan and compressor disks and blades, respectively. The effect of fretting was to reduce the fatigue stress limit from 700 MPa for plain fatigue to 200 MPa for fretting-fatigue. A number of models, supported by metallographic and fractographic evidence, are proposed which explain (i) how the cyclic loading of individual asperities results in crack initiation; (ii) the formation of multiple cracks; (iii) the existence of non-propagating cracks; and (iv) how fretting influences crack propagation once fatigue cracks have formed. (orig.) 46 refs.

  16. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  17. Statistical evaluation of low cycle loading curves parameters for structural materials by mechanical characteristics

    International Nuclear Information System (INIS)

    Daunys, Mykolas; Sniuolis, Raimondas

    2006-01-01

    About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970-2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper

  18. Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones

    Directory of Open Access Journals (Sweden)

    Guozheng Kang

    2015-11-01

    Full Text Available Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined.

  19. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  20. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  1. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  2. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    Science.gov (United States)

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    . From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  4. Plant uprooting by flow as a fatigue mechanical process

    Science.gov (United States)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  5. Stress analysis of fatigue cracks in mechanically fastened joints : An analytical and experimental investigation

    NARCIS (Netherlands)

    De Rijck, J.J.M.

    2005-01-01

    The two historical fuselage failures, Comet in 1954 and Aloha in 1988, illustrate that similar accidents must be avoided which requires a profound understanding of the fatigue mechanisms involved, including analytical models to predict the fatigue behavior of riveted joints of a fuselage structure.

  6. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru

    2014-01-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2

  7. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    Science.gov (United States)

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  8. Correction of fatigue parameters of concrete using approximation of mechanical-Fracture parameters in time

    Czech Academy of Sciences Publication Activity Database

    Šimonová, H.; Keršner, Z.; Seitl, Stanislav; Pryl, D.; Pukl, R.

    -, č. 1 (2012), s. 57-59 ISSN 1213-3116 R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : fatigue * concrete * correction * fracture parameters Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    International Nuclear Information System (INIS)

    Gagnon, M; Tahan, S A; Bocher, P; Thibault, D

    2012-01-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  10. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  11. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    International Nuclear Information System (INIS)

    Petersen, C.; Rodrian, D.

    2002-01-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  12. Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys

    Science.gov (United States)

    Alderliesten, R. C.; Schijve, J.; Krkoska, M.

    Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.

  13. Fatigue Life Assessment of Structures Using Electro-Mechanical Impedance Technique

    International Nuclear Information System (INIS)

    Bhalla, S

    2012-01-01

    This paper describes a new experimental approach for fatigue life assessment of structures based on the equivalent stiffness determined by surface bonded piezo-impedance transducers through the electro-mechanical impedance (EMI) technique. The remaining life of the component (in terms of the cycles of loading that can be sustained) is non-dimensionally correlated with the equivalent identified stiffness. The proposed approach circumvents the determination of the absolute stiffness of the joint and employs the admittance signature of the surface-bonded piezo-transducers directly. The second part of the paper briefly describes the recent advances made in the field of impedance based structural health monitoring (SHM) in terms of low-cost hardware system and improved damage diagnosis through the integration of global dynamic and EMI techniques using the same set of piezo-sensors. Other recent applications such as bio-sensors and traffic sensors pioneered at the Smart Structures and Dynamics Laboratory (SSDL) are also briefly covered.

  14. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  15. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  16. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  17. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  18. Low-cycle fatigue of sheet elements with ''soft'' surface layer

    International Nuclear Information System (INIS)

    Luk'yanov, V.F.; Kharchenko, V.Ya.; Berezutskij, V.I.; Ovsyannikov, V.G.

    1978-01-01

    Investigated are regularities of low-cycle fatigue of bimetallic sheet constructions made of chrome-nickel-molybdenum steel, plated with a low-alloyed steel with a reduced yield limit. Static repeated bending tests have been carried out using two-layer samples. The surface layer has been shown to increase resistance to nucleation and propagation of cracks under pulsating load if stresses are not more than 2 times higher than the yield limit. Increase in stresses leads to elastoplastic deformation and reduces durability. The positive effect of the surface layer is advisable to be used when welding-up surface defects and strengthening welded joints of high-strength steels

  19. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Doi, So-myo; Nekomoto, Yoshitsugu; Takeishi, Masayuki; Miyoshi, Toshiaki; O'shima, Eiji

    1999-01-01

    In nuclear power plants, it is very important to foresee occurring events with in-operation -inspection (IOI) since the foreseeing makes plant maintenance more speedy and reliable. Moreover, information on plant condition under operating would make period of in-service inspection (ISI) shorter because maintenance plan can be made effectively using the information. In this study, a high cycle fatigue diagnostic system is being developed applying to especially pipe branches with small diameter under in-operating condition, which are in the radioactive areas of PWR plants and hard to access. This paper presents a concept of the in-operating diagnostic system and current status of developing sensing systems. (author)

  20. Low-cycle fatigue behavior of oxygen-free high-conductivity copper at 3000C in high vacuum

    International Nuclear Information System (INIS)

    Liu, K.C.; Loring, C.M. Jr.

    1983-01-01

    In-vacuum fatigue tests were performed on commercially-pure OFHC copper and 35% Au-65% Cu brazing filler metal at 300 0 C. Excessive recrystallization due to exposure in the 1025 0 C brazing temperature cycle was detrimental to the fatigue life of the base metal; cold work was beneficial to the fatigue resistance. Triple-point cracking and grain boundary sliding were the prevailing modes of fatigue failure observed in the full-size specimens. However, a mixed morphology of ductile and cleavage-like fracture was observed on the fracture surface of the subsize specimen in which the grain structure appeared to have undergone a change because of the presence of surface cold work. The braze has superior fatigue resistance, but to exploit the maximum strength, the brazed joint must be devoid of defects such as cavities and cracks

  1. Frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr--Mo steel for fuel cladding, piping, and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging fromm 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature

  2. A frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr-Mo steel for fuel cladding, piping and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging from 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a considerable decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature. (author)

  3. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  4. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  5. Damage assessment of low-cycle fatigue by crack growth prediction. Development of growth prediction model and its application

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2012-01-01

    In this study, the fatigue damage was assumed to be equivalent to the crack initiation and its growth, and fatigue life was assessed by predicting the crack growth. First, a low-cycle fatigue test was conducted in air at room temperature under constant cyclic strain range of 1.2%. The crack initiation and change in crack size during the test were examined by replica investigation. It was found that a crack of 41.2 μm length was initiated almost at the beginning of the test. The identified crack growth rate was shown to correlate well with the strain intensity factor, whose physical meaning was discussed in this study. The fatigue life prediction model (equation) under constant strain range was derived by integrating the crack growth equation defined using the strain intensity factor, and the predicted fatigue lives were almost identical to those obtained by low-cycle fatigue tests. The change in crack depth predicted by the equation also agreed well with the experimental results. Based on the crack growth prediction model, it was shown that the crack size would be less than 0.1 mm even when the estimated fatigue damage exceeded the critical value of the design fatigue curve, in which a twenty-fold safety margin was used for the assessment. It was revealed that the effect of component size and surface roughness, which have been investigated empirically by fatigue tests, could be reasonably explained by considering the crack initiation and growth. Furthermore, the environmental effect on the fatigue life was shown to be brought about by the acceleration of crack growth. (author)

  6. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  7. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  8. Texture, microstructure, and fractal features of the low-cycle fatigue failure of the metal in pipeline welded joints

    Science.gov (United States)

    Usov, V. V.; Gopkalo, E. E.; Shkatulyak, N. M.; Gopkalo, A. P.; Cherneva, T. S.

    2015-09-01

    Crystallographic texture and fracture features are studied after low-cycle fatigue tests of laboratory specimens cut from the base metal and the characteristic zones of a welded joint in a pipeline after its longterm operation. The fractal dimensions of fracture surfaces are determined. The fractal dimension is shown to increase during the transition from ductile to quasi-brittle fracture, and a relation between the fractal dimension of a fracture surface and the fatigue life of the specimen is found.

  9. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  10. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  11. Mechanisms of Recovering Low Cycle Fatigue Damage in Incoloy 901.

    Science.gov (United States)

    1979-01-01

    ZAP. 0665 0374 19A% DATA : 19AE MPS 15 0666 2375 F2e4 JMP .IDF r e667 e376 9 110 LSI ZAP 668 e377 E2?E LOX F,12 ASSURE X- PEG !0SITIVE FOR LSI 0669 0378...NC(MC) 0( 3350 PRIN4T 22,N4TDELTELC(M),DLTPLC(MC,SIGC(MC)o , 03360 A~1~𔃾C..,TP(M.T~4l~lC) -003370 230 22 VORMAT (12, IT1,F6.5,T2,F6.5,T30,F7.2,T42

  12. Comparison of low-cycle fatigue data of 2 1/4%CrMo steels

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Petrequin, P.; Nieuwland, H.C.D.

    Data files have been produced on international strain-controlled fatigue information available for 2 1/4%CrMo steels; data assessment from these files is treated in three categories viz: annealed and isothermally annealed 2 1/4%Cr1%Mo steel; normalised and tempered and quenched and tempered 2 1/4%Cr1%Mo steel; and 2 1/4%CrMo variants. The available data have been considered generally in terms of total strain range vs. cycles to failure (Nsub(f)), tensile stress at Nsub(f)/2 vs. cycles to failure and time to failure vs. cycles to failure. Where possible the continuous cycling data have been statistically analysed in terms of the elastic and plastic strain components and cycles to failure to yield best-fit equations over defined temperature (T) regimes viz: T <= 427 deg. C, 427 deg. C < T <= 550 deg. C. and 550 deg. C < T <= 600 deg. C. The behaviour of the steels within the various classifications is discussed. (author)

  13. Reliability high cycle fatigue design of gas turbine blading system using probabilistic goodman diagram

    Energy Technology Data Exchange (ETDEWEB)

    Herman Shen, M.-H. [Ohio State Univ., Columbus, OH (United States). Dept. of Aerospace Engineering and Aviation; Nicholas, T. [MLLN, Wright-Patterson AFB, OH (United States). Air Force Research Lab.

    2001-07-01

    A framework for the probabilistic analysis of high cycle fatigue is developed. The framework will be useful to U.S. Air Force and aeroengine manufacturers in the design of high cycle fatigue in disk or compressor components fabricated from Ti-6Al-4V under a range of loading conditions that might be encountered during service. The main idea of the framework is to characterize vibratory stresses from random input variables due to uncertainties such as crack location, loading, material properties, and manufacturing variability. The characteristics of such vibratory stresses are portrayed graphically as histograms, or probability density function (PDF). The outcome of the probability measures associated with all the values of a random variable exceeding the material capability is achieved by a failure function g(X) defined by the difference between the vibratory stress and Goodman line or surface such that the probability of HCF failure is P{sub f} =P(g(X<0)). Design can then be based on a go-no go criterion based on an assumed risk. The framework can be used to facilitate the development of design tools for the prediction of inspection schedules and reliability in aeroengine components. Such tools could lead ultimately to improved life extension schemes in aging aircraft, and more reliable methods for the design and inspection of critical components. (orig.)

  14. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  15. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  16. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  17. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    Science.gov (United States)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  18. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  19. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  20. Development of a procedure for estimating the high cycle fatigue strength of some high temperature structural alloys

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1979-01-01

    The generation of strain controlled fatigue data, for the standard strain rate of 4 x 10 -3 sec -1 , presents a problem when the cycles to failure exceed 10 5 because of the prohibitively long test times involved. In an attempt to circumvent this difficulty an evaluation has been made of a test procedure involving a fast cycling rate (40 Hz) and load controlled conditions. The validity of this procedure for extending current fatigue curves from 10 5 to 10 8 cycles and beyond, hinges upon the selection of an appropriate effective strain value, since the strain usually changes rapidly during the early stage of fatigue. Results from annealed 2 1/4 Cr-1 Mo, type 304 stainless steel, Incoloy 800H and Hastelloy X, tested over a wide range of temperatures, show that the strain measured N/sub f/2 is a reasonable estimate since it gives an excellent correlation between the strain and load controlled tests in the 10 5 cycle range where the data overlap. It seems clear that the differences in cycling rate and early stress-strain history for the two tests do not significantly affect the correlation. It may, therefore, be concluded that such load control test procedures may be used as a valid fast way for extending currently available fatigue curves from 10 5 to 10 8 cycles, and beyond

  1. Study on the Mechanical Properties of Stay Cable HDPE Sheathing Fatigue in Dynamic Bridge Environments

    Directory of Open Access Journals (Sweden)

    Danhui Dan

    2015-08-01

    Full Text Available As the main force-bearing component of a cable-stayed bridge, a durable stay cable is paramount to the safety and durability of the entire bridge. High-density polyethylene (HDPE sheathing is the main protective component of a stay cable and is the key to insuring cable durability. To address the issue of HDPE sheathing fracture on service, strain level data for in-service, HDPE bridge cable sheathing was used in this study as the basis for HDPE material aging and fatigue testing. A fatigue yield phenomenon with a yield platform on the hysteresis curve of the fatigue cycles is observed by the fatigue test. The parameters to describe this phenomenon are proposed and defined in this paper. A preliminary examination of the relationship between these parameters and the factors, such as the number of cycles, the strain amplitude, and strain rate, are presented. Based on the results obtained, it is suggested that the condition of fatigue yield of HDPE sheathing be defined as the fatigue durability limit state for the purposes of durability design, assessment, and protection of cable-stayed bridges.

  2. Stress and fatigue analysis for lower joint of control rod drive mechanisms seal house

    International Nuclear Information System (INIS)

    Shao Xuejiao; Zhang Liping; Du Juan; Xie Hai

    2013-01-01

    Two kinds of seal houses for control rod drive mechanisms which have different thickness of the lower seal ring was analyzed for its stress and fatigue by finite element method. In the fatigue computation, all the transitions were grouped into several groups, and then the elastoplastic strain correction factor was modified by analyzing thermal and mechanical load separately referring the rules of RCC-M 2002. The results show that the structure with thicker seal ring behaves more safely than the other one except in the second condition. Meanwhile, the amplify of the primary and secondary stress as well as fatigue usage factor can be reduced by regrouping the transients. The precision of fatigue usage factor can be elevated using modified K e when the amplify of the primary and secondary stress is large to some extent produced by both thermal and mechanical loads. (authors)

  3. Influence of microstructure on the low and high cycle fatigue behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Srivastava, V.; Padmanabhan, K.A.

    2001-01-01

    This paper reports the room temperature monotonic and cyclic stress-strain (CSS) response, the low and high cycle fatigue behaviour of a medium carbon microalloyed (MA) steel in different microstructural conditions obtained by isothermal transformation at 973, 773 and 573 K following austenitizing at 1123 K. The isothermal transformations resulted in coarse pearlite (CP), fine pearlite (FP), and acicular ferrite/bainite (AF/B) microstructures, respectively. In low cycle fatigue, the CP and FP microstructures exhibited cyclic softening at low total strain amplitudes ( cys ) of the material and was approximately equal to 0.7σ cys . (orig.)

  4. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  5. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  6. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue.

    Science.gov (United States)

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-04-26

    The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to whether or not progressive resistance

  7. Survey on damage mechanics models for fatigue life prediction

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2013-01-01

    Engineering methods to predict the fatigue life of structures have been available since the beginning of the 20th century. However, a practical problem arises from complex loading conditions and a significant concern is the accuracy of the methods under variable amplitude loading. This paper

  8. A Review of the As-Built SLM Ti-6Al-4V Mechanical Properties towards Achieving Fatigue Resistant Designs

    Directory of Open Access Journals (Sweden)

    Dylan Agius

    2018-01-01

    Full Text Available Ti-6Al-4V has been widely used in both the biomedical and aerospace industry, due to its high strength, corrosion resistance, high fracture toughness and light weight. Additive manufacturing (AM is an attractive method of Ti-6Al-4V parts’ fabrication, as it provides a low waste alternative for complex geometries. With continued progress being made in SLM technology, the influence of build layers, grain boundaries and defects can be combined to improve further the design process and allow the fabrication of components with improved static and fatigue strength in critical loading directions. To initiate this possibility, the mechanical properties, including monotonic, low and high cycle fatigue and fracture mechanical behaviour, of machined as-built SLM Ti-6Al-4V, have been critically reviewed in order to inform the research community. The corresponding crystallographic phases, defects and layer orientations have been analysed to determine the influence of these features on the mechanical behaviour. This review paper intends to enhance our understanding of how these features can be manipulated and utilised to improve the fatigue resistance of components fabricated from Ti-6Al-4V using the SLM technology.

  9. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  10. Influence of sodium on the low-cycle fatigue behavior of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Smith, D.L.; Zeman, G.J.; Natesan, K.; Kassner, T.F.

    1976-01-01

    Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Types 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700 0 C in sodium of controlled purity, viz., approximately 1 ppM oxygen and 0.4 ppM carbon, at a strain rate of 4 x 10 -3 s -1 . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium. 10 fig

  11. Pacing Strategy, Muscle Fatigue, and Technique in 1500-m Speed-Skating and Cycling Time Trials.

    Science.gov (United States)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-04-01

    To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500-m speed-skating and cycling time trials when a faster or slower start is instructed. Nine speed skaters and 9 cyclists, all competing at regional or national level, performed two 1500-m time trials in their sport. Athletes were instructed to start faster than usual in 1 trial and slower in the other. Mean velocity was measured per 100 m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), voluntary activation (VA), and potentiated twitch (PT) of the quadriceps muscles were measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, knee, hip, and trunk angles were measured to evaluate technique. Cyclists showed a more explosive start than speed skaters in the fast-start time trial (cyclists performed first 300 m in 24.70 ± 1.73 s, speed skaters in 26.18 ± 0.79 s). Both trials resulted in reduced MVC (12.0% ± 14.5%), VA (2.4% ± 5.0%), and PT (25.4% ± 15.2%). Blood lactate concentrations after the time trial and the decrease in PT were greater in the fast-start than in the slow-start trial. Speed skaters showed higher trunk angles in the fast-start than in the slow-start trial, while knee angles remained similar. Despite similar instructions, behavioral adaptations in pacing differed between the 2 sports, resulting in equal central and peripheral contributions to muscle fatigue in both sports. This provides evidence for the importance of neurophysiological aspects in the regulation of pacing. It also stresses the notion that optimal pacing needs to be studied sport specifically, and coaches should be aware of this.

  12. Mean load effect on fatigue of welded joints using structural stress and fracture mechanics approach

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2006-01-01

    In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B and PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ΔK characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints

  13. Fatigue mechanism verified using photovoltaic properties of Pb(Zr0.52Ti0.48)O3 thin films

    Science.gov (United States)

    Wu, Ming; Li, Wei; Li, Junning; Wang, Shaolan; Li, Yaqi; Peng, Biaolin; Huang, Haitao; Lou, Xiaojie

    2017-03-01

    The photovoltaic effect and its evolution during electrical fatigue in Pb(Zr0.52Ti0.48)O3 (PZT) thin films have been investigated. It is found that the photovoltaic effect of the as-grown PZT thin film is highly affected by the asymmetric Schottky barriers, which can be tuned by applying an external electric field. During fatigue processes, both open-circuit voltage (Voc) and short-circuit current (Jsc) decrease considerably with the increase of the number of electrical cycles. This phenomenon could be ascribed to the degradation of the interfacial layer between the thin film and the electrode induced by highly energetic charge carriers injected from the electrode during bipolar cycling. Our work sheds light on the physical mechanism of both ferroelectric photovoltaics and polarization fatigue in thin-film ferroelectrics.

  14. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  15. Effects of mean tensile stresses on high-cycle fatigue life and strain accumulation in some reactor materials

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1977-05-01

    An assessment has been made of the effects of mean tensile stresses on the high-cycle fatigue behavior of solution-treated Type 304 stainless steel, normalized and tempered 2 1 / 4 Cr-1Mo steel, Incoloy-800H, and low-carbon Incoloy-800. Mean stresses are usually detrimental to fatigue strength, especially at high temperatures and stress levels, where significant creep can occur during fatigue cycling. Depending on the magnitudes of the alternating and mean stresses, failure may be creep or fatigue controlled. Strain accumulation is also affected by these stress levels and possibly, also, by the cyclic work-hardening characteristics of the material. It is shown that the Goodman Law for estimating mean stress effects is inadequate, since it does not account for time-dependent deformation. An alternative expression not having such a limitation was, therefore, derived and this relates the alternating and mean stresses to the time to failure. Based on limited metallographic observations of fatigue striations in the 2 1 / 4 Cr-1Mo steel an estimate was made of the crack propagation rate. It was found that a crack of critical size could, under certain conditions, propagate through most of the specimen diameter in a matter of seconds. This presents a more significant safety problem than the case for a crack extending under low-cycle conditions since preventative measures probably could not be implemented before the crack had grown to a large size

  16. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  17. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  18. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  19. Low Cycle Fatigue of Single Crystal Nickel-based Superalloy DD6 at 1100℃

    Directory of Open Access Journals (Sweden)

    ZHANG Shichao

    2018-02-01

    Full Text Available The total strain-controlled low cycle fatigue(LCF behaviors of a single crystal superalloy DD6 at 1100℃ for R=-1 and 0.05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the relationship with the microstructure of the material, but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude; when R=-1, the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime prediction, the precision rates predicted are fallen into the factor of±2 times scatter band.

  20. Characterization of coatings and the low cycle fatigue behaviour of 316L

    International Nuclear Information System (INIS)

    Groot, P.; Horsten, M.G.; Tjoa, G.L.

    1993-03-01

    In the framework of the European Fusion Technology Programme ECN participates in a NET task PSM-8 'Coatings and Surface Effects on Stainless Steel 316L'. High emissivity coatings were developed for enhanced heat transfer from graphite tiles to a Stainless Steel First Wall. Four candidate materials, Cr 2 O 3 , Black Cr, Al 2 O 3 /TiO 2 and TiC were tested as candidate high emissivity coatings. These coatings were manufactured by atmospheric and vacuum plasma spraying technique and the Black Chromium coatings were manufactured by a galvanic coating technique. The tests included total emissivity measurements and Low Cycle Fatigue (LCF) experiments. The total emissivity of two TiC coatings at 525 K appeared to be 0.62 and 0.64. The total emissivity of the TiC and 5 wt% TiO 2 /Al 2 O 3 coating was about 0.7. (orig.)

  1. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  2. Two Parameter Fracture Mechanics: Fatigue Crack Behavior under Mixed Mode Conditions

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Knésl, Zdeněk

    2008-01-01

    Roč. 75, č. 3-4 (2008), s. 857-865 ISSN 0013-7944. [Crack Paths 2006. Parma, 14.09.2006-16.09.2006] R&D Projects: GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Constraint * Mixed-mode loading * Fatigue crack * Crack growth * Crack path Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  3. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, Amanda J.; Torries, Brian [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Shamsaei, Nima, E-mail: shamsaei@me.msstate.edu [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Thompson, Scott M. [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Seely, Denver W. [Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States)

    2016-02-08

    In order for additive-manufactured parts to become more widely utilized and trusted in application, it is important to have their mechanical properties well-characterized and certified. The fatigue behavior and failure mechanisms of Ti–6Al–4V specimens fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) additive manufacturing (AM) process, are investigated in this study. A series of fully-reversed strain-controlled fatigue tests is conducted on Ti–6Al–4V specimens manufactured via LENS in their as-built and heat-treated conditions. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism, crack initiation sites, and defects such as porosity. Due to the relatively high localized heating and cooling rates experienced during DLD, fabricated parts are observed to possess anisotropic microstructures, and thus, different mechanical properties than those of their traditionally-manufactured wrought counterparts. The fatigue lives of the investigated LENS specimens were found to be shorter than those of wrought specimens, and porosity was found to be the primary contributor to these shorter fatigue lives, with the exception of the heat-treated LENS samples. The presence of pores promotes more unpredictable fatigue behavior, as evidenced by data scatter. Pore shape, size, location, and number were found to impact the fatigue behavior of the as-built and annealed DLD parts. As porosity seems to be the main contributor to the fatigue behavior of DLD parts, it is important to optimize the manufacturing process and design parameters to minimize and control pore generation during the build.

  4. Influence of laser hardening with weld penetration onto mechanical and fatigue properties of 40H steel

    International Nuclear Information System (INIS)

    Napadlek, W.; Przetakiewicz, W.

    2003-01-01

    In the article were described investigations results of mechanical properties (hardness, R 0.2 , R m , A 5 , Z) and fatigue properties (rotary bending) of the 40H steel samples, being quenched and tempered, induction and laser hardened. In the laser hardened samples with weld penetration of top layer cracking process in fatigue strength is started mainly in weld penetration area as structural notch. (author)

  5. AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Valtr, M.; Petrenec, Martin; Dluhoš, J.; Kuběna, Ivo; Obrtlík, Karel; Polák, Jaroslav

    2015-01-01

    Roč. 76, JUL (2015), s. 11-18 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/2371; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : fatigue crack initiation * 316L austenitic steel * atomic force microscopy * extrusion * intrusion Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  6. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    Science.gov (United States)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  7. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    Directory of Open Access Journals (Sweden)

    Martin eBehrens

    2015-05-01

    Full Text Available Previously published studies on the effect of short-term endurance training on the neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after eight weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms and isometric maximum voluntary contraction of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave, peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that the endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue

  8. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic...... type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass....... It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the sec-ondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence...

  9. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  10. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  11. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    Science.gov (United States)

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  12. Influence of Pt-aluminide coating on the oxidation and thermo-mechanical fatigue behaviour of the single crystal superalloy CMSX-4

    Energy Technology Data Exchange (ETDEWEB)

    Jargelius-Pettersson, R F.A.; Andersson, H C.M.; Lille, C; Haenstroem, S; Liu, L [Swedish Institute for Metals Research, Stockholm (Sweden)

    2001-10-01

    Oxidation and thermo-mechanical fatigue studies have been performed on a single crystal nickel base superalloy, CMSX-4, with and without an MDC150L Pt-modified diffusional aluminide coating. Oxidation for up to 500 hours at 900, 1050 and 1150 deg C revealed formation of mixed nickel-aluminium oxides, with a pronounced spalling tendency, on the base material, but parabolic growth of aluminium oxide on the coated material. The effect of water vapour and SO{sub 2} on the oxidation rate has also been investigated, and attempts have been made to apply thermodynamic and kinetic modelling to microstructural evolution in the interdiffusion zone between coating and substrate. Thermo-mechanical fatigue testing was performed on both coated and uncoated specimens. The temperature was cycled between 400 and 1050 deg C and mechanical strain ranges between 0.7 and 2.0% were used. Some specimens were cycled from a raised lower temperature estimated to be above the brittle transition temperature of the coat. Both in-phase and out-of-phase test conditions were used. No significant difference in fatigue life was detected between coated specimens cycled in-phase and out-of-phase. An improvement in fatigue life was observed with uncoated specimens tested out-of-phase. Coated specimens cycled above the transition temperature exhibited the longest fatigue life of all tested specimens. In the uncoated specimens the cracks started at the surface of the specimens. Initial cracks in the coated specimens may have started in the bond interface between the coat and the substrate or on the surface of the coat. The damage mechanism in all specimens is characterised by an initial strain hardening followed by crack initiation and crack propagation until final collapse. The load versus number of cycles curve features a maximum followed by a slow load drop and then a fast final load drop. The maxima is associated with crack initiation and the final fast load drop with plastic collapse of the specimen

  13. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia.

    Science.gov (United States)

    Smirmaul, Bruno P C; de Moraes, Antonio Carlos; Angius, Luca; Marcora, Samuele M

    2017-01-01

    To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg -1 ) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue.

  14. Strain localization and fatigue crack initiation in ultrafine-grained copper in high- and giga-cycle region

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Navrátilová, L.

    2014-01-01

    Roč. 58, JAN (2014), s. 202-208 ISSN 0142-1123 R&D Projects: GA ČR GAP108/10/2001; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Fatigue crack initiation * Strain localization * Stability of ultrafine-grained structure * UFG Cu Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  15. Microstructural aspects of crack formation and propagation in the austenitic steel X6CrNiNb18-10 under low cycle fatigue loading

    International Nuclear Information System (INIS)

    Soppa, E.; Kohler, C.; Roos, E.; Schuler, X.

    2012-01-01

    The understanding of the crack initiation mechanisms and crack growth in apparently monolithic materials like X6CrNiNb18-10 stainless steel under cyclic loading requires the explicit analysis of the phenomena underlying fatigue on both atomistic and microscopic levels. The permanent delivery of mechanical energy through cyclic loading evokes changes in the microstructure that can lead to a martensitic transformation. The transformation of a metastable cubic face centered austenite and formation of a cubic body centered α'-martensite under cyclic loading at room temperature was found, both, in the experiment and in molecular dynamics simulations. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∝ 1 μm) differently oriented grains, also in the same parent austenitic grain. By a combination of interrupted low cycle fatigue tests (LCF) and electron backscatter diffraction (EBSD) measurements the martensitic transformation and subsequent fatigue crack formation were observed at the same area in the microstructure at different stages of the specimen lifetime. The EBSD measurements showed the following crack initiation scenarios: Cracks started (a) at the phase boundary between austenite and α'-martensite, (b) inside fully martensitic areas in the matrix, (c) at broken or debonded coarse NbCs. It is obvious that formation of a hard α'-martensite in a ductile and soft austenite and forming two-phase material causes a heterogeneous stress and strain distribution on the microscopic level. α'-martensite enhances locally the stress amplitude whereas in a soft austenite the plastic strain amplitude increases. Strain concentration in the austenite along the phase boundary is connected with a stress increase along the interface and can initiate fatigue crack there. Also at the crack tip, a permanent martensitic transformation occurs, so that the growth of the fatigue cracks at room temperature seems

  16. Microstructural aspects of crack formation and propagation in the austenitic steel X6CrNiNb18-10 under low cycle fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.; Kohler, C.; Roos, E.; Schuler, X. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    The understanding of the crack initiation mechanisms and crack growth in apparently monolithic materials like X6CrNiNb18-10 stainless steel under cyclic loading requires the explicit analysis of the phenomena underlying fatigue on both atomistic and microscopic levels. The permanent delivery of mechanical energy through cyclic loading evokes changes in the microstructure that can lead to a martensitic transformation. The transformation of a metastable cubic face centered austenite and formation of a cubic body centered α'-martensite under cyclic loading at room temperature was found, both, in the experiment and in molecular dynamics simulations. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∝ 1 μm) differently oriented grains, also in the same parent austenitic grain. By a combination of interrupted low cycle fatigue tests (LCF) and electron backscatter diffraction (EBSD) measurements the martensitic transformation and subsequent fatigue crack formation were observed at the same area in the microstructure at different stages of the specimen lifetime. The EBSD measurements showed the following crack initiation scenarios: Cracks started (a) at the phase boundary between austenite and α'-martensite, (b) inside fully martensitic areas in the matrix, (c) at broken or debonded coarse NbCs. It is obvious that formation of a hard α'-martensite in a ductile and soft austenite and forming two-phase material causes a heterogeneous stress and strain distribution on the microscopic level. α'-martensite enhances locally the stress amplitude whereas in a soft austenite the plastic strain amplitude increases. Strain concentration in the austenite along the phase boundary is connected with a stress increase along the interface and can initiate fatigue crack there. Also at the crack tip, a permanent martensitic transformation occurs, so that the growth of the fatigue cracks at room

  17. Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Min [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Jeng, R.J.; Yu, Chia-Chi; Chang, Chia-Hao [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Li, Chia-Lin [Department of Materials Science and Engineering and Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chu, Jinn P., E-mail: jpchu@mail.ntust.edu.tw [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2016-08-01

    We have used nanoindentation to investigate mechanical properties of 200-nm-thick amorphous multilayer consisting of alternating layers of Zr-based thin film metallic glass (TFMG) and holmium scandium oxide (HSO). Nanoindentation results show that TFMG/HSO multilayer exhibits the high hardness and Young's modulus. Owing to its high hardness, smooth surface, and good adhesion properties, TFMG/HSO multilayer is then employed as a protective coating to improve the four-point bending fatigue properties of 316L stainless steel. With coating, the fatigue life is increased from 2.4×10{sup 5} to 4.9×10{sup 6} cycles, at the stress of 700 MPa. A crack retardation mechanism has been proposed to explain the role of TFMG/HSO multilayer in improving fatigue properties of 316L stainless steel substrate.

  18. The Effect of Nitriding Treatment Variables on the Fatigue Limit of Alloy Steel (34crnimo6) Under High Cycle Fatigue

    International Nuclear Information System (INIS)

    Mohamed, J.; Al-Alkawi, H.; Salameh, M.

    2009-01-01

    The aim of this research is to improve the fatigue limit for alloy steel (34CrNiMo6) by salt bath nitriding process. This property is more effective to increase the fatigue life for parts which are used in continuous cyclic loading. All the fatigue tests were implemented before and after nitriding process under rotating bending. Constant and variable capacity stresses were applied before and after nitriding processes. The nitriding process were implemented in salt bath component at three different times (1, 2, 3) hr when temperature was constant at (555 degree centigrade). The depth of the nitride layer reached (0.24, 0.37, 0.5) mm. The nitriding process repeated of another specimens at the same times but the temperature was (600 degree centigrade), the layer depth reached (0.28, 0.41, 0.55) mm. The formation of a high nitrogen iron phases were detected with a layer of the hard chrome nitrides on the surface. The nitriding process is forming the barriers on the surface that resist the initiation and propagation of cracks, as well as generating the compressive residual stresses which delay the progress of fatigue crack. This research deduced that the nitriding processes increased the fatigue limit and this limit is proportional to the time of the nitriding process. When the time increased, the depth of nitride layer is increased, but decreased when the temperature increased to (600 degree centigrade) because of the formation of brittle phase,in spite of the increase in layer depth. (author)

  19. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  20. Anti-fatigue effect of percutaneous stimulation of the hepatic region by mid-frequency pulse current in different diadynamic cycles in soldiers with exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2012-01-01

    Full Text Available Objective  To investigate the anti-fatigue effect of percutaneous stimulation of the hepatic region with the mid-frequency pulse current in different diadynamic cycles in exercise-induced fatigued soldiers. Methods  One hundred twenty healthy PLA recruits who did not have physical exercise were randomly divided into four groups with thirty ones in each: control, stimulation group A, stimulation group B, and stimulation group C. All the subjects of four groups were ordered intensive training (exercise from Monday to Saturday, with rest on Sunday for five weeks to establish the exercise-induced fatigue model. Each day after the exercise, the recruits of stimulation groups A, B, and C were treated immediately with mid-frequency (1204Hz, current intensity ≤80mA stimulation to the hepatic region with diadynamic cycles of 0.5, 1, and 2 seconds, respectively. No pulse current stimulation was given in the control group. Venous blood was collected before breakfast on Sundays to measure the fasting plasma glucose (FPG and blood lactate (LAC contents, and liver function was determined by determination of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH. The 3000-m running performance of the recruits in each group was recorded on the same day. Results  There was no significant difference between the four groups in terms of the FPG level at the end of the first week (P>0.05. At the end of the third and fifth weeks, the FPG level was significantly higher in the three stimulation groups than in the control group (PPP>0.05. At the end of the first, third, and fifth weeks, the ALT, AST, LDH, and LAC levels were significantly lower in every stimulation group than in the control group (PPPPP>0.05. At the end of the first week, there was no significant difference in 3000-m running performance (P>0.05 between the 4 groups. At the end of the third and fifth weeks, the 3000-m running performance was significantly

  1. Effect of strain-induced martensitic transformation on high cycle fatigue behavior in cyclically-prestrained type 304

    International Nuclear Information System (INIS)

    Uematsu, Yoshihiko; Kakiuchi, Toshifumi; Akita, Masayuki; Nakajima, Masaki; Nakamura, Yuki; Yajima, Takumi

    2013-01-01

    The effects of the cyclic prestrain on the fatigue behavior in type 304 austenitic stainless steel were investigated. Rotating bending fatigue tests have been performed in laboratory air using the specimens subjected to ±5% cyclic prestrain at room temperature (R.T.) and -5°C. Martensitic phase volume fraction of the prestrained specimen at -5°C was 48% and larger than 3.8% at R.T. The prestrained specimens exhibited higher fatigue strengths than the as-received ones, and larger volume fraction of martensitic phase resulted in the higher fatigue limit. EBSD analysis revealed that the martensitic phases were more uniformly distributed in the austenitic matrix in the cyclically-prestrained specimens than in the monotonically-prestrained ones. Fatigue crack initiation from inclusion was observed only in the cyclically-prestrained specimens at -5°C. High volume fraction and uniform distribution of martensitic phase induced the transition of crack initiation mechanism and led to the higher fatigue limit. In type 304 stainless steel with high volume fraction of strain-induced martensitic phase, the prediction of fatigue limit based on Vickers hardness could give unconservative results. (author)

  2. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  3. Probabilistic Fatigue Life Prediction of Bridge Cables Based on Multiscaling and Mesoscopic Fracture Mechanics

    Directory of Open Access Journals (Sweden)

    Zhongxiang Liu

    2016-04-01

    Full Text Available Fatigue fracture of bridge stay-cables is usually a multiscale process as the crack grows from micro-scale to macro-scale. Such a process, however, is highly uncertain. In order to make a rational prediction of the residual life of bridge cables, a probabilistic fatigue approach is proposed, based on a comprehensive vehicle load model, finite element analysis and multiscaling and mesoscopic fracture mechanics. Uncertainties in both material properties and external loads are considered. The proposed method is demonstrated through the fatigue life prediction of cables of the Runyang Cable-Stayed Bridge in China, and it is found that cables along the bridge spans may have significantly different fatigue lives, and due to the variability, some of them may have shorter lives than those as expected from the design.

  4. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul; Joo, Young-Chang, E-mail: ycjoo@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of); Uk Lee, Yong; Evans, Louise A. [Center for Process Innovation Limited, Thomas Wright Way, NETPark, Sedgefield, TS21 3FG County Durham (United Kingdom)

    2013-12-09

    The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

  5. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  6. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  7. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  8. Mechanical behavior of 9Cr-1Mo-1V steel due to creep fatigue deformation

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Kim, Jae Kyoung; Lee, Hak Sun; Oh, Sang Hyun; Kwun, Sook In; Kim, Chung Seok

    2005-01-01

    Creep-fatigue tests with trapezoid load wave were performed on a 9Cr-1Mo-1V steel at high temperature(550 .deg. C). Trapezoid load wave is considering about hold time for creep effects. we could find out some information in the relationship between number of cycles to failure and hold time. The number of cycles to failure depended on hold time. The cyclic behavior of 9Cr-1Mo-1V steel was characterized by cyclic softening with increasing number of cycles in high temperature. Also we could observe some cavity in the specimens. The size of cavity was different from each hold time

  9. Effect of tensile holds on the deformation behaviour of a nickel base superalloy subjected to low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Zrnik, J.; Semenak, J.; Wangyao, P.; Vrchovinsky, V.; Hornak, P. [Dept. of Materials Science, Technical Univ. of Kosice, Kosice (Slovakia)

    2002-07-01

    The deformation behaviour of the wrought nickel base superalloy EI698 VD has been investigated in conditions of low cycle fatigue. The tensile hold periods, imposing a constant stress into the fatigue loading, have been introduced at the maximum stress value. The individual hold periods were in the range of 1 minute to 10 hours. The fatigue tests were of tension-tension type defined by a stress ratio R = 0.027 and were conducted at temperature of 650 C. The tests were performed until fracture. The time to failure, the time to failure corresponding to total load at peak amplitude and the number of cycles to failure have been criteria to evaluate the deformation behaviour of the alloy subjected to complex cyclic creep loading. In order to predict lifetime of alloy, regarding the respective types cyclic test, the Kitagawa's modified the linear cumulative damage criterion has been considered. The two regression functions for applied hold period interval were proposed time to calculate the time to failure. The formulae can be used to predict the life of nickel base superalloy considering the specific conditions of low cycle fatigue with tensile hold period introduced at stress amplitude peaks. The failure analysis of fracture surfaces contributed to evaluation of the role of repeatedly reduced stress in damage process. (orig.)

  10. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.

    Science.gov (United States)

    Tenan, Matthew S; McMurray, Robert G; Blackburn, B Troy; McGrath, Melanie; Leppert, Kyle

    2011-02-01

    Local muscle fatigue may be related to potassium efflux from the muscle cell and/or lactate accumulation within the muscle. Local fatigue causes a decrease in median frequency (MPF) of the electromyogram's power spectrum during isometric contractions but its relationship to changes in potassium and lactate during dynamic exercise is equivocal. Thus, this investigation evaluated relationships between changes in the MPF from the vastus lateralis and blood levels of lactate and potassium during an incremental cycling test and recovery. Trained cyclists (n=8) completed a discontinuous, graded cycle test to exhaustion under normal and glycogen-reduced conditions. The glycogen reduced condition promoted an environment of lower lactate production while permitting a consistent potassium response. Blood samples and maximal isometric EMG data were collected at the end of each stage and during recovery. Maximal lactate levels were ∼ 60% lower in the glycogen reduced condition; potassium was similar between trials. MPF did not change significantly at volitional fatigue. Further, MPF was not significantly related to lactate (p>0.27) or potassium (p>0.16) in either condition. Though both lactate and potassium have been implicated as factors relating to local muscle fatigue, neither is significantly related to changes in MPF during or after progressive exercise on a cycle ergometer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dormancy cycling in seeds: mechanisms and regulation

    NARCIS (Netherlands)

    Claessens, S.M.C.

    2012-01-01

    The life cycle of most plants starts, and ends, at the seed stage. In most species mature seeds are shed and dispersed on the ground. At this stage of its life cycle the seed may be dormant and will, by definition, not germinate under favourable conditions (Bewley, 1997).

    Seasonal

  12. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  13. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  14. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  15. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  16. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  17. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

    Science.gov (United States)

    Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O

    2013-11-12

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

  18. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  19. Low cycle fatigue of the European type 316L reference steel for the NET first wall and blanket

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Hoepen, J. van.

    1992-12-01

    This report gives a comprehensive overview of the experiments performed on Type 316L steel at the Netherlands Energy Research Foundation in Petten. It is observed that the effects of neutron irradiation, resulting in 3-4 dpa and 30-40 appm helium are limited. The strain rate dependence of low cycle fatigue endurance is not negligible for material in the three conditions considered: irradiated, as-received and thermal control condition. All fatigue cracks propagated in a ductile manner in the parameter range were investigated. Both fatigue strain rate effects and crack initiation effects should be taken into account for the NET/ITER design. (author). 24 refs., 18 figs., 13 tabs

  20. Effect of shot peening treatment in the behavior of residual stress in duplex stainless steel during medium cycle fatigue

    International Nuclear Information System (INIS)

    Pedrosa, Peter D.S.; Rebello, Joao Marcos A.; Fonseca, Maria P. Cindra

    2010-01-01

    The lifetime of duplex stainless steel parts experiencing cyclic fatigue is directly influenced by the residual stresses present in the ferrite and austenite phases. The motivation for this work was to analyze the behaviour of the residual stresses fields introduced by shot peening treatment in both phases, in the sample surface as in the subsurface layers, in low fatigue cycles, using the X-rays diffraction technique. The results shows that the compressive residual stresses introduced by the shot peening treatment in both phases improved fatigue life of the material. However, the cyclical loads produce partial or total relief in these residual stresses fields. It was verified that the shot peening process induced the formation of microcracks only in the ferrite phase. The largest variations in the total compressive residual stresses fields also occurred in this phase. The samples surfaces were analyzed by scanning electron microscopy. (author)

  1. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    International Nuclear Information System (INIS)

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871 0 C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538 0 C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427 0 C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development

  2. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  3. Fatigue Performance and Multiscale Mechanisms of Concrete Toughened by Polymers and Waste Rubber

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2014-01-01

    Full Text Available For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.

  4. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-01-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.