WorldWideScience

Sample records for cycle environmental impacts

  1. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  2. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  3. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  4. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    1996-01-01

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  5. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  6. Impact on environmental qualification from a longer fuel cycle

    International Nuclear Information System (INIS)

    Sanwarwalla, M.H.; Akhtar, S.; Drankhan, D.A.

    1996-01-01

    There is a general trend in the nuclear industry towards longer fuel cycles because of the economic benefits. The economic benefits for increasing the fuel cycle from eighteen to twenty four months is estimated by the industry to be about $5.05 million per unit year based on a two week mid-cycle maintenance outage. Equipment with a unique characteristic may require maintenance and/or inspection more frequently than can be accommodated in a longer cycle. The maintenance and surveillance (M ampersand S) requirements for these equipment need to be reviewed to accommodate a longer cycle and avoid any unplanned outage. ComEd's LaSalle Station is considering a move to a longer fuel cycle. A study was done to determine the impact of a longer fuel cycle on their current environmental qualification (EQ) program, and the feasibility of implementing changes to their program to accommodate a longer fuel cycle. This paper discusses (1) the impact, if any, the longer fuel cycle will have on the maintenance and surveillance requirements of the 50.49 or environmentally qualified equipment at LaSalle Station, (2) the various techniques, i.e., partial testing, performance based monitoring etc., employed to extend the existing maintenance and surveillance requirements, and (3) the estimated economic savings, if any, from the extended M ampersand S interval

  7. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  8. Life Cycle Environmental Impact Assessment of Local Wine Production and Consumption in Texas: Using LCA to Inspire Environmental Improvements

    OpenAIRE

    Poupart, Ashley

    2017-01-01

    The future viability of wine production is directly linked to its environmental impacts and conditions in which it is required to operate. The environmental impacts related to the production of a food product are directly influenced by the amount of materials, energy, waste and the emissions the product releases throughout the products life cycle. A life cycle assessment (LCA) provides a framework that can identify a food products relative environmental impacts and provides insights into the ...

  9. Global guidance on environmental life cycle impact assessment indicators: Progress and case study

    DEFF Research Database (Denmark)

    Frischknecht, Rolf; Fantke, Peter; Tschümperlin, Laura

    2016-01-01

    Purpose The life cycle impact assessment (LCIA) guidance flagship project of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative aims at providing global guidance and building scientific consensus on environmental LCIA in...

  10. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  11. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  12. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  13. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  14. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  15. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  16. Preliminary assessment of the environmental and health impacts of nuclear and coal fuel cycles

    International Nuclear Information System (INIS)

    Yang Yin; Chen Zhuzhou; Pan Ziqiang

    1992-01-01

    The paper reports on the environmental impacts and health effects of coal and nuclear fuel cycles in China. Data of interest for China are presented in a comparative manner; epidemiological investigations in Shanxi province indicate that the incidences of chronic pulmonary diseases and infant cogenital malformation were apparently increased over the fall-out areas of coal-fired power stations and coal mines. The authors outline the framework of a research project on environmental assessment of nuclear energy and other energy systems. The main features of the project are: environmental and health impacts of coal and nuclear fuel cycles, environmental impact assessment of coal transportation, cost accounting of nuclear and other energy sources, health risk assessment. (author). 24 refs, 4 tabs

  17. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  18. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    International Nuclear Information System (INIS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-01-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals. (letter)

  19. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    Science.gov (United States)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  20. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  1. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  2. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ahmad Faiz Abd Rashid

    2017-02-01

    Full Text Available The building industry has a significant impact on the environment due to massive natural resources and energy it uses throughout its life cycle. This study presents a life cycle assessment of a semi-detached residential building in Malaysia as a case study and assesses the environmental impact under cradle-to-grave which consists of pre-use, construction, use, and end-of-life phases by using Centre of Environmental Science of Leiden University (CML 2001. Four impact categories were evaluated, namely, acidification, eutrophication, global warming potential (GWP, and ozone layer depletion (ODP. The building operation under use phase contributed the highest global warming potential and acidification with 2.41 × 103 kg CO2 eq and 1.10 × 101 kg SO2 eq, respectively. In the pre-use phase, concrete in the substructure has the most significant overall impact with cement as the primary raw material. The results showed that the residential building in Malaysia has a fairly high impact in GWP but lower in acidification and ODP compared to other studies.

  4. Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas

    Directory of Open Access Journals (Sweden)

    Jesuina Chipindula

    2018-06-01

    Full Text Available The last decade witnessed a quantum increase in wind energy contribution to the U.S. renewable electricity mix. Although the overall environmental impact of wind energy is miniscule in comparison to fossil-fuel energy, the early stages of the wind energy life cycle have potential for a higher environmental impact. This study attempts to quantify the relative contribution of individual stages toward life cycle impacts by conducting a life cycle assessment with SimaPro® and the Impact 2002+ impact assessment method. A comparative analysis of individual stages at three locations, onshore, shallow-water, and deep-water, in Texas and the gulf coast indicates that material extraction/processing would be the dominant stage with an average impact contribution of 72% for onshore, 58% for shallow-water, and 82% for deep-water across the 15 midpoint impact categories. The payback times for CO2 and energy consumption range from 6 to 14 and 6 to 17 months, respectively, with onshore farms having shorter payback times. The greenhouse gas emissions (GHG were in the range of 5–7 gCO2eq/kWh for the onshore location, 6–9 CO2eq/kWh for the shallow-water location, and 6–8 CO2eq/kWh for the deep-water location. A sensitivity analysis of the material extraction/processing stage to the electricity sourcing stage indicates that replacement of lignite coal with natural gas or wind would lead to marginal improvements in midpoint impact categories.

  5. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA

    Directory of Open Access Journals (Sweden)

    S. Khoramdel

    2017-02-01

    Full Text Available In order to evaluate life cycle assessment (LCA for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic and tresstrial ecosystems and global warming. The results showed that the highest paddy yield was obtained 5.35 t.ha-1 in 190-200 kg N ha. The maximum aquatic eutrophication potential was computed for more than 220 kg N ha-1 with 0.79 PO4 equiv./t paddy. EcoX per one tone paddy and maximum environmental impacts was belonged to aquatic eutrophication (0.13 Eco-index per one tone paddy. It seems that system management including green manure, nitrogen fixing species and reduced tillage could be regarded to reduce problematic environmental impacts in rice production systems.

  6. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  7. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?

    Science.gov (United States)

    Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J

    2016-04-05

    Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.

  8. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.E.; Lee, K.J. [Korea Advanced Institute of Science and Technology, Dept. of Nuclear Engineering, Taejon (Korea, Republic of)

    2001-07-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO{sub 2} emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  9. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.; Lee, K.J.

    2001-01-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO 2 emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  10. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  11. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  12. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  13. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  14. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  15. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Heller, Martin C.; Fulgoni III, Victor L.

    2016-01-01

    of less healthy foods (sugar-sweetened beverages). Further studies are needed to test whether this conclusion holds within a more comprehensive assessment of environmental and nutritional health impacts. Conclusions This case study provides the first quantitative epidemiology-based estimate......Purpose While there has been considerable effort to understand the environmental impact of a food or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). Methods We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE......-LCA) framework that evaluates and compares in parallel the environmental and nutritional effects of foods or diets. We applied this framework to assess human health impacts, expressed in Disability Adjusted Life Years (DALYs), in a proof-of conceptcase study that investigated the environmental and nutritional...

  16. assessment of environmental impacts in comfortable furniture production process using life cycle assessment (LCA technique

    Directory of Open Access Journals (Sweden)

    hejhar abbasi

    2016-12-01

    Full Text Available Furniture industry releases annually a large amount of volatile organic compound to the environment due to the use of adhesives, textiles, paints and coating materials. There are some different methods to measure the load of pollutions and the environmental impacts. Life cycle assessment (LCA is one of the best techniques. LCA is a technique in which all environmental impacts related to a product assessed all over its life cycle, from cradle to grave, and ultimately can be used to improve the production process and to prevent unsuitable environmental impacts. In summary, it can be concluded that the use of this technique is the basis for sustainable development and improving social, economic, and environmental indices. This study focused on the collecting of a comprehensive life cycle inventory data for comfortable furniture in two different production processes (B1 and B2 located in Tehran province, and analyzed the environmental impacts during the production process as gate to gate investigation. The results revealed that emissions in production process B1 were higher than that of production process B2. The reason for this is that basic operations such as sawing and frame assembling along with final operation have been done in the same unit for case B1. Textile production and usage, and polyurethane foam were identified as the main hotspots, respectively. Moreover, the results showed that comfortable furniture production process has the highest effects on ecosystem quality, human health, and resources (fossil fuels and mines, respectively.

  17. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hamard, J.

    1975-01-01

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU) [de

  18. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  20. Potential health and environmental impacts attributable to the nuclear and coal fuel cycles: Final report

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1987-06-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the nuclear and coal fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation during the next decade. The author concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel fycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public for the balance of this century. The potential for large impacts exists in both fuel cycles, but the potential impacts associated with a runaway Greenhouse Effect from combustion of fossil fuels, such as coal, cannot yet be reasonably quantified. Some of the potential environmental impacts of the coal fuel cycle cannot currently be realistically estimated, but those that can appear greater than those from the nuclear fuel cycle. 103 refs., 1 fig., 18 tabs

  1. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  2. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  3. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  4. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  5. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    International Nuclear Information System (INIS)

    Welz, Tobias; Hischier, Roland; Hilty, Lorenz M.

    2011-01-01

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  6. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    Directory of Open Access Journals (Sweden)

    Sonia Longo

    2015-05-01

    Full Text Available The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause energy and environmental impacts during their life cycle, and in particular they are responsible of air pollutant emissions. In this context, the paper assesses the energy and environmental impacts of a 46 kW biomass boiler by applying the Life Cycle Assessment methodology, as regulated by the international standards of series ISO 14040, ISO 21930 and EN 15804. The following life-cycle steps are included in the analysis: raw materials and energy supply, manufacturing, installation, operation, transport, and end-of-life. The results of the analysis, showing a life-cycle primary energy consumption of about 2,622 GJ and emissions of about 21,664 kg CO2eq, can be used as a basis for assessing the real advantages due to the use of biomass boilers for heating and hot water production.

  7. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Alessandra eFusi

    2016-03-01

    Full Text Available The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry and tomato waste as feedstocks and co-generating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system which uses animal slurry is the best option, except for the marine and terrestrial eco-toxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and

  8. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  9. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  10. Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2015-05-01

    Full Text Available The combustion of peat for energy generation accounts for approximately 4.1% of Ireland’s overall greenhouse gas (GHG emissions, with current levels of combustion resulting in the emission of 2.8 Mt of CO2 per annum. The aim of this research is to evaluate the life cycle environmental impacts of peat use for energy generation in Ireland, from peatland drainage and industrial extraction, to transportation, combustion, and subsequent after-use of the cutaway area, utilising Irish-specific emission factors. The environmental impacts considered are global warming potential, acidification potential, and eutrophication potential. In addition, the cumulative energy demand of the system is evaluated. Previous studies on the environmental impact of peat for energy in Ireland relied on default Intergovernmental Panel on Climate Change (IPCC emission factors (EFs. This research utilises Irish-specific EFs and input data to reduce uncertainty associated with the use of default IPCC EFs, and finds that using default IPCC EFs overestimates the global warming potential when compared to Irish-specific EFs by approximately 2%. The greatest contribution to each of the environmental impacts considered arises from emissions generated during peat combustion, which accounts for approximately 95% of each of the environmental impact categories considered. Other stages of the life-cycle, such as impacts emanating from the peat extraction area, fossil fuel usage in harvesting and transportation machinery, and after-use of the cutaway area have much smaller effects on overall results. The transformation of cutaway peatlands to different after-use alternatives has the potential to mitigate some of the effects of peatland degradation and peat combustion.

  11. STAKEHOLDER OPINION-BASED COMPARISON OF LIFE CYCLE ENVIRONMENTAL IMPACTS OF ELECTRICITY GENERATION IN TURKEY WITH SELECTED EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Gorkem Uctug

    2017-03-01

    Full Text Available The life cycle environmental impacts of electricity generation in Turkey were compared to those of Denmark, France, and Poland. The reason for selecting these particular countries for benchmarking was the fact that electricity generation in these countries is dominated mostly by a single source, that is wind, nuclear, and coal, respectively. OpenLCA software and European Life Cycle Database database were used, CML2001 method was employed. The life cycle analysis approach was from cradle to grave. The environmental impact criteria which were studied were acidification, global warming potential, depletion of abiotic resources – elements, depletion of abiotic resources - fossil fuels, eutrophication, freshwater aquatic ecotoxicity, human toxicity, marine aquatic ecotoxicity, ozone layer depletion, photochemical oxidation, and terrestrial ecotoxicity. In addition to comparing the four countries in terms of these individual impacts, the overall environmental impact scores for all countries were calculated, once with equal weights for all impacts and once with weights which were determined by acquiring the stakeholder opinions via an online questionnaire. In both cases, Poland turned out to have the highest environmental impact due to the high share coal in the electricity mix, and Turkey came second after Poland. Equal-weight-analysis returned Denmark as the country with the cleanest electricity generation infrastructure whereas stakeholder-weight-analysis results showed that it was France who had the lowest environmental impact. This result was attributed to the high weight of global warming potential and France’s nuclear-energy-based electricity generation system has a very low global warming potential when compared to other three countries. It was concluded that the prospective addition of nuclear energy, solar energy, and clean coal technologies into Turkey’s electricity mix shall reduce the overall environmental impact of electricity

  12. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  13. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  14. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  15. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  16. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  17. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    Science.gov (United States)

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  18. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  19. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-02-15

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  20. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  1. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    Science.gov (United States)

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  3. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  4. Life-cycle costs for the Department of Energy waste management programmatic environmental impact statement (draft)

    International Nuclear Information System (INIS)

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1995-08-01

    The U.S. Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the National Environmental Policy Act, and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided in the main document, and tables showing different breakdowns of the cost estimates are provided in the Appendices A-D. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report

  5. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - a life cycle assessment

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used...... on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry...... separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house...

  6. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  8. Life cycle environmental impacts of vacuum cleaners and the effects of European regulation.

    Science.gov (United States)

    Gallego-Schmid, Alejandro; Mendoza, Joan Manuel F; Jeswani, Harish Kumar; Azapagic, Adisa

    2016-07-15

    Energy efficiency of vacuum cleaners has been declining over the past decades while at the same time their number in Europe has been increasing. The European Commission has recently adopted an eco-design regulation to improve the environmental performance of vacuum cleaners. In addition to the existing directive on waste electrical and electronic equipment (WEEE), the regulation could potentially have significant effects on the environmental performance of vacuum cleaners. However, the scale of the effects is currently unknown, beyond scant information on greenhouse gas emissions. Thus, this paper considers for the first time life cycle environmental impacts of vacuum cleaners and the effects of the implementation of these regulations at the European level. The effects of electricity decarbonisation, product lifetime and end-of-life disposal options are also considered. The results suggest that the implementation of the eco-design regulation alone will reduce significantly the impacts from vacuum cleaners (37%-44%) by 2020 compared with current situation. If business as usual continued and the regulation was not implemented, the impacts would be 82%-109% higher by 2020 compared to the impacts with the implementation of the regulation. Improvements associated with the implementation of the WEEE directive will be much smaller (impacts would be 2%-21% higher by 2020 relative to the impacts with the implementation of the directive. Further improvements in most impacts (6%-20%) could be achieved by decarbonising the electricity mix. Therefore, energy efficiency measures must be accompanied by appropriate actions to reduce the environmental impacts of electricity generation; otherwise, the benefits of improved energy efficiency could be limited. Moreover, because of expected lower life expectancy of vacuum cleaners and limited availability of some raw materials, the eco-design regulation should be broadened to reduce the impacts from raw materials, production and end

  9. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective

    International Nuclear Information System (INIS)

    Morselli, Luciano; De Robertis, Claudia; Luzi, Joseph; Passarini, Fabrizio; Vassura, Ivano

    2008-01-01

    The advisability of using incineration, among the other technologies in Municipal Solid Waste Management, is still a debated issue. However, technological evolution in the field of waste incineration plants has strongly decreased their environmental impacts in the last years. A description of a regional situation in Northern Italy (Emilia Romagna Region) is here presented, to assess the impacts of incinerators by the application of Life Cycle Assessment (LCA) methodology and to stress the most impacting steps in incineration process. The management of solid residues and heavy metal emission resulted the most important environmental concerns. Furthermore, a tentative comparison with the environmental impact of landfill disposal, for the same amount of waste, pointed out that incineration process must be considered environmentally preferable

  10. Environmental Health Impacts of Nuclear Fuel Cycle With Emphasis to Monitoring and Radiological Safety Control System

    International Nuclear Information System (INIS)

    Gad Allah, A.A.; El- Shanshory, A.I.

    2010-01-01

    Security of energy supply and global climatic changes due to carbon dioxide gas emission of fissile fuels encouraged many developed countries for planning to introduce nuclear power for energy generation. Recently, nuclear power provides approximately 20 % of the world's electricity, which is equivalent to a reduction in carbon emissions of 0.5 Gt of C/year. This is a modest contribution to the reduction of global carbon emissions, 6.5 Gt C/year. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different reactor types (such as thermal and fast neutron reactors). Within each cycle, the volume and composition of the nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of material used to immobilize different radionuclides. Most analyses suggest that in order to have a significant impact on carbon emissions. By the year 2050, carbon free sources, such as nuclear power, would have to expand total energy production by a factor of three to ten. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/year, depending on the type of the carbon-based energy source. This paper reviews, discusses and evaluates the relation between the different types of fuel cycles and their environmental impacts. The paper investigates the environmental impacts of the nuclear fuel cycle compared to fossil fuel energy system.. It also reviews the impact of an expansion of this scale on the generation of nuclear waste and fissile material that might be diverted to the production of nuclear weapons. Investigations of different wastes fissile and fertile mater in the fuel cycle have been estimated. The paper provides an overview of the main contaminates in the waste streams and effluents from nuclear fuel cycle

  11. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  12. Comparative Analysis of Environmental Impacts of Selected Products

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2013-01-01

    Full Text Available The purpose of the present study is to demonstrate that environmental impacts exerted by manufactured products throughout their entire life cycle are major aspects to be considered, alongside their functional features and cost-effectiveness. One of the available methods to evaluate environmental impacts is known to as the Life Cycle Assessment (LCA method.The study summarises the reports from the literature on the subject of environmental impact assessment. In conclusions, the authorsindicate the need for assessing the environmental impact of cast products made from conventional and newly introduced alloys.

  13. Comparative Analysis of Environmental Impacts of Selected Products

    Directory of Open Access Journals (Sweden)

    Fedoryszyn A.

    2013-03-01

    Full Text Available The purpose of the present study is to demonstrate that environmental impacts exerted by manufactured products throughout their entire life cycle are major aspects to be considered, alongside their functional features and cost-effectiveness. One of the available methods to evaluate environmental impacts is known to as the Life Cycle Assessment (LCA method. The study summarises the reports from the literature on the subject of environmental impact assessment. In conclusions, the authors indicate the need for assessing the environmental impact of cast products made from conventional and newly introduced alloys.

  14. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  15. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Houshyar, E.

    2017-07-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  16. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    International Nuclear Information System (INIS)

    Houshyar, E.

    2017-01-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  17. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

    Science.gov (United States)

    Heller, Martin C; Keoleian, Gregory A; Willett, Walter C

    2013-11-19

    Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.

  18. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment.

    Science.gov (United States)

    Dourmad, J Y; Ryschawy, J; Trousson, T; Bonneau, M; Gonzàlez, J; Houwers, H W J; Hviid, M; Zimmer, C; Nguyen, T L T; Morgensen, L

    2014-12-01

    Environmental impacts of 15 European pig farming systems were evaluated in the European Union Q-PorkChains project using life cycle assessment. One conventional and two non-conventional systems were evaluated from each of the five countries: Denmark, The Netherlands, Spain, France and Germany. The data needed for calculations were obtained from surveys of 5 to 10 farms from each system. The systems studied were categorised into conventional (C), adapted conventional (AC), traditional (T) and organic (O). Compared with C systems, AC systems differed little, with only minor changes to improve meat quality, animal welfare or environmental impacts, depending on the system. The difference was much larger for T systems, using very fat, slow-growing traditional breeds and generally outdoor raising of fattening pigs. Environmental impacts were calculated at the farm gate and expressed per kg of pig live weight and per ha of land used. For C systems, impacts per kg LW for climate change, acidification, eutrophication, energy use and land occupation were 2.3 kg CO2-eq, 44.0 g SO2-eq, 18.5 g PO4-eq, 16.2 MJ and 4.1 m2, respectively. Compared with C, differences in corresponding mean values were +13%, +5%, 0%, +2% and +16% higher for AC; +54%, +79%, +23%, +50% and +156% for T, and +4%, -16%, +29%, +11% and +121% for O. Conversely, when expressed per ha of land use, mean impacts were 10% to 60% lower for T and O systems, depending on the impact category. This was mainly because of higher land occupation per kg of pig produced, owing to feed production and the outdoor raising of sows and/or fattening pigs. The use of straw bedding tended to increase climate change impact per kg LW. The use of traditional local breeds, with reduced productivity and feed efficiency, resulted in higher impacts per kg LW for all impact categories. T systems with extensive outdoor raising of pigs resulted in markedly lower impact per ha of land used. Eutrophication potential per ha was substantially

  20. Outline of environmental impact of waste management

    International Nuclear Information System (INIS)

    1979-09-01

    This document presents background information on the environmental impacts from the management and disposal of radioactive waste for seven reference fuel cycles selected by INFCE Working Group 7, but excluding the health and safety impact on man. The main factors considered were: use of natural resources, land, water, energy, labour and materials; effects of chemical and thermal effluents; effects of meteorology, hydrology and natural hazards; and social effects. The environmental impacts are generally largest for the once-through fuel cycles and smallest for the FBR and HWR U/Th cycles, due to the impacts being correlated to uranium requirements. The main impact is the use of land which varies from 0.1 - 1.6 ha/GWa with the FBR strategy requiring the smallest use of land and the LWR once-through strategy the largest. The land use for mill tailings is, except for the FBR and U/Th cycles, dominant compared to the land use for the rest of the fuel cycle

  1. STAKEHOLDER OPINION-BASED COMPARISON OF LIFE CYCLE ENVIRONMENTAL IMPACTS OF ELECTRICITY GENERATION IN TURKEY WITH SELECTED EUROPEAN COUNTRIES

    OpenAIRE

    Gorkem Uctug

    2017-01-01

    The life cycle environmental impacts of electricity generation in Turkey were compared to those of Denmark, France, and Poland. The reason for selecting these particular countries for benchmarking was the fact that electricity generation in these countries is dominated mostly by a single source, that is wind, nuclear, and coal, respectively. OpenLCA software and European Life Cycle Database database were used, CML2001 method was employed. The life cycle analysis approach was from cradle to gr...

  2. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  3. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.

    Science.gov (United States)

    Alston, Sue M; Arnold, J Cris

    2011-11-01

    Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.

  4. Using Life Cycle Assessment to identify potential environmental impacts of an agrifood sector: Application to the PDO Beaujolais and Burgundia wine sector

    Directory of Open Access Journals (Sweden)

    Penavayre Sophie

    2016-01-01

    Full Text Available The environmental impacts of the production system of emblematic French product under official quality marks was investigated using the Life Cycle Assessment (LCA methodology. The study looks at the PDO Beaujolais and Burgundy sector from a broad perspective, i.e. encompassing all steps linked with the products themselves but also complementary activities that belong to this wine sector. To build the Life Cycle Inventory (LCI, a methodology deriving from both product and organizational LCA was developed and applied. The LCI was built using a bottom-up approach. Inventories were first built for a sample of 17 representative companies. Then, these inventories were scaled-up to complete the global LCI at the agrifood sector level. Potential environmental impacts were assessed for 8 indicators. The LCA results show potential environmental impacts for each life cycle step: grape production, wine making and aging, packaging, distribution and activity of stakeholders belonging to the “close environment”. It provided two main outcomes: (i a methodology for the construction of an LCI adapted to the perimeter of an agrifood sector and composed by high quality data; and (ii the identification of potential environmental impacts of the studied agrifood sector, providing assistance for the definition of their strategic orientations for the future.

  5. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  6. Life cycle environmental impacts of vacuum cleaners and the effects of European regulation

    Energy Technology Data Exchange (ETDEWEB)

    Gallego-Schmid, Alejandro, E-mail: alejandro.gallegoschmid@manchester.ac.uk; Mendoza, Joan Manuel F.; Jeswani, Harish Kumar; Azapagic, Adisa

    2016-07-15

    Energy efficiency of vacuum cleaners has been declining over the past decades while at the same time their number in Europe has been increasing. The European Commission has recently adopted an eco-design regulation to improve the environmental performance of vacuum cleaners. In addition to the existing directive on waste electrical and electronic equipment (WEEE), the regulation could potentially have significant effects on the environmental performance of vacuum cleaners. However, the scale of the effects is currently unknown, beyond scant information on greenhouse gas emissions. Thus, this paper considers for the first time life cycle environmental impacts of vacuum cleaners and the effects of the implementation of these regulations at the European level. The effects of electricity decarbonisation, product lifetime and end-of-life disposal options are also considered. The results suggest that the implementation of the eco-design regulation alone will reduce significantly the impacts from vacuum cleaners (37%–44%) by 2020 compared with current situation. If business as usual continued and the regulation was not implemented, the impacts would be 82%–109% higher by 2020 compared to the impacts with the implementation of the regulation. Improvements associated with the implementation of the WEEE directive will be much smaller (< 1% in 2020). However, if the WEEE directive did not exist, then the impacts would be 2%–21% higher by 2020 relative to the impacts with the implementation of the directive. Further improvements in most impacts (6%–20%) could be achieved by decarbonising the electricity mix. Therefore, energy efficiency measures must be accompanied by appropriate actions to reduce the environmental impacts of electricity generation; otherwise, the benefits of improved energy efficiency could be limited. Moreover, because of expected lower life expectancy of vacuum cleaners and limited availability of some raw materials, the eco-design regulation should

  7. Life cycle environmental impacts of vacuum cleaners and the effects of European regulation

    International Nuclear Information System (INIS)

    Gallego-Schmid, Alejandro; Mendoza, Joan Manuel F.; Jeswani, Harish Kumar; Azapagic, Adisa

    2016-01-01

    Energy efficiency of vacuum cleaners has been declining over the past decades while at the same time their number in Europe has been increasing. The European Commission has recently adopted an eco-design regulation to improve the environmental performance of vacuum cleaners. In addition to the existing directive on waste electrical and electronic equipment (WEEE), the regulation could potentially have significant effects on the environmental performance of vacuum cleaners. However, the scale of the effects is currently unknown, beyond scant information on greenhouse gas emissions. Thus, this paper considers for the first time life cycle environmental impacts of vacuum cleaners and the effects of the implementation of these regulations at the European level. The effects of electricity decarbonisation, product lifetime and end-of-life disposal options are also considered. The results suggest that the implementation of the eco-design regulation alone will reduce significantly the impacts from vacuum cleaners (37%–44%) by 2020 compared with current situation. If business as usual continued and the regulation was not implemented, the impacts would be 82%–109% higher by 2020 compared to the impacts with the implementation of the regulation. Improvements associated with the implementation of the WEEE directive will be much smaller (< 1% in 2020). However, if the WEEE directive did not exist, then the impacts would be 2%–21% higher by 2020 relative to the impacts with the implementation of the directive. Further improvements in most impacts (6%–20%) could be achieved by decarbonising the electricity mix. Therefore, energy efficiency measures must be accompanied by appropriate actions to reduce the environmental impacts of electricity generation; otherwise, the benefits of improved energy efficiency could be limited. Moreover, because of expected lower life expectancy of vacuum cleaners and limited availability of some raw materials, the eco-design regulation should

  8. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  9. Comparative environmental life cycle assessment of composite materials

    International Nuclear Information System (INIS)

    De Vegt, O.M.; Haije, W.G.

    1997-12-01

    The aim of the present study is to compare and quantify the environmental impact of three rotorblades made of different materials and to establish which stage in the life cycle contributes most. The life cycle of a product can be represented by the production phase, including depletion of raw materials (mining) and production (machining) of products, the utilisation phase, including use of energy, maintenance and cleaning, and the disposal phase, including landfill, incineration, recycling, etc. The environmental impact of a product is not only determined by the materials selected but also by the function of the product itself. E.g. when natural fibres are applied in vehicles as a substitution for metals the environmental impact in the use phase will be reduced due to a lower energy consumption caused by a lower car weight. The influence on the environmental impact of the production phase must also be taken into account. The material relation between the production phase and the use phase and the disposal phase is complicated. In general the lifetime of a product use phase can be extended (positive aspect), e.g. by application of a coating onto the surface. Due to the coating the product can not easily be recycled, which is a negative aspect. The three types of composites used in the rotorblade of the wind energy converter considered in this study are: flaxfibre reinforced epoxy, carbon fibre reinforced epoxy and glassfibre reinforced polyester. The assessment is performed using the computer program Simapro 3, which is based on the Dutch CML method for the environmental life-cycle assessment of products using the Eco-Indicator 95 evaluation method. The CML method defines five phases for an LCA: goal definition and scoping; inventory; classification; impact assessment; and improvement analysis. The improvement analysis is not part of this work. Performing an LCA is a time-consuming process due to the detailed information that is required. In chapter five some

  10. Life cycle assessment of energy products: environmental impact assessment of biofuels; Ecobilan d'agents energetiques. Evaluation ecologique de biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  11. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  12. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  13. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  14. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  15. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  16. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  17. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    International Nuclear Information System (INIS)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio

    2017-01-01

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  18. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.

    Science.gov (United States)

    Farahani, Saeid Shahvarooghi; Asoodar, Mohammad Amin

    2017-10-01

    In recent years, bioethanol from sugarcane molasses has been produced on an industrial scale in Iran. The aim of this study was to evaluate molasses-based bioethanol production from an environmental point of view. Data were collected from Debel Khazai agro-industry situated in southern region of Iran by using face-to-face interviews and annual statistics of 2010 to 2016 (6-year life cycle of sugarcane cultivation). Ten impact categories including abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming potential (GWP), ozone layer depletion (OLD), human toxicity (HT), freshwater aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE), and photochemical oxidation (PO) were selected based on CML methodology. Inventory data for production of the inputs were taken from Ecoinvent, BUWAL 250, and IDMAT 2001 databases. The results revealed that in sugarcane cultivation process, electricity and trash burning were the most important contributors to all impact categories except OLD and TE. In industrial phase, natural gas had the highest contribution to the most impact categories. Greenhouse gas (GHG) emission for production of 1000 L molasses-based bioethanol was 1322.78 kg CO 2  eq. By comparing total GHG emissions from 1000 L bioethanol to gasoline, the net avoided GHG emissions came out at 503.17 kg CO 2  eq. According to results, it is clear that with increasing irrigation efficiency and improving performance of heating systems in industrial phase, environmental burdens would be significantly reduced.

  19. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  20. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    Science.gov (United States)

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The monetary valuation of the health and environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dreicer, M.; Tort, V.; Thieme, M.

    1997-01-01

    From 1991 to 1995, the ExternE project, part of the European Commission's (DG XII) 'Joule Programme', began the process of better integrating the health and environmental external costs of electricity generation, that were not traditionally included in the energy policy making process. During the first phase, the methodologies were developed to tackle the difficult task of evaluating and monetizing the impacts of the different energy systems. This was followed by national implementation projects to complete the assessment of all relevant fuel cycles analyses in the European Union member states. In this paper, the methodology and the results of the studies of the nuclear fuel cycle, developed by the French Centre d'etude sur l'Evaluation de la Protection dans le domaine Nucleaire (CEPN), are presented. (orig.) [de

  2. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  3. ENVIRONMENTAL ASSESSMENT OF ROAD TRANSPORT IN A PASSENGER CAR USING THE LIFE CYCLE APPROACH

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2017-06-01

    Full Text Available Environmental issues are an increasingly important aspect of management in the transport sector; new methods have been developed for assessment of the environment in the transport sector using the life cycle approach. The paper presents the application of Well to Wheel (WTW and Life Cycle Assessment (LCA in the transport sector. The WTW method focuses on energy analysis and greenhouse gas emissions during the life cycle of fuels. WTW is used to support decision-making on the environmental aspects of transport, particularly with regard to fuel life cycle management, but this method omits important stages in the life cycle, particularly the ones regarding important circular economy guidelines such as reduction of natural resource consumption, impact on human health, etc. The LCA method provides a much broader approach to environmental assessment than WTW. LCA takes into consideration environmental impact in the whole life cycle of the vehicle, from the stage of production, through the period of exploitation, and finally its disposal.

  4. Life Cycle Impact Assessment in the Arctic: Challenges and Research Needs

    Directory of Open Access Journals (Sweden)

    Johan Berg Pettersen

    2017-09-01

    Full Text Available Life cycle assessment (LCA is increasingly used for environmental assessment of products and production processes to support environmental decision-making both worldwide and in the Arctic. However, there are several weaknesses in the impact assessment methodology in LCA, e.g., related to uncertainties of impact assessment results, absence of spatial differentiation in characterization modeling, and gaps in the coverage of impact pathways of different “archetypal” environments. Searching for a new resource base and areas for operation, marine and marine-based industries are continuously moving north, which underlines the need for better life cycle impact assessment in the Arctic, particularly to aid in industrial environmental management systems and stakeholder communications. This paper aims to investigate gaps and challenges in the application of the currently available impact assessment methods in the Arctic context. A simplified Arctic mining LCA case study was carried out to demonstrate the relevance of Arctic emissions at the midpoint and endpoint levels, as well as possible influences of the Arctic context on the impact assessment results. Results of this study showed that significant research gaps remain in Arctic-dependent life cycle impact assessment, particularly on: (i the possible influences of the Arctic-specific features on characterization factors for impact assessment (such as seasonality, cold climate, precipitation, and marine dependence; and (ii the coverage of impact pathways, especially on the under-addressed marine impacts and marine/near-shore dispersion processes. Addressing those identified research gaps and demand for future Arctic life cycle impact assessment could increase the credibility of LCA as an environmental decision-making support tool for Arctic industries and better support sustainable Arctic development.

  5. Life cycle impacts of manufacturing redwood decking in Northern California

    Science.gov (United States)

    Richard D. Bergman; Elaine Oneil; Ivan L. Eastin; Han-Sup Han

    2014-01-01

    Awareness of the environmental footprint of building construction and use has led to increasing interest in green building. Defining a green building is an evolving process with life cycle inventory and life cycle impact assessment (LCIA) emerging as key tools in that evolution and definition process. This study used LCIA to determine the environmental footprint...

  6. Environmental impact estimation of the sugar cane cultivation, using the methodology of the Life Cycle Analysis (LCA)

    International Nuclear Information System (INIS)

    Saavedra D, Juan Felipe; Vargas V, Olga Rocio

    2000-01-01

    This article describes the results of a Life Cycle Analysis (LCA) for traditional and organic cultivation of sugar cane in Valle del Cauca. Eco-scores obtained for each case, shown that organic cultivation is less harmful, in environmental terms, than traditional one. In the last one, the biomass burning process, made to facilitate the crop, is the principal environmental problem, while in the first one, it is the use of pollinaza, an organic fertilizer based on these results recommendations were made to obtain significant reduction in the impact of the sugar cane cultivation

  7. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  8. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    International Nuclear Information System (INIS)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier

    2013-01-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  10. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier [MINES ParisTech, Sophia Antipolis (France). Observation, Impacts, Energy Center

    2013-07-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  11. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    Science.gov (United States)

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  12. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  13. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  14. Environmental impacts of food waste: Learnings and challenges from a case study on UK

    DEFF Research Database (Denmark)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-01-01

    Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generate...... highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts.......Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated...... by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land...

  15. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  16. Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil

    Directory of Open Access Journals (Sweden)

    Melissa M. Bilec

    2013-07-01

    Full Text Available Brazil’s status as a rapidly developing country is visible in its need for more energy, including electricity. While the current electricity generation mix is primarily hydropower based, high-quality dam sites are diminishing and diversification to other sources is likely. We combined life-cycle data for electricity production with scenarios developed using the IAEA’s MESSAGE model to examine environmental impacts of future electricity generation under a baseline case and four side cases, using a Monte-Carlo approach to incorporate uncertainty in power plant performance and LCA impacts. Our results show that, under the cost-optimal base case scenario, Brazil’s GHGs from electricity (excluding hydroelectric reservoir emissions rise 370% by 2040 relative to 2010, with the carbon intensity per MWh rising 100%. This rise would make Brazil’s carbon emissions targets difficult to meet without demand-side programs. Our results show a future electricity mix dominated by environmental tradeoffs in the use of large-scale renewables, questioning the use tropical hydropower and highlighting the need for additional work to assess and include ecosystem and social impacts, where information is currently sparse.

  17. Analysis of environmental impact phase in the life cycle of a nuclear power plant; Analisis de la fase de impacto ambiental en el ciclo de vida de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez del M, C.

    2015-07-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  18. Review of the environmental impact of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    El-Hinnawi, E E

    1978-04-01

    The radioactivity released from the products of nuclear fission is the main focus of public concern about the expansion in the use of nuclear power despite stringent control measures and precautions taken. Environmental impacts associated with all the steps in the nuclear fuel cycle are examined. Discussed are: uranium mining and milling, manufacture of fuel elements for the reactor, transport and reprocessing of irradiated fuel, reactor operation, and management of wastes produced in the cycle. Environmental impacts of a coal-fired power plant are compared with impacts of three nuclear plants with the same generating capacities. Impacts compared are thermal heat waste, effluent radioactivity, air pollution, radioactive and ash waste products, and land used for the plant. The environmental advantages of the nuclear reactors occur in the categories of air pollutant effluents and land used for plants. (45 references, 3 tables)

  19. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Igos, Elorri; Rugani, Benedetto; Rege, Sameer; Benetto, Enrico; Drouet, Laurent; Zachary, Daniel S.

    2015-01-01

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  20. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    Science.gov (United States)

    The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...

  1. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  2. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

    2013-07-01

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

  3. Environmental impact of Converted Electrical Motorcycle

    OpenAIRE

    Xuan, Pek Yang; Henz, Martin; Weigl, Joerg

    2013-01-01

    This study explores the environmental impact of the conversion of an internal combustion engine (ICE) sports motorcycle into a converted battery-powered electric vehicle (CBEV). Zero tailpipe emissions might lead to the assumption that such an ICE-to-BEV conversion will always yield net positive environmental benefits in life cycle greenhouse gas (GHG) emissions and energy reductions, but energy inputs and materials impacts associated with the conversion of a CBEV are weighed against savings ...

  4. Assessing the environmental impacts of freshwater consumption in LCA.

    Science.gov (United States)

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  5. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  6. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    Science.gov (United States)

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N 2 /CO 2 : 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  8. Environmental profile evaluations of piezoelectric polymers using life cycle assessment

    Science.gov (United States)

    Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace

    2018-05-01

    Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.

  9. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John

    2012-01-01

    ), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic...

  10. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  11. A Regional Analysis of the Life Cycle Environmental and Economic Tradeoffs of Different Economic Growth Paths

    Directory of Open Access Journals (Sweden)

    Weiwei Mo

    2018-02-01

    Full Text Available Different economic development strategies may result in varied socioeconomic and environmental synergies or tradeoffs, suggesting an opportunity for environmentally conscious planning. To understand such synergies or tradeoffs, a dynamic environmental life cycle assessment was conducted for eleven groups of New Hampshire industries. Historical state level Gross Domestic Product (GDP-by-industry data was combined with economic input-output analysis to calculate the direct and life cycle energy use, freshwater use, greenhouse gas emissions, and eutrophication potential of each industry on a yearly basis for the period of 1997–2012. The future development of agriculture, traditional manufacturing, high tech, and tourism industries were investigated based on government projections. Total life cycle impacts of the 11 industries were found to represent around three to seven times those of direct impacts, indicating the significance of the supply chain impacts. Traditional manufacturing has the highest life cycle impacts even though it contributes to less than 10% of the state GDP. Future development of high tech was found to be the best strategy to increase GDP while imposing the least additional environmental impacts. Tourism presents relatively high impacts in terms of freshwater use and eutrophication potential, and a change in recreational style might be able to reduce its impacts.

  12. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    Science.gov (United States)

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  14. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.

    Science.gov (United States)

    Nabavi-Pelesaraei, Ashkan; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinzadeh-Bandbafha, Homa; Chau, Kwok-Wing

    2018-08-01

    Prediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS). The amounts of energy input and output are 51,585.61MJkg -1 and 66,112.94MJkg -1 , respectively, in paddy production. Life Cycle Assessment (LCA) is used to evaluate environmental impacts of paddy production. Results show that, in paddy production, in-farm emission is a hotspot in global warming, acidification and eutrophication impact categories. ANN model with 12-6-8-1 structure is selected as the best one for predicting energy output. The correlation coefficient (R) varies from 0.524 to 0.999 in training for energy input and environmental impacts in ANN models. ANFIS model is developed based on a hybrid learning algorithm, with R for predicting output energy being 0.860 and, for environmental impacts, varying from 0.944 to 0.997. Results indicate that the multi-level ANFIS is a useful tool to managers for large-scale planning in forecasting energy output and environmental indices of agricultural production systems owing to its higher speed of computation processes compared to ANN model, despite ANN's higher accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  16. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    OpenAIRE

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  17. Assessing Environmental Impacts of Biofuels using Life-Cycle-Based Approaches

    Science.gov (United States)

    There is no simple answer to the question “are materials and products that are made from biofeedstocks environmentally sustainable?” However, thinking holistically allows decision-makers to view the potential ‘cradle-to-grave’ environmental impacts of the engineered systems that ...

  18. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  19. Influence of construction and demolition waste management on the environmental impact of buildings

    International Nuclear Information System (INIS)

    Coelho, André; Brito, Jorge de

    2012-01-01

    Highlights: ► Environmental impacts of different demolition practices. ► “Top-down” approach to the Life Cycle Analysis methodology. ► Results based on real buildings measurements and demolition contractor activities. ► Not every type of selective demolition brings about environmental benefits. - Abstract: The purpose of this study is to quantify comparable environmental impacts within a Life Cycle Analysis (LCA) perspective, for buildings in which the first (Materials) and last (End of Life) life cycle stages are adjusted to several waste/material management options. Unlike most LCAs, the approach is “top-down” rather than “bottom-up”, which usually involves large amounts of data and the use of specific software applications. This approach is considered appropriate for a limited but expedient LCA designed to compare the environmental impacts of different life cycle options. Present results, based on real buildings measurements and demolition contractor activities, show that shallow, superficial, selective demolition may not result in reduced environmental impacts. Calculations actually show an increase (generally less than 5%) in most impact categories for the Materials and End of Life stages because of extra transportation needs. However, core material separation in demolition operations and its recycling and/or reuse does bring environmental benefits. A reduction of around 77% has been estimated in the climate change impact category, 57% in acidification potential and 81% in the summer smog impact (for the life cycle stages referred).

  20. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  1. Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance

    International Nuclear Information System (INIS)

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-01-01

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA–MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel–metal hydride (Ni–MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni–MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  2. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Science.gov (United States)

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  3. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    Science.gov (United States)

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  4. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  5. Trading away damage. Quantifying environmental leakage through consumption-based, life-cycle analysis

    International Nuclear Information System (INIS)

    Ghertner, D. Asher; Fripp, Matthias

    2007-01-01

    This research quantifies the extent to which the US has shifted the environmental impact associated with the goods it consumes to other countries through trade. To achieve this, we use a life-cycle, consumption-based approach to measure the environmental impacts embodied in US trade activities for global warming potential (GWP), energy, toxics, and the criteria air pollutants. We use these values to determine the amount of environmental impact 'leaked' from current, production-based approaches to analyzing national environmental trends for the years 1998-2004. We find that in 2004, with reasonable assumptions about the environmental intensity of imports and exports, this leakage exceeds 10% for all studied impacts, exceeds 20% for GWP, energy, and most criteria air pollutants, and exceeds 80% for lead emissions and toxics. By including the environmental impacts embodied in trade activities into national environmental accounts, we provide consumption-based, US per capita, environmental impacts, which we use to evaluate the relationship between income and environmental impact. We find evidence for rising per capita environmental impacts over time in the US, contra the Environmental Kuznets Curve. The paper concludes with a discussion of the implications for international environmental policy of increasing embodied emissions in trade. (author)

  6. Trading away damage. Quantifying environmental leakage through consumption-based, life-cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghertner, D. Asher; Fripp, Matthias [Energy and Resources Group University of California, Berkeley 310 Barrows Hall 3050 Berkeley, CA 94720-3050 (United States)

    2007-08-01

    This research quantifies the extent to which the US has shifted the environmental impact associated with the goods it consumes to other countries through trade. To achieve this, we use a life-cycle, consumption-based approach to measure the environmental impacts embodied in US trade activities for global warming potential (GWP), energy, toxics, and the criteria air pollutants. We use these values to determine the amount of environmental impact 'leaked' from current, production-based approaches to analyzing national environmental trends for the years 1998-2004. We find that in 2004, with reasonable assumptions about the environmental intensity of imports and exports, this leakage exceeds 10% for all studied impacts, exceeds 20% for GWP, energy, and most criteria air pollutants, and exceeds 80% for lead emissions and toxics. By including the environmental impacts embodied in trade activities into national environmental accounts, we provide consumption-based, US per capita, environmental impacts, which we use to evaluate the relationship between income and environmental impact. We find evidence for rising per capita environmental impacts over time in the US, contra the Environmental Kuznets Curve. The paper concludes with a discussion of the implications for international environmental policy of increasing embodied emissions in trade. (author)

  7. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA)

    OpenAIRE

    S. Khoramdel; J. Shabahang; A. Amin Ghafouri

    2017-01-01

    In order to evaluate life cycle assessment (LCA) for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha) during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic a...

  8. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  9. Modeling for waste management associated with environmental-impact abatement under uncertainty.

    Science.gov (United States)

    Li, P; Li, Y P; Huang, G H; Zhang, J L

    2015-04-01

    Municipal solid waste (MSW) treatment can generate significant amounts of pollutants, and thus pose a risk on human health. Besides, in MSW management, various uncertainties exist in the related costs, impact factors, and objectives, which can affect the optimization processes and the decision schemes generated. In this study, a life cycle assessment-based interval-parameter programming (LCA-IPP) method is developed for MSW management associated with environmental-impact abatement under uncertainty. The LCA-IPP can effectively examine the environmental consequences based on a number of environmental impact categories (i.e., greenhouse gas equivalent, acid gas emissions, and respiratory inorganics), through analyzing each life cycle stage and/or major contributing process related to various MSW management activities. It can also tackle uncertainties existed in the related costs, impact factors, and objectives and expressed as interval numbers. Then, the LCA-IPP method is applied to MSW management for the City of Beijing, the capital of China, where energy consumptions and six environmental parameters [i.e., CO2, CO, CH4, NOX, SO2, inhalable particle (PM10)] are used as systematic tool to quantify environmental releases in entire life cycle stage of waste collection, transportation, treatment, and disposal of. Results associated with system cost, environmental impact, and the related policy implication are generated and analyzed. Results can help identify desired alternatives for managing MSW flows, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty.

  10. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-11-01

    Full Text Available This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  11. Final environmental statement for selection of the preferred closed cycle cooling system at Indian Point Unit No. 3, Docket No. 50-286

    International Nuclear Information System (INIS)

    1979-12-01

    The environmental statement includes information concerning the alternative closed cycle cooling systems; schedule and permits; environmental impacts of feasible alternative closed cycle cooling systems; socio-economic impact of closed cycle cooling systems; and evaluation of proposed action

  12. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    Science.gov (United States)

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  13. Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom county, Zanjan province

    Directory of Open Access Journals (Sweden)

    ehsan khodarezaie

    2017-10-01

    Full Text Available Introduction Horticulture industry consumes a significant part of the energy and materials and release pollutants into the environment. Olive (Olea europaea L. is one of the most cultivated plants in Iran, so the environmental impact assessment of these production systems is important. However, the consequences and environmental impacts of olive production systems have not been studied in Iran. Tarom County is one of the most important olive production centers in Iran. So, this study is performed to evaluate environmental impacts of olive production in Tarom region. Materials and Methods In this study, the LCA approach is used to assessment of environmental impacts of olive production. This study is conducted in Tarom County in 2012-2013. The aim of this study was to determine hot spots of olive life cycle and offering appropriate Solutions to reduce the related environmental impact in Tarom region. In this research, one ton of Olives was considered as functional unit. System boundary is defined as “from cradle to farm gate”. Primary data were collected through observation, sampling and questionnaires completing method. The climate and soil data were collected from the "Olive Research Center" located in the Tarom County. Data for the production of used inputs (Secondary data were taken from the EcoInvent®2.0 database, and SimaPro software was employed to analyze primary data. Impact categories were analyzed based on CML 2 baseline 2000 V2.04/ world, 1995/ characterization and SimaPro 7.2 software. CML 2 baseline 2000. Results and Discussion The obtained data from inventory are presented in the table 1. These data includes Inputs and outputs of olive production system in Tarom olive systems. Table 1- Inputs and outputs of olive production system (per 1 ton olive. Amount\tUnit\tInputs 48.04\tkg\tDiesel fuel Chemical fertilizer 62.8\tkg\tUrea 53.9\tkg\tTriple Super Phosphate 46.4\tkg\tPotassium sulphate 5.6\tkg\tPesticides 1222\tkg

  14. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  15. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  16. Influence of construction and demolition waste management on the environmental impact of buildings.

    Science.gov (United States)

    Coelho, André; de Brito, Jorge

    2012-03-01

    The purpose of this study is to quantify comparable environmental impacts within a Life Cycle Analysis (LCA) perspective, for buildings in which the first (Materials) and last (End of Life) life cycle stages are adjusted to several waste/material management options. Unlike most LCAs, the approach is "top-down" rather than "bottom-up", which usually involves large amounts of data and the use of specific software applications. This approach is considered appropriate for a limited but expedient LCA designed to compare the environmental impacts of different life cycle options. Present results, based on real buildings measurements and demolition contractor activities, show that shallow, superficial, selective demolition may not result in reduced environmental impacts. Calculations actually show an increase (generally less than 5%) in most impact categories for the Materials and End of Life stages because of extra transportation needs. However, core material separation in demolition operations and its recycling and/or reuse does bring environmental benefits. A reduction of around 77% has been estimated in the climate change impact category, 57% in acidification potential and 81% in the summer smog impact (for the life cycle stages referred). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Resource Contingency Program : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-02-01

    In 1990, the Bonneville Power Administration (BPA) embarked upon the Resource Contingency Program (RCP) to fulfill its statutory responsibilities to supply electrical power to its utility, industrial and other customers in the Pacific Northwest. Instead of buying or building generating plants now, BPA has purchased options to acquire power later if needed. Three option development agreements were signed in September 1993 with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop Washington and near Hermiston, Oregon. This environmental impact statement addresses the environmental consequences of purchasing power from these options. This environmental impact statement addresses the environmental consequences of purchasing power from these options.

  18. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana

    NARCIS (Netherlands)

    Agyekum, Eric Ofori; Fortuin, K.P.J.; Harst-Wintraecken, van der E.J.M.

    2017-01-01

    This case study assessed the environmental and social impact of bicycle frames made from wild Ghanaian bamboo. The environmental life cycle assessment (LCA) of the bamboo frame was compared to the LCA results of an aluminium frame and a steel frame. The results show that the overall environmental

  19. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Reduction of environmental impact by FR cycle deployment

    International Nuclear Information System (INIS)

    Katoh, Atsushi; Nakai, Ryodai

    2005-03-01

    In this report radioactive waste generations in terms of disposal volume or disposal field equivalent, and the radioactive toxicity of HLW are evaluated to clarify the promising nuclear scenario for the sake of realization of sustainable society in 21st century. This analysis was conducted based on the outcomes of the mass flow evaluation tool 'FAMILY-21' which calculates a material balance for TRU in the following scenarios. 1) LWR once-through scenario, 2) Pu partly recycling in LWR scenario, 3) Pu full recycling in LWR scenario, 4) FBR deployment scenario, 5) Interim storage scenario. The result shows that the cumulative area of low level radioactive waste (LLW) disposal field at 2150 in the FR cycle deployment scenario is 1.8 times larger than that in the LWR once-through scenario. The area of LLW disposal field at 2150 is a few km 2 in all the scenarios. In contrast, the cumulative area of high level radioactive waste (HLW) disposal field at 2150 in the FR cycle deployment scenario is less than half of that in the LWR once-through scenario. The area of HLW disposal field at 2150 is about 10 times of the area of LLW disposal field. Moreover, the FR deployment reduces the radioactive toxicity of HLW by U/TRU recycling, and shortens the period to decay under the natural Uranium toxicity level. Considering the area of radioactive waste disposal field and the radioactive toxicity of HLW, the advantage of the FR cycle deployment is indicated quantitatively from the viewpoint of the environmental burden reduction. (author)

  1. Managing environmental and health impacts of uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.E.; Cameron, R., E-mail: robert.vance@oecd.org, E-mail: ron.cameron@oecd.org [OECD Nuclear Energy Agency (France)

    2014-07-01

    As the raw material that fuels nuclear power plants that generate significant amounts of electricity with full life cycle carbon emissions as low as renewable energy sources, uranium is a valuable commodity. Yet uranium mining remains controversial, principally because of environmental and health impacts created when mining was undertaken by governments to meet Cold War strategic requirements. Uranium mining is conducted under significantly different circumstances today. Since the era of military production, societal expectations of environmental protection and the safety of workers and the public have evolved as the outcomes of the early era of mining became apparent, driving changes in regulatory oversight and mining practices. Key aspects of leading practice uranium mining are presented (conventional worker health and safety, worker radiation protection, public health and safety, water quality, tailings and waste rock management) and compared with historic practices to demonstrate the scale of differences. The application of additional aspects of uranium mine life cycle management (public consultation, environmental impact assessment, analysis of socio-economic impacts/benefits, environmental monitoring, financial assurance, product transport, security and safeguards, emergency planning and knowledge transfer), introduced as the industry matured, enhance overall management practices for the long term. Results from several case studies show that improved management of key aspects of uranium mining, combined with the incorporation of new life cycle parameters, have transformed the industry into the most regulated and arguably one of the safest and environmentally responsible types of mining in the world. (author)

  2. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  3. Environmental impacts of food waste: Learnings and challenges from a case study on UK

    DEFF Research Database (Denmark)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-01-01

    by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land......Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated...

  4. Differences in environmental preferences towards cycling for transport among adults: a latent class analysis.

    Science.gov (United States)

    Mertens, Lieze; Van Cauwenberg, Jelle; Ghekiere, Ariane; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Van de Weghe, Nico; Van Dyck, Delfien

    2016-08-12

    Increasing cycling for transport can contribute to improve public health among adults. Micro-environmental factors (i.e. small-scaled street-setting features) may play an important role in affecting the street's appeal to cycle for transport. Understanding about the interplay between individuals and their physical environment is important to establish tailored environmental interventions. Therefore, the current study aimed to examine whether specific subgroups exist based on similarities in micro-environmental preferences to cycle for transport. Responses of 1950 middle-aged adults (45-65 years) on a series of choice tasks depicting potential cycling routes with manipulated photographs yielded three subgroups with different micro-environmental preferences using latent class analysis. Although latent class analysis revealed three different subgroups in the middle-aged adult population based on their environmental preferences, results indicated that cycle path type (i.e. a good separated cycle path) is the most important environmental factor for all participants and certainly for individuals who did not cycle for transport. Furthermore, only negligible differences were found between the importances of the other micro-environmental factors (i.e. traffic density, evenness of the cycle path, maintenance, vegetation and speed limits) regarding the two at risk subgroups and that providing a speed bump obviously has the least impact on the street's appeal to cycle for transport. Results from the current study indicate that only negligible differences were found between the three subgroups. Therefore, it might be suggested that tailored environmental interventions are not required in this research context.

  5. Integrating nutritional benefits and impacts in a life cycle assessment framework: A US dairy consumption case study

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Fulgoni III, Victor; Heller, Martin

    2014-01-01

    Although essential to understand the overall health impact of a food or diet, nutrition is not usually considered in food-related life cycle assessments (LCAs). As a case study to demonstrate comparing environmental and nutritional health impacts we investigate United States dairy consumption....... Nutritional impacts, interpreted from disease burden epidemiology, are compared to health impacts from more tradi-tional impacts (e.g. due to exposure to particulate matter emissions across the life cycle) considered in LCAs. After accounting for the present consumption, data relating dairy intake to public...... to environmental impacts suggesting the need for investigat-ing the balance between dietary public health advantages and disadvantages in comparison to environmental impacts....

  6. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  7. Comparative study on life cycle environmental impact assessment of copper and aluminium cables

    Science.gov (United States)

    Bao, Wei; Lin, Ling; Song, Dan; Guo, Huiting; Chen, Liang; Sun, Liang; Liu, Mei; Chen, Jianhua

    2017-11-01

    With the rapid development of industrialization and urbanization in China, domestic demands for copper and aluminium resources increase continuously and the output of copper and aluminium minerals rises steadily. The output of copper in China increased from 0.6 million tons (metal quantity) in 2003 to 1.74 million tons (metal quantity) in 2014, and the output of bauxite increased from 21 million tons in 2006 to 59.21 million tons in 2014. In the meantime, the import of copper and aluminium minerals of China is also on a rise. The import of copper concentrate and bauxite increased from 4.94 million tons and 9.68 million tons in 2006 to 10.08 million tons and 70.75 million tons in 2013 respectively. Copper and aluminium resources are widely applied in fields such as construction, electrical and electronics, machinery manufacturing, and transportation, and serve as important material basis for the national economic and social development of China. Cable industry is a typical industry where copper and aluminium resources are widely used. In this paper, a product assessment model is built from the perspective of product life cycle. Based on CNLCD database, differences in environmental impacts of copper and aluminium cables are analyzed from aspects such as resource acquisition, product production, transportation, utilization, and resource recycling. Furthermore, the advantages and disadvantages of products at different stages with different types of environmental impact are analyzed, so as to provide data support for cable industry in terms of product design and production, etc.

  8. Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment.

    Science.gov (United States)

    Wang, Xiaoqin; Ledgard, Stewart; Luo, Jiafa; Guo, Yongqin; Zhao, Zhanqin; Guo, Liang; Liu, Song; Zhang, Nannan; Duan, Xueqin; Ma, Lin

    2018-06-01

    Life cycle assessment methodology was used to quantify the environmental impacts and resource use of milk production on the North China Plain, the largest milk production area in China. Variation in environmental burden caused by cow productivity was evaluated, as well as scenario analysis of the effects of improvement practices. The results indicated that the average environmental impact potential and resource use for producing 1kg of fat and protein corrected milk was 1.34kgCO 2 eq., 9.27gPO 4 3- eq., 19.5gSO 2 eq., 4.91MJ, 1.83m 2 and 266L for global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), non-renewable energy use (NREU), land use (LU) and blue water use (BWU; i.e. water withdrawal), respectively. Feed production was a significant determinant of GWP, NREU, LU and BWU, while AP and EP were mainly affected by manure management. Scenario analysis showed that reducing use of concentrates and substituting with alfalfa hay decreased GWP, EP, AP, NREU and LU (by 1.0%-5.5%), but caused a significant increase of BWU (by 17.2%). Using imported soybean instead of locally-grown soybean decreased LU by 2.6%, but significantly increased GWP and NREU by 20% and 6.9%, respectively. There was no single perfect manure management system, with variable effects from different management practices. The environmental burden shifting observed in this study illustrates the importance of assessing a wide range of impact categories instead of single or limited indicators for formulating environmental policies, and the necessity of combining multiple measures to decrease the environmental burden. For the North China Plain, improving milking cow productivity and herd structure (i.e. increased proportion of milking cows), combining various manure management systems, and encouraging dairy farmers to return manure to nearby crop lands are promising measures to decrease multiple environmental impacts. Copyright © 2017 Elsevier B.V. All rights

  9. Environmental impact assessment of conventional and organic milk production

    NARCIS (Netherlands)

    Boer, de I.J.M.

    2003-01-01

    Organic agriculture addresses the public demand to diminish environmental pollution of agricultural production. Until now, however, only few studies tried to determine the integrated environmental impact of conventional versus organic production using life cycle assessment (LCA). The aim of this

  10. Differences in environmental preferences towards cycling for transport among adults: a latent class analysis

    Directory of Open Access Journals (Sweden)

    Lieze Mertens

    2016-08-01

    Full Text Available Abstract Background Increasing cycling for transport can contribute to improve public health among adults. Micro-environmental factors (i.e. small-scaled street-setting features may play an important role in affecting the street’s appeal to cycle for transport. Understanding about the interplay between individuals and their physical environment is important to establish tailored environmental interventions. Therefore, the current study aimed to examine whether specific subgroups exist based on similarities in micro-environmental preferences to cycle for transport. Methods Responses of 1950 middle-aged adults (45–65 years on a series of choice tasks depicting potential cycling routes with manipulated photographs yielded three subgroups with different micro-environmental preferences using latent class analysis. Results Although latent class analysis revealed three different subgroups in the middle-aged adult population based on their environmental preferences, results indicated that cycle path type (i.e. a good separated cycle path is the most important environmental factor for all participants and certainly for individuals who did not cycle for transport. Furthermore, only negligible differences were found between the importances of the other micro-environmental factors (i.e. traffic density, evenness of the cycle path, maintenance, vegetation and speed limits regarding the two at risk subgroups and that providing a speed bump obviously has the least impact on the street’s appeal to cycle for transport. Conclusions Results from the current study indicate that only negligible differences were found between the three subgroups. Therefore, it might be suggested that tailored environmental interventions are not required in this research context.

  11. Effects of repository conditions on environmental impact reduction by recycling

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2010-01-01

    The environmental impacts (EI) of high-level wastes (HLW) disposed of in a water-saturated repository (WSR) and in the Yucca Mountain Repository (YMR) for various fuel cycle cases have been evaluated and compared to observe the difference in the recycling effects for differing repository conditions. With the impacts of direct spent fuel disposal in each repository as the reference level, separation of actinides by Urex+ and borosilicate vitrification clearly reduces the environmental impacts of YMR, while separation by Purex and borosilicate vitrification would not necessarily reduce the environmental impact of WSR. (authors)

  12. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  13. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    Energy Technology Data Exchange (ETDEWEB)

    Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Braet, Johan, E-mail: johan.braet@uantwerpen.be [Department Engineering Management, Faculty of Applied Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp (Belgium)

    2016-09-15

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  14. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    International Nuclear Information System (INIS)

    Anthonissen, Joke; Van den bergh, Wim; Braet, Johan

    2016-01-01

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  15. Strategies for reducing the environmental impacts of room air conditioners in Europe

    International Nuclear Information System (INIS)

    Grignon-Masse, Laurent; Riviere, Philippe; Adnot, Jerome

    2011-01-01

    In Europe, buildings tend to be equipped with individual air conditioners, which constitute a fast growing electrical end-use. In this context, this study aims to assess the environmental impacts of European individual air conditioners and to analyse policy strategies to reduce these impacts. After analysing the European context concerning individual air conditioners, the environmental impacts of European air conditioners are assessed using a Life Cycle Analysis approach. The following step consists in studying, both technically and economically, different improvement options aiming at reducing the environmental impacts of these appliances. These results, obtained at the product level, are then generalised at the European level and different policy measures are defined and analysed. The main conclusion is that the implementation of a Minimum Energy Performance Standard based on Least Life Cycle Costs could save up to 49 TWh and 20 MtCO 2-eq in 2020 and be economically beneficial to the European end-user. - Research highlights: → A methodology based on Life Cycle Analysis is applied to European air conditioners. → Environmental impacts are mainly due to energy consumption. → There is a high potential for energy savings at very low costs for end users.

  16. Life cycle assessment Part 2 : Current impact assessment practice

    NARCIS (Netherlands)

    Pennington, D.W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T.; Rebitzer, G.

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse,

  17. Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges

    DEFF Research Database (Denmark)

    Yavari, Majid Solat; Du, Guangli; Pacoste, Costin

    2017-01-01

    The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environmental-friendly design. The case study bridge used in this work was also investigated in a previous paper...... focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both of these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive Life Cycle Assessment (LCA......) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements...

  18. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    Science.gov (United States)

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  19. Environmental impact of a nuclear industry at an early stage of development: peculiar aspects

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.

    1978-01-01

    The environmental impact of a nuclear industry at an early stage of development is examined vis-a-vis the experience accumulated in studies on the environmental impact of the nuclear fuel cycle in a developed country. Differences in the optics of the nuclear industry in a developed country and that of segments of the public opinion are briefly discussed. Some peculiar aspects of a nuclear industry being implanted in a developing nation, including adoption of new legislation and regulations, are presented, taking into account the unusual opportunity to attack potential problems in advance. The unique example of the pre-operational survey of a region surrounding a uranium mine in a developing nation is mentioned as an example of cooperation between the nuclear industry and the scientific community to minimize the environmental impact of uranium mining operations. The potential environmental impact of other stages of the nuclear fuel cycle is also examined. Further cooperation between the nuclear industry and the scientific community of Latin American countries is suggested to minimize the environmental impact of the nuclear fuel cycle in nations starting nuclear programs. (author)

  20. Energy analysis and environmental impacts of microalgal biodiesel in China

    International Nuclear Information System (INIS)

    Liao Yanfen; Huang Zehao; Ma Xiaoqian

    2012-01-01

    The entire life cycle of biodiesel produced by microalgal biomasses was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impact loading of the system. The life cycle considers microalgae cultivation, harvesting, drying, oil extraction, anaerobic digestion, oil transportation, esterification, biodiesel transportation and biodiesel combustion. The investigation results show that the fossil energy requirement for the biodiesel production is 0.74 MJ/MJ biodiesel, indicating that 1 MJ of biodiesel requires an input of 0.74 MJ of fossil energy. Accordingly, biodiesel production is feasible as an energy producing process. The environmental impact loading of microalgal biodiesel is 3.69 PET 2010 (Person Equivalents, Targeted, in 2010) and the GWP is 0.16 kg CO 2-eq /MJ biodiesel. The effects of photochemical ozone formation were greatest among all calculated categorization impacts. The fossil energy requirement and GWP in this operation were found to be particularly sensitive to oil content, drying rate and esterification rate. Overall, the results presented herein indicate that the cultivation of microalgae has the potential to produce an environmentally sustainable feedstock for the production of biodiesel. - Highlights: ► Do energy analysis and environmental impacts of algal biodiesel in China. ► GWP and energy consumption are sensitive to lipid content and drying rate. ► Fossil energy consumption for algal biodiesel is 0.74 MJ/MJ. ► Microalgae are an environmentally sustainable feedstock for biodiesel production.

  1. Printed and tablet e-paper newspaper from an environmental perspective - A screening life cycle assessment

    International Nuclear Information System (INIS)

    Moberg, Asa; Johansson, Martin; Finnveden, Goeran; Jonsson, Alex

    2010-01-01

    Viable alternatives to conventional newspapers, such as electronic papers, e-papers or e-readers, are intended to have many of the qualities of paper, such as reading using reflective light, high resolution, 180 deg. viewing angle. It has been suggested that the environmental impact of e-paper can be lower than for printed and internet-based newspapers. However, in order to find the facts of the matter, a thorough life cycle perspective covering raw material acquisition, production, use and disposal should preferably be used to study the environmental performance of the different products. A screening life cycle assessment was performed to describe the potential environmental impacts of two product systems; printed on paper and tablet e-paper newspapers. Results show that the most significant phase of the life cycle for both product systems was the production of substrate or platform. Accordingly, key aspects that may affect the resulting environmental performance of newspaper product systems were for the printed newspaper number of readers per copy and number of pages per issue and for the tablet e-paper newspaper lifetime and multi-use of the device. The printed newspaper in general had a higher energy use, higher emissions of gases contributing to climate change and several other impact categories than the tablet e-paper newspaper. It was concluded that tablet e-paper has the potential to decrease the environmental impact of newspaper consumption. However, further studies regarding the environmental impact of production and waste management of electronic devices and internet use, as well as more comprehensive assessment of toxicological impacts are needed. As the data on the electronic devices becomes more comprehensive this may prove to be a major limitation of electronic newspaper systems. Developers are suggested to strive towards minimisation of toxic and rare substances in production.

  2. Comparative assessment and management of the health and environmental impacts of energy systems. General framework and preliminary results for the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rostron, W; Schneider, T; Thieme, M; Dreicer, M

    1992-06-01

    The comparison of the effects of electricity producing systems is of growing importance in decision-making processes for energy planning. This report documents the preliminary results of a project for the CEC-DG XII Radiation Protection Programme on the comparative assessment and management of the health and environmental impacts of energy systems. The work reported in this document has also been supported by EDF - Mission Environnement. In order to profit from the comparative studies already existing, some of the most important ones were surveyed. The aim of these past energy comparison studies was mainly to obtain a global measure of the risks associated with an energy cycle, with a view to ranking the various electricity production systems; but this is now recognised as merely an academic exercise, with a limited impact in decision-making. For energy planning the development of a multi-dimensional approach seems more suitable, as this allows the different types of indicators and measures needed to assess the risks of different energy cycles to be compared. From the past studies it has been seen that health indicators are generally well established, but a weakness is noted with respect to indicators of environmental impacts. This remains a difficult subject, and until such indicators are established, surrogates like concentrations in the environment will have to be used, or qualitative comparisons must suffice. This report presents a general framework allowing for consistent comparisons between different energy systems. The key issues discussed are: assessment by fuel cycle, consideration of the dimensions of time and space, the impact pathway approach for assessing risk, and coherent indicators that can be used to measure the impacts. First results are presented for four activities of the nuclear fuel cycle according to the approach developed: (1) the construction and dismantling of a 900 MWe pressurized water reactor, (2) the transportation of materials between

  3. Externalities of fuel cycles 'ExternE' project. Natural gas fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Holland, M.; Watkiss, P.; Berry, J.; Johnson, C.; Lee, D.

    1994-01-01

    This document assesses the progress made in quantifying environmental and health damages associated with the natural gas fuel cycle for electricity generation. The methodology developed in the ExternE Project is described in more detail elsewhere (European Commission, 1994a; 1995, in preparation). The reader is referred to these earlier reports for wider discussion of many of the issues underlying this type of work. The increased desire for economic assessment of environmental damage reflects growing awareness of problems such as global warming, ozone depletion and the acidification and nutrification of ecosystems. A wide range of receptors are affected, including human health, forests, crops, and buildings. Such damages are typically not accounted for by the producers and consumers of the good in question (in this case energy). They are thus referred to as 'external costs' or 'externalities', to distinguish them from the private costs which account for the construction of plant, cost of fuel, wages, etc. At the political level there are a variety of reasons for the growing interest in the quantification of the environmental impacts of energy use and the related external costs. These include the need to integrate environmental concerns when selecting between different fuels and energy technologies and the need to evaluate the costs and benefits of stricter environmental standards. These issues are reflected in European Union policy, through, for example, the Maastricht Treaty, the 5th Environmental Action Programme 'towards sustainability', the European Commission's White Paper 'Growth, competitiveness, employment and ways forward to the 21st century' and the establishment of the European Environmental Agency. The proposal for an Energy-Carbon tax is the first concrete proposal by the European Union for the direct use of economic instruments in environmental policy in the energy sector. An agreed methodology for calculation and integration of external costs has not

  4. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    International Nuclear Information System (INIS)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.; Simonsen, Christian G.; Astrup, Thomas

    2014-01-01

    Highlights: • Environmental impact of a power system with a high share of wind power assessed. • LCI data for electricity supply in Denmark in 2010 and 2030 (low carbon) provided. • Focus on GHG reduction may lead to increase in other impact categories. • Imported biomass might cause high GHG emissions form Land Use Change. • Need for guidelines for LCA of electricity supply (cogeneration and power import). - Abstract: The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed. The results showed that consumption of fossil resources and global warming impacts from the Danish electricity sector could be reduced significantly compared with 2010. Nevertheless, a reduction in GHG may be at the expense of other environmental impacts, such as the increased depletion of abiotic resources. Moreover, the results were very dependent upon biomass origin: when agricultural land was affected by biomass import, and land use changes and transportation were included, GHG emissions from imported biomass were comparable to those from fossil fuels. The results were significantly influenced by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants in 2010 and 2030 (including corresponding

  5. Analyzing the environmental impacts of laptop enclosures ...

    Science.gov (United States)

    The market growth of consumer electronics makes it essential for industries and policy-makers to work together to develop sustainable products. The objective of this study is to better understand how to promote environmentally sustainable consumer electronics by examining the use of various materials in laptop enclosures (excluding mounting hardware, internal components, and insulation) using screening-level life cycle assessment. The baseline material, is a fossil plastic blend of polycarbonate-acrylonitrile butadiene styrene. Alternative materials include polylactic acid, bamboo, aluminum, and various combinations of these materials known to be currently used or being considered for use in laptops. The flame retardants considered in this study are bisphenol A bis(diphenyl phosphate), triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and borax-boric acid-phosphorous acid. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts v2.1 was used for the assessment of impacts related to climate change, human and ecological health, and resource use. The assessment demonstrates that plastics, relative to the other materials, are currently some of the better performing materials in terms of having the lowest potential environmental impact for a greater number of impact categories based on product life cycle models developed in this study. For fossil plastics, the material performance increases with increasing post-con

  6. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Oscar O. Ortíz-Rodríguez

    2017-12-01

    Full Text Available Life Cycle Assessment methodology has been applied to estimate diverse environmental impacts of different usage alternatives for worn-out tires at the end of their useful life in a case study at the Department of Valle del Cauca, Colombia. Different real scenarios were compared, which allowed for the assessment of the best environmental option for the management of worn-out tires. A method developed in the Institute of Environmental Sciences at University of Leiden, better known as CML-2001, was used to calculate the environmental impact indicators. The results show that the incineration of whole tires in cement plants, and the activities of grinding and floor manufacturing from granulated rubber, exhibited the best indicators, especially in terms of environmental load avoidance through the recovery of materials. Finally, the categories of depletion of the ozone layer, acidification, global warming potential, depletion of abiotic resources, and photochemical ozone formation revealed that the strongest environmental impacts are associated with retreading and the production of multipart asphalt. This is due to the use of synthetic rubber in the former alternative, and of liquid asphalt, gravel, and diesel consumption in the latter.

  7. Review of the environmental impact of nuclear energy

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1977-01-01

    Nuclear power is one of the alternative sources for meeting the increasing world requirements for energy production. The world's nuclear electrical power production has been increasing at a rapid rate and is expected to reach about 620 GWe by 1985 and about 3300 GWe by the year 2000. This continuing increase would be impossible without an equivalent expansion of available fuel supplies, enrichment capacity, fuel fabrication capacity, irradiated fuel reprocessing capacity, and finally appropriate facilities for dealing with the nuclear wastes which will arise in due course. The present report reviews the environmental impacts encountered at each step of the nuclear fuel cycle which consists of the processes of mining and milling of uranium ores, conversion to fuel material and fabrication of fuel elements, reactor design and operation, reprocessing of spent fuel, and disposal of radioactive wastes. It also includes a review of the environmental impact of transportation of radioactive material between installations handling different steps of the cycle. Although the environmental impacts arising at certain stages in the nuclear fuel cycle are similar to some of those encountered in the fossil-fuel cycle (for example, the ecological effects of strip mining of ores and/or thermal discharges), there are some unique impacts related to nuclear power generation. Perhaps the most important of these is the radioactivity released from the decay products of nuclear fission. Although most of the radionuclides released into the environment are of local or regional concern, because their half-lives are short compared to the time involved in their dispersion, some radionuclides have long half-lives and can, therefore, become widely distributed. This has been the main focus of public concern and debate with respect to the expansion in nuclear power utilisation, in spite of the strict regulations and safety measures undertaken

  8. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett Carlsen; Emily Tavrides; Erich Schneider

    2010-08-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  9. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Carlsen, Brett; Tavrides, Emily; Schneider, Erich

    2010-01-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  10. Environmental impacts of coal and nuclear power plants

    International Nuclear Information System (INIS)

    Carvalho, W.B.D. de; Souza, J.A.M. de

    1981-01-01

    The present work analyses the environmental impacts of coal and nuclear power plants. A comparison is made on a common basis considering the various activities involving the complete fuel cycle for both cases. (Author) [pt

  11. Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba).

    Science.gov (United States)

    Parker, Robert W R; Tyedmers, Peter H

    2012-05-01

    Concern has been voiced in recent years regarding the environmental implications of the Antarctic krill fishery. Attention has focused primarily on ecological concerns, whereas other environmental aspects, including potentially globally problematic emissions and material and energy demands, have not been examined in detail. Here we apply life cycle assessment to measure the contributions of krill meal, oil, and omega-3 capsules to global warming, ozone depletion, acidification, eutrophication, energy use, and biotic resource use. Supply chains of one krill fishing and processing company, Aker BioMarine of Norway, were assessed. Impacts of krill products were found to be driven primarily by the combustion of fossil fuels onboard the fishing vessel and a transport/resupply vessel. Approximately 190 L of fuel are burned per tonne of raw krill landed, markedly higher than fuel inputs to reduction fisheries targeting other species. In contrast, the biotic resource use associated with extracting krill is relatively low compared to that of other reduction fisheries. Results of this study provide insight into the broader environmental implications of the krill fishery, comparisons between products derived from krill and other species targeted for reduction, opportunities for improving the fishery's performance, and a baseline against which to measure future performance. © 2012 American Chemical Society

  12. Environmental impacts and cost estimation for electricity production

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.

    2000-01-01

    This article reviews the different sources of energy used for electricity production in the view of the impact on environment. Coal, gas, wind energy, nuclear energy and hydro-energy are considered. The comparison of environmental performances requires common methodologies, 2 methodologies have been used ACV (analysis of a complete life cycle) and IPM (impact pathway methodology), both study all the exchanges of a system with the outside. The environmental performance is quantified by a series of parameters which represent the degradation of ecosystems. These parameters are divided into 4 groups: i) impact on public health, ii) impact on staff health, iii) impact on regional environment (agriculture, landscape alteration...) and iv) global impact on environment (greenhouse effect, acid rain, waste production, reduction of resources...). (A.C.)

  13. Environmental impacts of energy gases. A factual handbook. Third edition

    International Nuclear Information System (INIS)

    2000-11-01

    This handbook gives a thorough review of gas fuels, their properties, production, environmental impacts, uses as well as comparisons with other fuels (Biofuels, Petroleum, Coal, Peat). Legislation and rules for Sweden and the European Union are also treated. The book is made up of the following chapters: Introduction, Pollutants, Facts on liquid and solid fuels, Facts on gas fuels, Environmental impacts, Regulations, Air quality, Emission limits, Licensing and permits, Economic incentives, Pollution control technology, Appliances, boilers, engines and power plants, Environmental impacts of the full fuel cycle (LCA), Case studies: heating plants, cogeneration, power plants, power production systems, heavy vehicles, Environmental advantages from introduction of gas fuels, R and D needs, Energy and environmental statistics

  14. EPD--environmental product declarations for wood products : an application of life cycle information about forest products

    Science.gov (United States)

    Richard Bergman; Adam Taylor

    2011-01-01

    Transparent and credible environmental labeling of products is vital for a sustainable future. Ecolabeling shows information on the environmental performance of products, processes, and services. This article focuses on one type of ecolabeling referred to as environmental product declarations (EPDs) that provide environmental impact information based on life cycle...

  15. Integrated approach for characterizing and comparing exposure-based impacts with life cycle impacts

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier

    2016-01-01

    ions that involve burden shifting or that result in only incremental improvement. Focusing in the life cycle impacts on widely accepted and applied impact categories like global warming potential or cumulative energy demand aggregating several impact categories will lead to underestimations of life...... to the environment from product-related processes along the product life cycle. We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical...... in a product. When combined chemical masses in products and further with toxicity information, this approach is a resourceful way to inform CAA and minimize human exposure to toxic chemicals in consumer products through both product use and environmental emissions. We use an example of chemicals in consumer...

  16. 78 FR 13082 - Draft Environmental Impact Report/Environmental Impact Statement/Environmental Impact Statement...

    Science.gov (United States)

    2013-02-26

    ...The Bureau of Reclamation has made available for public review and comment the draft Environmental Impact Report/Environmental Impact Statement/Environmental Impact Statement (EIR/EIS/EIS) for the Upper Truckee River Restoration and Marsh Restoration Project (Project). The California Tahoe Conservancy and the Tahoe Regional Planning Agency, the other lead agencies for the Project, made the EIR/EIS/EIS available to the public on February 8, 2013.

  17. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chiara A. Penati

    2013-12-01

    Full Text Available The aim of the study was to analyze environmental impact of cow milk production in an alpine area through a cradle-to-farm-gate Life Cycle Assessment and to identify farming strategies that can improve environmental sustainability without negatively affecting profitability. Data were collected from farmers in 28 dairy farms in an Italian alpine valley. The production of 1 kg of fat protein corrected milk (FPCM needed 3.18 m2 of land; land use on-farm was high because a large part of farm land consisted of pastures in the highland, used extensively during summer. Also the use of energy from non-renewable sources was high, 5.14 MJ kg FPCM-1 on average. Diesel for production and transportation of feed purchased off-farm was mainly used, especially concentrates which were entirely purchased. The average emission of greenhouse and acidification causing gases was 1.14 kg CO2-eq and 0.021 kg SO2-eq kg FPCM-1. Eutrophication was on average 0.077 kg of nitrate-eq kg FPCM-1. Farms with low producing cows had higher environmental impact per kg of milk and lower gross margin per cow compared to the others. Low stocking rate farms had the best results regarding acidification and eutrophication per kg FPCM. Farms with high feed self-sufficiency had significantly lower acidification potential than the others. Increasing milk yield per cow, by selection and feeding, and enhancing feed self-sufficiency, by higher forage production and quality and more exploitation of highland pastures, seem to be the best strategies to improve ecological performances of dairy farms in the Alps while maintaining their profitability.

  18. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    International Nuclear Information System (INIS)

    Kim, Kyong Ju; Yun, Won Gun; Cho, Namho; Ha, Jikwang

    2017-01-01

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  19. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr; Ha, Jikwang, E-mail: wlrhkd29@gmail.com

    2017-05-15

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  20. Environmental impacts from Danish fish products

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    This dissertation presents an assessment of the environmental impacts from Danish fish products in a life cycle perspective (from sea to table). The assessment is carried out in three steps ? and includes a MECO analysis, a quantitative LCA and a qualitative LCA. The results are used to discuss...... current environmental policies addressing the fishery, landing and auction, the fish processing industry, wholesale, transport, retail, and use.It is concluded that considerable improvement potentials exist in the fishing stage, which also represents the largest environmental impact potential compared....... It is suggested that passive and semi-active fishing methods such as Danish seine, purse seine, gillnet and long line represent a significant improvement potential compared to trawl. And it is shown that the energy consumption can be reduced with a factor 15 by substituting beam trawl with Danish seine...

  1. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend...

  2. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  3. Public understanding of environmental impacts of electricity deregulation

    International Nuclear Information System (INIS)

    Johnson, Branden B.; Frank, Pamela G.

    2006-01-01

    Electricity deregulation has aroused concern that environmental quality might be harmed by consumer preferences for cheap, 'dirty' (e.g., coal) electricity products, despite the perhaps stronger influence of supply side policy on environmental impacts. This outcome depends on public understanding of the environmental impacts of their decisions, which this study explored with interviews, focus groups, and surveys in New Jersey. People had thought little about the topic, were unable to articulate how electricity production might affect the environment except in very general terms, and were mostly unwilling to guess whether deregulation's impacts would be negative, neutral or positive. Those who did guess expected negative impacts less than any other kind. Reactions to specific 'reasons' for expecting no, positive or negative impacts suggested that consumers had little structure to their mental models in this area; for example, people who thought positive-impact reasons were probably true were not necessarily likely to see negative-impact reasons as probably false. However, in the aggregate, people seemed to have a fairly consistent ranking of energy sources by expected negative environmental impacts. Earlier research found that consumers comparing two electricity products on environmental impacts reached different decisions if they had energy-source-only or energy-source-plus-emissions information. Although regulator-required 'environmental labels' for electricity products provide both source and emissions data, it is not clear that they do an adequate job of both alerting consumers to the possibility of negative environmental impacts and identifying the relative life-cycle impacts of different products so as to produce informed consumer decisions

  4. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  5. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    Science.gov (United States)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences

  6. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    International Nuclear Information System (INIS)

    Brunet, Robert; Cortés, Daniel; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2012-01-01

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: ► Novel framework for the optimal design of thermdoynamic cycles. ► Combined use of simulation and optimization tools. ► Optimal design and operating conditions according to several economic and LCA impacts. ► Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  7. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Robert; Cortes, Daniel [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Guillen-Gosalbez, Gonzalo [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Jimenez, Laureano [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Boer, Dieter [Departament d' Enginyeria Mecanica, Escola Tecnica Superior d' Enginyeria, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007, Tarragona (Spain)

    2012-12-15

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: Black-Right-Pointing-Pointer Novel framework for the optimal design of thermdoynamic cycles. Black-Right-Pointing-Pointer Combined use of simulation and optimization tools. Black-Right-Pointing-Pointer Optimal design and operating conditions according to several economic and LCA impacts. Black-Right-Pointing-Pointer Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  8. Environmental Performance of Kettle Production: Product Life Cycle Assessment

    Science.gov (United States)

    Marcinkowski, Andrzej; Zych, Krzysztof

    2017-12-01

    The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  9. ENVIRONMENTAL PERFORMANCE OF KETTLE PRODUCTION: PRODUCT LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Andrzej MARCINKOWSKI

    2017-10-01

    Full Text Available The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach where the main function is boiling 3360 l of water during 4- year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g. The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste sce-nario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix which determined final comparison results. Basing on LCA results, some im-provements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  10. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  11. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  12. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  13. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I

    2012-01-01

    The aim of this study was to apply the life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of expected edible carcass weight in the 3 main broiler production systems in the United Kingdom: 1) standard indoor, 2) free range, and 3) organic, and to identify the main components of these burdens. The LCA method evaluates production systems logically to account for all inputs and outputs that cross a specified system boundary, and it relates these to the useful outputs. The analysis was based on an approach that applied a structural model for the UK broiler industry and mechanistic submodels for animal performance, crop production, and major nutrient flows. Simplified baseline feeds representative of those used by the UK broiler industry were used. Typical UK figures for performance and mortality of birds and farm energy and material use were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs. The length of the production cycle was longer for free-range and organic systems compared with that of the standard indoor system, and as a result, the feed consumption and manure production per bird were higher in the free-range and organic systems. These differences had a major effect on the differences in environmental burdens between the systems. Feed production, processing, and transport resulted in greater overall environmental impacts than any other components of broiler production; for example, 65 to 81% of the primary energy use and 71 to 72% of the global warming potential of the system were due to these burdens. Farm gas and oil use had the second highest impact in primary energy use (12-25%) followed by farm electricity use. The direct use of gas, oil, and electricity were generally lower in free-range and organic systems compared with their use in the standard indoor system. Manure was the main component of acidification potential and also had a relatively high eutrophication

  14. Evaluation Tools of nanomaterials environmental impact

    International Nuclear Information System (INIS)

    Barberio, Grazia; Scalbi, Simona; Buttol, Patrizia; Masoni, Paolo; Righi, Serena

    2015-01-01

    Nanotechnology show an increasing spread thanks to the special properties of nanomaterials (NM). Knowledge of the NM behavior and interactions with the environment and human health is still insufficient to assess the impact of the NM. A multidisciplinary, multidimensional and systemic such as that of the life cycle (Life Cycle Thinking - LCT), applied through the tool Life Cycle Assessment (LCA), is essential in environmental sustainability assessment of technologies, with some limitations that can be overcome through integration with other instruments such as, for example, non-linear models, analysis of flows of material, Risk Assessment (RA). This article offers a detailed analysis of the state and the main problems related to the application of LCA and RA to NM both separately and in combined use; They will then discuss the strategies and integrations needed to overcome the limitations of both methods and obtain robust assessments of the impacts on health and the environment [it

  15. The end of life treatment of second generation mobile phone networks: Strategies to reduce the environmental impact

    International Nuclear Information System (INIS)

    Scharnhorst, Wolfram; Althaus, Hans-Joerg; Classen, Mischa; Jolliet, Olivier; Hilty, Lorenz M.

    2005-01-01

    A life cycle assessment was carried out based on a detailed life cycle inventory for a typical GSM 900 mobile phone network and related End of Life (EOL) treatment infrastructure. The environmental relevance of the three life cycle phases: production, use and EOL treatment was analysed using IMPACT2002+. The environmentally preferable EOL treatment alternative was identified on the basis of six previously developed EOL treatment scenarios. The results indicate that the environmental impacts attributable to the use phase dominate the environmental impacts incurred over the entire life cycle of the network. The impacts of the production phase are primarily attributable to the energy intensive manufacturing of printed wiring boards (PWB). The EOL phase dominates the impacts on ecosystem quality. In particular the long-term emissions of heavy metals have critical effects. Detailed analysis of the EOL phase shows that recycling of network materials in general leads to a two fold reduction of environmental impacts: in the EOL phase itself as well as by means of the avoided primary production of materials recovered in the EOL phase. An increase in the material quality of the secondary precious and rare materials leads to a significant reduction in the impacts on human health

  16. Environmental impacts of barley cultivation under current and future climatic conditions

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Saxe, Henrik

    2017-01-01

    for the increased impacts. This finding was confirmed by the sensitivity analysis. Because this study focused solely on the impacts of climate change, technological improvements and political measures to reduce impacts in the 2050 scenario are not taken into account. Options to mitigate the environmental impacts......The purpose of this work is to compare the environmental impacts of spring barley cultivation in Denmark under current (year 2010) and future (year 2050) climatic conditions. Therefore, a Life Cycle Assessment was carried out for the production of 1 kg of spring barley in Denmark, at farm gate....... Both under 2010 and 2050 climatic conditions, four subscenarios were modelled, based on a combination of two soil types and two climates. Included in the assessment were seed production, soil preparation, fertilization, pesticide application, and harvest. When processes in the life cycle resulted in co...

  17. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  18. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  19. Impact of arbuscular mycorrhizal fungi on nutrient cycling in agroecosystems

    NARCIS (Netherlands)

    Köhl, L.

    2016-01-01

    The intensification of agricultural production to meet global food demands has led to excessive nutrient leaching from agricultural areas. These losses have negative environmental impacts and pose a waste of valuable fertilizer. Soil biota are essential for nutrient cycling in soil and thus could be

  20. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  1. Combined nutritional and environmental life cycle assessment of fruits and vegetables

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Fantke, Peter; Jolliet, Olivier

    2016-01-01

    -LCA) framework that compares environmental and nutritional effects of foods in a common end -point metric, Disability Adjusted Life Years (DALY). In the assessment, environmental health impact categories include green house gases, particulate matter (PM), and pesticide residues on fruits and vegetables, while......; 35 μDALY/serving fruit benefit compared to a factor 10 lower impact. Replacing detrimental foods, such as trans-fat and red meat, with fruits or vegetables further enhances health benefit. This study illustrates the importance of considering nutritional effects in food-LCA.......Nutritional health effects from the ‘use stage’ of the life cycle of food products can be substantial, especially for fruits and vegetables. To assess potential one-serving increases in fruit and vegetable consumption in Europe, we employ the Combined Nutritional and Environmental LCA (CONE...

  2. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  3. Environmental macroeconomics : Environmental policy, business cycles, and directed technical change

    NARCIS (Netherlands)

    Fischer, Carolyn; Heutel, Garth

    Environmental economics has traditionally fallen in the domain of microeconomics, but approaches from macroeconomics have recently been applied to studying environmental policy. We focus on two macroeconomic tools and their application to environmental economics. First, real-business-cycle models

  4. Opportunities for biomaterials : economic, environmental and policy aspects along their life cycle

    NARCIS (Netherlands)

    Hermann, B.G.

    2010-01-01

    Little was known at the start of these studies regarding the environmental impacts of bulk chemicals production from biomass and whether they could be produced economically. We have therefore analysed the entire life cycle of biomaterials: the production of bio-based chemicals, the application of

  5. Environmental impact of manufacturing softwood lumber in northeastern and north central United States

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2010-01-01

    Finding the environmental impact of building materials is becoming increasingly more important because of public environmental awareness. Accurate and precise life-cycle inventory data on wood products are needed to meet this demand. This study examined softwood lumber manufacturing in the northeastern and north central US using life-cycle inventory methods. Material...

  6. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  7. Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment

    OpenAIRE

    Petit, Anna

    2014-01-01

    In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. Th...

  8. Environmental impact assessment for energy pathways: an integrated methodology

    International Nuclear Information System (INIS)

    Sommereux-Blanc, Isabelle

    2010-01-01

    This document presents the synthesis of my research work contributing to the development of an integrated methodology of environmental impact assessment for energy pathways. In the context of world globalization, environmental impact assessments issues are highly linked with the following questioning: Which environmental impacts? for which demand? at which location? at which temporal scale? My work is built upon the definition of a conceptual framework able to handle these issues and upon its progressive implementation. The integration of the spatial and temporal issues within the methodology are key elements. Fundamental cornerstones of this framework are presented along the DPSIR concept (Driving forces, Pressures, State, Impacts, Responses). They cover a comprehensive analysis of the limits and the relevance of life cycle analysis and the development of a geo-spatialized environmental performance approach for an electrical production pathway. Perspectives linked with the development of this integrated methodology are detailed for energy pathways. (author)

  9. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  10. Environmental impact of Funerals. Life cycle assessments of activities after life.

    NARCIS (Netherlands)

    Keijzer, Elisabeth

    2011-01-01

    SUMMARY This research investigates the environmental impact of funerals in the Netherlands. There are multiple reasons for this research. First of all, there is interest from civilians, the funeral sector and governmental authorities. Furthermore, there

  11. Life cycle assessment. Specific indicators for Italy in impact evaluation

    International Nuclear Information System (INIS)

    Masoni, P.

    1999-01-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described [it

  12. Environmental impact assessment and eco-friendly decision-making in civil structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Moon-Seock; Mha, Ho-Seong; Joung, Jung-Yeun

    2013-09-15

    This study develops two useful procedures in performing an environmental-impact assessment. One is the advanced life-cycle assessment (LCA) method, which effectively tracks the flow of materials and considers the recycling and demolition of a civil structure. The other is an eco-friendly decision-making procedure, which may effectively apply when determining the prototype of a civil structure. The advanced LCA method differs from traditional LCA procedure, as it classifies the input material prior to the impact assessment. Classification work is performed to establish independent life-cycle stages for each material. The processes of recycling and demolition are appropriately added to the life-cycle stages. The impact assessment is performed separately for the materials, and results are aggregated at the end of the analysis. The eco-friendly decision-making procedure enables designers to choose an economical, and environmentally friendly, alternative during the planning phase of the construction project. This procedure rationally amalgamates economical value and environmental effects into a single indicator. The life cycle cost (LCC) of a structure can be analysed by using conventional LCC tools, whereas the environmental impact is estimated by LCA. The results from LCC and LCA are then integrated by using either a CO2 conversion method or an analytical hierarchy process (AHP). The CO2 conversion method presents the result as a monetary value, whereas the AHP presents the result as a non-dimensional value. A practical example using a steel box girder bridge and a pre-stressed concrete (PSC) box-girder bridge is also given in order to aid the understanding of the presented procedure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Review on Suitability of Available LCIA Methodologies for Assessing Environmental Impact of the Food Sector

    Directory of Open Access Journals (Sweden)

    Pegah Amani

    2011-12-01

    Full Text Available Production, processing, distribution, and consumption of a wide variety of products in the food sector have different ranges of environmental impacts. Methodologies used in environmental impact assessment differ in which set of impact categories is covered and which models are used to assess them. In the food sector, life cycle assessment results are mostly presented without any clear distinction of the principles applied to selecting the relevant methodology. In this paper, the most relevant life cycle impact assessment methodologies are determined from the list of recommended methodologies published recently in the international reference life cycle data system (ILCD handbook. The range of the relevant impacts covered is considered as the main indicator decisive in selecting a methodology. The selection of the relevant set of impact categories is performed through an overview of more than 50 recent LCA case studies of different products in the sector. The result of the research is a short list of three LCIA methodologies recommended to be used for environmental impact assessment of products in the food sector.

  14. Quantitative assessment of the environmental footprint of the French nuclear fuel cycle by life cycle assessment

    International Nuclear Information System (INIS)

    Poinssot, Christophe; Bourg, Stephane; Ouvrier, Noel; Serp, Jerome

    2015-07-01

    Full text of publication follows: Nuclear energy contributes to most than 75% of the French electricity thanks to the operation of 58 generation 2 reactors located on 19 sites built from the 70's to the end of the 90's. France also developed for a long time a fully integrated nuclear industry covering the whole nuclear fuel cycle, from the ore mining to the fabrication of the fuel for the front-end, from the reprocessing up to the MOX fuel fabrication and storage facility and in the near-future geological repository for the back-end. This investment allows France to produce a low-carbon electricity with the second lowest GHG emissions intensity, in the range of 90 g CO 2 /KWh. Such a very beneficial figure is directly related to the high contribution of nuclear in the electricity mix combined with renewables energies, in particular hydro. Greenhouse gases emissions are very relevant to assess the respective influence on the global climate change, but they do not address the whole potential environmental impact of any activity. However, such a question is crucial for assessing the respective sustainability of such an activity, in particular nuclear energy which is thought to be very detrimental by a large part of the public opinion. In order to address this question, we developed a dedicated life cycle assessment (LCA) tools referred to as NELCAS, the specificity of which is to focus on the first order parameters and avoiding any 'black-box' effect which can exist in commercial LCA tool. Thanks to the recent transparency and nuclear safety law (2006), in- and out- fluxes of matter and energy for any of the fuel cycle facilities are now publicly available. We hence used this significant set of measured data to feed our model and assess the most usual environmental indicators such as land use, different types of atmospheric emissions (GHG, SOx, NOx, particles...) and aqueous release (chemical effluents, eutrophication potential,...)... We also

  15. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis.

    Science.gov (United States)

    Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer

    2014-06-01

    Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.

  16. USEtox: The UNEP-SETAC consensus model for life-cycle impacts on human health and ecosystems

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; McKone, Tom; Huijbregts, Mark A.J.

    2007-01-01

    Life cycle impact assessment (LCIA) characterizes emissions for the life-cycle assessment (LCA) of a product by translating these emissions into their potential impacts on human health, ecosystems, global climate and other resources. This process requires substance-specific characterization factors...... (CFs) that represent the relative potential of specific chemical emissions to impact human disease burden and ecosystem health. Within the Life Cycle Initiative, a joint initiative of the United Nations Environment Program (UNEP) and of the Society of Environmental Toxicology and Chemistry (SETAC...... and transparent tool for making human health and ecosystem CF estimates. The consensus model has now been used to calculate CFs for several thousand substances and is intended to form the basis of the recommendations from UNEP-SETAC‘s Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle...

  17. Environmental impact data for fuels. Part 1: Main report. Resource consumption and emissions from the entire life cycle (New revised edition)

    International Nuclear Information System (INIS)

    Uppenberg, S.; Almemark, M.; Brandel, M.; Lindfors, L.G.; Marcus, H.O.; Stripple, H.; Wachtmeister, A.; Zetterberg, L.

    2001-05-01

    This report is a compilation of data concerning environmental impacts from the utilization of different fuels. The entire life cycle is studied, from the extraction of raw materials to combustion. The fuels under study are gasoline, gasoline with MTBE, diesel, fuel oil, LPG, coal, natural gas, peat, refuse, ethanol, RME, DME, methane and wood fuels (forestry residues, Salix, pellets/briquettes). Utilization areas studied are heating plants, cogeneration plants, power plants, domestic boilers, and light and heavy vehicles. In this new edition, the following changes were made: New life cycle analyses have been included, a few new fuels added, electricity from hydroelectric plants, wind power plants and nuclear power plants have been included and some other minor changes

  18. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  19. Reducing the environmental impact of concrete and asphalt: a scenario approach

    NARCIS (Netherlands)

    Blankendaal, T.; Schuur, Peter; Voordijk, Johannes T.

    2014-01-01

    In this paper, measures are evaluated to reduce the environmental impact of concrete and asphalt. Several composition scenarios are designed for these materials and are evaluated based on their environmental performance using life-cycle assessment (LCA). The effect of low-energy production

  20. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials

    Directory of Open Access Journals (Sweden)

    Seungjun Roh

    2018-05-01

    Full Text Available Because the reduction in environmental impacts (EIs of buildings using life-cycle assessment (LCA has been emphasized as a practical strategy for the sustainable development of the construction industry, studies are required to analyze not only the operational environmental impacts (OEIs of buildings, but also the embodied environmental impacts (EEIs of building materials. This study aims to analyze the EEIs of Korean apartment buildings on the basis of major building materials as part of research with the goal of reducing the EIs of buildings. For this purpose, six types of building materials (ready-mixed concrete, reinforcement steel, concrete bricks, glass, insulation, and gypsum for apartment buildings were selected as major building materials, and their inputs per unit area according to the structure types and plans of apartment buildings were derived by analyzing the design and bills of materials of 443 apartment buildings constructed in South Korea. In addition, a life-cycle scenario including the production, construction, maintenance, and end-of-life stage was constructed for each major building material. The EEIs of the apartment buildings were quantitatively assessed by applying the life-cycle inventory database (LCI DB and the Korean life-cycle impact assessment (LCIA method based on damage-oriented modeling (KOLID, and the results were analyzed.

  1. Environmental assessment of contaminated site remediation in a life cycle perspective

    DEFF Research Database (Denmark)

    Lemming, Gitte

    is an environmental assessment tool that compiles a very wide array of environmental exchanges (emissions to air, water, and soil, and resource consumption) associated with the life cycle of a product or service .and translates them to impacts (global warming, acidification, human toxicity, ecotoxicity, etc...... fate and transport models. This made it possible to account for important processes, such as the formation of chlorinated degradation products and to include the site-specific exposure of humans via ingestion of groundwater used for drinking water. The inclusion of primary impacts in the environmental......-cleaning and industries. Chloroethenes are dense non-aqueous phase liquids (DNAPLs) with high density and viscosity and low solubility in water. These characteristics allow a spill to migrate deep into the subsurface, where it can act as long-term source of dissolved-phase groundwater contamination. Due to the longevity...

  2. Life cycle impact assessment of biodiesel using the ReCiPe method

    Directory of Open Access Journals (Sweden)

    Kiss Ferenc E.

    2013-01-01

    Full Text Available This paper presents the life cycle impact assessment (LCIA results of biodiesel produced from rapeseed oil. The functional unit (FU is defined as 3750 km of distance traveled by a truck fuelled with biodiesel. The reference flow is 1000 kg of biodiesel. The LCIA method used in the study is the ReCiPe method. At midpoint level the ReCiPe method addresses environmental issues within 18 impact categories. Most of these midpoint impact categories are further converted and aggregated into 3 endpoint categories (damage to human health, damage to ecosystem diversity, damage to mineral resource availability. The total impact of biodiesel’s life cycle was estimated at 540 Pt/FU. The damage to ecosystem diversity (1.48E-04 species•year/FU, the damage to human health (7.48E-03 DALY/FU and the damage to mineral resource availability (8.11E+03 US$/FU are responsible for 63%, 27% and 10% of the total negative impact in the life cycle of biodiesel, respectively. The results have revealed that only 4 impact categories are responsible for most of the impacts within the specific endpoint categories. These are impacts associated with global warming (3000 kg CO2 ekv./FU, particulate matter formation (12.4 kg PM ekv./FU, agricultural land occupation (6710 m2a./FU and fossil fuel depletion (21168 MJ/FU. Greenhouse gases emitted in the life cycle of biodiesel (mainly N2O, CO2 are responsibly for 56% of the damage caused to human health and for 16% of the damage caused to ecosystem diversity. Airborne emissions which contribute to particulate matter formation (NOx, NH3, PM, SO2 are responsible for 43% of the damage caused to human health. Agricultural land occupation is responsible for 82% of the damage caused to the ecosystem diversity. Damage to mineral resource availability is almost entirely related to the depletion of fossil energy sources. The production chain of biodiesel and the combustion of biodiesel are responsible for 69% and 31% of the total impact of

  3. Environmental management throughout the mining cycle: a proactive and integrated approach - 5288

    International Nuclear Information System (INIS)

    Lacroix, E.; Rayot, V.; Descostes, M.; Luquet de Saint Germain, V.; Recoche, G.

    2015-01-01

    Industrial activities such as mining generate environmental impacts. The purpose of AREVA Mines is to avoid and/or to minimize them as much as possible in order to improve its integration into its environment. In this article AREVA environmental strategy is illustrated by 3 case studies: -) project and exploration works in Mongolia, -) the post-mining remediation in Mongolia and Kazakhstan, and -) the closing of the Bellezane (France) site. In conclusion, AREVA environmental strategy for its mining activities is: -) assuming a proactive approach to prevent potential risks and impacts on environment, -) developing a scientific and detailed knowledge of the impacts on environment and implementing appropriate mitigation measures, -) monitoring the environment at the earliest stages of the mining cycle, -) investing in research and development to improve our practices, and -) taking into account the concerns and the knowledge of our stakeholders, and the social and cultural aspects directly linked to the site environment

  4. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    Science.gov (United States)

    Kittipongvises, Suthirat

    2017-11-01

    Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, `resources' and `climate change' categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  5. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  6. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.P.; Miraglia, F.J. Jr.

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts

  7. Life cycle assessment (LCA) as a decision-suppport tool for the evaluation of environmental impacts of site remediation on the global, regional and local scale

    DEFF Research Database (Denmark)

    Lemming, Gitte; Bulle, C.; Margni, Manuele

    2010-01-01

    Life cycle assessment (LCA) was used to compare the environment al impacts of three alternatives for remediating a TCE-contaminated site: (i) enhanced reductive dechlorination (ERD); (ii) in situ thermal desorption (ISTD) and (iii) excavation with off-site soil treatment. In addition......, the remediation alternatives were compared to a no action scenario, where only monitoring and natural attenuation takes place. A numerical reactive fracture model was used to predict the timeframes for the ERD and the no action scenarios. Moreover, the model was used to estimate the mass discharge of TCE...... of the LCA showed that of the three remediation methods compared, the ERD had the lowest total environmental impacts, even though it had significant primary impacts due to its long timeframe. The environmental impacts of ERD were comparable or only slightly higher than those of the no action scenario. ISTD...

  8. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  9. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    International Nuclear Information System (INIS)

    Beylot, Antoine; Villeneuve, Jacques

    2013-01-01

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO x emissions. • E.g. climate change impact ranges from −58 to 408 kg CO 2 -eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO 2 -eq to a relatively large burden of 408 kg CO 2 -eq, with 294 kg CO 2 -eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO x process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available

  10. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    Science.gov (United States)

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  11. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  12. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  13. Environmental Life Cycle Assessment of long-term organic rice production in a Subtropical area of China

    DEFF Research Database (Denmark)

    Xueqing, He; Qiao, Yuhui; Liang, Long

    2018-01-01

    a considerable environmental impact and changing from conventional to organic rice cultivation might therefore have a potentially great impact. Meanwhile, it takes time for the organic farming systems to reach a new steady state after conversion to organic. Thus, the environmental profile of the organic products...... will change over time and it is therefore important to examine whether the difference to conventional will be reduced (and disappear) or be increased over time. The aim of the present study was therefore to assess the environmental impact of organic rice production 5 (OR5), 10 (OR10) and 15 (OR15) years since...... conversion and compare it to conventional rice (CR) in subtropical China. The life cycle assessment (LCA) method was used to assess environmental impact of rice production systems with regard to nine environmental impact categories: Non-renewable Energy Depletion (NED), Water Depletion (WD), Land Occupation...

  14. Externalities of fuel cycles 'ExternE' project. Economic valuation. Economical valuation: An impact pathway approach

    International Nuclear Information System (INIS)

    Markandya, A.

    1994-01-01

    The EC/US study of the external costs of fuel cycles is designed to trace through all the environmental impacts arising from the use of a particular fuel, from the 'cradle' to the 'grave'; to quantify these impacts as far as possible (giving priority to those that are the considered the most important) and to value the damages arising from them in money terms as far as possible (again keeping to the priority listing established by the physical quantification). The fuel cycle has been identified as consisting of the following elements: activities -> emissions/burdens; emissions/burdens -> physical environmental impacts; physical impacts -> external environmental impacts; external impacts -> costs of these impacts. The activities consist of all the operations that are carried out in connection with the extraction transportation, use in electricity generation and finally disposal of the fuel. The emissions or burdens arising from the cycle result in physical impacts, which in turn imply certain environmental impacts. An illustration of a typical fuel cycle (coal) audits environmental impacts is given in Figures. The work of the fuels cycle study teams is to complete the valuation of the shaded areas but giving priority to those impacts that are likely to be quantitatively important. .Each fuel cycle is evaluated in a location-specific context, so that it refers to the impacts arising from the use of coal, or gas or whatever fuel is being considered at an actual plant that is operating. The purpose of this report on economic valuation is to: (a) examine the literature or economic valuation of environmental externalities in Europe; (b) assess its relevance to the fuel cycle study and (c) make recommendations on how the detailed analysis of the individual fuel cycles should use the economic valuation. It is important to recognize that the report is not a complete survey of all the research ever done on environmental valuation. Although as complete a survey of all the

  15. Safety, health and environmental implications of the different fuel cycles. Key issue paper no. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The objective of this paper is to give an overall perspective of the health and environmental consequences of the nuclear fuel cycle. This is done using surveys of the performances of nuclear installations worldwide and results of recent studies on the impacts on health and environment of the nuclear fuel cycle. 23 refs, 6 figs, 7 tabs.

  16. Safety, health and environmental implications of the different fuel cycles. Key issue paper no. 4

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of this paper is to give an overall perspective of the health and environmental consequences of the nuclear fuel cycle. This is done using surveys of the performances of nuclear installations worldwide and results of recent studies on the impacts on health and environment of the nuclear fuel cycle. 23 refs, 6 figs, 7 tabs

  17. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  18. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Antón, Assumpció; Boulay, Anne-Marie

    2018-01-01

    of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use......Purpose: Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA...... are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle...

  19. Externalities of fuel cycles 'ExternE' project. Wind fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Eyre, N.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include physical damage to natural and built environment as well as impacts on recreation, amenity, aesthetics and other contributors to individual utility. Traditional economic assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favour of technologies with significant environmental impacts. Concern over widespread degradation of the environment resulting from the major electricity generating fuel cycle emissions has mounted since the early 1970s. The impacts of acidifying pollutants and ozone precursors have been studied extensively. More recently, the accumulation of greenhouse gases in the atmosphere and the consequential changes to the Earth's climate have caused even more concern. At the same time, the environmental problems of nuclear power - ionising radiation, catastrophic consequences of accidents and unresolved problems of storing highly active waste - have increasingly been recognised. Electricity generation based on renewable energy sources is generally considered to be more environmentally benign, because the major pollution effects of the fossil fuel and nuclear fuel cycles are avoided. However, even the renewables are not impact free, although the impacts tend to be more local in character. This report evaluates in detail the environmental impacts, and their costs, of one of those sources - wind energy. It is the first attempt at a comprehensive assessment of the monetary values of the environmental impacts of wind energy. Although the theoretical basis for including external costs in decision making processes is well understood, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988) and Ottinger et al (1990) are examples of attempts to calculate the environmental externalities of

  20. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  1. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  2. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  3. Environmental impacts of electricity self-consumption from organic photovoltaic battery systems at industrial facilities in Denmark

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Hauschild, Michael Zwicky

    2017-01-01

    investigate the life cycle environmental impacts of electricity self-consumption from an OPV system coupled with a sodium/nickel chloride battery at an iron/metal industry in Denmark. Results show that an OPV system without storage could decrease the carbon footprint of the industry; installation......Organic photovoltaics (OPV) show promise of greatly improving the environmental and economic performance of PV compared to conventional silicon. Life cycle assessment studies have assessed the environmental impacts of OPV, but not under a self-consumption scheme for industrial facilities. We...

  4. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  5. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  6. Environmental impacts of Jatropha curcas biodiesel in India.

    Science.gov (United States)

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

  7. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  8. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    Directory of Open Access Journals (Sweden)

    Kittipongvises Suthirat

    2017-11-01

    Full Text Available Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, ‘resources’ and ‘climate change’ categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  9. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  10. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  11. Environmental performance of straw-based pulp making: A life cycle perspective.

    Science.gov (United States)

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  13. Environmental effects of fuel peat use in Finland. An LCA-based Decision Analysis Impact Assessment

    International Nuclear Information System (INIS)

    Leijting, J.

    1998-02-01

    Finland is a country where the main domestic energy sources are restricted to hydroelectric power, wood and peat from which hydropower is practically utilized fully. The use of peat as energy source has increased drastically since the oil crisis in the beginning of the seventies and the peat exploitation industry is nowadays a significant supplier of labour in Finland. Peat is, in contrast to fossil energy sources, exploited and used as an energy source within the country's borderline. Therefore, all direct extractions and emissions takes place in Finland.The influence of the processes, which occur during the life cycle of fuel peat, on the environment as a whole is yet somewhat unclear. The aim of the study is to map and assess the overall environmental impacts of production and use of fuel peat in Finland and to bring these impacts in relation with total environmental impacts in Finland caused by anthropogenic emissions. The results should be comparable with the impacts of other product life cycles (for instance other fuels). Furthermore, the detection of data gaps which are present is an important element of the study. Research questions are (1) What are the contributions of the different stressors which are emitted during the life cycle of fuel peat in Finland to global and regional environmental impacts? The environmental impacts involved are global impacts like the greenhouse effect as well as regional environmental impacts, e.g.acidification, eutrophication, toxic effects, ozone formation and effects on biodiversity; and (2) What are the contributions expressed per functional unit? Emissions released during the life cycle of fuel peat were inventorized. The emissions were characterized into the various impact categories and a valuation of the various impacts was performed, based on the Decision Analyses Impact Assessment (DAIA). In DAIA, country specific values were applied for estimating the potential of the stressors to cause adverse environmental effects

  14. Comparison of the Overall Environmental Footprint between Current and Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.

    2015-01-01

    Full text of publication follows: Nuclear energy is anticipated to be one of the possible energy sources which can allow the production of energy at high load with a high level of reliability without significant impact on the environment. Nowadays, most of the countries have chosen an open fuel cycle which basically considers spent nuclear fuel as a waste, whereas others like France, the United Kingdom, Japan and soon China reprocess their spent fuel to recover the plutonium (and partially U) to produce mixed oxide fuel to be irradiated in a second cycle. In a second step, considering the possibility of fertilising 238 U to 239 Pu in fast reactors, recycling major actinides is thought to be a major improvement towards the global sustainability of the nuclear energy: It will indeed allow the natural resource efficiency to be increased by orders of magnitude by consuming quantitatively the natural uranium resource involved. Driven by the Fukushima accident, nuclear energy is currently questioned about its overall environmental impact and footprint. However, very little information is available on the actual footprint of current and future nuclear systems. In order to bring insights on this issue, a life cycle assessment simulation tool NELCAS was developed based on the French nuclear closed fuel cycle. It allows the calculation of representative key environmental indicators and potential impact indicators for the whole nuclear systems. The very good consistency of the results with the literature data confirms the relevance and robustness of NELCAS. It was subsequently used to derive representative indicators for open and future potential fuel cycles, i.e. mixed GEN3 and GEN4 reactors fleet and full GEN4 reactors fleet. The results demonstrate the very significant improvement brought by the actinides recycling and the future fuel cycle. Most of the indicators are very significantly decreased with the implementation of long-term recycling strategies. This paper will

  15. Effects of co-products on the life-cycle impacts of microalgal biodiesel.

    Science.gov (United States)

    Soratana, Kullapa; Barr, William J; Landis, Amy E

    2014-05-01

    Microalgal biodiesel production has been investigated for decades, yet it is not commercially available. Part of the problem is that the production process is energy and chemical intensive due, in part, to the high portion of microalgal biomass left as residues. This study investigated cradle-to-gate life-cycle environmental impacts from six different scenarios of microalgal biodiesel and its co-products. Ozone depletion, global warming, photochemical smog formation, acidification and eutrophication potentials were assessed using the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI). Monte Carlo Analysis was conducted to investigate the processes with major contribution in each impact category. The market opportunity for each co-product was examined based on supply, demand and prices of the products that could potentially be substituted by the co-products. The results indicated that the scenario with the least life-cycle environmental impacts in all the five impact categories with the highest net energy ratio was the scenario utilizing a multitude of co-products including bioethanol from lipid-extracted microalgae (LEA), biomethane (to produce electricity and heat) from simultaneous saccharification-fermentation (SSF) residues, land-applied material from SSF residue anaerobic digestion (AD) solid digestate, recycling nutrients from SSF residue AD liquid digestate and CO2 recovered from SSF process contributed. Decreasing the energy consumption of the centrifuge in the land-applied material production process and increasing the lipid content of microalgae can reduce environmental footprints of the co-products. The same scenario also had the highest total income indicating their potential as co-products in the market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Life cycle impact assessment of home energy management systems (HEMS) using dynamic emissions factors for electricity in Finland

    International Nuclear Information System (INIS)

    Louis, Jean-Nicolas; Pongrácz, Eva

    2017-01-01

    Decarbonising the European economy is a long-term goal in which the residential sector will play a significant role. Smart buildings for energy management are one means of decarbonisation, by reducing energy consumption and related emissions. This study investigated the environmental impacts of smart house automation using life cycle impact assessment. The ReCiPe method was selected for use, in combination with dynamic emissions factors for electricity in Finland. The results indicated that a high level of technology deployment may be counter-effective, due to high electricity consumption by the sensor network, automation system and computing devices. The results also indicated that number of inhabitants per household directly affected the environmental impacts of home automation. A single-person household saw its environmental impacts increase by 15%, while those of a five-person household increased by 3% in the worst-case scenario. The manufacturing phase contributed the major share of environmental impacts, exceeding the use phase in multiple categories. These findings indicate that finding the sweet spot in which technology can promote decarbonisation will be crucial to achieving the goal of a low‑carbon economy. - Highlights: •HEMS did not reduce the overall environmental impact of households. •Environmental impacts of HEMS are greater for single inhabitant households. •Energy efficiency of sensing devices must drastically increase to promote decarbonisation. •The highest life cycle environmental impacts of electronics are during the manufacturing phase. •Raising awareness is a critical part in decreasing the environmental impact of households.

  17. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings

    International Nuclear Information System (INIS)

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-01-01

    Highlights: • A lifecycle optimization model for distributed energy systems is developed. • Model estimates costs and environmental impacts of meeting the building energy demand. • Design and operating strategies to reduce costs and environmental impacts are discussed. • Pareto frontiers of costs vis-à-vis environmental impacts are presented. • Distributed generation can reduce the environmental impacts of the building sector. - Abstract: Distributed generation, namely cogeneration and solar technologies, is expected to play an important role in the future energy supply mix in buildings. This calls for a methodological framework to assess the economic and environmental performance of the building sector when such technologies are employed. A life-cycle model has been developed, combining distributed generation and conventional sources to calculate the cost and environmental impacts of meeting the building energy demand over a defined planning period. Three type of cogeneration technologies, solar photovoltaic and thermal, as well as conventional boilers along with the Portuguese electricity generation mix comprise the energy systems modeled. Pareto optimal frontiers are derived, showing the trade-offs between different types of impacts (non-renewable cumulative energy demand, greenhouse gas emissions, acidification, eutrophication) and cost to meet the energy demand of a commercial building. Our analysis shows that according to the objective to employ distributed generation (reducing cost or environmental impacts), a specific design and operational strategy for the energy systems shall be adopted. The strategies to minimize each type of impact and the associated cost trade-offs by exploring the solutions located on the Pareto optimal frontiers are discussed

  18. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    International Nuclear Information System (INIS)

    Josa, Alejandro; Aguado, Antonio; Cardim, Arnaldo; Byars, Ewan

    2007-01-01

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content

  19. Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options

    International Nuclear Information System (INIS)

    Ercan, Tolga; Zhao, Yang; Tatari, Omer; Pazour, Jennifer A.

    2015-01-01

    Public transportation is one of the most promising transportation modes to reduce the environmental emissions of the transportation sector in the U.S. In order to mitigate the environmental impacts brought by the transit bus system, new energy buses are introduced into the vehicle market. The goal of this study is to find an optimal bus fleet combination for different driving conditions to minimize life cycle cost, greenhouse gas emissions, and conventional air pollutant emission impacts. For this purpose, a Multi-Objective Linear Programming approach is used to select the optimum bus fleet combinations. Given different weight scenarios, this method could effectively provide solutions for decision makers with various budget constraints or emission reduction requirements. The results indicate that in heavily congested driving cycles such as the Manhattan area, the battery electric bus is the dominant vehicle type, while the hybrid bus has more balanced performances in most scenarios because of its lower initial investment comparing to battery electric buses. Petroleum powered buses have seldom been selected by the model. The trade-off analysis shows that the overall greenhouse gas impact performance is sensitive to the life cycle cost after certain points, which could provide valuable information for the bus fleet combination planning. - Highlights: • Hybrid-Life Cycle Assessment analysis approach for transit bus operations. • Optimizing the economic and sustainability impacts of transit bus fleet operation. • CO 2 emissions and other air pollutants related health and environmental damage cost. • Trade-offs between CO 2 emissions and cost of transit bus fleet operation.

  20. Environmental impacts of flood control measures in climate change adaptation strategies

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Hauschild, Michael Zwicky

    it on the surface without harming assets. When evaluating different adaptation approaches, a cost assessment is typically carried out, while environmental impacts usually are not considered. To close this gap, a Life Cycle Assessment (LCA) based method is developed, which allows to quantify environmental impacts...... only contribute up to 4% of the environmental impacts for the CMP and less than 1% for the SSA. Our method helps explain how the handling of everyday events and extreme rain events affect the environmental sustainability of climate change adaptation and it enables cities to consider the environmental......Because of climatic changes, large investments are needed to keep flood risk at an acceptable level in urban areas. Increasing dimensions of underground sewer systems and retention basins are increasingly supplemented with multi-functional approaches, aimed at managing water locally and/or route...

  1. Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors.

    Science.gov (United States)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui; Zeng, Xianlai

    2012-10-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    International Nuclear Information System (INIS)

    Song Qingbin; Wang Zhishi; Li Jinhui; Zeng Xianlai

    2012-01-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator’ 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step—the end-of-life stage—can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  3. The environmental impact of fibre crops in industrial applications

    NARCIS (Netherlands)

    Dam, van J.E.G.; Bos, H.L.

    2004-01-01

    A short literature survey is presented on health and environmental issues in relation to the production and use of fibre crops. Next a short introduction to Life Cycle Analysis (LCA) is given and the various commonly applied methods for quantifying ecological impacts are discussed in short. The

  4. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  5. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Environmental hot spot analysis in agricultural life-cycle assessments – three case studies

    Directory of Open Access Journals (Sweden)

    Gerhard Piringer

    2016-06-01

    Full Text Available Present-day agricultural technology is facing the challenge of limiting the environmental impacts of agricultural production – such as greenhouse gas emissions and demand for additional land – while meeting growing demands for agricultural products. Using the well-established method of life-cycle assessment (LCA, potential environmental impacts of agricultural production chains can be quantified and analyzed. This study presents three case studies of how the method can pinpoint environmental hot spots at different levels of agricultural production systems. The first case study centers on the tractor as the key source of transportation and traction in modern agriculture. A common Austrian tractor model was investigated over its life-cycle, using primary data from a manufacturer and measured load profiles for field work. In all but one of the impact categories studied, potential impacts were dominated by the operation phase of the tractor’s life-cycle (mainly due to diesel fuel consumption, with 84.4-99.6% of total impacts. The production phase (raw materials and final assembly caused between 0.4% and 12.1% of impacts, while disposal of the tractor was below 1.9% in all impact categories. The second case study shifts the focus to an entire production chain for a common biogas feedstock, maize silage. System boundaries incorporate the effect of auxiliary materials such as fertilizer and pesticides manufacturing and application. The operation of machinery in the silage production chain was found to be critical to its environmental impact. For the climate change indicator GWP100 (global warming potential, 100-year reference period, emissions from tractor operation accounted for 15 g CO2-eq per kg silage (64% of total GWP100, followed by field emissions during fertilizer (biogas digestate application with 6 g CO2-eq per kg silage (24% of total GWP100. At a larger system scale that includes a silage-fed biogas plant with electricity generated by

  7. Assessing Environmental Impact Indicators in Road Construction Projects in Developing Countries

    Directory of Open Access Journals (Sweden)

    Mohamed Marzouk

    2017-05-01

    Full Text Available Environmental pollution is considered to be one of the main concerns in the construction industry. Environmental pollution has become a major challenge to construction projects due to the huge amount of pollution caused by construction projects. There are different types of environmental impact indicators, such as the greenhouse gas (GHG footprint, eutrophication potential (EP, acidification potential (AP, human health (HH particulate, ozone depletion, and smog. Each of these environmental impact indicators can be linked to different phases of the construction projects. The overall environmental impact indicators can be divided into direct, indirect, and operational emissions. This paper presents a Building Information Modeling (BIM-based methodology for the assessment of environmental impacts in road construction projects. The model takes into account the overall life cycle of the road construction project, which is divided into: manufacturing phase, transportation phase, construction phase, maintenance phase, operational phase, recycling phase, and deconstruction phase. A case study is presented to demonstrate the applicability of the proposed model. The proposed model solves a major problem for road construction project teams who want to assess the environmental impact indicators associated with their project prior to the start of the execution of their projects.

  8. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    Science.gov (United States)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  9. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: egg production systems.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I

    2012-01-01

    The aim of this study was to apply a life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of eggs produced in the 4 major hen-egg production systems in the United Kingdom: 1) cage, 2) barn, 3) free range, and 4) organic. The analysis was based on an approach that applied a structural model for the industry and mechanistic submodels for animal performance, crop production, and nutrient flows. Baseline feeds representative of those used by the UK egg production industry were used. Typical figures from the UK egg production industry, feed intake, mortality of birds, farm energy, and material use in different systems were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs and allow for comparisons between the systems. The number of birds required to produce 1,000 kg of eggs was highest in the organic and lowest in the cage system; similarly, the amount of feed consumed per bird was highest in the organic and lowest in the cage system. These general differences in productivity largely affected the differences in the environmental impacts between the systems. Feed production, processing, and transport caused greater impacts compared with those from any other component of production; that is, 54 to 75% of the primary energy use and 64 to 72% of the global warming potential of the systems. Electricity (used mainly for ventilation, automatic feeding, and lighting) had the second greatest impact in primary energy use (16-38%). Gas and oil (used mainly for heating in pullet rearing and incineration of dead layer birds) used 7 to 14% of the total primary energy. Manure had the greatest impact on the acidification and eutrophication potentials of the systems because of ammonia emissions that contributed to both of these potentials and nitrate leaching that only affected eutrophication potential. The LCA method allows for comparisons between systems and for the identification of hotspots

  10. Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment

    International Nuclear Information System (INIS)

    Viholainen, J.; Grönman, K.; Jaatinen-Värri, A.; Grönman, A.; Ukkonen, P.; Luoranen, M.

    2015-01-01

    Highlights: • Energy performance and environmental impact of the compressor operation was studied. • Diffusers can offer significant energy savings in aeration compressor tasks. • Diffusers used in compressors reduce the environmental impact of the machine use. • The influence of additional material and diffuser manufacturing is insignificant. - Abstract: Energy costs typically dominate the life-cycle costs of centrifugal compressors used in various industrial and municipal processes, making the compressor an attractive target for energy efficiency improvements. This study considers the achievable energy savings of using three different diffuser types in a centrifugal compressor supporting a typical end-use process in a waste water treatment plant. The effect of the energy efficiency improvements on the annual energy use and the environmental impacts are demonstrated with energy calculations and life-cycle assessment considering the selected compressor task in the waste water aeration. Besides the achievable energy saving benefits in the wastewater aeration process, the presented study shows the influence of the additional material needed in the diffuser manufacturing on the total greenhouse gas emissions of the compressor life-cycle. According to the calculations and assessment results, the studied diffuser types have a significant effect on the compressor energy use and environmental impacts when the compressor is operated in the aeration task. The achievable annual energy savings in this case were 2.5–4.9% in comparison with the baseline scenario. Also, the influence of the additional material and energy use for manufacturing the diffuser are insignificant compared with the avoided greenhouse gas reduction potential

  11. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  12. Evaluation of the environmental impact of portion bag for food packaging: a case study of Thailand

    Science.gov (United States)

    Ruangrit, Chaniporn; Usapein, Parnuwat; Limphitakphong, Nantamol; Chavalparit, Orathai

    2017-05-01

    This study applied life cycle assessment methodology in evaluating environmental impact of portion bag. The objective of this study was to identify the hotspot of environmental impact through life cycle of portion bag. The options were proposed for improving environmental performance of the product. The system boundary was defined as cradle-to-grave which included the ethylene production, LDPE and LLDPE resins production, portion bag production, disposal, and transportation. All materials and emissions were calculated based on 1 piece of portion bag which weighed 2.49 g. IMPACT 2002+ was used for assessing environmental impact on SimaPro V8.2 software. The result found that the most of environmental impact was generated from LDPE and LLDPE resins which was used as raw material for producing portion bag. After normalization, non-renewable energy showed the highest potential to concern. This impact related directly to the natural gas drilling, ethane production, ethylene production, resin productions, and energy in all process. In conclusion, it should be suggested that the selection of bio-material for producing portion bag can play an important role to reduce the environmental impact. The research demonstrates the possible way and benefits in improving cleaner raw material and suitable way of product's end-of-life for producing green portion bag in the future.

  13. Analysis of the Environmental Impact on Remanufacturing Wind Turbines

    Science.gov (United States)

    Sosa Skrainka, Manuel R.

    To deliver clean energy the use of wind turbines is essential. In June 2011 there was an installed wind capacity equivalent to 211,000MW world-wide (WWEA, 2011). By the end of the year 2009 the U.S. had 35,100MW of wind energy installed capacity to generate electricity (AWEA, 2010). This industry has grown in recent years and is expected to grow even more in the future. The environmental impacts that will arise from the increased number of wind turbines and their end-of-life should be addressed, as large amounts of resources will be required to satisfy the current and future market demands for wind turbines. Since future 10MW wind turbines are expected to be as heavy as 1000 tons each, the study of the environmental response of profitable retirement strategies, such as remanufacturing for these machines, must be considered. Because of the increased number of wind turbines and the materials used, this study provides a comparison between the environmental impacts from remanufacturing the components installed inside the nacelle of multi-megawatt wind turbines and wind turbines manufactured using new components. The study methodology is the following: • Describe the life-cycle and the materials and processes employed for the manufacture and remanufacturing for components inside the nacelle. • Identify remanufacturing alternatives for the components inside the nacelle at the end of the expected life-time service of wind turbines. • Evaluate the environmental impacts from the remanufactured components and compare the results with the impacts of the manufacturing of new components using SimaPro. • Conduct sensitivity analysis over the critical parameters of the life cycle assessment • Propose the most environmentally friendly options for the retirement of each major component of wind turbines. After an analysis of the scenarios the goal of the study is to evaluate remanufacturing as an end-of-life option from an environmental perspective for commercial multi

  14. Environmental Impacts of Plant-Based Diets: How Does Organic Food Consumption Contribute to Environmental Sustainability?

    Science.gov (United States)

    Lacour, Camille; Seconda, Louise; Allès, Benjamin; Hercberg, Serge; Langevin, Brigitte; Pointereau, Philippe; Lairon, Denis; Baudry, Julia; Kesse-Guyot, Emmanuelle

    2018-01-01

    Studies investigating diet-related environmental impacts have rarely considered the production method of the foods consumed. The objective of the present study, based on the NutriNet-Santé cohort, was to investigate the relationship between a provegetarian score and diet-related environmental impacts. We also evaluated potential effect modifications on the association between a provegetarian score and the environmental impacts of organic food consumption. Food intake and organic food consumption ratios were obtained from 34,442 French adults using a food frequency questionnaire, which included information on organic food consumption for each group. To characterize the overall structure of the diets, a provegetarian score was used to identify preferences for plant-based products as opposed to animal-based products. Moreover, three environmental indicators were used to assess diet-related environmental impacts: greenhouse gas (GHG) emissions, cumulative energy demand (CED), and land occupation. Environmental impacts were assessed using production life cycle assessment (LCA) at the farm level. Associations between provegetarian score quintiles, the level of organic food consumption, and environmental indicators were analyzed using ANCOVAs adjusted for energy, sex, and age. Participants with diets rich in plant-based foods (fifth quintile) were more likely to be older urban dwellers, to hold a higher degree in education, and to be characterized by an overall healthier lifestyle and diet. A higher provegetarian score was associated with lower environmental impacts (GHG emissions Q5vsQ1  = 838/1,664 kg CO 2eq /year, -49.6%, P  impacts but only among participants with diets rich in plant-based products. Future field studies should endeavor to integrate all the components of a sustainable diet, i.e., both diet composition and production methods.

  15. Environmental impacts of cultured meat production.

    Science.gov (United States)

    Tuomisto, Hanna L; de Mattos, M Joost Teixeira

    2011-07-15

    Cultured meat (i.e., meat produced in vitro using tissue engineering techniques) is being developed as a potentially healthier and more efficient alternative to conventional meat. Life cycle assessment (LCA) research method was used for assessing environmental impacts of large-scale cultured meat production. Cyanobacteria hydrolysate was assumed to be used as the nutrient and energy source for muscle cell growth. The results showed that production of 1000 kg cultured meat requires 26-33 GJ energy, 367-521 m(3) water, 190-230 m(2) land, and emits 1900-2240 kg CO(2)-eq GHG emissions. In comparison to conventionally produced European meat, cultured meat involves approximately 7-45% lower energy use (only poultry has lower energy use), 78-96% lower GHG emissions, 99% lower land use, and 82-96% lower water use depending on the product compared. Despite high uncertainty, it is concluded that the overall environmental impacts of cultured meat production are substantially lower than those of conventionally produced meat.

  16. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  17. Evaluating Environmental Governance along Cross-Border Electricity Supply Chains with Policy-Informed Life Cycle Assessment: The California-Mexico Energy Exchange.

    Science.gov (United States)

    Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B

    2018-05-01

    This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.

  18. Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions.

    Science.gov (United States)

    Uctug, Fehmi Gorkem; Azapagic, Adisa

    2018-05-01

    Solar water heating (SWH) systems could help reduce environmental impacts from energy use but their performance and impacts depend on the climate. This paper considers how these vary for residential SWH across four different climatic regions in Turkey, ranging from hot to cold climates. Life cycle assessment was used for these purposes. The results suggest that in the hotter regions, the impacts of SWH are 1.5-2 times lower than those of natural gas boilers. A similar trend was observed in the two colder regions except for acidification, which was four times higher than that of the boiler. The raw materials and electricity required for the manufacturing of the systems were found to be the most important contributors to the impacts. Recycling the major components instead of landfilling reduced human toxicity potential by 50% but had only a small effect (5%) on the other impacts. The impacts were highly sensitive to the type of material used for the construction of the hot storage tank, but were not affected by transport and end-of life recycling. The only exception to the latter is human toxicity potential which decreased significantly with greater recycling. Extrapolating the results at the national level showed that SWH systems could reduce the annual greenhouse gas emissions in Turkey by 790kt CO 2 -eq. and would save the economy $162.5millionperyear through the avoided imports of natural gas. All other impacts would also be reduced significantly (3-32 times), except for acidification which would double. Therefore, SWH systems should be deployed more extensively in Turkey but government incentives may be needed to stimulate the uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interdisciplinary environmental impact statement examinations with parallel licensing procedures

    International Nuclear Information System (INIS)

    Gassner, E.

    1990-01-01

    The article investigates the question how the interdisciplinary, collective, integrative environmental impact statement can predominate the decisions in individual licensing procedures. It illustrates the requirements of the Act on Environmental Impact Statements. According to this Act, measures are to be found which deal with the overall complex, i.e. the entire system. In the article, the monitoring project organization's primary responsibility is emphasized: Analysis and prognosis of a project's environmental impacts are transferred to this organization for decision-preparation. Subsequent corrections or supplementations during the official approval procedure, or incorporation of the public through the authorities, do not change the matter. An all-comprehensive assessment must be based on all-comprehensive standards. From the point of view of immissions this is minimization of adverse effects on the nature cycle and landscape matters; from the point of view of emissions it is the duty of environment-compatible waste management within the sense of waste management legislation having to serve public welfare. (orig.) [de

  20. Externalities of fuel cycles 'ExternE' project. Oil fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.; Trukenmueller, A.; Gressmann, A.; Runte, K.-H.; Kortum, G.; Weltschev, M.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include damage to health, forests, crops, natural ecosystems and the built environment. Traditional assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favor of technologies with significant environmental burdens. Concern over widespread degradation of the environment resulting from fuel cycle emissions has mounted since the late 1960s. In the early 1970s the potential for long range atmospheric transport of certain pollutants was recognized. The effects of acidifying pollutants, ozone precursors and greenhouse gases have caused particular concern. This is reflected in recent trends in economic thought, particularly the emphasis on sustainable development and the use of market mechanisms for environmental regulation. It has thus become increasingly clear that the external impacts of energy use are significant and should be considered by energy planners. Although the theoretical basis for including external costs in decision making processes has been generally agreed, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988), Ottinger et al. (1990) and Friedrich and Voss (1993) provide the background for such work, though they are of a somewhat preliminary nature. We need to improve the methods employed and the quality of models and data used so that planning decisions can be based at least partly on the results. It is particularly important that the site and project specificity of many impacts is recognized. In consequence of this a collaborative project between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy has been established to identify the most appropriate methodology for this type of work. The current study has three

  1. Externalities of fuel cycles 'ExternE' project. Lignite fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.; Trukenmueller, A.; Gressmann, A.

    1994-01-01

    Fuel cycle externalities are the costs imposed on society and the environment that are not accounted for by the producers and consumers of energy. They include damage to health, forests, crops, natural ecosystems and the built environment. Traditional assessment of fuel cycles has ignored these effects and the energy sector is consequently distorted in favor of technologies with significant environmental burdens. Concern over widespread degradation of the environment resulting from fuel cycle emissions has mounted since the late 1960s. In the early 1970s the potential for long range atmospheric transport of certain pollutants was recognized. The effects of acidifying pollutants, ozone precursors and greenhouse gases have caused particular concern. This is reflected in recent trends in economic thought, particularly the emphasis on sustainable development and the use of market mechanisms for environmental regulation. It has thus become increasingly clear that the external impacts of energy use are significant and should be considered by energy planners. Although the theoretical basis for including external costs in decision making processes has been generally agreed, an acceptable methodology for their calculation and integration has not been established. The studies of Hohmeyer (1988] and Ottinger et al. [1990] provide the background for such work, though they are of a somewhat preliminary nature [Friedrich, Voss, 1993]. We need to improve the methods employed and the quality of models and data used so that planning decisions can be based at least partly on the results. If is particularly important that the site and project specificity of many impacts is recognized. In consequence of this a collaborative project between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy has been established to identify the most appropriate methodology for this type of work. The current study has three

  2. Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts.

    Science.gov (United States)

    Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne

    2018-09-15

    Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All

  3. Environmental impact of the management of wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1980-01-01

    The subject is discussed under the headings; introduction; present and future management of radioactive wastes (origin and characteristics of radioactive wastes; present and possible future processes for management); production of waste following present management methods (quantities produced by one reactor, and estimate of global production; estimate of cumulative global production to the year 2000); alternative management processes; environmental impacts of present management methods (pollution; land use; natural resources; socio-economic constraints); impacts of effluent release (radiation doses due to various isotopes, at different distances and over various periods); global impacts; impacts of radioactive waste processing, storing and disposal (various methods discussed); detailed consideration of underground disposal (migration of radionuclides through geologic formations); disposal of wastes from decommissioning of nuclear installations (reactors and reprocessing plants); mining wastes; alternative processes; conclusions. (U.K.)

  4. Optimising environmental product life cycles: A case study of the European pulp and paper sector

    OpenAIRE

    Weaver, Paul M.; Gabel, H. Landis; Bloemhof-Ruwaard, Jacqueline M.; Van Wassenhove, Luk N.

    1997-01-01

    In this paper, we propose a methodology, based on materials accounting and operational research techniques, to assess different industry configurations according to their life cycle environmental impacts. Rather than evaluating a specific technology, our methodology searches for the feasible configuration with the minimum impact. This approach allows us to address some basic policy-relevant questions regarding technology choice, investment priorities, industrial structures, and international ...

  5. Cumulative Impact Assessment: Approaching Environmental Capacity in Development Area Using Environmental Impact Assessment Information

    Science.gov (United States)

    Cho, N.; Lee, M. J.; Maeng, J. H.

    2017-12-01

    Environmental impact assessment estimates the impact of development as a business unit and establishes mitigation plan. If the development is done, its economic effects can spread to the nearby areas. So that various developments can be distributed at different time intervals. The impact of the new developments can be combined with existing environmental impacts and can have a larger impact. That is, Cumulative impact assessment is needed to consider the environmental capacity of the Nearby area. Cumulative impact assessments require policy tools such as environmental impact assessment information and cumulative impact estimation models. In Korea, environmental information (water quality, air quality, etc.) of the development site is measured for environmental impact assessment and monitored for a certain period (generally 5 years) after the project. In addition, by constructing the environmental information as a spatial database, it is possible to express the environmental impact on a regional basis spatially and to intuitively use it for development site selection. Utilizing a composite model of environmental impact assessment information and Remote Sensing data for cumulative impact estimation, That can be used as a policy decision support tool that provides quantitative information for development area management, such as time series effect and sprawl phenomenon.

  6. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, Ali, E-mail: almakhsme@gmail.com; Serradj, Tayeb; Cheniti, Hamza

    2015-01-15

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10{sup 3} MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO{sub 2} eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10{sup −6} t NMVOC eq and 259.3 × 10{sup −6} t SO{sub 2} eq respectively.

  8. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    International Nuclear Information System (INIS)

    Makhlouf, Ali; Serradj, Tayeb; Cheniti, Hamza

    2015-01-01

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10 3 MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO 2 eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10 −6 t NMVOC eq and 259.3 × 10 −6 t SO 2 eq respectively

  9. Managing Environmental and Health Impacts of Uranium Mining

    International Nuclear Information System (INIS)

    Vance, Robert; ); Hinton, Nicole; Huffman, Dale; Harris, Frank; Arnold, Nikolas; Ruokonen, Eeva; Jakubick, Alexander; Tyulyubayev, Zekail; Till, William von; Woods, Peter; ); Hall, Susan; Da Silva, Felipe; Vostarek, Pavel

    2014-01-01

    Uranium is the raw material used to produce fuel for nuclear power plants that generate significant amounts of electricity with life cycle carbon emissions that are as low as renewable energy sources. However, the mining of this valuable energy commodity remains controversial, principally because of environmental and health impacts associated with the early years of uranium mining. Maximising production in the face of rapidly rising demand was the principal goal of uranium mining at the time, with little concern given to properly managing environmental and health impacts. Today, societal expectations and regulation of the industry are directed much more towards radiation protection, environmental stewardship, health and safety. With over 430 operational reactors in the world, nuclear fuel will be required for many decades in order to meet requirements to fuel the existing fleet and demand created by new reactors, given the projected growth in nuclear generating capacity, particularly in the developing world. New mines will in turn be needed. As a result, enhancing awareness of leading practices in uranium mining is increasingly important. This report aims to dispel some of the myths, fears and misconceptions about uranium mining by providing an overview of how leading practice mining can significantly reduce all impacts compared to the early strategic period. It also provides a non-technical overview of leading practices, the regulatory environment in which mining companies operate and the outcomes of implementing such practices. Societal expectations related to environmental protection and the safety of workers and the public evolved considerably as the outcomes of the early era of mining became apparent, driving changes in regulatory oversight and mining practices. Uranium mining is now conducted under significantly different circumstances, with leading practice mining the most regulated and one of the safest and environmentally responsible forms of mining in the

  10. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  12. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Dincer, Ibrahim; Rosen, Marc A.

    2011-01-01

    A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO 2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the 'best' design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO 2 emissions of the overall plant. The environmental impact in terms of CO 2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO 2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber. -- Highlights: → Comprehensive thermodynamic modeling of a combined cycle power plant. → Exergy, economic and environmental analyses of the system. → Investigation of the role of multiobjective exergoenvironmental optimization as a tool for more environmentally-benign design.

  13. Background for spatial differentiation in life cycle impact assessment. The EDIP2003 methodology

    DEFF Research Database (Denmark)

    Potting, José; Hauschild, Michael Zwicky

    2004-01-01

    The code of practice of the Society of Environmental Toxicology and Chemistry and the recent international standards and technical reports from ISO are widely accepted as general frameworks for Life Cycle Assessment (LCA) but they are not detailed methodological references, since international...... between modelled impact and the occurrence of actual impact. This technical report aims to contribute to a solution of the poor accuracy of the assessed impact in typical LCA resulting from the present disregard of spatial information in LCA....

  14. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  15. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  16. Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate

    International Nuclear Information System (INIS)

    Andreae, M.O.

    1991-01-01

    In this chapter, the following topics are discussed: global estimates of amounts of biomass burning; kinds and amounts of emissions to the atmosphere; environmental transport and atmospheric chemistry of these emissions; and environmental impacts. These impacts include acid deposition, climate changes, disruption of nutrient cycles, soil degradation, perturbation of stratospheric chemistry and the ozone layer

  17. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2007-01-01

    This paper analyses the overall environmental impact when biogas systems are introduced and replace various reference systems for energy generation, waste management and agricultural production. The analyses are based on Swedish conditions using a life-cycle perspective. The biogas systems included are based on different combinations of raw materials and final use of the biogas produced (heat, power and transportation fuel). A general conclusion is that biogas systems normally lead to environmental improvements, which in some cases are considerable. This is often due to indirect environmental benefits of changed land use and handling of organic waste products (e.g. reduced nitrogen leaching, emissions of ammonia and methane), which often exceed the direct environmental benefits achieved when fossil fuels are replaced by biogas (e.g. reduced emissions of carbon dioxide and air pollutants). Such indirect benefits are seldom considered when biogas is evaluated from an environmental point of view. The environmental impact from different biogas systems can, however, vary significantly due to factors such as the raw materials utilised, energy service provided and reference system replaced

  18. Externalities of fuel cycles 'ExternE' project. Coal fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Berry, J.E.; Holland, M.R.; Watkiss, P.R.

    1994-01-01

    Background to the ExternE Project Awareness of the environmental damage resulting from human activity, particularly concerning energy use, has grown greatly in recent years. Effects such as global warming, ozone depletion and acid rain are now the subjects of much research and public debate. It is now known that these and other effects damage a wide range of receptors, including human health, forests, crops, freshwater ecosystems and buildings. Such damages are typically not accounted for by the producers and consumers of the good in question (in this case energy). They are thus referred to as 'external costs' or 'externalities', to distinguish them from the private costs which account for the construction of plant, cost of fuel, wages, etc. In recent years there has been a growing interest in the assessment of the environmental and health impacts of energy, and the related external costs. This concern is driven by a number of different factors; The need to integrate environmental concerns in decision making over the choice between different fuels and energy technologies. The need to evaluate the costs and benefits of stricter environmental standards. Increased attention to the use of economic instruments for environmental policy. The need to develop overall indicators of environmental performance of different technologies. Major changes in the energy sector, including privatisation, liberalisation of markets, reduction of subsidies, etc. An agreed methodology for calculation and integration of external costs has not been established. Earlier work is typically of a preliminary nature and tends to be deficient with respect to both the methods employed and the quality of models and data used. In consequence of this a collaborative project, the EC/US Fuel Cycles Study, was established between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy. This ran for the period 1991 to 1993, and good

  19. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  20. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    because of the large energy use forrunning the demineralization process. Local and regional environmental impacts were shown to improve from demineralization for low ranking coals or lignite where the ash content is above ≈25 % and the carboncontent is less than ≈50 %. Overall, it can be concluded...... in alkaline and acidic solution to dissolve and remove the ash. This process is well-studied on lab scale but has only to a small extent been tried on a full scale. This assessment is conducted as an aid for further developing thetechnology, allowing for early identification of environmental impacts...... cycle perspective, to assessthe environmental impacts from removing ash in coal, and assess how this affects the combustion in terms of higher thermal efficiency. We assess 260 different data points applying alkali-acid leaching or acidleaching and assess how the treatment and subsequent energy...

  1. Externalities of fuel cycles 'ExternE' project. Hydro fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Navrud, S.; Riise, J.; Strand, J.

    1994-01-01

    The aim of the External Costs of Fuel Cycles (ExternE) study is to develop methods to measure and monetize all the externalities associated with incremental investments in electric power production, taking account of the different stages of the fuel cycles. Since fuel cycle externalities are characterised by being very site-specific, the impact pathway damage function approach, developed in ExternE, has been implemented in different European countries for each of the selected fuel cycles. This is done to demonstrate that this methodological framework can be used at different locations, to motivate further development of the methods, and to look at the sensitivity of the estimates to different locations. Electricite de France (EdF) in France and ENCO Environmental Consultants a.s. in Norway have taken on a joint responsibility for adapting the methodological framework for hydroelectric fuel cycle analyses in Europe. We report the first implementation of the hydroelectric fuel cycle within ExternE. Choice of reference site and technology Two stages of the hydroelectric fuel cycle have been identified: 1. Electricity generation 2. Transmission There are three phases of each of these stages: construction, operation and dismantling. We have assumed a construction period of 5 years (starting in 1990) and an operation period of 40 years. Dismantling after 40 years is not a realistic option. Therefore, we have focused on the construction and operation phases, of both electricity generation and transmission. The Sauda Hydroelectric Development Project (SHDP) was selected, because it illustrates upgrading and extention of an existing hydro power project. Such projects are likely to be the dominating strategy for future hydroelectric development in Norway, many other European countries and in the U.S., due to the lack of new sites available for development. SHDP consists of an extention of a previously developed area (Basis project) and six new diversion projects. The

  2. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    Science.gov (United States)

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item. © 2015 SETAC.

  3. 10 CFR 51.29 - Scoping-environmental impact statement and supplement to environmental impact statement.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Scoping-environmental impact statement and supplement to environmental impact statement. 51.29 Section 51.29 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... Environmental Policy Act-Regulations Implementing Section 102(2) Scoping § 51.29 Scoping-environmental impact...

  4. Osiris: an object oriented software tool for modelling the logistics, economics and environmental impact of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Millington, D.N.

    2003-01-01

    Osiris is a general purpose software tool which has been developed for performing studies of material usage, economics and environmental impacts associated with the nuclear fuel cycle. It is particularly suited to the analysis of complex multiple recycling scenarios featuring combinations of both existing and new reactor systems. A discrete event model is used to represent the movement of material batches around the fuel cycle due to the operations and timings of process plants. Nuclear materials are represented by state vectors, which undergo compositional changes due to radioactive decay and irradiation. A library of generic plant types is provided, which are declared and configured in order to represent specific plants. Reactors, front-end and back-end process plants, buffers, stores and material sources can be modelled. Fuel cycle scenarios are then constructed by defining the material flow paths between the plants. The plant parameters and flow paths can be altered dynamically over the course of a scenario in order to represent changes in recycling strategies and retirement and replacement of process plants. Discounted electricity costs can be determined by assigning unit costs to all capital investments, processes and raw materials. Radiotoxicity levels of waste streams can also be evaluated. The software was developed in C++ using objected oriented analysis and design methods. The use of abstraction and inheritance have enabled an open-ended fuel cycle modelling environment to be established, into which new reactor or plant models can readily be integrated. An overview of the object model, numerical modelling assumptions and the design and implementation of the software is presented. (author)

  5. The comparative study on the environmental impact for various energy generating systems

    International Nuclear Information System (INIS)

    Jung, J. T.; Ha, J. J.; Jung, H. S.

    2002-01-01

    The concern about environmental problem due to electricity generation is increasing. And the current debate about the environmental and socioeconomic effects of energy use is now turning towards the internalization of externalities imposed on society and the environment that are not accounted by the producers and consumers of energy. The result of internalization of externalities are to be used in the decision making of selecting available options. Therefore, the environmental impact analysis for various energy generating systems were made by using Life Cycle Assessment(LCA). According to the results, the environmental burden due to nuclear power generating systems is low comparing with other energy generating systems due to low usage of resources. The results will be used in the comparative study on the environmental impacts for various energy generating systems

  6. A study on the environmental impact analysis with life cycle assessment of O and M in NPP

    International Nuclear Information System (INIS)

    Jeong, H. S.; Kim, S. S.; Yoon, S. W.; Yang, M. H.; Kim, H. Z.

    2002-01-01

    In the modern times, characterized by mass-consumption, technologies have to evaluated not only in terms of usefulness but also in the aspects of resources exhaustion and environmental destruction. This study quantified environmental burdens from the stage of operation and maintenance in selected nuclear power plants. Four factors are evaluated, such as green house gas, hydrosphere, atmosphere and resources exhaustion for the selected PWR and PHWR with life cycle assessment(LCA)

  7. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    Science.gov (United States)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  8. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    Science.gov (United States)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  9. Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature

    NARCIS (Netherlands)

    Corsten, M.A.M.; Ramirez, C.A.; Shen, L.; Koornneef, A.; Faaij, A.P.C.

    2013-01-01

    This study performs an assessment of existing LCA literature to obtain insights into potential environmental impacts over the complete life cycle of fossil fuel fired power plants with CCS. CCS results in a net reduction of the GWP of power plants through their life cycle in the order of 65–84%

  10. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.

    Science.gov (United States)

    Choe, Jong Kwon; Bergquist, Allison M; Jeong, Sangjo; Guest, Jeremy S; Werth, Charles J; Strathmann, Timothy J

    2015-09-01

    Salt used to make brines for regeneration of ion exchange (IX) resins is the dominant economic and environmental liability of IX treatment systems for nitrate-contaminated drinking water sources. To reduce salt usage, the applicability and environmental benefits of using a catalytic reduction technology to treat nitrate in spent IX brines and enable their reuse for IX resin regeneration were evaluated. Hybrid IX/catalyst systems were designed and life cycle assessment of process consumables are used to set performance targets for the catalyst reactor. Nitrate reduction was measured in a typical spent brine (i.e., 5000 mg/L NO3(-) and 70,000 mg/L NaCl) using bimetallic Pd-In hydrogenation catalysts with variable Pd (0.2-2.5 wt%) and In (0.0125-0.25 wt%) loadings on pelletized activated carbon support (Pd-In/C). The highest activity of 50 mgNO3(-)/(min - g(Pd)) was obtained with a 0.5 wt%Pd-0.1 wt%In/C catalyst. Catalyst longevity was demonstrated by observing no decrease in catalyst activity over more than 60 days in a packed-bed reactor. Based on catalyst activity measured in batch and packed-bed reactors, environmental impacts of hybrid IX/catalyst systems were evaluated for both sequencing-batch and continuous-flow packed-bed reactor designs and environmental impacts of the sequencing-batch hybrid system were found to be 38-81% of those of conventional IX. Major environmental impact contributors other than salt consumption include Pd metal, hydrogen (electron donor), and carbon dioxide (pH buffer). Sensitivity of environmental impacts of the sequencing-batch hybrid reactor system to sulfate and bicarbonate anions indicate the hybrid system is more sustainable than conventional IX when influent water contains reuse cycles. The study showed that hybrid IX/catalyst reactor systems have potential to reduce resource consumption and improve environmental impacts associated with treating nitrate-contaminated water sources. Copyright © 2015 Elsevier Ltd. All rights

  11. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    Science.gov (United States)

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-18

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  12. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    Directory of Open Access Journals (Sweden)

    Yajuan Yu

    2014-03-01

    Full Text Available Based on Life Cycle Assessment (LCA and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH batteries and Lithium ion (Li-ion batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1 A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2 Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3 The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH batteries. The influence of recycle rate on Lithium ion (Li-ion batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  13. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    Science.gov (United States)

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-01-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  14. Environmental impacts of precision feeding programs applied in pig production.

    Science.gov (United States)

    Andretta, I; Hauschild, L; Kipper, M; Pires, P G S; Pomar, C

    2017-12-04

    This study was undertaken to evaluate the effect that switching from conventional to precision feeding systems during the growing-finishing phase would have on the potential environmental impact of Brazilian pig production. Standard life-cycle assessment procedures were used, with a cradle-to-farm gate boundary. The inputs and outputs of each interface of the life cycle (production of feed ingredients, processing in the feed industry, transportation and animal rearing) were organized in a model. Grain production was independently characterized in the Central-West and South regions of Brazil, whereas the pigs were raised in the South region. Three feeding programs were applied for growing-finishing pigs: conventional phase feeding by group (CON); precision daily feeding by group (PFG) (whole herd fed the same daily adjusted diet); and precision daily feeding by individual (PFI) (diets adjusted daily to match individual nutrient requirements). Raising pigs (1 t pig BW at farm gate) in South Brazil under the CON feeding program using grain cultivated in the same region led to emissions of 1840 kg of CO2-eq, 13.1 kg of PO4-eq and 32.2 kg of SO2-eq. Simulations using grain from the Central-West region showed a greater climate change impact. Compared with the previous scenario, a 17% increase in climate change impact was found when simulating with soybeans produced in Central-West Brazil, whereas a 28% increase was observed when simulating with corn and soybeans from Central-West Brazil. Compared with the CON feeding program, the PFG and PFI programs reduced the potential environmental impact. Applying the PFG program mitigated the potential climate change impact and eutrophication by up to 4%, and acidification impact by up to 3% compared with the CON program. Making a further adjustment by feeding pigs according to their individual nutrient requirements mitigated the potential climate change impact by up to 6% and the potential eutrophication and acidification impact

  15. The use of the droppings for the reduction environmental impact

    International Nuclear Information System (INIS)

    Dall'Ara, Alice; Sangiorgi, Sergio

    2015-01-01

    The use of by-products of livestock such as poultry manure, obtained from the manure of poultry farming, in substitution of chemical formulations, generates benefits of economic nature but especially impact environmental. Subject of this paper is the use manure in the cycle of tanning hides and that of the production of fertilizers. [it

  16. Environmental impacts of food waste: Learnings and challenges from a case study on UK.

    Science.gov (United States)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-06-01

    Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land. The Global Warming impact of the avoidable food waste was quantified between 2000 and 3600 kg CO 2 -eq. t -1 . The range reflected the different compositions of the waste in each sector. Prominent contributors to the impact, across all the environmental categories assessed, were land use changes and food production. Food preparation, for households and food service sectors, also provided an important contribution to the Global Warming impacts, while waste management partly mitigated the overall impacts by incurring significant savings when landfilling was replaced with anaerobic digestion and incineration. To further improve these results, it is recommended to focus future efforts on providing improved data regarding the breakdown of specific food products within the mixed waste, indirect land use change effects, and the share of food waste undergoing cooking. Learning from this and previous studies, we highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  18. Local systems, global impacts. Using life cycle assessment to analyse the potential and constraints of industrial symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, L.

    2011-08-15

    Human activities extract and displace different substances and materials from the earthAEs crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper 1). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle

  19. Environmental Impacts of Plant-Based Diets: How Does Organic Food Consumption Contribute to Environmental Sustainability?

    Directory of Open Access Journals (Sweden)

    Camille Lacour

    2018-02-01

    Full Text Available BackgroundStudies investigating diet-related environmental impacts have rarely considered the production method of the foods consumed. The objective of the present study, based on the NutriNet-Santé cohort, was to investigate the relationship between a provegetarian score and diet-related environmental impacts. We also evaluated potential effect modifications on the association between a provegetarian score and the environmental impacts of organic food consumption.MethodsFood intake and organic food consumption ratios were obtained from 34,442 French adults using a food frequency questionnaire, which included information on organic food consumption for each group. To characterize the overall structure of the diets, a provegetarian score was used to identify preferences for plant-based products as opposed to animal-based products. Moreover, three environmental indicators were used to assess diet-related environmental impacts: greenhouse gas (GHG emissions, cumulative energy demand (CED, and land occupation. Environmental impacts were assessed using production life cycle assessment (LCA at the farm level. Associations between provegetarian score quintiles, the level of organic food consumption, and environmental indicators were analyzed using ANCOVAs adjusted for energy, sex, and age.ResultsParticipants with diets rich in plant-based foods (fifth quintile were more likely to be older urban dwellers, to hold a higher degree in education, and to be characterized by an overall healthier lifestyle and diet. A higher provegetarian score was associated with lower environmental impacts (GHG emissionsQ5vsQ1 = 838/1,664 kg CO2eq/year, −49.6%, P < 0.0001; CEDQ5vsQ1 = 4,853/6,775 MJ/year, −26.9%, P < 0.0001; land occupationQ5vsQ1 = 2,420/4,138 m2/year, −41.5%, P < 0.0001. Organic food consumption was also an important modulator of the relationship between provegetarian dietary patterns and environmental impacts but only

  20. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  1. Regional sustainability in Northern Australia. A quantitative assessment of social, economic and environmental impacts

    International Nuclear Information System (INIS)

    Wood, Richard; Garnett, Stephen

    2010-01-01

    This paper seeks to provide a picture of sustainability of the Northern Territory by analysing a number of sustainability indicators across indigenous status and remoteness class. The paper seeks to extend current socio-economic statistics and analysis by including environmental considerations in a 'triple bottom line' or 'sustainability assessment' approach. Further, a life-cycle approach is employed for a number of indicators so that both direct and indirect impacts are considered where applicable. Whereas urban populations are generally doing better against most quantitative economic and social indicators, environmental indicators show the opposite, reflecting the increasing market-based environmental impacts of urban populations. As we seek to value these environmental impacts appropriately, it would be beneficial to start incorporating these results in policy and planning. (author)

  2. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  3. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.

    Science.gov (United States)

    Mak, Mark S H; Lo, Irene M C

    2011-12-01

    The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.

  4. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  5. Do single-use medical devices containing biopolymers reduce the environmental impacts of surgical procedures compared with their plastic equivalents?

    Science.gov (United States)

    Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E

    2017-01-01

    Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated

  6. Implementation strategy to reduce environmental impact of energy related activities in Zimbabwe

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992 UNEP-Collaborating Centre on Energy and Environment (UNEP-CCEE), Denmark and Southern Centre for Energy and Environment (SCEE), Zimbabwe, prepared a country report for Zimbabwe on Greenhouse Gas (GHG) Abatement Costing. Abatement technologies for both supply and demand side were identified in order to reduce GHG emission. The present study addresses environmental impacts of the entire energy cycle focusing on coal use in industry and power generation. Zimbabwe has proven coal reserves of more than 700 million tonnes, and the potential of geological coal resources is estimated beyond 30 billion tonnes. The conventional applications of coal include electricity generation, steam traction in railway transport, industrial boilers, tobacco curing and coking. As coal is the major source of energy for Zimbabwe, the present study aims at identification of environmental impacts of the entire coal cycle from mining to end-users of electrical energy. (EG)

  7. Organics in environmental ices: sources, chemistry, and impacts

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2012-10-01

    Full Text Available The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding the quantitative impacts of chemical and biological processes, ice morphology, and snow formation on the fate of organic material in cold regions. Interdisciplinary work at the interfaces of chemistry, physics and biology is needed in order to fully characterize the nature and evolution of organics in the cryosphere and predict the effects of climate change on the Earth's carbon cycle.

  8. Final generic environmental impact statement on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This final generic environmental impact statement was prepared as part of the requirement for considering changes in regulations on decommissioning of commercial nuclear facilities. Consideration is given to the decommissioning of pressurized water reactors, boiling water reactors, research and test reactors, fuel reprocessing plants (FRPs) (currently, use of FRPs in the commercial sector is not being considered), small mixed oxide fuel fabrication plants, uranium hexafluoride conversion plants, uranium fuel fabrication plants, independent spent fuel storage installations, and non-fuel-cycle facilities for handling byproduct, source and special nuclear materials. Decommissioning has many positive environmental impacts such as the return of possibly valuable land to the public domain and the elimination of potential problems associated with increased numbers of radioactively contaminated facilities with a minimal use of resources. Major adverse impacts are shown to be routine occupational radiation doses and the commitment of nominally small amounts of land to radioactive waste disposal. Other impacts, including public radiation doses, are minor. Mitigation of potential health, safety, and environmental impacts requires more specific and detailed regulatory guidance than is currently available. Recommendations are made as to regulatory decommissioning particulars including such aspects as decommissioning alternatives, appropriate preliminary planning requirements at the time of commissioning, final planning requirements prior to termination of facility operations, assurance of funding for decommissioning, environmental review requirements. 26 refs., 7 figs., 68 tabs

  9. Effect of feeding strategy on environmental impacts of pig fattening in different contexts of production: evaluation through life cycle assessment.

    Science.gov (United States)

    Monteiro, A N T R; Garcia-Launay, F; Brossard, L; Wilfart, A; Dourmad, J-Y

    2016-11-01

    Life cycle assessment (LCA) has been used in many studies to evaluate the effect of feeding strategy on the environmental impact of pig production. However, because most studies have been conducted in European conditions, the question of possible interactions with the context of production is still under debate. The objective of this study was to evaluate these effects in 2 contrasted geographic contexts of production, South America (Brazil) and Europe (France). The LCA considered the process of pig fattening, including production and transport of feed ingredients and feed, raising of fattening pigs, and manure storage, transport, and spreading. Impacts were calculated at the farm gate, and the functional unit considered was 1 kg of BW gain over the fattening period. The performances of pigs were simulated for each scenario using the InraPorc population model (2,000 pigs per scenario considering between-animal variability). The LCA calculations were performed for each pig according to its own performance and excretion, and the results were subjected to variance analysis. The results indicate that for some impacts there are clear interactions between the effects of the feeding program, the origin of soybean, and the location of production. For climate change, interest in phase feeding and incorporation of crystalline AA (CAA) is limited and even counterproductive in Brazil with soybeans from the South (without deforestation), whereas they appear to be efficient strategies with soybeans from the Center West (with deforestation), especially in France. Rather similar effects, as those for climate change, were observed for cumulative energy demand. Conversely, potential eutrophication and acidification impacts were reduced by phase feeding and CAA addition in a rather similar way in all situations. Individual daily feeding, the only strategy that took into account between-animal variability, was the most effective approach for reducing the life cycle impact of pig

  10. Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: What can we learn for future energy planning?

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves

    2015-01-01

    such changes entailed reduced or increased environmental impacts? Are there any identifiable patterns that could serve for steering future energy planning? To address these questions, we applied life cycle assessment to quantify a whole spectrum of environmental impacts caused by electricity generation in 199...... countries for the period 1980– 2011, with national differentiation of energy sources and, wherever possible, technology efficiencies. The results show that (i) environmental impact burden-shifting has occurred in the past for several countries as a result of national policies, (ii) all environmental impacts...... environmental impacts associated with foreseen energy systems when identifying the most sustainable energy pathways. We provide recommendations on the use of life cycle assessment for such purposes with a strong focus on application at the country level so that it can directly support national energy policy-making....

  11. 10 CFR 51.93 - Distribution of final environmental impact statement and supplement to final environmental impact...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of final environmental impact statement and supplement to final environmental impact statement; news releases. 51.93 Section 51.93 Energy NUCLEAR... Environmental Impact Statements-General Requirements § 51.93 Distribution of final environmental impact...

  12. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  13. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  14. Impact assessment modelling of matter-less stressors in the context of Life Cycle Assessment

    NARCIS (Netherlands)

    Cucurachi, Stefano

    2014-01-01

    In the last three decades, the Life Cycle Assessment (LCA) framework has grown to establish itself as the leading tool for the assessment of the environmental impacts of product systems.LCA studies are now conducted globally both in and outside the academia and also used as a basis for policy

  15. Environmental and economic life cycle analysis of plastic waste management options. A review

    OpenAIRE

    Bernardo, C. A.; Simões, Carla L.; Pinto, Lígia

    2016-01-01

    In recent years, rising worldwide plastic consumption led to the generation of increasing amounts of plastic waste and to the awareness of the importance of its management. In that framework, the present work describes how Life Cycle Assessment (LCA) and economic assessment methodologies can be used for evaluating environmental and economic impacts of alternative plastic waste management systems. The literature on LCA of plastic waste management systems is vast and the results reported are ge...

  16. Regional sustainability in Northern Australia. A quantitative assessment of social, economic and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard [School for Environmental Research, Charles Darwin University, NT 0909 (Australia); Industrial Ecology Program, NTNU, Trondheim (Norway); Integrated Sustainability Analysis, University of Sydney, NSW 2006 (Australia); Garnett, Stephen [School for Environmental Research, Charles Darwin University, NT 0909 (Australia)

    2010-07-15

    This paper seeks to provide a picture of sustainability of the Northern Territory by analysing a number of sustainability indicators across indigenous status and remoteness class. The paper seeks to extend current socio-economic statistics and analysis by including environmental considerations in a 'triple bottom line' or 'sustainability assessment' approach. Further, a life-cycle approach is employed for a number of indicators so that both direct and indirect impacts are considered where applicable. Whereas urban populations are generally doing better against most quantitative economic and social indicators, environmental indicators show the opposite, reflecting the increasing market-based environmental impacts of urban populations. As we seek to value these environmental impacts appropriately, it would be beneficial to start incorporating these results in policy and planning. (author)

  17. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    Science.gov (United States)

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  18. The environmental Impacts of tobaccos

    International Nuclear Information System (INIS)

    Shah, J.; Sohail, N.

    2006-01-01

    Tobacco is an important cash crop in Pakistan. It is a sensitive plant, prone to bacterial, fungal and viral diseases. Therefore, high levels of pesticides are used to grow tobacco. Many of these pesticides are highly toxic and have profound impacts not only on the smokers but also on the lives of tobacco farmers, their families and the environment. The environmental impacts of tobacco crop start right from its seedlings stage till throwing away of cigarette filters. These impacts are divided into three stages: (a) Environmental impacts at the tobacco growing stage, (b) Environmental impacts at tobacco manufacturing/processing stage, and (c) Environmental impacts of the tobacco use. This paper provides information of environmental impacts of tobacco crop at all the above-mentioned three stages and recommends measures for mitigation. (author)

  19. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for

  20. Environmental impact assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.; Kim, E. H.; Choi, K. S

    2000-10-01

    This report is the revised Environmental Impact Assessment Report which was made and submitted as one of the license documents for TRIGA Research Reactor D and D Project. The Environmental Impact Assessment Report includes introduction of decommissioning plan, status of reactors and environmental impact of surroundings. Also it was assessed and analyzed on radioactivity for environment, and the plan was established to minimize radioactive material release. Finally environmental monitoring plan was established to confirm whether contaminated or not from radioactivity during decommissioning period. According to the assessment results, the risk of excess exposure will be not on environment and public. The first Environmental Impact Assessment Report was submitted to the government for the license and reviewed by Korea Institute of Nuclear Safety. The first Report was revised including answers for the questions arising from review process.

  1. Environmental impact of nuclear fuel cycle and application of compartment models

    International Nuclear Information System (INIS)

    Ahn, Joon Hong; Kawasaki, Daisuke; Kim, Chang Lak

    2004-01-01

    The present paper reports the preliminary results obtained by VR-KHNP code, developed by joint collaboration between UC Berkeley and KHNP. The code has been developed for the LLW repository performance assessment. It can evaluate quantitatively the mass transfer rates from the repository to the far field, and to the biosphere, and the spatial distribution of radionuclide mass, both as a function of time. With the code, the radionuclide migration has been calculated, and the results have been successfully benchmarked against those from SAGE. Effect of repository configuration in relation to the water flow has been investigated. The numerical results show that the effects of water flow direction on the radionuclide release rates to the biosphere are not significant. Based on the mass in the biosphere, the environmental impact of the repository has also been evaluated. The result shows that the impact is significantly smaller than that from HLW repository or from mill tailings and depleted uranium

  2. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  3. Sustainable solutions for Dutch housing. Reducing the Environmental Impacts of New and Existing Houses

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G.

    2005-04-12

    Sustainable housing construction and management has, to date, been primarily based on an intuitive approach. Numerous measures have been formulated to promote sustainable construction and to reduce the environmental impacts of the built environment. However, little is yet known about the extent of the environmental benefits thereof. Moreover, methods and tools are mainly directed to new construction. This thesis makes clear that short-term environmental benefits in sustainable housing construction are rather limited. Renewal of the post-war housing stock offers excellent changes for improvement of the environmental performance of housing. With a newly developed method it is proven that renovation causes less environmental impacts than demolition followed by new construction. However, at the same time the usefulness of Life Cycle Assessment for buildings is doubted.

  4. The environmental impact of mastitis: a case study of dairy herds

    International Nuclear Information System (INIS)

    Hospido, Almudena; Sonesson, Ulf

    2005-01-01

    Mastitis is defined as an inflammatory reaction of udder tissue to bacterial, chemical, thermal or mechanical injury, which causes heavy financial losses and milk wastage throughout the world. Until now, studies have focused on the economic aspects from which perspective mastitis can generally be considered as the most serious disease in dairy cows; however, costs are not the only negative consequence resulting from the infection. The environmental impact is also significant; milk is discarded, which means lower efficiency and hence a greater environmental impact per produced liter of milk. Less milk is produced, which leads to an increased need for calf feed, and meat production is also affected. The main aim of this paper was to quantify the environmental impact of mastitis incidence. A standard scenario (representative of present-day reality in Galicia, Spain) and an improved scenario (in which mastitis incidence rate is reduced by diverse actions) have been defined and compared using Life Cycle Assessment (LCA) methodology. Among the impact categories studied, acidification, eutrophication and global warming were found to be the most significant environmental impacts. In all these categories, it was revealed that a decrease in mastitis incidence has a positive influence as the environmental impact is reduced. Even if the quantitative results cannot show a considerable decrease in the environmental burden, the impact cannot be regarded as negligible when the total consumption or total production of a region is considered. For example, the outcome of the proposed improvement measures for Spain's greenhouse gas emissions can be quantified as 0.06% of total emissions and 0.56% of emissions by the agricultural sector

  5. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  6. Radiological and environmental safety in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Puranik, V.D.

    2011-01-01

    The front end nuclear fuel cycle comprises of mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad. The Health Physics Units (HPUs)/Environmental Survey Laboratories (ESLs) set up at each site from inception of operation to carry out regular in-plant, personnel monitoring and environmental surveillance to ensure safe working conditions, evaluate radiation exposure of workers, ensure compliance with statutory norms, help in keeping the environmental releases well within the limits and advise appropriate control measures. This paper describes the occupational and environmental radiological safety measures associated with the operations of front end of nuclear fuel cycle. Radiological monitoring in these facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised in this paper

  7. Application of a life cycle assessment to compare environmental performance in coal mine tailings management.

    Science.gov (United States)

    Adiansyah, Joni Safaat; Haque, Nawshad; Rosano, Michele; Biswas, Wahidul

    2017-09-01

    This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and variations of OPT 1 using combinations of technology improvement and renewable energy sources (OPT 1A-D). Electrical energy was found to contribute more than 90% of the environmental impacts. The magnitude of land-use impacts associated with OPT 3 (thickened tailings) were 2.3 and 1.55 times higher than OPT 1 (tailings cake) and OPT 2 (tailings paste) respectively, while OPT 1B (tailings belt filter press with technology improvement and solar energy) and 1D (tailings belt press filter with technology improvement and wind energy) had the lowest ratio of environmental impact to land-use. Further analysis of an economic cost model and reuse opportunities is required to aid decision making on sustainable tailings management and industrial symbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  9. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    Science.gov (United States)

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018

  10. Comparing the environmental impacts of ethyl biodiesel production from soybean oil and beef tallow through lca for brazilian conditions

    Directory of Open Access Journals (Sweden)

    Rafael Alves Esteves

    2017-12-01

    Full Text Available The present paper sought compare the environmental impacts throughout the life cycle of biodiesel production obtained from the two raw materials most used in Brazil (soybean oil and beef tallow through the process ethyl transesterification in an alkaline medium. The reference flow adopted for the work was the generation of power supplied 1GJ from the produced biodiesel. The data used in the inventory life cycle were calculated based on similar scientific papers. The method of assessment of environmental impacts chosen was the CML 2001 modified. Altogether, it were analyzed nine categories of environmental impacts for both processes (abiotic depletion (kg Sb eq, land use (m2a, global warming (kg CO2 eq, ozone layer depletion (kg CFC-11 eq, human toxicity (kg 1,4-DB eq, freshwater ecotoxicity (kg 1,4-DB eq, terrestrial ecotoxicity (kg 1,4-DB eq, acidification (kg SO2 eq and eutrophication (kg PO43- eq. The results of evaluation of environmental impacts show that the biodiesel production process from soybean oil presents major environmental damage in seven categories of analyzed impacts (destruction of abiotic resources, destruction of the ozone layer, human toxicity, freshwater ecotoxicity, terrestrial ecotoxicity, acidification and eutrophication. The production process of biodiesel from tallow presents major environmental damage in two categories of impacts analyzed (land use and global warming. However, the results show that the absolute values of environmental damage caused by impacts of the production process using beef tallow are much more aggressive.

  11. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.

    Science.gov (United States)

    Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne

    2017-04-18

    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.

  12. Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Villanueva-Rey, Pedro; Moreira, Ma Teresa; Feijoo, Gumersindo

    2012-05-15

    A series of Galician (NW Spain) wines, such as Rías Baixas and Ribeiro have acquired international renown in the past few years. In this particular study, viticulture, vinification and bottling and packaging in a winery of the Ribeiro appellation were studied from a life cycle assessment perspective, with the main objective of identifying the largest environmental impacts for four different years of production (2007-2010). The selected functional unit was a 750 mL bottle of Ribeiro white wine, packaged for distribution. Inventory data was gathered mainly through direct communication using questionnaires. Results showed considerable annual variability in environmental performance, stressing the importance of including timeline analysis in the wine sector. Therefore, environmental scaling was proposed for the assessed wine based on the individual environmental impacts for each harvest year. Furthermore, the main hot spots identified were compost and pesticide production and emissions, in the agricultural phase and bottle production and electricity consumption, in the subsequent stages of wine production, in most of the selected impact categories. Suggested improvement opportunities included shifts in the compost transportation policy, recovery of natural resources for vineyard infrastructure, the introduction of new packaging formats in the bottling process and the use of pesticides with lower toxicity potential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment

    International Nuclear Information System (INIS)

    Uihlein, Andreas; Schebek, Liselotte

    2009-01-01

    Biomass is a sustainable alternative to fossil energy carriers which are used to produce fuels, electricity, chemicals, and other goods. At the moment, the main biobased products are obtained by the conversion of biomass to basic products like starch, oil, and cellulose. In addition, some single chemicals and fuels are produced. Presently, concepts of biorefineries which will produce a multitude of biomass-derived products are discussed. Biorefineries are supposed to contribute to a more sustainable resource supply and to a reduction in greenhouse gas emissions. However, biobased products and fuels may also be associated with environmental disadvantages due to, e.g. land use or eutrophication of water. We performed a Life Cycle Assessment of a lignocellulose feedstock biorefinery system and compared it to conventional product alternatives. The biorefinery was found to have the greatest environmental impacts in the three categories: fossil fuel use, respiratory effects, and carcinogenics. The environmental impacts predominantly result from the provision of hydrochloric acid and to a smaller extent also from the provision of process heat. As the final configuration of the biorefinery cannot be determined yet, various variants of the biorefinery system were analysed. The optimum variant (acid and heat recoveries) yields better results than the fossil alternatives, with the total environmental impacts being approx. 41% lower than those of the fossil counterparts. For most biorefinery variants analysed, the environmental performance in some impact categories is better than that of the fossil counterparts while disadvantages can be seen in other categories.

  14. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States.

    Science.gov (United States)

    Tessum, Christopher W; Hill, Jason D; Marshall, Julian D

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  15. Renewable energy systems - the environmental impact approach. Paper no. IGEC-1-008

    International Nuclear Information System (INIS)

    Koroneos, C.

    2005-01-01

    High energy consumption and the world population increase will lead to a shrinking use of fossil fuels. The combustion of Fossil fuel leads to the increase of carbon dioxide concentration in the atmosphere which leads to the probable increase of global warming. Therefore, concerns about carbon dioxide emissions may discourage widespread dependence on fossil fuels and encourage the development and use of renewable energy systems employing a variety of technologies Renewable energy systems have themselves an environmental impact. Land use and material employed are two areas that may have an adverse impact to the positive environmental picture of the renewable energy systems. The objective of this paper is to analyze these impacts with the use of a very powerful tool, the Life Cycle Assessment. (author)

  16. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Ometto, Aldo Roberto [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil)

    2016-09-15

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the

  17. Delving into the environmental aspect of a Sardinian white wine: from partial to total life cycle assessment.

    Science.gov (United States)

    Fusi, Alessandra; Guidetti, Riccardo; Benedetto, Graziella

    2014-02-15

    The aim of this study was to deepen the assessment of the environmental impacts of a white wine produced in Sardinia (FU 750 ml), performing an attributional LCA. The system boundaries were extended, from 'cradle to gate' (partial LCA) of a previous study, to 'cradle to grave' (total LCA), in order to identify the environmental impacts occurring along the wine life cycle stages (vine planting, grape production, wine production, bottling and packaging, distribution, final disposal of the glass bottle). Some assumptions were made in order to quantify the environmental impact of the transportation phase, regarding the few data which were available. Inventory data were mainly collected through direct communication with the Company involved in the study. Results showed that the environmental performance of wine was mostly determined by the glass bottle production (for all impact categories except ozone layer depletion). The second contributor was the agricultural phase, which included two sub-phases: vine planting and grape production. Results showed that the vine planting sub-phase was not negligible given its contribution to the agricultural phase, mainly due to diesel fuel consumption. Transportation impact was found to be relevant for long distance distribution (USA); the impact categories more affected by transport were acidification, eutrophication, photochemical oxidation and global warming potential. Suggested opportunities to reduce the overall environmental impact were the introduction of a lighter glass bottle or the substitution of the glass bottle with a polylaminate container. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Life cycle environmental performance of renewable building materials in the context of residential construction : phase II research report: an extension to the 2005 phase I research report. Module L, Life-cycle inventory of hardwood lumber manufacturing in the Southeastern United States.

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2010-01-01

    The goal of this study was to gain an understanding of the environmental impact of hardwood lumber production through a gate-to-gate life-cycle inventory (LCI) of hardwood sawmills in the Southeastern United States (SE). Primary mill data were collected per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Life-cycle impact...

  19. Life Cycle Based Environmental Approach in the Industry

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg; Thrane, Mikkel

    2002-01-01

    This paper discusses the need for industries to extend the focus from environmental impacts in their own production, towards considerations of impacts and improvement potentials in the whole product chain.......This paper discusses the need for industries to extend the focus from environmental impacts in their own production, towards considerations of impacts and improvement potentials in the whole product chain....

  20. Life-cycle energy optimisation : A proposed methodology for integrating environmental considerations early in the vehicle engineering design process

    OpenAIRE

    O'Reilly, Ciarán J.; Göransson, Peter; Funazaki, Atsushi; Suzuki, Tetsuya; Edlund, Stefan; Gunnarsson, Cecilia; Lundow, Jan-Olov; Cerin, Pontus; Cameron, Christopher J.; Wennhage, Per; Potting, José

    2016-01-01

    To enable the consideration of life cycle environmental impacts in the early stages of vehicle design, a methodology using the proxy of life cycle energy is proposed in this paper. The trade-offs in energy between vehicle production, operational performance and end-of-life are formulated as a mathematical problem, and simultaneously balanced with other transport-related functionalities, and may be optimised. The methodology is illustrated through an example design study, which is deliberately...

  1. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  2. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    Science.gov (United States)

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  3. Methodologies of environmental impact assessment

    International Nuclear Information System (INIS)

    Schroll, H.

    1994-01-01

    This article gives a brief introduction covering the objectives of environmental impact assessment (EIA) and sustainable development, before going on to describe the screening procedure to define the environmental and socio-economic impacts of projects. The EIA procedure outlined encompasses a description of the project, examination of all environmental effects (scoping), identification of existing and predicted environmental conditions and impacts, alternative measures and mitigating measures, co-ordination, with environmental regulations, public participation, and monitoring and approval of the EIA. (UK)

  4. Impact of environmental auditing on environmental pollution ...

    African Journals Online (AJOL)

    Impact of environmental auditing on environmental pollution, sustainable development and healthy environment of some organizations in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management. Journal Home ...

  5. The methodology of environmental impacts assessment of environmentally hazardous facilities

    OpenAIRE

    Adamenko, Yaroslav

    2017-01-01

    The article deals with the methodology of environmental impacts assessment of environmentally hazardous facilities and activities. The stages of evaluation of environmental impacts are proved. The algorithm and technology of decision-making in the system of environmental impact assessments based on a multi-criteria utility theory are proposed.

  6. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  7. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... Impact Statements § 51.74 Distribution of draft environmental impact statement and supplement to draft...

  8. Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda

    NARCIS (Netherlands)

    Bosma, R.H.; Pham Thi Ahn,; Potting, J.

    2011-01-01

    Purpose Intensive striped catfish production in the Mekong Delta has, in recent years, raised environmental concerns. We conducted a stakeholder-based screening life cycle assessment (LCA) of the intensive farming system to determine the critical environmental impact and their causative processes in

  9. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    Science.gov (United States)

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Environmental impact statement law and environmental impact statement administration regulation

    International Nuclear Information System (INIS)

    Feldmann, F.J.

    1991-01-01

    The contribution does not deal with the question - as might be suggested by the heading - that the execution of the environmental impact statement law might be uncertain if there are no further accompanying legal transformatory acts. Putting the environmental impact statements into action is concerned in partiuclar with procedural provisions regarding the Federal Act on Protection against Nuisances and the Atomic Energy Act. The author deals with aspects of the environmental impact statement law and the state-of-the-art achieved so far. He also deals with legislative intent, with further points of putting the law into practice, i.e. the information requirements in the administrative provisions and the integrating aspect, the amalgamating aspect, the requirements made on the state of the environment, and the significance of administrative provisions. Also treated are legal procedures in the Federal Laender and on an international level. (RST) [de

  11. Implementation Plan. Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    In accordance with the Department of Energy`s National Environmental Policy Act implementing procedures in Volume 10 of the Code of Federal Regulations, Section 1021,312, the Environmental Restoration and Waste Management Programmatic Environmental Impact Statement Implementation Plan has two primary purposes: to provide guidance for the preparation of the Programmatic Environmental Impact Statement and to record the issues resulting from the scoping and the extended public participation process. The Implementation Plan identifies and discusses the following: background of Environmental Restoration and Waste Management activities, the purpose of the Programmatic Environmental Impact Statement, and the relationship of the Programmatic Environmental Impact Statement to other Departmental initiatives (Chapter 1); need and purposes for action (Chapter 2); scoping process and results of the public participation program in defining the scope of the Programmatic Environmental Impact Statement, including a summary of the comments received and their disposition (Chapter 3); planned scope and content of the Programmatic Environmental Impact Statement (Chapter 4); consultations with other agencies and the role of cooperating agencies (Chapter 5); planned schedule of major Programmatic Environmental Impact Statement milestones (Chapter 6); and responsibilities for preparation of the Programmatic Environmental Impact Statement (Chapter 7).

  12. Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2017-02-01

    Full Text Available Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the spatial distribution of switchgrass-based bioethanol production potential in China. This study created a land surface process model (Environmental Policy Integrated Climate GIS (Geographic Information System-based (GEPIC model coupled with a life cycle analysis (LCA to explore the spatial distribution of potential bioethanol production and present a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life cycle. It provides a new approach to study the bioethanol productivity and potential environmental impact from marginal lands based on the high spatial resolution GIS data, and this applies not only to China, but also to other regions and to other types of energy plant. The results indicate that approximately 59 million ha of marginal land in China are suitable for planting switchgrass, and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy gain (NEG of 1.75 x 106 million MJ will be achieved if all of the marginal land can be used in China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally, this study obtained that the total environmental effect index of switchgrass-based bioethanol is the equivalent of a population of approximately 20,300, and a reduction in the global warming potential (GWP is the most significant environmental impact.

  13. Radiological and environmental surveillance in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Khan, A.H.; Sahoo, S.K.; Tripathi, R.M.

    2004-01-01

    This paper describes the occupational and environmental radiological safety measures associated with the operations of front end nuclear fuel cycle. Radiological monitoring in the facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised

  14. Environmental Impact Assessment: A Procedure.

    Science.gov (United States)

    Stover, Lloyd V.

    Prepared by a firm of consulting engineers, this booklet outlines the procedural "whys and hows" of assessing environmental impact, particularly for the construction industry. Section I explores the need for environmental assessment and evaluation to determine environmental impact. It utilizes a review of the National Environmental Policy Act and…

  15. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    International Nuclear Information System (INIS)

    Jang, Minho; Hong, Taehoon; Ji, Changyoon

    2015-01-01

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C 6 H 6 eq.) calculated by the previous model was much lower (1965 kg C 6 H 6 eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings

  16. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  17. 46 CFR 504.7 - Environmental impact statements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Environmental impact statements. 504.7 Section 504.7... POLICY ANALYSIS § 504.7 Environmental impact statements. (a) General. (1) An environmental impact... environmental impact statements. (1) A draft environmental impact statement (DEIS) will initially be prepared in...

  18. Review and assessments of potential environmental, health and safety impacts of MHD technology. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.

  19. Environmental impact assessment of alfalfa (Medicago sativa L.) hay production.

    Science.gov (United States)

    Bacenetti, Jacopo; Lovarelli, Daniela; Tedesco, Doriana; Pretolani, Roberto; Ferrante, Valentina

    2018-09-01

    On-farm production of hay and high-protein-content feed has several advantages such as diversification of on-farm cultivated crops, reduction of off-farm feed concentrates transported over long distances and a reduction in runoff during the winter season if grown crops are perennial. Among those crops cultivated for high-protein-content feed, alfalfa (Medicago sativa L.) is one of the most important in the Italian context. Nevertheless, up to now, only a few studies have assessed the environmental performance of alfalfa hay production. In this study, using the Life Cycle Assessment approach, the environmental impact of alfalfa hay production in Northern Italy was analyzed. More in detail, two production practices (without and with irrigation) were compared. The results show that alfalfa hay production in irrigated fields has a better environmental performance compared to non-irrigated production, mainly because of the yield increase achieved with irrigation. In particular, for the Climate Change impact category, the impact is equal to 84.54 and 80.21kgCO 2 /t of hay for the scenario without and with irrigation, respectively. However, for two impact categories (Ozone Depletion and Human Toxicity-No Cancer Effect), the impact of irrigation completely offsets the yield increase, and the cultivation practice without irrigation shows the best environmental performance. For both scenarios, the mechanization of harvest is the main environmental hotspot, mostly due to fuel consumption and related combustion emissions. Wide differences were highlighted by comparing the two scenarios with the Ecoinvent process of alfalfa hay production; these differences are mostly due to the cultivation practice and, in particular, to the more intensive fertilization in Swiss production. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The use of poultry dejections for the reduction of the environmental impact

    International Nuclear Information System (INIS)

    Dall'Ara, Alice; Sangiorgi Sergio; La Peruta, Maria Teresa

    2015-01-01

    The use of livestock products such as poultry dejections, contained in the manure of poultry farming in substitution of chemical formulations, generates economic benefits but above all of environmental impact. Subject of this paper is the use of poultry manure in the cycle of tanning hides and in the production of fertilizers. [it

  1. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  2. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  3. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.

    2010-01-01

    for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO......The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...

  4. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis

    International Nuclear Information System (INIS)

    Ioannou-Ttofa, L.; Foteinis, S.; Chatzisymeon, E.; Fatta-Kassinos, D.

    2016-01-01

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1 m"3 of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system. - Highlights: • The environmental sustainability of an

  5. Life cycle modelling of environmental impacts from application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2006-01-01

    and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application......A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production...... of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model...

  6. Life cycle assessment as a method of limitation of a negative environment impact of castings

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-07-01

    Full Text Available Casting production constitutes environmental problems going far beyond the foundry plant area. Applying a notion of the life cycle the input (suppliers side and output factors (clients side can be identified. The foundry plant activities for the environment hazard mitigation can be situated on various stages of the casting life cycle. The environment impact of motorisation castings made of different materials – during the whole life cycle of castings – are discussed in the paper. It starts from the charge material production, then follows via the casting process, car assembly, car exploitation and ends at the car breaking up for scrap.

  7. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  8. Implementation of life cycle impact assessment methods. Data v2.0 (2007). Ecoinvent report No. 3

    International Nuclear Information System (INIS)

    Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Hischier, R.; Doka, G.; Bauer, Ch.; Dones, R.; Nemecek, T.; Hellweg, S.; Humbert, S.; Margni, M.; Koellner, T.; Loerincik, Y.

    2007-12-01

    The ecoinvent database offers life cycle inventory (LCI) and life cycle impact assessment (LCIA) results. The following LCIA methods are implemented in the ecoinvent data v2.0: CML 2001; Cumulative energy demand; Cumulative exergy demand; Eco-indicator 99; Ecological footprint; Ecological scarcity 1997; Ecosystem damage potential EDP; EDIP'97 and 2003 (Environmental design of industrial products); EPS 2000 (environmental priority strategies in product development (will be provided with ecoinvent data v2.1)); IMPACT 2002+; IPCC 2001 (climate change); TRACI; Selected life cycle inventory indicators. There is a range of methodological problems and questions while linking the LCIA methods with the elementary flows of a database. This lead to different results in the past, even if the same LCIA method was applied on the same inventory results. The aim of this report is to avoid such discrepancies. In the first part of this report the general assumptions for the implementation of impact assessment methods on the ecoinvent life cycle inventory data are described. For that purpose, general and harmonised rules were developed how to deal with a certain problem. The second part of this report contains a detailed description of the implementation of the above mentioned methods. Please refer to the original publications for a general description and the scientific background of the methods. It is strongly recommended to read the original publications before using the LCIA results from the ecoinvent database. It is recommended to follow these implementation guidelines also while using other or new LCIA methods, which are so far not implemented in ecoinvent data. (authors)

  9. Implementation of life cycle impact assessment methods. Data v2.0 (2007). Ecoinvent report No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Frischknecht, R. (ed.) [Ecoinvent Centre, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Jungbluth, N. (ed.) [ESU-services Ltd, Uster (Switzerland); Althaus, H.-J.; Hischier, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Doka, G. [Doka Life Cycle Assessments (LCA), Zuerich (Switzerland); Bauer, Ch.; Dones, R. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Nemecek, T. [Forschungsanstalt Agroscope Reckenholz-Taenikon (ART), Zuerich (Switzerland); Hellweg, S. [Swiss Federal Institute of Technology (ETHZ), Institute for Chemicals and Bioengineering (ICB), Zuerich (Switzerland); Humbert, S.; Margni, M. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Koellner, T. [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Loerincik, Y. [Ecointesys, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2007-12-15

    The ecoinvent database offers life cycle inventory (LCI) and life cycle impact assessment (LCIA) results. The following LCIA methods are implemented in the ecoinvent data v2.0: CML 2001; Cumulative energy demand; Cumulative exergy demand; Eco-indicator 99; Ecological footprint; Ecological scarcity 1997; Ecosystem damage potential EDP; EDIP'97 and 2003 (Environmental design of industrial products); EPS 2000 (environmental priority strategies in product development (will be provided with ecoinvent data v2.1)); IMPACT 2002+; IPCC 2001 (climate change); TRACI; Selected life cycle inventory indicators. There is a range of methodological problems and questions while linking the LCIA methods with the elementary flows of a database. This lead to different results in the past, even if the same LCIA method was applied on the same inventory results. The aim of this report is to avoid such discrepancies. In the first part of this report the general assumptions for the implementation of impact assessment methods on the ecoinvent life cycle inventory data are described. For that purpose, general and harmonised rules were developed how to deal with a certain problem. The second part of this report contains a detailed description of the implementation of the above mentioned methods. Please refer to the original publications for a general description and the scientific background of the methods. It is strongly recommended to read the original publications before using the LCIA results from the ecoinvent database. It is recommended to follow these implementation guidelines also while using other or new LCIA methods, which are so far not implemented in ecoinvent data. (authors)

  10. Integrated manure management to reduce environmental impact: II. Environmental impact assessment of strategies

    NARCIS (Netherlands)

    Vries, de J.W.; Groenestein, C.M.; Schroder, J.J.; Hoogmoed, W.B.; Sukkel, W.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2015-01-01

    Manure management contributes to adverse environmental impacts through losses of nitrogen (N), phosphorus, and carbon (C). In this study, we aimed to assess the potential of newly designed strategies for integrated manure management (IS) to reduce environmental impact. An important aspect of the

  11. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact of Stressors. INPRO Manual

    International Nuclear Information System (INIS)

    2016-01-01

    This publication provides guidance on assessing of sustainability of a nuclear energy system (NES) in the area of environmental impact of stressors. The INPRO methodology is a comprehensive tool for the assessment of sustainability of an NES. Basic principles, user requirements and criteria have been defined in different areas of INPRO methodology. These include economics, infrastructure, waste management, proliferation resistance, environmental impact of stressors, environmental impact from depletion of resources, and safety of nuclear reactors and fuel cycle facilities. The ultimate goal of the application of the INPRO methodology is to check whether the assessed NES fulfils all the criteria, and hence the user requirements and basic principles, and therefore presents a system for a Member State that is sustainable in the long term

  12. Environmental Impact Section

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Section is concerned with preparation of environmental statements and assessments and development of assessment methodologies for energy technologies. During 1976, activities involved nuclear, fossil, and geothermal energy; this work was supported by the U.S.Army, HUD, US ERDA, and US NRC. Two special studies--one on the effects of power plant intake structures on fish impingement and another on multiple uses of cooling lakes--were completed and should serve as references for future analyses. Two research projects sponsored by NRC--the Unified Transport Approach (UTA) to Power Plant Assessment and the Environmental Monitoring Data Evaluation Study--were continued. The purpose of the UA program is to develop fast-transient, one- and two-dimensional transport models for estimating thermal, radiological, chemical, and biological impacts in complicated water bodies. The impact of public use of various products that contain radioactive isotope is being evaluated. The Environmental Impact Sections assistance to NRC expanded to include assessments of fuel-fabrication facilities being considered for relicensing and two uranium in-situ solution mining facility proposals. The work for HUD comprises an assessment of the first application of MIUS in a new town development. A generic environmental statement was prepared and an environmental monitoring program for the facility was designed

  13. Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques

    Directory of Open Access Journals (Sweden)

    Lakkana Piewkhaow

    2016-03-01

    Full Text Available The methodology of life-cycle assessment was applied in order to evaluate the environmental performance of a hypothetical Saskatchewan lignite-fueled Integrated Gasification Combined Cycle (IGCC electricity generation, with and without pre-combustion carbon dioxide (CO2 capture from a full life-cycle perspective. The emphasis here is placed on environmental performance associated with air contaminants of the comparison between IGCC systems (with and without CO2 capture and a competing lignite pulverized coal-fired electricity generating station in order to reveal which technology offers the most positive environmental effects. Moreover, ambient air pollutant modeling was also conducted by using American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD air dispersion modeling to determine the ground-level concentration of pollutants emitted from four different electricity generating stations. This study assumes that all stations are located close to Estevan. The results showed a significant reduction in greenhouse gas (GHG emissions and acidification potential by applying both post-combustion and pre-combustion CO2 capture processes. The GHG emissions were found to have reduced by 27%–86%, and IGCC systems were found to compare favorably to pulverized coal systems. However, in other environmental impact categories, there are multiple environmental trade-offs depending on the capture technology used. In the case of post-combustion capture, it was observed that the environmental impact category of eutrophication potential, summer smog, and ozone depletion increased due to the application of the CO2 capture process and the surface mining coal operation. IGCC systems, on the other hand, showed the same tendency as the conventional coal-fired electricity generation systems, but to a lesser degree. This is because the IGCC system is a cleaner technology that produces lower pollutant emission levels than the electricity

  14. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues

    NARCIS (Netherlands)

    Zhao, X.; Yang, Jixian; Ma, Fang

    2018-01-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water

  15. 21 CFR 25.42 - Environmental impact statements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Environmental impact statements. 25.42 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Preparation of Environmental Documents § 25.42 Environmental impact... be a clear, concise, and detailed written statement describing: (1) The environmental impacts of a...

  16. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    DEFF Research Database (Denmark)

    De Vries, J.W.; Vinken, T.M.W.J; Hamelin, Lorie

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for an...... (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Codigestion with wastes or residues like roadside grass gave the best environmental performance.......-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage...

  18. The energy consumption and environmental impacts of SCR technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zengying; Ma, Xiaoqian; Lin, Hai; Tang, Yuting [School of Electric Power, Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640 (China)

    2011-04-15

    Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NO{sub X} control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NO{sub X} emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NO{sub X} technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NO{sub X} was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET{sub 2000}) was smaller than that of flue gas emitted into atmosphere directly (164121 PET{sub 2000}) and SNCR technology (105225 PET{sub 2000}). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NO{sub X} emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NO{sub X} control for coal-fired power plants as well as industrial boilers. (author)

  19. The environmental accounting in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako; Aquino, Afonso Rodrigues de

    2006-01-01

    This paper illustrates how accountancy can contribute to conservation, protection and the recovery of the environment. Firstly, the appearance of accountancy, its performance fields, its terminologies and even the Environmental Accounting Definition is approached, bringing the social balance as a tool for making decisions in the social field. Environmental Accounting is a very useful tool to apply to any entity including the nuclear area by calculating the use in order for the environmental passive to be zero, especially in the activity of the nuclear fuel cycle. (author)

  20. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minho, E-mail: minmin40@hanmail.net [Asset Management Division, Mate Plus Co., Ltd., 9th Fl., Financial News Bldg. 24-5 Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-877 (Korea, Republic of); Hong, Taehoon, E-mail: hong7@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of)

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  1. Environmental impacts of climate change adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Universidad Nacional de Educación a Distancia (UNED)/Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 13, 28200 San Lorenzo de El Escorial (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey, 9, 28040 Madrid (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey, 9, 28040 Madrid (Spain); Santos, Maria J., E-mail: M.J.FerreiraDosSantos@uu.nl [Department of Innovation, Environmental and Energy Sciences, Utrecht University, Heidelberglaan 2, 3572 TC Utrecht (Netherlands)

    2017-05-15

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed to (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation, mainly

  2. Environmental impacts of climate change adaptation

    International Nuclear Information System (INIS)

    Enríquez-de-Salamanca, Álvaro; Díaz-Sierra, Rubén; Martín-Aranda, Rosa M.; Santos, Maria J.

    2017-01-01

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed to (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation, mainly

  3. Research Project: Analysis of environmental life cycle of nuclear fuel in Argentina

    International Nuclear Information System (INIS)

    Martinez, Pablo E.; Pasquevich, D.

    2009-01-01

    The growing World energy demand together with the run down of fossil fuel resources and the climate change threat has produced the resurgence of interest in nuclear energy as a clean electricity source in the electricity mix of the current century. Into this international context the study of primary energy sources sustainable has also became an important issue. The sustainable concept takes into account the good practice in renewable and nonrenewable resources exploitation and the minimization of the environmental impact generated by each energy source. The nuclear energy instead that shows low gaseous emissions, need to be assessed with this point of view also. Furthermore the electricity generation step in a nuclear power plant shows zero emissions of greenhouse gases, the upstream and downstream processes do (as it is the case of the nuclear fuel cycle supply, the heavy water fabrication and the spent fuel management). The upstream and downstream processes are usually known as the nuclear fuel cycle. The emissions assessment of each step of the nuclear electricity generation is very useful to quantify its sustainable against other electricity generation options. The sustainable assessment also allow to quantify the energy consumption in the overall supply chain and optimize the raw material and feedstock consumption. In the present work the life cycle assessment (LCA) methodology is presented and applied to the nuclear fuel cycle. The LCA is a mature and internationally accepted methodology in both fields scientific and industrial. Some of the applications of LCA are: product development, policy definition, marketing, product, process and services selection based on environmental aspect and decision making assistance. (author)

  4. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    Science.gov (United States)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  5. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-01-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption

  6. French environmental communication on sunflower and rapeseed oils based on life cycle assessment

    Directory of Open Access Journals (Sweden)

    Badey Laureen

    2013-07-01

    Full Text Available The French “Grenelle” laws sparked a French national experiment trialling the environmental labelling of fast-moving consumer goods. The data required for this labelling scheme are generated by carrying out a life cycle assessment (LCA. The aim of this study is to provide all necessary information to fit the national experiment for two standard oils: sunflower oil and rapeseed oil. The complete oil life cycle was studied, from oilseed farming through to the end-of-life of the packaging. We focused heavily on the impacts of crushing and refining. The seed processing data was collected from different plants that are representative of the French crushing/refining industry and packaging site practice. The data inventory was used to calculate the identified environmental labelling indicators, i.e. greenhouse gas (GHG emissions and water consumption. The production of 100g of refined bulk sunflower and rapeseed emits 89 and 127 g equivalent CO2 and consumes 1.7 L and 0.8 L of water, respectively. Most impacts on the studied indicators stem from the farming phase. Energy and water consumptions during crushing and refining also weigh on the studied indicators. The results of this study provide a relevant overview of all sunflower and rapeseed oils produced in France, and are usable as standard values for vegetable oil producers and users. Oil supply chain operators can use these values to compare to their own process values and gauge the improvements brought about by their ecodesign strategies. For example, using a biomass boiler, using less packaging, and making different choices on seed suppliers can lead to a lower set of impact values.

  7. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    Science.gov (United States)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  8. Environmental impact and risk analysis of direct disposal of spent fuel as compared to reprocessing

    International Nuclear Information System (INIS)

    Vuori, S.; Peltonen, E.; Vira, J.

    1984-01-01

    It is important to put the estimated environmental impacts and radiation exposures of alternatives considered into perspective with each other as well as with similar man-made or natural exposures taking into account all the stages of the pertinent fuel cycles and all relevant impact factors. The likely differences in safety between the reprocessing case and the direct disposal case are not very significant taking into account the uncertainties involved in the analyses and the problems of value judgement in the comparison of different types of impacts. Furthermore the difference of costs of measures to achieve a desired level of safety in each case should be considered in view of the other cost impacts arising from the choice of the fuel cycle

  9. Identifying potential environmental impacts of waste handling strategies in textile industry.

    Science.gov (United States)

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  10. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  11. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    Science.gov (United States)

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

  12. Environmental impact assessment of solid waste management in Beijing City, China

    DEFF Research Database (Denmark)

    Zhao, Yan; Christensen, Thomas Højlund; Lu, Wenjing

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery...... analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City....... because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts...

  13. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  14. Beginning LCA. A guide into environmental life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.W. [ed.; Huppes, G. [Centre of Environmental Science CLM, Leiden University, Leiden (Netherlands); Dutilh, C.E. [Unilever, Van den Bergh Netherlands, Rotterdam (Netherlands)

    1995-02-01

    The main goal of this document is to provide practical guidance for those who want to start with Life Cycle Assessment (LCA). The document has been set up in the form of modules. Module 1 provides arguments to decide whether or not LCA is the right tool to use in a particular case. In this module other ways to study interactions with the environment will be mentioned as well. Module 2 explains the process of formulating the purpose and scope of the study. The results will give a general picture of the characteristics of the LCA. The next step, which is called the inventory analysis, represents the largest amount of work and is split up into four parts, i.e. Modules 3,4,5, and 6. Module 3 gives guidelines and detailed examples on how to construct a flowchart of the study. Module 5 describes how to collect the required data and Module 4 how to define the system boundaries. Finally, the processing of data is described in Module 6. The result of the inventory is a list of emissions and extractions for all processes involved in manufacturing and required for the functioning of a product, service or activity during the entire life cycle. Sometimes results are so clear that you may decide to stop after the inventory stage. Usually however, it is useful to carry out the impact assessment, which is split up into two parts (Modules 7 and 8). Instructions are given on how to translate the list of environmental interventions of the entire life cycle of the product into a table with scores on environmental themes: the classification/characterization. A basic substance list that might be used is added (Module 7). Also a description showing how to evaluate the results of the classification/characterization is given, so that conclusions may be drawn on the information that has been generated (Module 8). Module 9, the last module, describes how to complete the LCA. It provides suggestions on how to present the results and indications about the improvement analysis.

  15. Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-06-01

    Full Text Available Concrete is a major material used in the construction industry that emits a large amount of substances with environmental impacts during its life cycle. Accordingly, technologies for the reduction in and assessment of the environmental impact of concrete from the perspective of a life cycle assessment (LCA must be developed. At present, the studies on LCA in relation to greenhouse gas emission from concrete are being carried out globally as a countermeasure against climate change. However, the studies on the impact of the substances emitted in the concrete production process on acidification and eutrophication are insufficient. As such, assessing only a single category of environmental impact may cause a misunderstanding about the environmental friendliness of concrete. The substances emitted in the concrete production process have an impact not only on global warming but also on acidification and eutrophication. Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide phenomena, and deterioration of reinforced concrete structures. For this reason, the main substances among those emitted in the concrete production process that have an impact on acidification and eutrophication were deduced. In addition, an LCA technique through which to determine the major emissions from concrete was proposed and a case analysis was carried out. The substances among those emitted in the concrete production process that are related to eutrophication were deduced to be NOx, NH3, NH4+, COD, NO3−, and PO43−. The substances among those emitted in the concrete production process that are related to acidification, were found to be NOx, SO2, H2S, and H2SO4. The materials and energy sources among those input into the concrete production process, which have the biggest impact on acidification and eutrophication, were found to be coarse aggregate and fine aggregate.

  16. Environmental impacts of food trade via resource use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-01-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio–economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required. (letter)

  17. Environmental impacts of food trade via resource use and greenhouse gas emissions

    Science.gov (United States)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-03-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio-economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required.

  18. Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Menikpura, S.N.M.; Bonnet, Sebastien; Gheewala, Shabbir H. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Joint Graduate School of Energy and Environment; Ministry of Education (Thailand). Center for Energy Technology and Environment

    2010-07-01

    At present, many Asian developing countries are practicing poor Municipal Solid Waste (MSW) management methods such as open dumping and non-engineered landfilling. This creates severe burdens on the environment and threat to human health. The quantification of the environmental impacts resulting from such poor MSW management practices is necessary to serve as a baseline against which alternative treatment technology options can be assessed for implementation of more environmentally sustainable MSW management systems that are adapted to local situation. In this study, existing MSW management systems in Ski Lanka and India were evaluated in order to assess the severity of their environmental impacts with focus on global warming potential and abiotic resource depletion. Life Cycle Assessment methodology was followed to perform this investigation. Results from this study reveal that the existing MSW management methods used in both countries cause severe environmental damages. However, the situation in India is slightly better as compared to Sri Lanka since 24% of its MSW is being composted. The implementation of landfill with landfill gas recovery for energy was identified as an important initial step to overcome the existing environmental impacts assessed. The results obtained revealed that implementation of such systems would help substantially to reduce global warming potential and abiotic resources depletion. (orig.)

  19. Automobile - environmental impact

    International Nuclear Information System (INIS)

    Franze, H.

    1993-01-01

    The way balances have been drawn up by business companies until now, they can be regarded as an attempt to develop an instrument for environmental management within the company that makes it possible to examine the ecological effects of the manufactured products during their life cycle. The strong points of such ecobalances can be put to use in the following areas in the future: Information on products and processes obtained through an analysis of the weakest points of the production process can be used for puposes of environmental management. With the aid of such examinations for weak points it then becomes possible to optimise products or processes. Comparative studies extending over years permit an assessment of corporate measures for environment protection and process adjustment. Moreover, ecobalances can serve as a guide for the selection of component concepts. The advantage of a balance related to the whole life cycle lies above all in the fact that the piecemeal studies on energy consumption and waste accumulation by stage can now be replaced by an integral, comprehensive registration of data and processes. (orig./UA) [de

  20. 10 CFR 960.3-4 - Environmental impacts.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Environmental impacts. 960.3-4 Section 960.3-4 Energy... REPOSITORY Implementation Guidelines § 960.3-4 Environmental impacts. Environmental impacts shall be... process. The DOE shall mitigate significant adverse environmental impacts, to the extent practicable...

  1. 32 CFR 989.16 - Environmental impact statement.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Environmental impact statement. 989.16 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain classes of environmental impacts normally require preparation of an EIS (40 CFR 1501.4). These include...

  2. 22 CFR 216.7 - Environmental impact statements.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Environmental impact statements. 216.7 Section... Environmental impact statements. (a) Applicability. An Environmental Impact Statement shall be prepared when... Environmental Impact Statement relating to paragraph (a)(2) of this section shall comply with the CEQ...

  3. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  4. ENVIRONMENTAL IMPACT ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    protect the environment, it is imperative to conduct environmental impact assessment ... Ethiopia enacted the Environmental Impact Assessment Proclamation in 2002 ... flora, fauna, soil, air, water, climate, natural or cultural heritage, other.

  5. 49 CFR 266.19 - Environmental impact.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Environmental impact. 266.19 Section 266.19... TRANSPORTATION ACT § 266.19 Environmental impact. (a) General. The Administrator has determined that providing..., or other significant adverse environmental impact on any mode of transportation; (6) The action is...

  6. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    Science.gov (United States)

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.

  7. Building lifespan: effect on the environmental impact of building components in a Danish perspective

    DEFF Research Database (Denmark)

    Marsh, Rob

    2017-01-01

    of building lifespan are inadequately addressed. The aim of this research is therefore to explore how environmental impact from building components is affected by building lifespans of 50, 80, 100 and 120 years in a Danish context. LCAs are undertaken for 792 parametric variations of typical construction...... solutions, covering all primary building components and based on contemporary practice. A full statistical analysis is carried out, which shows a significant statistical correlation between changes in building lifespan and environmental impact for all primary building components, except windows......Construction professionals must now integrate environmental concerns with life cycle assessment (LCA) early in the procurement process. Building lifespan is important to LCA, since results must be normalized on an annualized basis for comparison. However, the scientific literature shows that issues...

  8. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2013-01-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  9. 32 CFR 651.23 - Environmental impact statement.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Environmental impact statement. 651.23 Section...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents § 651.23 Environmental impact statement. An Environmental Impact statement (EIS) is a detailed written statement required...

  10. Life cycle assessment perspectives on delivering an infant in the US

    International Nuclear Information System (INIS)

    Campion, Nicole; Thiel, Cassandra L.; DeBlois, Justin; Woods, Noe C.; Landis, Amy E.; Bilec, Melissa M.

    2012-01-01

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. - Highlights: ► Life cycle assessment helps identify the environmental impacts of medical procedures. ► Disposable custom packs represent a large portion of environmental impacts of births. ► Electricity loading contributes to global warming potential and respiratory effects. ► Impact improvements should focus on heating, ventilation, and air conditioning and disposable custom packs.

  11. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  12. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  13. Draft Environmental Impact Statement: Proposed Tenaska, Washington II Generation Project

    International Nuclear Information System (INIS)

    1993-08-01

    BPA is considering whether to purchase electrical power from a proposed privately-owned combustion-turbine electrical generation plant in Washington. The plant would be fired by natural gas and would use combined-cycle technology to generate 240 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Tenaska Power Partners, Inc. The project would be located about 19 kilometers (12 miles) southeast of downtown Tacoma in the Frederickson Industrial Area, Pierce County. The proposed plant would occupy about half of a 6.4-hectare (16-acre) parcel and would be consistent with the industrial character of its surroundings. The proposed site is currently undeveloped and zoned for industrial use by the county. Main environmental concerns identified in the scoping process and evaluated in the Environmental Impact Statement (EIS) include: potential air quality impacts such as emissions and their contribution to the ''greenhouse'' effect; potential health and safety impacts, such as nuisance odors, plant safety, visibility and heat-emission systems which may affect low-flying planes and potential health effects of electric and magnetic fields, and potential water quality impacts such as the amount of wastewater to be discharged, the source and amount of water required for plant operation. These and other issues are discussed in detail in the EIS. The proposed project already includes many features designed to reduce environmental impacts. Based on investigations performed for the EIS, no significant unavoidable adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is particularly controversial. The EIS is being mailed to numerous agencies, groups, and individuals. There will be a 45-day comment period, during which a Public Hearing will be held

  14. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  15. ESTIMATING INJURIOUS IMPACT IN CONSTRUCTION LIFE CYCLE ASSESSMENTS: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    McDevitt, James E.

    2012-04-01

    Full Text Available This paper is the result of a desire to include social factors alongside environmental and economic considerations in Life Cycle Assessment studies for the construction sector. We describe a specific search for a method to include injurious impact for construction Life Cycle Assessment studies, by evaluating a range of methods and data sources. A simple case study using selected Accident Compensation Corporation information illustrates that data relating to injury could provide a compelling evidence to cause changes in construction supply chains, and could provide an economic motive to pursue further research in this area. The paper concludes that limitations notwithstanding, the suggested approach could be useful as a fast and cheap high level tool that can accelerate the discussions and research agenda that will bring about the inclusion of social metrics in construction sector supply chain management and declarations.

  16. Environmental correlates of cycling: Evaluating urban form and location effects based on Danish micro-data

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl; Carstensen, Trine Agervig

    2013-01-01

    The paper analyses the environmental correlates of cycling based on Danish transportation and urban form micro-data. The results show that established walkability factors such as density, connectivity and diversity are related to cycling, but access to retail concentrations/centres, public...... and the distance cycled. A high probability of cycling generally implies short cycling distances leading to non-uniform, non-monotonous relationship between environmental indicators such as walkability and cycling....

  17. Guidelines for implementation of an environmental management system in the nuclear fuel cycle: a case study of USEXA-CEA

    International Nuclear Information System (INIS)

    Mattiolo, Sandra Regina

    2012-01-01

    The environmental management standards are intended to provide to the organizations the elements needed for the implementation of an Environmental Management System (EMS) that can be effectively integrated to another management requirements and assist them to achieve their environmental and economic goals. The Uranium Hexafluoride Production Unit - USEXA, located at the Navy Technological Center in São Paulo, will be the first Brazilian industrial plant responsible for the conversion stage in the nuclear fuel cycle (production of uranium hexafluoride - UF6), allowing added-value to the uranium ore. The EMS proposed to USEXA in this project allows to regulate its interfaces with the environment, since the Standards of CNEN - National Commission of Nuclear Energy and of the IAEA - International Atomic Energy Agency for Nuclear Installations, aim, mostly, to attend the security criteria for the population and the environment, concerning ionizing radiation. This model of EMS fills the gaps in standards of IAEA and CNEN, since it takes into account the environmental impacts from the use of chemicals in the manufacturing process of UF6, and general aspects of sustainability. It can be considered an original contribution within the complex activities that includes the uranium processing in the nuclear fuel cycle. This research proposes, as result, the use of a filter of significance to evaluate the environmental impacts depending on the installation location. It is also presented the Management System Manual for USEXA and models for training in personnel management are suggested, such as coaching and neuro linguistic programing, which can be applied to any Management System. The training can be considered a preventive action as they considerably decreased incidents related to equipment maintenance and thus the occurrence of environmental impacts. (author)

  18. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou-Ttofa, L.; Foteinis, S. [Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus); Chatzisymeon, E. [Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Fatta-Kassinos, D., E-mail: dfatta@ucy.ac.cy [Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus); Department of Civil Engineering and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus)

    2016-10-15

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1 m{sup 3} of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system. - Highlights: • The environmental sustainability of

  19. Radiation environmental impact assessment of copper exploitation

    International Nuclear Information System (INIS)

    Fan Guang; Wen Zhijian

    2010-01-01

    The radiation environmental impact of mineral exploitation on the surrounding environment has become a public concern. This paper presents the radiation environmental impact assessment of copper exploitation. Based on the project description and detailed investigations of surrounding environment, systematic radiation environmental impacts have been identified. The environmental impacts are assessed during both construction and operation phase. The environmental protection measures have also been proposed. The related conclusion and measures can play an active role in copper exploitation and environmental protection. (authors)

  20. Environmental impacts of micro-wind turbines and their potential to contribute to UK climate change targets

    International Nuclear Information System (INIS)

    Greening, Benjamin; Azapagic, Adisa

    2013-01-01

    This paper evaluates the life cycle environmental sustainability of micro-wind turbines in the UK in comparison with grid electricity and solar PV (photovoltaics). The results suggests that per kWh electricity generated, the majority of environmental impacts from the wind turbines are lower than from grid electricity, ranging from 26% lower terrestrial toxicity to 92% lower global warming. However, depletion of abiotic elements, fresh-water and human toxicities are 82%, 74% and 53% higher than for grid electricity, respectively. The wind turbines are more environmentally sustainable than solar PV for seven out of 11 impacts, ranging from 7.5% lower eutrophication to 85% lower ozone layer depletion. However, depletion of fossil resources, fresh-water, human and terrestrial toxicities are higher for the wind turbine than for the PV, ranging from 5% for the former to 87% for the latter. UK-wide deployment of micro-wind turbines would save between 0.6 and 1% of GHG (greenhouse gas) emissions on 2009 levels. Therefore, the potential of micro-wind turbines to contribute towards UK's climate change targets is limited. - Highlights: • Life cycle environmental impacts of micro-wind turbines estimated for UK conditions. • The majority impacts are lower for micro-wind turbines than for grid electricity and solar PV. • Some impacts from micro-wind are higher, notably fresh-water and human toxicity. • At the national level, wind turbines would save only 0.6% GHG emissions on 2009 levels. • The potential of micro-wind turbines to contribute to UK's climate change targets is limited

  1. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    Science.gov (United States)

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  2. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    Science.gov (United States)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  3. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    Science.gov (United States)

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication.

  4. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults

    DEFF Research Database (Denmark)

    Saxe, Henrik; Okkels, Signe Loftager; Jensen, Jørgen Dejgård

    2017-01-01

    It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content......, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar...... social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional...

  5. Health impacts of mercury cycling in contaminated environments in China studied by nuclear techniques

    International Nuclear Information System (INIS)

    Wang Dingyong; Qing Changle; Shi Xiaojun; Zheng Yonghua; Li Bo; Yang Xuechun

    2001-01-01

    Mercury is a highly toxic non-essential element. The mercury cycling in natural environments is a complex process. In recent years, the stable mercury isotope tracer and related analytical techniques have been developed. They offer unique possibility to understand the biogeochemistry of mercury in various environmental conditions. So a new co-ordinated research project (CRP) on health impacts of mercury cycling in contaminated environments studied by nuclear techniques has been supported by the IAEA. This paper introduces the research project whose IAEA research contract number is CPR-10874. It includes the scientific background, scope of the project, methods, some results related to this CRP and the plans for future work. (author)

  6. Health impacts of mercury cycling in contaminated environments in China studied by nuclear techniques

    International Nuclear Information System (INIS)

    Wang Dingyong; Shi Xiaojun; Wei Shiqiang; Zheng Yonghua; Qing Changle

    2002-01-01

    Mercury is a highly toxic non-essential element. The mercury cycling in natural environments is a complex process. In recent years, the stable mercury isotope tracer and related analytical techniques have been developed. They offer unique possibility to understand the biogeochemistry of mercury in various environmental conditions. So a new coordinated research project (CRP), on health impacts of mercury cycling in contaminated environments studied by nuclear techniques, has been supported by the IAEA. This paper introduces the research project which is IAEA research contract number CPR-10874. It includes the scientific background, scope of the project, methods, some results related to this CRP and the plans for future work. (author)

  7. 40 CFR 1508.11 - Environmental impact statement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Environmental impact statement. 1508.11 Section 1508.11 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.11 Environmental impact statement. Environmental impact statement means a detailed written...

  8. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    Science.gov (United States)

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  9. Proposed Tenaska Washington II Generation Project : Final Environmental Impact Statement. Volume 1: Environmental Analysis and Technical Appendices.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to purchase electrical power from a proposed privately-owned combustion-turbine electrical generation plant in Washington. The plant would be fired by natural gas and would use combined-cycle technology to generate 240 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Tenaska Washington Partners II, L.P. The project would be located about 19 kilometers (12 miles) southeast of downtown Tacoma in the Frederickson Industrial Area, Pierce County. The proposed plant would occupy about half of a 6.4-hectare (16-acre) parcel and would be consistent with the industrial character of its surroundings. The proposed site is currently undeveloped and zoned for industrial use by the county. Main environmental concerns identified in the scoping process and in comments on the Draft Environmental Impact Statement (EIS) include: (1) potential air quality impacts, such as emissions and their contribution to the {open_quotes}greenhouse{close_quotes} effect; (2) potential health and safety impacts, such as nuisance odors, plant safety, visibility and heat-emission systems which may affect low-flying planes and potential health effects of electric and magnetic fields; and (3) potential water quality and quantity impacts, such as the amount of wastewater to be discharged, the source and amount of water required for plant operation. These and other issues are discussed in detail in the EIS. The proposed project already includes many features designed to reduce environmental impacts. Based on investigations performed for the EIS, no significant unavoidable adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial. The EIS is being mailed to numerous agencies, groups, and individuals (see Section 8.0). There will be a 30-day no-action period before any decisions are made and the Record of Decision is signed.

  10. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  11. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  12. 7 CFR 1948.62 - Environmental impact requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Environmental impact requirements. 1948.62 Section... Development Assistance Program § 1948.62 Environmental impact requirements. (a) The policies and regulations... studied for environmental impacts. (c) Boundaries shall define the area within which the environmental...

  13. 7 CFR 1794.61 - Environmental impact statement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Environmental impact statement. 1794.61 Section 1794..., DEPARTMENT OF AGRICULTURE (CONTINUED) ENVIRONMENTAL POLICIES AND PROCEDURES Procedure for Environmental Impact Statements § 1794.61 Environmental impact statement. An EIS shall be prepared in accordance with...

  14. Environmental monitoring standardization of effluent from nuclear fuel cycle facilities in China

    International Nuclear Information System (INIS)

    Gao Mili

    1993-01-01

    China has established some environmental monitoring standards of effluent from nuclear fuel cycle facilities. Up to date 33 standards have been issued; 10 to be issued; 11 in drafting. These standards cover sampling, gross activities measurement, analytical methods and management rules and so on. They involve with almost all nuclear fuel cycle facilities and have formed a complete standards system. By the end of the century, we attempt to draft a series of analytical and determination standards in various environmental various medium, they include 36 radionuclides from nuclear fuel cycle facilities. (3 tabs.)

  15. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products

    OpenAIRE

    Cheung, Wai Ming; Leong, Jun; Vichare, Parag

    2017-01-01

    In the last decades, environmental footprint of the product manufacture has emerged as an important public concern, causing manufacturers to re-assess their product’s environmental impacts. Responding to global outcry on global warming, world leaders have agreed to limit global temperature rise to less than 2°C above the temperature in pre-industrial times. As a result, governments and industrial leaders around the world have proposed a roadmap for 80% emissions reduction by 2050. The aim of ...

  16. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults.

    Science.gov (United States)

    Saxe, Henrik; Loftager Okkels, Signe; Jensen, Jørgen Dejgård

    2017-12-06

    It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional unit was mass, energy, or protein content, and whether the environmental impact was measured as global warming potential or the monetized value of 16 impact categories. We conclude that large-scale public procurement of snack-meals by private and municipal kitchens can be reduced by up to 40% if the kitchens evaluate the environmental impact of all their snacks and serve the better half more frequently.

  17. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults

    Directory of Open Access Journals (Sweden)

    Henrik Saxe

    2017-12-01

    Full Text Available It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional unit was mass, energy, or protein content, and whether the environmental impact was measured as global warming potential or the monetized value of 16 impact categories. We conclude that large-scale public procurement of snack-meals by private and municipal kitchens can be reduced by up to 40% if the kitchens evaluate the environmental impact of all their snacks and serve the better half more frequently.

  18. Environmental impact report (draft)

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The three projects as proposed by Pacific Gas and Electric Company and the environmental analysis of the projects are discussed. Sections on the natural and social environments of the proposed projects and their surrounding areas consist of descriptions of the setting, discussions of the adverse and beneficial consequences of the project, and potential mitigation measures to reduce the effects of adverse impacts. The Environmental Impact Report includes discussions of unavoidable adverse effects, irreversible changes, long-term and cumulative impacts, growth-inducing effects, and feasible alternatives to the project. (MHR)

  19. Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries.

    Science.gov (United States)

    Rivela, B; Moreira, M T; Bornhardt, C; Méndez, R; Feijoo, G

    2004-03-15

    A representative leather tannery industry in a Latin American developing country has been studied from an environmental point of view, including both technical and economic analysis. Life Cycle Analysis (LCA) methodology has been used for the quantification and evaluation of the impacts of the chromium tanning process as a basis to propose further improvement actions. Four main subsystems were considered: beamhouse, tanyard, retanning, and wood furnace. Damages to human health, ecosystem quality, and resources are mainly produced by the tanyard subsystem. The control and reduction of chromium and ammonia emissions are the critical points to be considered to improve the environmental performance of the process. Technologies available for improved management of chromium tanning were profoundly studied, and improvement actions related to optimized operational conditions and a high exhaustion chrome-tanning process were selected. These actions related to the implementation of internal procedures affected the economy of the process with savings ranging from US dollars 8.63 to US dollars 22.5 for the processing of 1 ton of wet salt hides, meanwhile the global environmental impact was reduced to 44-50%. Moreover, the treatment of wastewaters was considered in two scenarios. Primary treatment presented the largest reduction of the environmental impact of the tanning process, while no significant improvement for the evaluated impact categories was achieved when combining primary and secondary treatments.

  20. 40 CFR 6.207 - Environmental impact statements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Environmental impact statements. 6.207... ACTIONS EPA's NEPA Environmental Review Procedures § 6.207 Environmental impact statements. (a) The Responsible Official will prepare an environmental impact statement (EIS) (see 40 CFR 1508.11) for major...

  1. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    OpenAIRE

    Portha J.-F.; Jaubert J.-N.; Louret S.; Pons M.-N.

    2010-01-01

    Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA) is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects du...

  2. New Internet search volume-based weighting method for integrating various environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-01-15

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

  3. New Internet search volume-based weighting method for integrating various environmental impacts

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

  4. Southpoint power plant final environmental impact statement

    International Nuclear Information System (INIS)

    1999-01-01

    This document is the Final Environmental Impact Statement (FEIS) for a proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas fired 500 megawatt combined cycle power plant. The Bureau of Indian Affairs (BIA) serves as the federal lead agency and the Fort Mojave Indian Tribe (FMIT) and the Western Area Power Administration (WAPA) are cooperating agencies for the EIS process. The purpose of this document is to provide information to the public and to interested public agencies regarding the environmental consequences of the approval of a long-term lease for the construction and operation of the proposed Southpoint power plant. The FEIS, prepared by Hallock/Gross, Inc. under the direction of the BIA and in cooperation with the FMIT and WAPA, addresses the comparative analysis of alternatives and evaluates the environmental consequences of such alternatives on various resources and addresses public comments. A number of technical reports were used in the preparation of the Draft EIS and FEIS and are available for review as Appendices to this document under separate cover that can be reviewed at the BIA offices which are listed

  5. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  6. Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling.

    Science.gov (United States)

    Raza, Wasif; Forsberg, Bertil; Johansson, Christer; Sommar, Johan Nilsson

    2018-01-01

    Promotion of active commuting provides substantial health and environmental benefits by influencing air pollution, physical activity, accidents, and noise. However, studies evaluating intervention and policies on a mode shift from motorized transport to cycling have estimated health impacts with varying validity and precision. To review and discuss the estimation of air pollution exposure and its impacts in health impact assessment studies of a shift in transport from cars to bicycles in order to guide future assessments. A systematic database search of PubMed was done primarily for articles published from January 2000 to May 2016 according to PRISMA guidelines. We identified 18 studies of health impact assessment of change in transport mode. Most studies investigated future hypothetical scenarios of increased cycling. The impact on the general population was estimated using a comparative risk assessment approach in the majority of these studies, whereas some used previously published cost estimates. Air pollution exposure during cycling was estimated based on the ventilation rate, the pollutant concentration, and the trip duration. Most studies employed exposure-response functions from studies comparing background levels of fine particles between cities to estimate the health impacts of local traffic emissions. The effect of air pollution associated with increased cycling contributed small health benefits for the general population, and also only slightly increased risks associated with fine particle exposure among those who shifted to cycling. However, studies calculating health impacts based on exposure-response functions for ozone, black carbon or nitrogen oxides found larger effects attributed to changes in air pollution exposure. A large discrepancy between studies was observed due to different health impact assessment approaches, different assumptions for calculation of inhaled dose and different selection of dose-response functions. This kind of assessments

  7. Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling

    Science.gov (United States)

    Raza, Wasif; Forsberg, Bertil; Johansson, Christer; Sommar, Johan Nilsson

    2018-01-01

    ABSTRACT Background: Promotion of active commuting provides substantial health and environmental benefits by influencing air pollution, physical activity, accidents, and noise. However, studies evaluating intervention and policies on a mode shift from motorized transport to cycling have estimated health impacts with varying validity and precision. Objective: To review and discuss the estimation of air pollution exposure and its impacts in health impact assessment studies of a shift in transport from cars to bicycles in order to guide future assessments. Methods: A systematic database search of PubMed was done primarily for articles published from January 2000 to May 2016 according to PRISMA guidelines. Results: We identified 18 studies of health impact assessment of change in transport mode. Most studies investigated future hypothetical scenarios of increased cycling. The impact on the general population was estimated using a comparative risk assessment approach in the majority of these studies, whereas some used previously published cost estimates. Air pollution exposure during cycling was estimated based on the ventilation rate, the pollutant concentration, and the trip duration. Most studies employed exposure-response functions from studies comparing background levels of fine particles between cities to estimate the health impacts of local traffic emissions. The effect of air pollution associated with increased cycling contributed small health benefits for the general population, and also only slightly increased risks associated with fine particle exposure among those who shifted to cycling. However, studies calculating health impacts based on exposure-response functions for ozone, black carbon or nitrogen oxides found larger effects attributed to changes in air pollution exposure. Conclusion: A large discrepancy between studies was observed due to different health impact assessment approaches, different assumptions for calculation of inhaled dose and different

  8. 21 CFR 25.52 - Environmental impact statements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Environmental impact statements. 25.52 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Public Participation and Notification of Environmental Documents § 25.52 Environmental impact statements. (a) If FDA determines that an EIS is necessary for an action involving...

  9. Evaluating the relative environmental impact of countries.

    Science.gov (United States)

    Bradshaw, Corey J A; Giam, Xingli; Sodhi, Navjot S

    2010-05-03

    Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy 'models' can be identified. We provide novel metrics of country-specific environmental impact ranks - one proportional to total resource availability per country and an absolute (total) measure of impact - that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less

  10. Evaluating the relative environmental impact of countries.

    Directory of Open Access Journals (Sweden)

    Corey J A Bradshaw

    Full Text Available Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy 'models' can be identified. We provide novel metrics of country-specific environmental impact ranks - one proportional to total resource availability per country and an absolute (total measure of impact - that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional and 171 (absolute had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened. Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in

  11. Evaluating the Relative Environmental Impact of Countries

    Science.gov (United States)

    Bradshaw, Corey J. A.; Giam, Xingli; Sodhi, Navjot S.

    2010-01-01

    Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy ‘models’ can be identified. We provide novel metrics of country-specific environmental impact ranks – one proportional to total resource availability per country and an absolute (total) measure of impact – that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less

  12. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  13. Health impact assessment of cycling network expansions in European cities.

    Science.gov (United States)

    Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark

    2018-04-01

    We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People

    Directory of Open Access Journals (Sweden)

    Anna Lewandowska

    2017-07-01

    Full Text Available Sustainable production and consumption patterns require a change in approach at the early conceptual stages, i.e., when planning and designing products and services. This article presents an example of sustainable kitchen design aimed at the needs of seniors and people with physical disabilities, which takes into account social, economic, and environmental aspects. The interdisciplinary project team used a variety of traditional design methods such as the identification of requirements using QFD (Quality Function Deployment and FMEA (Failure Mode Effects Analysis, the development and verification of the technical concepts of the designed objects and their use, the development of construction and technological documentation, assembly drawings of the product architecture and its parts, function cost analysis, virtual and real prototyping, and tools based on the concept of a life cycle such as environmental life cycle assessment (LCA and life cycle costing (LCC. The analysis of the design solutions from the point of view of several criteria and several life cycle stages shows the complexity of the decision-making process and the difficulties in selecting a clearly favourable solution. Environmentally preferred materials may be difficult for users to accept due to their costs. On the other hand, materials that have a high environmental impact at the production stage may show great potential for final disposal.

  15. Environmental impact statement on management of commercially generated radioactive wastes

    International Nuclear Information System (INIS)

    Shupe, M.W.; Kreiter, M.R.

    1979-01-01

    This report describes the generic environmental impact statement on the management of generated high-level and transuranic radioactive wastes. The contents of the statement are summarized. The alternatives considered include: geologic disposal; chemical resynthesis; very deep hole disposal; rock melting concept; island disposal; subseabed disposal; icesheet disposal; reverse well disposal; transmutation treatment; and space disposal concepts. The types and quantities of wastes considered are from 3 different fuel cycles for the LWR reactor: once through; uranium-only recycle; and uranium and platinum recycle

  16. Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2011-01-01

    and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise...... quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable...... with composting (for “organics”) and incineration (for “recyclable paper”). This however requires high degree of control over gas and leachate emissions, high gas collection efficiency and extensive gas utilization at the landfill. For the other waste fractions, recycling and incineration are favourable, although...

  17. What are the environmental benefits of electric vehicles? A life cycle based comparison of electric vehicles with biofuels, hydrogen and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jungmeier, Gerfried; Canella, Lorenza; Beermann, Martin; Pucker, Johanna; Koenighofer, Kurt [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz (Austria)

    2013-06-01

    The Renewable Energy Directive aims reaching a share of 10% of renewable fuels in Europe in 2020. These renewable fuels are transportation biofuels, renewable electricity and renewable hydrogen. In most European countries transportation biofuels are already on the transportation fuel market in significant shares, e.g. in Austria 7% by blending bioethanol to gasoline and biodiesel to diesel. Electric vehicles can significantly contribute towards creating a sustainable, intelligent mobility and intelligent transportation systems. They can open new business opportunities for the transportation engineering sector and electricity companies. But the broad market introduction of electric vehicles is only justified due to a significant improvement of the environmental impact compared to conventional vehicles. This means that in addition to highly efficient electric vehicles and renewable electricity, the overall environmental impact in the life cycle - from building the vehicles and the battery to recycling at the end of its useful life - has to be limited to an absolute minimum. There is international consensus that the environmental effects of electric vehicles (and all other fuel options) can only be analysed on the basis of life cycle assessment (LCA) including the production, operation and the end of life treatment of the vehicles. The LCA results for different environmental effects e.g. greenhouse gas emissions, primary energy consumption, eutrophication will be presented in comparison to other fuels e.g. transportation biofuels, gasoline, natural gas and the key factors to maximize the environmental benefits will be presented. The presented results are mainly based on a national research projects. These results are currently compared and discussed with international research activities within the International Energy Agency (lEA) in the Implementing Agreement on Hybrid and Electric Vehicles (IA-HEV) in Task 19 ''Life Cycle Assessment of Electric Vehicles

  18. A review of the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels

    International Nuclear Information System (INIS)

    Costello, J.M.; Davy, D.R.; Cattell, F.C.R.; Cook, J.E.

    1980-01-01

    The subject is discussed under the headings: uranium mining; milling of uranium ores; manufacture of uranium hexafluoride; uranium enrichment; fuel manufacture and fabrication; environmental impact (use of natural resources; effluents from fuel cycle operations; occupational health; public health); alternative fuel cycles; additional waste treatment. (U.K.)

  19. Environmental impact assessment of solid waste management in Beijing City, China

    International Nuclear Information System (INIS)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  20. Environmental impacts assessment: Instruments for environmental policy making and resource management

    International Nuclear Information System (INIS)

    Cavelli, C.M.; Sartori, S.

    1993-06-01

    This review of evaluation criteria for environmental impacts assessments in Italy covers the following aspects: the efficacy of current Italian normatives governing assessment methods, the current approach of regional public administrations, the necessity for the creation of a national regulating board, environmental impacts assessment for complex environmental systems, the application of impacts assessment recommendations to resource development modelling in the planning of integrated environmental-economic systems, the involvement of the general public in decision making, techniques to determine the monetary worth of environmental resources, the use of multi-criteria analysis techniques