WorldWideScience

Sample records for cycle economic tools

  1. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  2. Integration of life cycle assessment software with tools for economic and sustainability analyses and process simulation for sustainable process design

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2014-01-01

    The sustainable future of the world challenges engineers to develop chemical process designs that are not only technically and economically feasible but also environmental friendly. Life cycle assessment (LCA) is a tool for identifying and quantifying environmental impacts of the chemical product...... with other process design tools such as sustainable design (SustainPro), economic analysis (ECON) and process simulation. The software framework contains four main tools: Tool-I is for life cycle inventory (LCI) knowledge management that enables easy maintenance and future expansion of the LCI database; Tool...... and/or the process that makes it. It can be used in conjunction with process simulation and economic analysis tools to evaluate the design of any existing and/or new chemical-biochemical process and to propose improvement options in order to arrive at the best design among various alternatives...

  3. Essays on economic cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert)

    2006-01-01

    Schumpeter’s line of thought of multiple economic cycles is further investigated. The existence of multiple cycles in economic variables is demonstrated. In basic innovations five different cycles are found. Multiple cycle structures are shown in various macro-economic variables from the United

  4. Osiris: an object oriented software tool for modelling the logistics, economics and environmental impact of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Millington, D.N.

    2003-01-01

    Osiris is a general purpose software tool which has been developed for performing studies of material usage, economics and environmental impacts associated with the nuclear fuel cycle. It is particularly suited to the analysis of complex multiple recycling scenarios featuring combinations of both existing and new reactor systems. A discrete event model is used to represent the movement of material batches around the fuel cycle due to the operations and timings of process plants. Nuclear materials are represented by state vectors, which undergo compositional changes due to radioactive decay and irradiation. A library of generic plant types is provided, which are declared and configured in order to represent specific plants. Reactors, front-end and back-end process plants, buffers, stores and material sources can be modelled. Fuel cycle scenarios are then constructed by defining the material flow paths between the plants. The plant parameters and flow paths can be altered dynamically over the course of a scenario in order to represent changes in recycling strategies and retirement and replacement of process plants. Discounted electricity costs can be determined by assigning unit costs to all capital investments, processes and raw materials. Radiotoxicity levels of waste streams can also be evaluated. The software was developed in C++ using objected oriented analysis and design methods. The use of abstraction and inheritance have enabled an open-ended fuel cycle modelling environment to be established, into which new reactor or plant models can readily be integrated. An overview of the object model, numerical modelling assumptions and the design and implementation of the software is presented. (author)

  5. Benchmarking of nuclear economics tools

    International Nuclear Information System (INIS)

    Moore, Megan; Korinny, Andriy; Shropshire, David; Sadhankar, Ramesh

    2017-01-01

    Highlights: • INPRO and GIF economic tools exhibited good alignment in total capital cost estimation. • Subtle discrepancies in the cost result from differences in financing and the fuel cycle assumptions. • A common set of assumptions was found to reduce the discrepancies to 1% or less. • Opportunities for harmonisation of economic tools exists. - Abstract: Benchmarking of the economics methodologies developed by the Generation IV International Forum (GIF) and the International Atomic Energy Agency’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), was performed for three Generation IV nuclear energy systems. The Economic Modeling Working Group of GIF developed an Excel based spreadsheet package, G4ECONS (Generation 4 Excel-based Calculation Of Nuclear Systems), to calculate the total capital investment cost (TCIC) and the levelised unit energy cost (LUEC). G4ECONS is sufficiently generic in the sense that it can accept the types of projected input, performance and cost data that are expected to become available for Generation IV systems through various development phases and that it can model both open and closed fuel cycles. The Nuclear Energy System Assessment (NESA) Economic Support Tool (NEST) was developed to enable an economic analysis using the INPRO methodology to easily calculate outputs including the TCIC, LUEC and other financial figures of merit including internal rate of return, return of investment and net present value. NEST is also Excel based and can be used to evaluate nuclear reactor systems using the open fuel cycle, MOX (mixed oxide) fuel recycling and closed cycles. A Super Critical Water-cooled Reactor system with an open fuel cycle and two Fast Reactor systems, one with a break-even fuel cycle and another with a burner fuel cycle, were selected for the benchmarking exercise. Published data on capital and operating costs were used for economics analyses using G4ECONS and NEST tools. Both G4ECONS and

  6. Economic growth and business cycles

    NARCIS (Netherlands)

    Canton, E.J.F.

    1997-01-01

    This thesis contains five essays on economic growth and business cycles. The main focus is on the interaction between economic growth and the cycle: is cyclical variability good or bad for the long-run rate of economic growth? The introduction aims to provide some empirical evidence for an

  7. Life cycle and sustainability of abrasive tools

    CERN Document Server

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  8. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  9. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  10. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  11. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  12. Economic impact of reduced mortality due to increased cycling.

    Science.gov (United States)

    Rutter, Harry; Cavill, Nick; Racioppi, Francesca; Dinsdale, Hywell; Oja, Pekka; Kahlmeier, Sonja

    2013-01-01

    Increasing regular physical activity is a key public health goal. One strategy is to change the physical environment to encourage walking and cycling, requiring partnerships with the transport and urban planning sectors. Economic evaluation is an important factor in the decision to fund any new transport scheme, but techniques for assessing the economic value of the health benefits of cycling and walking have tended to be less sophisticated than the approaches used for assessing other benefits. This study aimed to produce a practical tool for estimating the economic impact of reduced mortality due to increased cycling. The tool was intended to be transparent, easy to use, reliable, and based on conservative assumptions and default values, which can be used in the absence of local data. It addressed the question: For a given volume of cycling within a defined population, what is the economic value of the health benefits? The authors used published estimates of relative risk of all-cause mortality among regular cyclists and applied these to levels of cycling defined by the user to produce an estimate of the number of deaths potentially averted because of regular cycling. The tool then calculates the economic value of the deaths averted using the "value of a statistical life." The outputs of the tool support decision making on cycle infrastructure or policies, or can be used as part of an integrated economic appraisal. The tool's unique contribution is that it takes a public health approach to a transport problem, addresses it in epidemiologic terms, and places the results back into the transport context. Examples of its use include its adoption by the English and Swedish departments of transport as the recommended methodologic approach for estimating the health impact of walking and cycling. Copyright © 2013 World Health Organization. Published by Elsevier Inc. All rights reserved.

  13. Economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-01-01

    The economics of the DT, DD, and DHe fusion fuel cycles are evaluated by comparison on a consistent basis. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeding material for the DT fuel cycle. The reactors are pulsed, superconducting tokamaks, producing 1200 MW of electric power. The DT and DD designs scan a range of values of plasma beta, assuming first stability scaling laws. The results indicate that on a purely economic basis, the DT fuel cycle is superior to both of the advanced fuel cycles. Geometric factors, materials limitations, and plasma beta were seen to have an impact on the Cost of Electricity (COE). The economics for the DD fuel cycle are more strongly affected by these parameters than is the DT fuel cycle. Fuel costs are a major factor in determining the COE for the DHe fuel cycle. Based on costs directly attributable to the fuel cycle, the DT fuel cycle appears most attractive. Technological advances, improved understanding of physics, or strides in advanced energy conversion schemes may result in altering the economic ranking of the fuel cycles indicated here. 7 refs., 6 figs., 2 tabs

  14. Advancing life cycle economics in the Nordic countries

    DEFF Research Database (Denmark)

    Haugbølle, Kim; Hansen, Ernst Jan de Place

    2005-01-01

    Advancing construction and facilities management requires the ability to estimate and evaluate the economic consequences of decisions in a lifetime perspective. A survey of state-of-the-art on life cycle economics in the Nordic countries showed that, despite a number of similarities, no strong...... that the configuration of the roles as client, owner and user is indicative of a client's interest in life cycle economics. Second, a proposal for a common Nordic cost classification was put forward. Third, it was argued that there is a strong need to develop tools and methodologies to depict the cost/value ratio...

  15. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  16. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  17. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  18. Economic Cycles in a Behavioral Disequilibrium Perspective

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sterman, J.D.

    1997-01-01

    The paper reviews the characteristic features of the main economic cycles and discusses the behavioral foundation for each mode at the microlevel. The analysis continues to illustrate some of the nonlinear dynamic phenomena that can arise through interaction between the various modes and through...

  19. Commodities Trading: An Essential Economic Tool.

    Science.gov (United States)

    Welch, Mary A., Ed.

    1989-01-01

    This issue focuses on commodities trading as an essential economic tool. Activities include critical thinking about marketing decisions and discussion on how futures markets and options are used as important economic tools. Discussion questions and a special student project are included. (EH)

  20. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  1. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  2. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  3. Theory of economic cycle: analysis of аustrian school

    OpenAIRE

    Nesterenko, O.

    2008-01-01

    Essence of Austrian theory of economic cycle has been revealed. Differences of Austrian school approaches from theories of economic fluctuations in other streams of economic sciences have been analyzed

  4. Mouse estrous cycle identification tool and images.

    Directory of Open Access Journals (Sweden)

    Shannon L Byers

    Full Text Available The efficiency of producing timed pregnant or pseudopregnant mice can be increased by identifying those in proestrus or estrus. Visual observation of the vagina is the quickest method, requires no special equipment, and is best used when only proestrus or estrus stages need to be identified. Strain to strain differences, especially in coat color can make it difficult to determine the stage of the estrous cycle accurately by visual observation. Presented here are a series of images of the vaginal opening at each stage of the estrous cycle for 3 mouse strains of different coat colors: black (C57BL/6J, agouti (CByB6F1/J and albino (BALB/cByJ. When all 4 stages (proestrus, estrus, metestrus, and diestrus need to be identified, vaginal cytology is regarded as the most accurate method. An identification tool is presented to aid the user in determining the stage of estrous when using vaginal cytology. These images and descriptions are an excellent resource for learning how to determine the stage of the estrous cycle by visual observation or vaginal cytology.

  5. Differential Forms: A New Tool in Economics

    Science.gov (United States)

    Mimkes, Jürgen

    Econophysics is the transfer of methods from natural to socio-economic sciences. This concept has first been applied to finance1, but it is now also used in various applications of economics and social sciences [2,3]. The present paper focuses on problems in macro economics and growth. 1. Neoclassical theory [4, 5] neglects the “ex post” property of income and growth. Income Y(K, L) is assumed to be a function of capital and labor. But functions cannot model the “ex post” character of income. 2. Neoclassical theory is based on a Cobb Douglas function [6] with variable elasticity α, which may be fitted to economic data. But an undefined elasticity α leads to a descriptive rather than a predictive economic theory. The present paper introduces a new tool - differential forms and path dependent integrals - to macro economics. This is a solution to the problems above: 1. The integral of not exact differential forms is path dependent and can only be calculated “ex post” like income and economic growth. 2. Not exact differential forms can be made exact by an integrating factor, this leads to a new, well defined, unique production function F and a predictive economic theory.

  6. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  7. Economic and Financial Analysis Tools | Energy Analysis | NREL

    Science.gov (United States)

    Economic and Financial Analysis Tools Economic and Financial Analysis Tools Use these economic and . Job and Economic Development Impact (JEDI) Model Use these easy-to-use, spreadsheet-based tools to analyze the economic impacts of constructing and operating power generation and biofuel plants at the

  8. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  9. Economic turmoil, new administration to affect revenue cycle in 2009.

    Science.gov (United States)

    2009-01-01

    Healthcare revenue cycle leaders willface some pressing issues in 2009, including continuing economic turmoil, increasing numbers of underinsured patients, avoiding unreimbursable medical errors, and implementation of ICD-10.

  10. Life cycle and economic efficiency analysis: durable pavement markings.

    Science.gov (United States)

    2009-07-01

    This project examined the life cycle and economic efficiency of two pavement marking : materials inlaid tape and thermoplastic to find the most economical product for specific : traffic and weather conditions. Six locations in the state of Ma...

  11. The economic implications of carbon cycle uncertainty

    International Nuclear Information System (INIS)

    Smith, Steven J.; Edmonds, James A.

    2006-01-01

    This paper examines the implications of uncertainty in the carbon cycle for the cost of stabilizing carbon dioxide concentrations. Using a state of the art integrated assessment model, we find that uncertainty in our understanding of the carbon cycle has significant implications for the costs of a climate stabilization policy, with cost differences denominated in trillions of dollars. Uncertainty in the carbon cycle is equivalent to a change in concentration target of up to 100 ppmv. The impact of carbon cycle uncertainties are smaller than those for climate sensitivity, and broadly comparable to the effect of uncertainty in technology availability

  12. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  13. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  14. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  15. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...

  16. Fuel Cycle of VVER-1000: technical and economic aspects

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.

    2009-01-01

    The paper contains estimations of dependences of technical and economic characteristics of VVER-1000 fuel cycle on number of charged FAs and their enrichment. In the study following restrictions were used: minimum quantity of loaded fresh FAs is equal 36 FAs, a maximum one - 78 (79) FAs and fuel enrichment is limited by value 4,95 %. The following technical and economic characteristics are discussed: cycle length, average burnup of spent fuel, specific consumption of natural uranium, specific quantity of separative work, annual production of thermal energy, fuel component of electrical energy cost, electricity generation cost. Results of estimations are presented as dependences of researched characteristics on cycle length, quantity of loaded FAs and their enrichments. The presented information allows to show tendencies and ranges of technical and economic characteristics at change of fuel cycle parameters. This information can be useful for definition of the fuel cycle parameters which satisfy the requirements of power system and exploiting organizations. (authors)

  17. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle

  18. International fuel cycle centres offer large economics and easier financing

    International Nuclear Information System (INIS)

    Smith, D.

    1977-01-01

    The summary report of the IAEA study project on multi-national regional nuclear fuel cycle indicates that for facilities of reasonable size such projects offer very decisive advantages in fuel cycle costs and resource availability over national facilities in general, and more markedly over the other alternative of the open ended, non-recycle fuel route. The economic evaluation of alternative fuel cycle strategies, one of the basic studies summarised in the report, is considered. (author)

  19. Improving early cycle economic evaluation of diagnostic technologies

    NARCIS (Netherlands)

    Steuten, Lotte Maria Gertruda; Ramsey, Scott D.

    2014-01-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to

  20. Super Phenix 1 fuel cycle, technical and economical outlooks

    International Nuclear Information System (INIS)

    Mougniot, J.C.; Baumier, J.; Duchatelle, L.

    1982-01-01

    An analysis of the costs of the various parts of the Super Phenix 1 fuel cycle is presented. The basis for calculating the mean levelized present unit cost used in French economic analyses is described. A description of the fuel cycle which follows includes the physical characteristics and management of the fuel and the costs of fuel services and raw materials. The results of calculations about Super Phenix mean levelized present fuel cycle unit cost are indicated and a comparison with two, four and six 1500 MWe units and PWR units is made. Finally conclusions are drawn about the economic possibility of FBR deployment. (U.K.)

  1. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: - To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; - To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; - To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; - To discuss the results of studies and on-going R&D activities that address cost reduction and the future economic competitiveness of fast reactors; and - To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  2. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: • To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; • To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; • To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; • To discuss the results of studies and ongoing R&D activities that address cost reduction and the future economic competitiveness of fast reactors; • To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  3. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  4. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  5. Improving early cycle economic evaluation of diagnostic technologies.

    Science.gov (United States)

    Steuten, Lotte M G; Ramsey, Scott D

    2014-08-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to increase the return on investment as well as patient and societal impact. This paper describes examples of 'early cycle economic evaluations' as applied to diagnostic technologies and highlights challenges in its real-time application. It shows that especially in the field of diagnostics, with rapid technological developments and a changing regulatory climate, early cycle economic evaluation can have a guiding role to improve the efficiency of the diagnostics innovation process. In the next five years the attention will move beyond the methodological and analytic challenges of early cycle economic evaluation towards the challenge of effectively applying it to improve diagnostic research and development and patient value. Future work in this area should therefore be 'strong on principles and soft on metrics', that is, the metrics that resonate most clearly with the various decision makers in this field.

  6. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  7. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  8. Economic potential of advanced fuel cycles in CANDU

    International Nuclear Information System (INIS)

    Slater, J.B.

    1982-07-01

    Advanced fuel cycles in CANDU offer the potential of a many-fold increase in energy yield over that which can be obtained from uranium resources using the current once-through natural uranium cycle. This paper examines the associated economics of alternative once-through and recycle fuelling. Results indicate that these cycles will limit the impact of higher uranium prices and offer the potential of a period of stable constant-dollar generating costs that are only approximately 20% higher than current levels

  9. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  10. Economic analysis of fast reactor fuel cycle with different modes

    International Nuclear Information System (INIS)

    Ding Xiaoming

    2014-01-01

    Because of limitations on the access to technical and economic data and the lack of effective verification, the lack of in-depth study on the economy of fast reactor fuel cycle in China. This paper introduces the analysis and calculation results of the levelized cost of electricity (LCOE) under three different fuel cycle modes including fast reactor fuel cycle carried out by Massachusetts Institute of Technology (MIT). The author used the evaluation method and hypothesis parameters provided by the MIT to carry out the sensitivity analysis for the impact of the overnight cost, the discount rate and changes of uranium price on the LCOE under three fuel cycle modes. Finally, some suggestions are proposed on the study of economy in China's fast reactor fuel cycle. (authors)

  11. Computational tool for simulation of power and refrigeration cycles

    Science.gov (United States)

    Córdoba Tuta, E.; Reyes Orozco, M.

    2016-07-01

    Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.

  12. Review of capital investment in economic growth cycle

    Science.gov (United States)

    Shaffie, Siti Salihah; Jaaman, Saiful Hafizah; Mohamad, Daud

    2016-11-01

    The study of linkages of macroeconomics factors is prominent in order to understand how the economic cycle affects one another. These factors include interest rate, growth rate, saving and capital investment which are mutually correlated to stabilize the GDP. Part of this study, it will look upon the impact of investment which emphasize the efficiency of capital investment to the economic growth. Capital investment is one investment appraisal that gives impact to the economic growth. It is a long term investment and involve with large amount of capital to incorporate the development of private and public capital investment.

  13. Administrative and economic tools of environmental protection

    OpenAIRE

    Staničová, Anna

    2010-01-01

    This diploma thesis deals with administrative and economic instruments of environmental protection, which represent the most important groups of instruments of environmental protection. Administrative and economic instruments are means and methods that affect human behavior in relation to environment. The thesis is systematically divided into two main parts and each of them is subdivided into chapters and subchapters. The first part of the thesis is focused generally and provides overview of ...

  14. Economic Growth and the Evolution of Material Cycles

    DEFF Research Database (Denmark)

    Zhang, Chao; Chen, Wei Qiang; Liu, Gang

    2017-01-01

    Understanding the relationship between material cycles and economic growth is essential for relieving environmental pressures associated with material extraction, production, and consumption. We developed an integrated analytical framework of dematerialization analysis incorporating both material...... flow and stock indicators. A four-quadrant diagram is designed to classify different stages of dematerialization based on the elasticity of material flow/stock to economic output or well-being. We then conducted a case study on the long-term evolution of aluminum cycle in the U.S., and found...... and secondary material recycling, take effect at different stages of economic development. Comprehensive understanding of dematerialization depends on in-depth analysis on material-economy relationships from an integrated stock and flow perspective....

  15. Technical And Economical FACTIBILITY To Apply A Combined Cycle

    International Nuclear Information System (INIS)

    Hernández Rangel, Elybe

    2017-01-01

    In the state of Falcon specifically in the peninsula of Paraguaná, there are two electric plants; GENEVAPCA and CADAFE. These companies are in charge of providing electrical power to the population, which is being affected by the increment of the population, plus the touristic development of the tax free zone. This reasons cause the systematic ration of the electrical power that as a consequence causes electrical interruptions for a long period of time. Due to this electrical plants can not cover the demand in its totality, there must be created alternative for usage of the electricity which would increment its production. The following thesis has an objective to analyze the technical and economical factibility to apply a combined cycle, with the purpose of increasing the electrical power supply and obtain a better thermodynamically performance. Such project was elaborated in four phases. The first phase contemplated the data collection related to the subject, obtaining important information to select the best option of the combined cycle. In the Second phase was executed the termination of the thermodynamically and energetically properties of the combined cycle, comparing the efficient of the simple cycle with the cycle mention before. As final phase, the project’s economical rentability was estimated for possible installation. (author)

  16. Development and Validation of A Nuclear Fuel Cycle Analysis Tool: A FUTURE Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Yoon Hee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  17. DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

    Directory of Open Access Journals (Sweden)

    S.K. KIM

    2013-10-01

    Full Text Available This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  18. The economics of the fuel cycle (light water reactors)

    International Nuclear Information System (INIS)

    Lepine, J.

    1979-01-01

    The economical characteristics of the fuel cycle (of light water reactors) as well as the definition and calculation method for the average updated cost of the kWh are recalled. The evolution followed by the unit prices of the different operations of the cycle, their total cost and the part taken by this cost in the overall cost of nuclear kWh are described. The effects on the cost of fuel of certain hypotheses, operating requirements and additional cost factors are considered [fr

  19. Have Economic Educators Embraced Social Media as a Teaching Tool?

    Science.gov (United States)

    Al-Bahrani, Abdullah; Patel, Darshak; Sheridan, Brandon J.

    2017-01-01

    In this article, the authors discuss the results of a study of the perceptions of a national sample of economics faculty members from various institutions regarding the use of social media as a teaching tool in and out of the economics classroom. In the past few years, social media has become globally popular, and its use is ubiquitous among…

  20. New approaches to business cycle theory in current economic science

    Directory of Open Access Journals (Sweden)

    Monica DOBRESCU

    2012-07-01

    Full Text Available In modern economies, current research generally acknowledges that the central issues in macroeconomics are essentially the same as those identified by Keynes in the General Theory of Employment, Interest and Money. One way or the other, economists are trying to address the same macroeconomic issues that they did seven decades ago: How can we account for the different growth rates and various fluctuations observed in national economies? Which are the economic policies most suitable to solve the issues of growth and cyclic behavior? Both the new classicals and the new Keynesians have made considerable progress within their research paradigms: to explain economic fluctuations, the new classicals focus on technological perturbations, the intertemporal substitution of leisure and real business cycles; on the other hand, the new Keynesians speak in terms of monopolistic competition, menu costs or efficiency wages. On the whole, the new classicals believe that the business cycle can best be understood within the market-clearing model, whereas the new keynesians believe that business fluctuations are due to certain market failures of various sorts.The present paper focuses on the main directions of research of the new classical school on the business cycle, given that the theoretical progress in this field has been significant and relevant for economic policy during the past four decades.

  1. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  2. Analysis of ship life cycles: the impact of economic cycles and ship inspection

    NARCIS (Netherlands)

    Bijwaard, G.E.; Knapp, S.

    2009-01-01

    Due to the shipping industry's international legal framework, there are loopholes in the system, which can increase the risk of incidents with high economic costs due to the substandard operation of vessels. This article uses duration analysis and through the creation of ship life cycles provides

  3. Economic Dynamics of the German Hog-Price Cycle

    Directory of Open Access Journals (Sweden)

    Ernst Berg

    2015-06-01

    Full Text Available We investigated the economic dynamics of the German hog-price cycle with an innovative ‘diagnostic’ modeling approach. Hog-price cycles are conventionally modeled stochastically—most recently as randomly-shifting sinusoidal oscillations. Alternatively, we applied Nonlinear Time Series analysis to empirically reconstruct a deterministic, low-dimensional, and nonlinear attractor from observed hog prices. We next formulated a structural (explanatory model of the pork industry to synthesize the empirical hog-price attractor. Model simulations demonstrate that low price-elasticity of demand contributes to aperiodic price cycling – a well know result – and further reveal two other important driving factors: investment irreversibility (caused by high specificity of technology, and liquidity-driven investment behavior of German farmers.

  4. Safety and economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-08-01

    The DT, DD and DHe fusion fuel cycles are compared on the basis of safety and economics. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeder for the DT fuel cycle. The reactors are pulsed superconducting tokamaks, producing 4000 MW thermal power. The DT and DD designs are developed utilizing a plasma beta of 5%, 10% and 20%, assuming first stability scaling laws; a single value of 10% for beta is used for the DHe design. Modest extrapolations of current day technology are employed, providing a reference point for the relative ranking of the fuel cycles. Technological advances and improved understanding of the physics involved may alter the relative positions from what has been determined here. 92 figs., 59 tabs

  5. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  6. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  7. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byungheung; Kwon, Eunha; Ko, Wonil

    2010-01-01

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FMC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. Sensitivity analysis has also been performed to obtain the breakeven uranium price for Pyro-SFR against PWR-O T. Economics of Pyro-SFR fuel cycle scenario has been calculated and compared by employing equilibrium model. The LFCC were obtained, Pyro-SFR 7.68 mills/kWh. The Uranium price is the dominant driver of LFCC. Pyro-techniques also weight considerably in Pyro-SFR scenario. On consideration of the current unavoidable uncertainties introduced by certain cost data, cost range and triangle techniques were used to perform the uncertainty study which indicates that the gap between Pyro-SFR and PWR-O T fuel cycle scenario is relatively small

  8. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  9. Economics of nuclear energy production systems: reactors and fuel cycle

    International Nuclear Information System (INIS)

    Bouchard, J.; Proust, E.; Gautrot, J.J.; Tinturier, B.

    2003-01-01

    The present paper relies on the main European economic studies on the comparative costs of electricity generation, published over the last six years, to show that nuclear power meets the challenge and is an economically competitive choice in the European electricity market. Indeed, although these studies were made for different purposes, by different actors and based on different methods, they all converge to show that the total base-load generation cost for new nuclear plants build in Europe is projected to be in the range of 22 to 32 euros/MWh, a total generation cost that may be 20% cheaper than the cost for combined cycle gas turbine (CCGT) units. Moreover, the prospects of internalization of the greenhouse gas emission cost in the total generation cost will boost even further the competitiveness of nuclear against gas-fired plants in Europe. All this is confirmed by the most recent French detailed study (DIDEME 2003), essentially performed from an investor standpoint, which concludes, for base-load generation units starting operation around 2015, that nuclear power, with a levelled generation cost of 28,4 euros/MWh, is more competitive than CCGTs (35 euros/MWh). This study also shows an overnight investment cost for nuclear power, based on the considered scenario (a series of 10 EPR units including a ''demonstrator''), of less than 1300 euros/kWe. The other major challenge, waste management obviously also includes an economic dimension. This issue is addressed in the present paper which provides a synthesis of relevant detailed French and OECD economic studies on the cost assessment of the fuel cycle back-end. (author)

  10. Electoral and Partisan Cycles between US Economic Performance and Presidential Popularity

    NARCIS (Netherlands)

    W. Letterie (Wilko); O.H. Swank (Otto)

    1997-01-01

    textabstractIn this paper we discuss a recent paper by Stephen E Haynes in which he relates electoral cycles in political support to electoral cycles in economic variables Haynes finds that the cycle in support for Republican presidents is explained by the cycle in economic variables, whereas the

  11. Out-of-core nuclear fuel cycle economic optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.

    1987-01-01

    A methodology and associated computer code was developed to determine near-optimum out-of-core fuel management strategies. The code, named OCEON (Out-of-Core Economic OptimizationN), identified feed-region sizes and enrichments, and partially burned fuel-reload strategies for each cycle of a multi-cycle planning horizon, subject to cycle-energy requirements and constraints on feed enrichments, discharge burnups, and the moderator temperature coefficient. A zero-dimensional reactor physics model, enhanced by a linear reactivity model to provide batch power shares, performs the initial feed enrichment, burnup and constraint evaluations, while a two-dimensional, nodal code is used to refine the calculations for the final solutions. The economic calculations are performed rapidly using an annuity-factor-based model. Use of Monte Carlo integer programming to select the optimum solutions allows for the determination of a family of near-optimum solutions, from which engineering judgment may be used to select an appropriate strategy. Results from various nonequilibrium cycle energy requirement cases typically show a large number of low-cost solutions near the optimum. This confirms that the Monte Carlo integer programming approach of generating a family of solutions will be most useful for selecting optimum strategies when other considerations, such as incore loading pattern concerns, must be addressed

  12. Crisis and economic recovery in the states of the northern border. Analysis of economic cycles

    Directory of Open Access Journals (Sweden)

    Eliseo Díaz González

    2012-01-01

    Full Text Available This paper analyzes the prospect of economic recovery and the comovement of regional and national economy with a focus on business cycles theory in 1997–2010. We estimate the trend and cycle of composition of growth in each entity with the Hodrick–Prescott filter and an autoregressive model, using employment data. The evidence shows that Nuevo Leon has the capacity to return to its trend growth, but Baja California and Chihuahua has less possibility. Finally, short–term dynamics of these economies shows that the degree of synchronization with the national economy seems to play for the recovery of growth.

  13. Research progress of socio-economic water cycle in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-deficient regions in North China and Northwest China for about half a century. For solving water shortage problem in northern China, she has put forward the famous South-to-North Water Transferring Projects, which has been set as one of the four biggest national projects in the Tenth Five-Year-Plan period although there are still debates. For promoting water use efficiency, China has been reforming her water management system, including water right system and water price system. There has already been a case of water right purchase. China has also done a lot of research on the interaction between human activity, water and ecosystem. For meeting the need of sustainability and coordinating water resources development and environmental protection, the study of ecological water requirement became very hot in recent years. There are three focuses of socio-economic water cycle study now in China: water transfer projects from the south to the north, water resources management and ecological water requirement.

  14. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  15. [Atomic force microscopy: a tool to analyze the viral cycle].

    Science.gov (United States)

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.

  16. A Regional Analysis of the Life Cycle Environmental and Economic Tradeoffs of Different Economic Growth Paths

    Directory of Open Access Journals (Sweden)

    Weiwei Mo

    2018-02-01

    Full Text Available Different economic development strategies may result in varied socioeconomic and environmental synergies or tradeoffs, suggesting an opportunity for environmentally conscious planning. To understand such synergies or tradeoffs, a dynamic environmental life cycle assessment was conducted for eleven groups of New Hampshire industries. Historical state level Gross Domestic Product (GDP-by-industry data was combined with economic input-output analysis to calculate the direct and life cycle energy use, freshwater use, greenhouse gas emissions, and eutrophication potential of each industry on a yearly basis for the period of 1997–2012. The future development of agriculture, traditional manufacturing, high tech, and tourism industries were investigated based on government projections. Total life cycle impacts of the 11 industries were found to represent around three to seven times those of direct impacts, indicating the significance of the supply chain impacts. Traditional manufacturing has the highest life cycle impacts even though it contributes to less than 10% of the state GDP. Future development of high tech was found to be the best strategy to increase GDP while imposing the least additional environmental impacts. Tourism presents relatively high impacts in terms of freshwater use and eutrophication potential, and a change in recreational style might be able to reduce its impacts.

  17. Adaptive engineering management tools of enterprise economic security

    Directory of Open Access Journals (Sweden)

    G.E. Krokhicheva

    2018-06-01

    Full Text Available This paper discusses the organizational and methodological foundations and methods exploited to forecast, analyze and scale down threats and risks in the sphere of economic security, to solve the adaptation problems, to implement and to evaluate of the potency of protective measures. The object of the conducted research is associated with various economic activities of the commercial enterprises affiliated in Rostov region. A suggested model of the formation and functioning of adaptive engineering tools for managing economic security in the form of derivative balance of the enterprise resources and the sources of their formation will allow the proprietors, executive board and mana-gerial staff to obtain necessary information within the requested context regarding the enterprise vital economic interests. In addition, the paper pays attention to the methodological aspects of accounting description and estimation of the iterative achievements to meet the desired adaptation results, implemented within the framework of the described iterative algorithm aimed at ensuring strategic prediction.

  18. Economic Consequence Analysis of Disasters: The ECAT Software Tool

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Adam; Prager, Fynn; Chen, Zhenhua; Chatterjee, Samrat; Wei, Dan; Heatwole, Nathaniel; Warren, Eric

    2017-04-15

    This study develops a methodology for rapidly obtaining approximate estimates of the economic consequences from numerous natural, man-made and technological threats. This software tool is intended for use by various decision makers and analysts to obtain estimates rapidly. It is programmed in Excel and Visual Basic for Applications (VBA) to facilitate its use. This tool is called E-CAT (Economic Consequence Analysis Tool) and accounts for the cumulative direct and indirect impacts (including resilience and behavioral factors that significantly affect base estimates) on the U.S. economy. E-CAT is intended to be a major step toward advancing the current state of economic consequence analysis (ECA) and also contributing to and developing interest in further research into complex but rapid turnaround approaches. The essence of the methodology involves running numerous simulations in a computable general equilibrium (CGE) model for each threat, yielding synthetic data for the estimation of a single regression equation based on the identification of key explanatory variables (threat characteristics and background conditions). This transforms the results of a complex model, which is beyond the reach of most users, into a "reduced form" model that is readily comprehensible. Functionality has been built into E-CAT so that its users can switch various consequence categories on and off in order to create customized profiles of economic consequences of numerous risk events. E-CAT incorporates uncertainty on both the input and output side in the course of the analysis.

  19. Energy life-cycle analysis modeling and decision support tool

    Energy Technology Data Exchange (ETDEWEB)

    Hoza, M.; White, M.E.

    1993-06-01

    As one of DOE`s five multi-program national laboratories, Pacific Northwest Laboratory (PNL) develops and deploys technology for national missions in energy and the environment. The Energy Information Systems Group, within the Laboratory`s Computer Sciences Department, focuses on the development of the computational and data communications infrastructure and automated tools for the Transmission and Distribution energy sector and for advanced process engineering applications. The energy industry is being forced to operate in new ways and under new constraints. It is in a reactive mode, reacting to policies and politics, and to economics and environmental pressures. The transmission and distribution sectors are being forced to find new ways to maximize the use of their existing infrastructure, increase energy efficiency, and minimize environmental impacts, while continuing to meet the demands of an ever increasing population. The creation of a sustainable energy future will be a challenge for both the soft and hard sciences. It will require that we as creators of our future be bold in the way we think about our energy future and aggressive in its development. The development of tools to help bring about a sustainable future will not be simple either. The development of ELCAM, for example, represents a stretch for the computational sciences as well as for each of the domain sciences such as economics, which will have to be team members.

  20. Solidification and vitrification life-cycle economics study

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method, whereas vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ex situ solidification and vitrification are the competing methods for treating in excess of 450,000 m 3 of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper s a detailed study done to: compare the economics of the solidification and vitrification processes; determine if the stigma assigned to vitrification is warranted; determine if investing millions of dollars into vitrification development, along with solidification development, at Fernald is warranted. Common parameters were determined and detailed life-cycle cost estimates were made. Incorporating the unit costs into a computer spreadsheet allowed 'what if' scenarios to be performed. Some scenarios investigated included variation of: remediation times, amount of wastes treated, treatment efficiencies, electrical and material costs and escalation

  1. Panorama 2018 - Overview of economic carbon pricing tools worldwide

    International Nuclear Information System (INIS)

    Coussy, Paula

    2018-01-01

    The Paris Agreement signed at COP21 came into effect in November 2016. This agreement aims to hold the increase in global average temperature to below 2 deg. C and pursue efforts to limit the rise to 1.5 deg. C by 2100. Governments and local jurisdictions must now implement an economic and regulatory framework to encourage greenhouse gas reductions. One of the economic tools available is carbon pricing. It varies greatly in form and value at international level and is deployed in all sectors of the economy. (author)

  2. Panorama 2017 - Overview of economic carbon pricing tools worldwide

    International Nuclear Information System (INIS)

    Coussy, Paula

    2017-06-01

    The Paris Agreement signed at COP21 came into effect in November 2016. This agreement aims to hold the increase in global average temperature to below 2 deg. C and pursue efforts to limit the rise to 1.5 deg. C by 2100. Governments and local jurisdictions must now implement an economic and regulatory framework to encourage greenhouse gas reductions. One of the economic tools available is carbon pricing. It varies greatly in form and value at international level and is deployed in all sectors of the economy

  3. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  4. APT, The Phase I tool for HST Cycle 12

    Science.gov (United States)

    Blacker, Brett S.; Bertch, Maria; Curtis, Gary; Douglas, Robert E., Jr.; Krueger, Anthony P.

    2002-12-01

    In the continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT The Astronomer’s Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. APT, was formerly called the Scientist’s Expert Assistant (SEA), which started as a prototype effort to try and bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their programs as well as HST. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper, we will present our concept and implementation plans for our Phase I development and submission tool, APT. More importantly, we will go behind the scenes and discuss why it’s important for the Science Policies Division (SPD) and other groups at the STScI to have a new submission tool and submission output products. This paper is an update of the status of the HST Phase I Proposal Processing System that was described in the published paper “A New Era for HST Phase I Development and Submission.”

  5. Economic Tools for Managing Nitrogen in Coastal Watersheds ...

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to coastal watershed managers who had commissioned economic studies and found that they were largely satisfied with the information and their ability to communicate the importance of coastal ecosystems. However, while managers were able to use these studies as communication tools, methods used in some studies were inconsistent with what some economists consider best practices. In addition, many watershed managers are grappling with how to implement nitrogen management activities in a way that is both cost-effective and achieves environmental goals, while maintaining public support. These and other issues led to this project. Our intent is to provide information to watershed managers and others interested in watershed management – such as National Estuary Programs, local governments, or nongovernmental organizations – on economic tools for managing nitrogen in coastal watersheds, and to economists and other analysts who are interested in assisting them in meeting their needs. Watershed management requires balancing scientific, political, and social issues to solve environmental problems. This document summarizes questions that watershed managers have about using economic analysis, and g

  6. OPTIMIZING USABILITY OF AN ECONOMIC DECISION SUPPORT TOOL: PROTOTYPE OF THE EQUIPT TOOL.

    Science.gov (United States)

    Cheung, Kei Long; Hiligsmann, Mickaël; Präger, Maximilian; Jones, Teresa; Józwiak-Hagymásy, Judit; Muñoz, Celia; Lester-George, Adam; Pokhrel, Subhash; López-Nicolás, Ángel; Trapero-Bertran, Marta; Evers, Silvia M A A; de Vries, Hein

    2018-01-01

    Economic decision-support tools can provide valuable information for tobacco control stakeholders, but their usability may impact the adoption of such tools. This study aims to illustrate a mixed-method usability evaluation of an economic decision-support tool for tobacco control, using the EQUIPT ROI tool prototype as a case study. A cross-sectional mixed methods design was used, including a heuristic evaluation, a thinking aloud approach, and a questionnaire testing and exploring the usability of the Return of Investment tool. A total of sixty-six users evaluated the tool (thinking aloud) and completed the questionnaire. For the heuristic evaluation, four experts evaluated the interface. In total twenty-one percent of the respondents perceived good usability. A total of 118 usability problems were identified, from which twenty-six problems were categorized as most severe, indicating high priority to fix them before implementation. Combining user-based and expert-based evaluation methods is recommended as these were shown to identify unique usability problems. The evaluation provides input to optimize usability of a decision-support tool, and may serve as a vantage point for other developers to conduct usability evaluations to refine similar tools before wide-scale implementation. Such studies could reduce implementation gaps by optimizing usability, enhancing in turn the research impact of such interventions.

  7. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  8. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  9. Externalities of fuel cycles 'ExternE' project. Economic valuation. Economical valuation: An impact pathway approach

    International Nuclear Information System (INIS)

    Markandya, A.

    1994-01-01

    The EC/US study of the external costs of fuel cycles is designed to trace through all the environmental impacts arising from the use of a particular fuel, from the 'cradle' to the 'grave'; to quantify these impacts as far as possible (giving priority to those that are the considered the most important) and to value the damages arising from them in money terms as far as possible (again keeping to the priority listing established by the physical quantification). The fuel cycle has been identified as consisting of the following elements: activities -> emissions/burdens; emissions/burdens -> physical environmental impacts; physical impacts -> external environmental impacts; external impacts -> costs of these impacts. The activities consist of all the operations that are carried out in connection with the extraction transportation, use in electricity generation and finally disposal of the fuel. The emissions or burdens arising from the cycle result in physical impacts, which in turn imply certain environmental impacts. An illustration of a typical fuel cycle (coal) audits environmental impacts is given in Figures. The work of the fuels cycle study teams is to complete the valuation of the shaded areas but giving priority to those impacts that are likely to be quantitatively important. .Each fuel cycle is evaluated in a location-specific context, so that it refers to the impacts arising from the use of coal, or gas or whatever fuel is being considered at an actual plant that is operating. The purpose of this report on economic valuation is to: (a) examine the literature or economic valuation of environmental externalities in Europe; (b) assess its relevance to the fuel cycle study and (c) make recommendations on how the detailed analysis of the individual fuel cycles should use the economic valuation. It is important to recognize that the report is not a complete survey of all the research ever done on environmental valuation. Although as complete a survey of all the

  10. Separating yolk from white: A filter based on economic properties of trend and cycle

    OpenAIRE

    Zhou, Peng

    2017-01-01

    This paper proposes a new filter technique to separate trend and cycle based on stylised economic properties of trend and cycle, rather than relying on ad hoc statistical proper-ties such as frequency. Given the theoretical separation between economic growth and business cycle literature, it is necessary to make the measures of trend and cycle match what the respective theories intend to explain. The proposed filter is applied to the long macroeconomic data collected by the Bank of England (1...

  11. Economic Value Added as a Dependence on the Corporate- and Market-life Cycle

    Directory of Open Access Journals (Sweden)

    Konečný Zdeněk

    2011-06-01

    Full Text Available Economic value added (EVA is an indicator which is widely used as the main tool for financial analysis. There are two methods of calculating it. The original method which was made by Stern & Stewart is defined as the net operating profit after taxes minus the cost of capital. The second method which was developed and used by the “Czech Ministry of Industry and Trade” indicates that, the economic value added is the difference between return on equity and the alternate cost of equity that is composed of separate risk rewards, and this “spread” is consequently multiplied by the equity. Economic value added depends on many factors. Whereas some of them are controllable by the company, others are not. This article is focused on the relationship between economic value added and the corporate- vs. market life cycle. This is because, there is an assumption that conditions for developing EVA changes depending on the actual phase of corporate- and market life cycle. In this research, the model by Reiners (2004 is used to identify the phases of corporate- and market life cycle and the method provided by the “Czech Ministry of Industry and Trade” is used to calculate EVA. However, there is a consideration of the relativity of EVA in the form of “spread” because of the intercompany comparison. The study found that, the highest spread is achieved by companies that are in the phase of expansion and phase of market expansion. On the contrary, companies in the phase of declension during market declension achieved the lowest and negative spread.

  12. "Health in all policies" in practice: guidance and tools to quantifying the health effects of cycling and walking.

    Science.gov (United States)

    Kahlmeier, Sonja; Racioppi, Francesca; Cavill, Nick; Rutter, Harry; Oja, Pekka

    2010-03-01

    There is growing interest in "Health in All Policies" approaches, aiming at promoting health through policies which are under the control of nonhealth sectors. While economic appraisal is an established practice in transport planning, health effects are rarely taken into account. An international project was carried out to develop guidance and tools for practitioners for quantifying the health effects of cycling and walking, supporting their full appraisal. A systematic review of existing approaches was carried out. Then, the products were developed with an international expert panel through an extensive consensus finding process. Methodological guidance was developed which addresses the main challenges practitioners encounter in the quantification of health effects from cycling and walking. A "Health Economic Assessment Tool (HEAT) for cycling" was developed which is being used in several countries. There is a need for a more consistent approach to the quantification of health benefits from cycling and walking. This project is providing guidance and an illustrative tool for cycling for practical application. Results show that substantial savings can be expected. Such tools illustrate the importance of considering health in transport policy and infrastructure planning, putting "Health in All Policies" into practice.

  13. Socio-economic analysis: a tool for assessing the potential of nanotechnologies

    International Nuclear Information System (INIS)

    Brignon, Jean-Marc

    2011-01-01

    Cost-Benefit Analysis (CBA) has a long history, especially in the USA, of being used for the assessment of new regulation, new infrastructure and more recently for new technologies. Under the denomination of Socio-Economic Analysis (SEA), this concept is used in EU safety and environmental regulation, especially for the placing of chemicals on the market (REACh regulation) and the operation of industrial installations (Industrial Emissions Directive). As far as REACh and other EU legislation apply specifically to nanomaterials in the future, SEA might become an important assessment tool for nanotechnologies. The most important asset of SEA regarding nanomaterials, is the comparison with alternatives in socio-economic scenarios, which is key for the understanding of how a nanomaterial 'socially' performs in comparison with its alternatives. 'Industrial economics' methods should be introduced in SEAs to make industry and the regulator share common concepts and visions about economic competitiveness implications of regulating nanotechnologies, SEA and Life Cycle Analysis (LCA) can complement each other : Socio-Economic LCA are increasingly seen as a complete assessment tool for nanotechnologies, but the perspective between Social LCA and SEA are different and the respective merits and limitations of both approaches should be kept in mind. SEA is a 'pragmatic regulatory impact analysis', that uses a cost/benefit framework analysis but remains open to other disciplines than economy, and open to the participation of stakeholders for the construction of scenarios of the deployment of technologies and the identification of alternatives. SEA is 'pragmatic' in the sense that it is driven by the purpose to assess 'what happens' with the introduction of nanotechnology, and uses methodologies such as Life Cycle Analysis only as far as they really contribute to that goal. We think that, being pragmatic, SEA is also adaptative, which is a key quality to handle the novelty of

  14. Socio-economic analysis: a tool for assessing the potential of nanotechnologies

    Science.gov (United States)

    Brignon, Jean-Marc

    2011-07-01

    Cost-Benefit Analysis (CBA) has a long history, especially in the USA, of being used for the assessment of new regulation, new infrastructure and more recently for new technologies. Under the denomination of Socio-Economic Analysis (SEA), this concept is used in EU safety and environmental regulation, especially for the placing of chemicals on the market (REACh regulation) and the operation of industrial installations (Industrial Emissions Directive). As far as REACh and other EU legislation apply specifically to nanomaterials in the future, SEA might become an important assessment tool for nanotechnologies. The most important asset of SEA regarding nanomaterials, is the comparison with alternatives in socio-economic scenarios, which is key for the understanding of how a nanomaterial "socially" performs in comparison with its alternatives. "Industrial economics" methods should be introduced in SEAs to make industry and the regulator share common concepts and visions about economic competitiveness implications of regulating nanotechnologies, SEA and Life Cycle Analysis (LCA) can complement each other : Socio-Economic LCA are increasingly seen as a complete assessment tool for nanotechnologies, but the perspective between Social LCA and SEA are different and the respective merits and limitations of both approaches should be kept in mind. SEA is a "pragmatic regulatory impact analysis", that uses a cost/benefit framework analysis but remains open to other disciplines than economy, and open to the participation of stakeholders for the construction of scenarios of the deployment of technologies and the identification of alternatives. SEA is "pragmatic" in the sense that it is driven by the purpose to assess "what happens" with the introduction of nanotechnology, and uses methodologies such as Life Cycle Analysis only as far as they really contribute to that goal. We think that, being pragmatic, SEA is also adaptative, which is a key quality to handle the novelty of

  15. Eviromental Economic and Technological Residues Management Demands: An Optimization Tool.

    Directory of Open Access Journals (Sweden)

    Marisa Soares Borges

    2012-12-01

    Full Text Available Industrial residues management is a very demanding task since many different goals must be achieved. The combination of different approaches used by people from different stuff is very challenging activity that can misuse the residues potential value and applicability. An interactive WEB base tool, to integrate different sectors and overcome residues management difficulties will be presented. The system must be loaded with all data concerning the residue life cycle, and through data integration and modeling routine will give the best alternative as output. As wider and complete the system data becomes, by information loading from differen t segment, more efficient the residues management becomes. The user friendly tool will encourage the participation of industries, labs and research institutions to obtain qualified information about industrial residues inventory, raw materials recovery, characteristics, treatment and alternative uses, to achieve residues management sustainability.

  16. Human and ecological life cycle tools for the integrated assessment of systems (HELIAS)

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Kleijn, René; Van Der Voet, Ester; De Koning, Arjan; Van Oers, Lauran; Elshkaki, Ayman; Huele, Ruben; Huppes, Gjalt; Suh, Sangwon; Sleeswijk, Anneke Wegener

    Goal, Scope and Background. CML has contributed to the development of life cycle decision support tools, particularly Substance/Material Flow Analysis (SFA respectively MFA) and Life Cycle Assessment (LCA). Ever since these tools emerged there have been discussions on how these tools relate to each

  17. Thermodynamic and economic analysis and optimization of power cycles for a medium temperature geothermal resource

    International Nuclear Information System (INIS)

    Coskun, Ahmet; Bolatturk, Ali; Kanoglu, Mehmet

    2014-01-01

    Highlights: • We conduct the thermodynamic and economic analysis of various geothermal power cycles. • The optimization process was performed to minimize the exergy losses. • Kalina cycle is a new technology compared to flash and binary cycles. • It is shown that Kalina cycle presents a viable choice for both thermodynamically and economically. - Abstract: Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. Turkey is rich in geothermal resources while most resources are not exploited for power production. In this study, we consider geothermal resources in Kutahya–Simav region having geothermal water at a temperature suitable for power generation. The study is aimed to yield the method of the most effective use of the geothermal resource and a rational thermodynamic and economic comparison of various cycles for a given resource. The cycles considered include double-flash, binary, combined flash/binary, and Kalina cycle. The selected cycles are optimized for the turbine inlet pressure that would generate maximum power output and energy and exergy efficiencies. The distribution of exergy in plant components and processes are shown using tables. Maximum first law efficiencies vary between 6.9% and 10.6% while the second law efficiencies vary between 38.5% and 59.3% depending on the cycle considered. The maximum power output, the first law, and the second law efficiencies are obtained for Kalina cycle followed by combined cycle and binary cycle. An economic analysis of four cycles considered indicates that the cost of producing a unit amount of electricity is 0.0116 $/kW h for double flash and Kalina cycles, 0.0165 $/kW h for combined cycle and 0.0202 $/kW h for binary cycle. Consequently, the payback period is 5.8 years for double flash and Kalina cycles while it is 8.3 years for combined cycle and 9 years for binary cycle

  18. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2007-01-01

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  19. The back end of the nuclear fuel cycle: Technical and economic analysis-Part 2

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.; Spinrad, B.I.

    1990-01-01

    The back end of the nuclear fuel cycle has been analyzed under current conditions in the United States, including the constraints imposed by the Nuclear Waste Policy Act of 1982 and its amendments. The scenarios for two closed cycles, a regular reprocessing cycle and a reprocessing scheme with cesium and strontium fractionation, are described. The storage of spent fuel discharged from the reactors and the disposal of reprocessed waste are studied for both reprocessing cycles. The economics of waste storage and disposal for the two closed cycles are compared with each other and with the reference once-through cycle. The results show that a standard reprocessing cycle results in the minimum cost for storage and disposal. When reporcessing costs are considered, the closed cycles can compete economically with the once-through cycle only if net reprocessing costs are very low

  20. Life Cycle Assessment Studies of Chemical and Biochemical Processes through the new LCSoft Software-tool

    DEFF Research Database (Denmark)

    Supawanich, Perapong; Malakul, Pomthong; Gani, Rafiqul

    2015-01-01

    requirements have to be evaluated together with environmental and economic aspects. The LCSoft software-tool has been developed to perform LCA as a stand-alone tool as well as integrated with other process design tools such as process simulation, economic analysis (ECON), and sustainable process design...

  1. CYCLES AND CRISES: HISTORY AND MODERNITY (THE RESULTS OF THE INTERNATIONAL NOBEL ECONOMIC FORUM)

    OpenAIRE

    Borys I.KHOLOD; Anatoly O.ZADOYA

    2009-01-01

    The paper analysis the main features of crisis phenomena in the early 21st century taking into consideration the overlapping stages of different types of business cycle (short and medium terms). The authors evaluate different kinds of economic cycles from the viewpoint of both history and modernity on the basis of opinions formulated during the International Nobel Economic Forum ôWord Economy in the 21th Century: Cycles and Crisesö (held in September 2008 at Dnipropetrovsk, University of Econ...

  2. Improved fuel design economics - a new evaluation tool

    International Nuclear Information System (INIS)

    Aboudara, J.L.

    1987-01-01

    Advanced fuel design technology is now beginning to be implemented with new reload regions for large pressurized water reactors. Until recently there has not been an integrated computer modeling product that would allow easy assessment of the economics of various advanced fuel design alternatives now available to utilities. The Fuel Cycle Scoping System (FCSS) was designed to fill this need. The FCSS is a personnel computer (PC) software package that is used to evaluate alternative strategies for supplying and using nuclear fuel in nuclear power reactors. The FCSS is an extremely flexible package that permits evaluation of in-core and out-of-core fuel management strategy options. For each strategy option, unit and reactor operating assumptions and assumptions for uranium supply, conversion, enrichment, fabrication, and spent fuel disposal can be made

  3. The Keynesian Approach of Business Cycle and Economic Crises and its Criticism

    Directory of Open Access Journals (Sweden)

    Ionela Bălțătescu

    2009-10-01

    Full Text Available The main purpose of this article is to briefly present the Keynesian explanation of business cycle, economic fluctuation and crises, and also the solutions proposed from Keynesian perspective to the economic problems that characterize the bust phases of the business cycles (unemployment, recessions. In the fourth section of the article some criticisms of the Keynesian theoretical approach of the economic crises are considered and summarized.

  4. The nuclear fuel cycle, Economical, environmental and social aspects

    International Nuclear Information System (INIS)

    2002-01-01

    The nuclear energy part in the durable development depends of many factors, bound to the fuel cycle. This document describes the developments and the tendencies in the fuel cycle domain, susceptible of improve the competitiveness and the durability of the nuclear energy systems at moderate and long-dated. Evaluation criteria and indicators illustrate the analysis. (A.L.B.)

  5. Semer: a simple calculational tool for the economic evaluations of reactor systems and associated innovations

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S. [CEA Cadarache, Nuclear Reactor Directorate, DRN, Dept. of Reactor Studies, DER, Reactor and Innovative Systems Service, SERSI, 13 - Saint Paul lez Durance (France); Rouyer, J.L. [Electricite de France (EDF), Pole Industrie, Div. Ingenierie et Services, 93 - Saint-Denis (France)

    2001-07-01

    This paper summarises part of our on-going investigations on the economic evaluations of various nuclear and fossil energy systems and related innovations. These investigations are principally concerned with the development of the code system SEMER and its validation. SEMER has been developed to furnish top management and project leaders a simple tool for cost evaluations enabling a choice between competitive technological options. The cost evaluation models, actually integrated in the SEMER system, already cover a very wide range of electricity producing systems and, where relevant, their associated fuel cycles: The ''global models'', allowing rapid but relatively approximate overall cost estimations (about 15 % error). These include: Almost all the electricity producing systems using fossil energies (Oil, Coal, Gas, including gas turbines with combined cycles); Nuclear reactor systems including all the French PWRs, HTRs, Compact PWRs, and PWRs for nuclear propulsion systems. (author)

  6. Semer: a simple calculational tool for the economic evaluations of reactor systems and associated innovations

    International Nuclear Information System (INIS)

    Nisan, S.; Rouyer, J.L.

    2001-01-01

    This paper summarises part of our on-going investigations on the economic evaluations of various nuclear and fossil energy systems and related innovations. These investigations are principally concerned with the development of the code system SEMER and its validation. SEMER has been developed to furnish top management and project leaders a simple tool for cost evaluations enabling a choice between competitive technological options. The cost evaluation models, actually integrated in the SEMER system, already cover a very wide range of electricity producing systems and, where relevant, their associated fuel cycles: The ''global models'', allowing rapid but relatively approximate overall cost estimations (about 15 % error). These include: Almost all the electricity producing systems using fossil energies (Oil, Coal, Gas, including gas turbines with combined cycles); Nuclear reactor systems including all the French PWRs, HTRs, Compact PWRs, and PWRs for nuclear propulsion systems. (author)

  7. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  8. Studying international fuel cycle robustness with the GENIUSv2 discrete facilities/materials fuel cycle systems analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.H. [Dept. of Engineering Physics, University of Wisconsin-Madison (United States)

    2009-06-15

    likelihood to do so depending on what other suppliers are available. The GENIUS development team is currently working through a suite of benchmarking problems and scenario studies to demonstrate both the code's reliability with respect to existing results (namely, from VISION, Idaho National Laboratory's continuous materials tool) and its novel approach to difficult-to-model international problems. Benchmarking problems include single- and multi-facility scenarios to validate GENIUS mass flows, isotopics, power production, and separations plant behavior. Early scenarios of interest probe international fuel cycles' robustness to perturbations and interruptions of a political or economic nature and include early work to model IAEA fuel bank concepts. In this paper, we present detailed results from this demonstration suite. (authors)

  9. Patterns and determinants of business cycle synchronization in the enlarged European Economic and Monetary Union

    Directory of Open Access Journals (Sweden)

    Iulia SIEDSCHLAG

    2010-06-01

    Full Text Available This paper provides empirical evidence about the degree of business cycle synchronization between the euro area countries and eight new European Union member states. We analyze the direct and indirect effects of similarity of economic structures and trade intensity on the co-movement of fluctuations of economic activity across these countries and find that bilateral similarity of economic structures and trade intensity were positively and significantly associated with business cycle correlations. This result is robust to different estimation techniques. Similarity of economic structures had an additional indirect positive effect on business cycle synchronization via its positive effect on trade intensity. The bilateral business cycle correlations are found to be endogenous with respect to bilateral similarity of economic structures and bilateral trade intensity suggesting that the new European Union countries will better satisfy the Optimum Currency Area criteria after the adoption of the euro.

  10. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources

    International Nuclear Information System (INIS)

    Kazemi, Neda; Samadi, Fereshteh

    2016-01-01

    Highlights: • A new cycle was designed to improve basic organic Rankine cycle performance. • Peng Robinson equation of state was used to obtain properties of working fluids. • Operating parameters were optimized with three different objective functions. • Efficiency of new organic Rankine cycle is higher than other considered cycles. • Return on investment of new cycle for Iran is more than France and America. - Abstract: The main goal of this study is to propose and investigate a new organic Rankine cycle based on three considered configurations: basic organic Rankine cycle, regenerative organic Rankine cycle and two-stage evaporator organic Rankine cycle in order to increase electricity generation from geothermal sources. To analyze the considered cycles’ performance, thermodynamic (energy and exergy based on the first and second laws of thermodynamics) and economic (specific investment cost) models are investigated. Also, a comparison of cycles modeling results is carried out in optimum conditions according to different optimization which consist thermodynamic, economic and thermo-economic objective functions for maximizing exergy efficiency, minimizing specific investment cost and applying a multi-objective function in order to maximize exergy efficiency and minimize specific investment cost, respectively. Optimized operating parameters of cycles include evaporators and regenerative temperatures, pinch point temperature difference of evaporators and degree of superheat. Furthermore, Peng Robinson equation of state is used to obtain thermodynamic properties of isobutane and R123 which are selected as dry and isentropic working fluids, respectively. The results of optimization indicate that, thermal and exergy efficiencies increase and exergy destruction decrease especially in evaporators for both working fluids in new proposed organic Rankine cycle compared to the basic organic Rankine cycle. Moreover, the amount of specific investment cost in new

  11. Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

    Science.gov (United States)

    Wender, Benjamin

    Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and

  12. Clinical and economic analysis of rescue intracytoplasmic sperm injection cycles.

    Science.gov (United States)

    Shalom-paz, Einat; Alshalati, Jana; Shehata, Fady; Jimenez, Luis; Son, Weon-Young; Holzer, Hananel; Tan, Seang Lin; Almog, Benny

    2011-12-01

    To identify clinical and embryological factors that may predict success in rescue intracytoplasmic sperm injection (ICSI) cycles (after total fertilization failure has occurred) and to evaluate the cost effectiveness of rescue ICSI strategy. Additionally, follow-up of 20 rescue ICSI pregnancies is reported. Retrospective analysis of total fertilization failure cycles. University-based tertiary medical center. In total, 92 patients who had undergone conventional in-vitro fertilization (IVF) cycles with total fertilization failure were included. The patients were divided into two subgroups: those who conceived through rescue ICSI and those who did not. The pregnant members of the rescue ICSI subgroup were found to be significantly younger (32.9 ± 4.2 vs. 36.3 ± 4.5, respectively, p = 0.0035,) and to have better-quality embryos than those who did not conceive (cumulative embryo score: 38.3 ± 20.4 vs. 29.3 ± 14.7, p = 0.025). Cost effectiveness analysis showed 25% reduction in the cost per live birth when rescue ICSI is compared to cycle cancellation approach. The pregnancies follow-up did not show adverse perinatal outcome. Rescue ICSI is an option for salvaging IVF cycles complicated by total fertilization failure. Success in rescue ICSI was found to be associated with younger age and higher quality of embryos. Furthermore, the cost effectiveness of rescue ICSI in terms of total fertilization failure was found to be worthwhile.

  13. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  14. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools.

    Directory of Open Access Journals (Sweden)

    Virginie Coustou

    Full Text Available BACKGROUND: Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii in vitro differentiation techniques lasted several months, (iii absence of long-term bloodstream forms (BSF in vitro culture prevented genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life

  15. A proposed tool to integrate environmental and economical assessments of products

    International Nuclear Information System (INIS)

    Senthil, Kumaran D.; Ong, S.K.; Nee, A.Y.C.; Tan, Reginald B.H.

    2003-01-01

    An attempt has been made to interpret the outcomes of a Life Cycle Assessment (LCA) in terms of environmental costs. This attempt ensures the environmental accountability of the products while LCA ensures their eco-friendly nature. Keeping this as an objective, a Life Cycle Environmental Cost Analysis (LCECA) model was developed. This new tool incorporates costing into the LCA practice. This model prescribes a life cycle environmental cost model to estimate and correlate the effects of these costs in all the life cycle stages of the product. The newly developed categories of eco-costs are: costs of effluent treatment/control/disposal, environmental management systems, eco-taxes, rehabilitation, energy and savings of recycling and reuse strategies. The mathematical model of LCECA determines quantitative expressions between the total cost of products and the various eco-costs. The eco-costs of the alternatives are compared with the computational LCECA model. This method enables the environmental as well as the economic assessment of products, which leads to cost-effective, eco-friendly design of products

  16. Life cycle and economic efficiency analysis phase II : durable pavement markings.

    Science.gov (United States)

    2011-04-01

    This report details the Phase II analysis of the life cycle and economic efficiency of inlaid tape : and thermoplastic. Waterborne paint was included as a non-durable for comparison purposes : only. In order to find the most economical product for sp...

  17. Economic Input-Output Life Cycle Assessment of Water Reuse Strategies in Residential Buildings

    Science.gov (United States)

    This paper evaluates the environmental sustainability and economic feasibility of four water reuse designs through economic input-output life cycle assessments (EIO-LCA) and benefit/cost analyses. The water reuse designs include: 1. Simple Greywater Reuse System for Landscape Ir...

  18. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  19. Solidification and vitrification life-cycle economics study

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000 cm 3 of low-level radioactive and mixed wastes at the Fernald Environmental Management Project (FEMP) located near Cincinnati, Ohio. This paper summarizes a detailed study done to: (1) compare the economics of the solidification and vitrification processes, (2) determine if the stigma assigned to vitrification is warranted and, (3) determine if investing millions of dollars into vitrification development, along with solidification development, at Fernald is warranted

  20. The back end of the nuclear fuel cycle: technical and economic analysis-Part 1

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.; Spinrad, B.I.

    1990-01-01

    The back end of the nuclear fuel cycle has been analyzed under current conditions in the United States, taking into consideration the framework defined by the Nuclear Waste Policy Act of 1982 and its amendments. The different steps of the back end of the fuel cycle are studied and different alternatives are compared under technical and economic criteria. Several technical issues have been analyzed for their impact on the economics of the fuel cycle. The bases for the analysis are explained, and the results for a once-through cycle are presented. The results show that a repository in tuff represents the minimum cost situation. The economic model appears very sensitive to several parameters, in particular the period of retrievability and the storage costs

  1. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  2. THE IMPACT OF THE MANUFACTURING INDUSTRY ON THE ECONOMIC CYCLE OF EUROPEAN UNION COUNTRIES

    Directory of Open Access Journals (Sweden)

    Marcel Behun

    2018-03-01

    Full Text Available The manufacturing industry is a key sector in many national economies and is involved in creating sustainable economic growth. At the same time, it is a sector sensitive to internal and external impacts that result in fluctuations in the economic cycle, copying its development or even outstripping the development of economic cycles. The main objective of this contribution was to identify the relationship between manufacturing and GDP, which represents the economic cycle in European Union countries. The time series of selected indicators of the manufacturing industry and GDP from the Eurostat database for Q1 2000-Q4 2016 were used for analysis purposes. An analysis of 296 time series with a quarterly periodicity from 22 EU countries (including the United Kingdom was performed. The results of analyses indicate that the processing industry is a sector with significant cyclical behavior. In most countries, production and sales in the manufacturing industry behaved as concurrent indicators, changes in production and sales almost immediately reflected in the growth or decline in GDP. Labor market indicators have been shown to be delayed cyclical indicators. Changes in the economic development of the countries have a strong impact on employment, the remuneration of employees and the number of hours worked in the sector. Strong cyclical industries must be constantly monitored, as negative changes in these sectors will automatically exacerbate the economic cycle recession. The results of our analyses represent a valuable platform for economic policy makers and regional strategic plans.

  3. Innovative leasing engineering as tool for synchronization of innovative, leasing and buying cycles

    Science.gov (United States)

    Yaskova, Natalia; Alekseeva, Tatyana

    2017-10-01

    This article suggests a new principle of cyclic synchronization of innovative, leasing and buying cycles in construction “innovative leasing engineering” which facilitates the accelerated transition of the national economy to the innovative way of development. Cyclical nature of economic phenomena is not only their immanent property, but also the subject of economic analysis. Modern format of decision making management requires analysis of the many cycles which fill any kind of activity. Accounting and reconciliation of construction, design, investment, buying, reproduction, leasing and other cycles is important for investment and construction sphere from the point of view of necessity for synchronization and position of determining the nature of trends in sectoral development.

  4. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  5. Strategy and Economic Prospect of Back-end Cycle through ATW

    International Nuclear Information System (INIS)

    Hendri Firman Windarto; Siti Alimah

    2003-01-01

    Strategy and economic prospect of back-end cycle through ATW has been studied. Nuclear fuel cycle through ATW is a single stratum of back-end cycle. By ATW, volume of spent fuel which should be disposed in long term can be reduced from 70,000 MHTM to 3,000 MHTM and half-life of spent fuel can be reduced from 15,700,000 years to 300 years. Strategic values of the ATW cycle are to prevent proliferation risk and to reduce the uncertainty of long term dispose. Economic prospect of the ATW cycle will give some advantages on reducing of spent fuel volume and its disposal period, and producing electricity. (author)

  6. Development Life Cycle and Tools for XML Content Models

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Morris, Katherine [National Institute of Standards and Technology (NIST); Buhwan, Jeong [POSTECH University, South Korea; Goyal, Puja [National Institute of Standards and Technology (NIST)

    2004-11-01

    Many integration projects today rely on shared semantic models based on standards represented using Extensible Mark up Language (XML) technologies. Shared semantic models typically evolve and require maintenance. In addition, to promote interoperability and reduce integration costs, the shared semantics should be reused as much as possible. Semantic components must be consistent and valid in terms of agreed upon standards and guidelines. In this paper, we describe an activity model for creation, use, and maintenance of a shared semantic model that is coherent and supports efficient enterprise integration. We then use this activity model to frame our research and the development of tools to support those activities. We provide overviews of these tools primarily in the context of the W3C XML Schema. At the present, we focus our work on the W3C XML Schema as the representation of choice, due to its extensive adoption by industry.

  7. Advanced codes and methods supporting improved fuel cycle economics - 5493

    International Nuclear Information System (INIS)

    Curca-Tivig, F.; Maupin, K.; Thareau, S.

    2015-01-01

    AREVA's code development program was practically completed in 2014. The basic codes supporting a new generation of advanced methods are the followings. GALILEO is a state-of-the-art fuel rod performance code for PWR and BWR applications. Development is completed, implementation started in France and the U.S.A. ARCADIA-1 is a state-of-the-art neutronics/ thermal-hydraulics/ thermal-mechanics code system for PWR applications. Development is completed, implementation started in Europe and in the U.S.A. The system thermal-hydraulic codes S-RELAP5 and CATHARE-2 are not really new but still state-of-the-art in the domain. S-RELAP5 was completely restructured and re-coded such that its life cycle increases by further decades. CATHARE-2 will be replaced in the future by the new CATHARE-3. The new AREVA codes and methods are largely based on first principles modeling with an extremely broad international verification and validation data base. This enables AREVA and its customers to access more predictable licensing processes in a fast evolving regulatory environment (new safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation...). In this context, the advanced codes and methods and the associated verification and validation represent the key to avoiding penalties on products, on operational limits, or on methodologies themselves

  8. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  9. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  10. Methods of modeling TCO residential real estate in the life cycles of buildings as a promising energy efficiency management tool

    Directory of Open Access Journals (Sweden)

    Kulakov Kirill

    2017-01-01

    Full Text Available Building and developing an affordable housing market is a huge challenge for Russia’s national economy. Today, the housing construction industry finds itself in a situation torn by a conflict caused by the simultaneous needs to minimize the housing construction costs in order to make housing more affordable for Russians and to increase the energy efficiency of the housing projects, which is associated with additional costs for developers. To find solutions to this contradictory situation, one needs new theoretical and practical approaches and economic tools. The global economic trend of managing goods and services on the basis of the value of goods and services over the life cycle is also manifested in the construction industry in Russia. The problem of forming a new economic thinking in the housing sector predetermines the perception of the value of housing not only as the price of purchased real estate, but as the equivalent of the total cost of ownership of real estate throughout its life cycle. This approach allows to compensate the initial rise in the cost of construction resulting from the introduction of energy-efficient technologies by savings in the operational phase of the life cycle of the property. In this regard, management of the total cost of real estate ownership based on energy modeling is of high research and practical relevance.

  11. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  12. Economic intermittency in a two-country model of business cycles coupled by investment

    International Nuclear Information System (INIS)

    Saiki, Y.; Chian, A.C.L.; Yoshida, H.

    2011-01-01

    Highlights: → Intermittent economic behavior of Keynes-Goodwin type model is investigated. → After a transition the system keeps its memory before the transition. → The intermittent phenomena is examined from the business cycle patterns. → It is concluded that dynamical patterns do not alter much around the transition. - Abstract: Intermittent behavior of economic dynamics is investigated by a two-country model of Keynes-Goodwin type business cycles. Numerical simulations show that after an economic system evolves from weak chaos to strong chaos the system keeps its memory before the transition and its time series alternates episodically between periods of weakly and strongly chaotic fluctuations. In addition, we examine the intermittent phenomena from the view point of business cycle patterns near the crisis point.

  13. Economic intermittency in a two-country model of business cycles coupled by investment

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Y., E-mail: saiki@math.sci.hokudai.ac.jp [Department of Mathematics, Hokkaido University, Sapporo 060-0810 (Japan); Chian, A.C.L. [National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos-SP 12227-010 (Brazil); California Institute of Technology, Pasadena, CA 91125 (United States); Yoshida, H. [College of Economics, Nihon University, Tokyo 101-8360 (Japan)

    2011-06-15

    Highlights: > Intermittent economic behavior of Keynes-Goodwin type model is investigated. > After a transition the system keeps its memory before the transition. > The intermittent phenomena is examined from the business cycle patterns. > It is concluded that dynamical patterns do not alter much around the transition. - Abstract: Intermittent behavior of economic dynamics is investigated by a two-country model of Keynes-Goodwin type business cycles. Numerical simulations show that after an economic system evolves from weak chaos to strong chaos the system keeps its memory before the transition and its time series alternates episodically between periods of weakly and strongly chaotic fluctuations. In addition, we examine the intermittent phenomena from the view point of business cycle patterns near the crisis point.

  14. General Concerns Life-Cycle Design of Economical Ice-Resistant Structures in the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Zhang Da-yong

    2017-08-01

    Full Text Available In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.

  15. Economic analysis of extended cycles in the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez N, H.; Hernandez M, J.L.; Francois L, J.L.

    2004-01-01

    The present work presents a preliminary analysis of economic type of extended cycles of operation of the Unit One in the Laguna Verde nuclear power plant. It is analysed an equilibrium cycle of 18 months firstly, with base to the Plan of Use of Energy of the Federal Commission of Electricity, being evaluated the cost of the energy until the end of the useful life of the plant. Later on an alternative recharge scenario is presented with base to an equilibrium cycle of 24 months, implemented to the beginning of the cycle 11, without considering transition cycles. It is added in both cycles the cost of the substitution energy, considering the unitary cost of the fuel of a dual thermoelectric power station of 350 M We and evaluating in each operation cycle, in both scenarios, the value of the substitution energy. The results show that a reduction of the days of recharge in the cycle of 24 months could make this option but favorable economically. The duration of the period of recharge rebounds in considerable grade in the cost of energy generation for concept of fuel. (Author)

  16. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    Energy Technology Data Exchange (ETDEWEB)

    Sprigg, James A.

    2004-11-01

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  17. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  18. The Use of Economic Impact Studies as a Service Learning Tool in Undergraduate Business Programs

    Science.gov (United States)

    Misner, John M.

    2004-01-01

    This paper examines the use of community based economic impact studies as service learning tools for undergraduate business programs. Economic impact studies are used to measure the economic benefits of a variety of activities such as community redevelopment, tourism, and expansions of existing facilities for both private and public producers.…

  19. Towards life-cycle awareness in decision support tools for engineering design

    OpenAIRE

    Nergård, Henrik; Sandberg, Marcus; Larsson, Tobias

    2009-01-01

    In this paper a decision support tool with the focus on how to generate and visualize decision base coupled to the business agreement is outlined and discussed. Decision support tools for the early design phases are few and especially tools that visualize the readiness level of activities throughout the product life-cycle. Aiming for the sustainable society there is an indication that business-to-business manufacturers move toward providing a function rather than selling off the hardware and ...

  20. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cross check of the new economic and mass balance feature of the fuel cycle scenario code TR-EVOL

    International Nuclear Information System (INIS)

    Merino-Rodriguez, I.; Garcia-Martinez, M.; Alvarez-Velarde, F.; Lopez, D.

    2016-01-01

    Versatile computational tools with up to date capabilities are needed to assess current nuclear fuel cycles or the transition from the current status of the fuel cycle to the more advanced and sustainable ones. The TR-EVOL module, that is devoted to fuel cycle mass balance, simulates diverse nuclear power plants (PWR, SFR, ADS, etc.), having possibly different types of fuels (UO_2, MOX, etc.), and the associated fuel cycle facilities (enrichment, fuel fabrication, processing, interim storage, waste storage, geological disposal). This work is intended to cross check the new capabilities of the fuel cycle scenario code TR-EVOL.This process has been divided in 2 stages. The first stage is dedicated to check the improvements in the nuclear fuel mass balance estimation using the available data for the Spanish nuclear fuel cycle. The second stage has been focused in verifying the validity of the TR-EVOL economic module, comparing results to data published by the ARCAS EU project. A specific analysis was required to evaluate the back-end cost. Data published by the waste management responsible institutions was used for the validation of the methodology. Results were highly satisfactory for both stages. In particular, the economic assessment provides a difference smaller than 3% regarding results published by the ARCAS project (NRG estimations). Furthermore, concerning the back-end cost, results are highly acceptable (7% difference for a final disposal in a once-through scenario and around 11% for a final disposal in a reprocessing strategy) given the significant uncertainties involved in design concepts and related unit costs. (authors)

  2. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  3. Assessment of the influence of design limits to the economics of WWER fuel cycle

    International Nuclear Information System (INIS)

    Dementiev, V.G.; Shishkov, L.K.

    2010-01-01

    The paper discusses the influence of the reactor parameters limits for normal operation on the economical performance of WWER fuel cycles. It is shown for the typical WWER fuel cycles that decreasing the limits for the main power distribution parameters to 10% leads to decreasing the fuel components of the electricity cost price up to 4-5%. As the nowadays limitations are reached the dependence becomes weaker. (Authors)

  4. A comparative study of the safety and economics of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1988-01-01

    The safety and economic characteristics of the deuterium-tritium (DT), deuterium-deuterium (DD) and deuterium-helium-3 (DHe) fusion fuel cycles have been compared. Representative tokamak designs for each fuel cycle were established based on consistent design criteria, using modest extrapolations of present day technologies. The economic analysis of these designs took into account the possible variation in capital and operating costs, and plant availability. Safety analyses examined tritium inventories, routine tritium releases, inventories of activation products and the level of hazard associated with plant wastes. The annual dose incurred by plant workers was estimated for all fuel cycles. The impact of using a reduced activation steel as a blanket material on the economics and safety during normal conditions for the DD fuel cycle was examined. A loss of coolant accident (LOCA) was investigated to determine the relative safety and economic impact of this event for the various fuel cycles. Finally, a cost/benefit analysis was performed to determine if the increased costs associated with these designs are justified by the improved safety which they provide. (orig.)

  5. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  6. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  7. Demystifying the role of copyright as a tool for economic ...

    African Journals Online (AJOL)

    RV

    ... regard is one of creating a conducive environment through political (and economic) stability, and not one of actually ..... Coach 2010 ..... influenced by the civil law tradition, have incorporated bad civil law elements into English copyright law ...

  8. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    Science.gov (United States)

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  9. Environmental and economic life cycle analysis of plastic waste management options. A review

    OpenAIRE

    Bernardo, C. A.; Simões, Carla L.; Pinto, Lígia

    2016-01-01

    In recent years, rising worldwide plastic consumption led to the generation of increasing amounts of plastic waste and to the awareness of the importance of its management. In that framework, the present work describes how Life Cycle Assessment (LCA) and economic assessment methodologies can be used for evaluating environmental and economic impacts of alternative plastic waste management systems. The literature on LCA of plastic waste management systems is vast and the results reported are ge...

  10. Thermo-economic analysis of recuperated Maisotsenko bottoming cycle using triplex air saturator: Comparative analyses

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Omar, Amr; Erfanmoghaddam, Sepehr; Gadalla, Mohamed

    2017-01-01

    Highlights: • Proposing recuperated Maisotsenko bottoming cycle (RMBC) as a new combined cycle. • Introducing triplex air saturator for waste heat recovery application. • Conducting thermodynamic optimization to maximize RMBC thermal efficiency. • Conducting thermo-economic optimization to minimize RMBC cost of electricity. - Abstract: A recently recommended combined cycle power plant is to employ another gas turbine cycle for waste heat recovery as an air bottoming cycle (ABC). There are some studies conducted to improve ABC’s thermodynamic performance utilizing commonly power augmentation methods such as steam/water injection. In particular, it is proposed to employ Maisotsenko gas turbine cycle as a bottoming cycle, i.e. Maisotsenko bottoming cycle (MBC). Due to the promising performance of the MBC configuration, it is decided to investigate a recuperated MBC (RMBC) configuration by recommending the triplex air saturator. In this way, the air saturator consists of three sections. The first section is an indirect evaporative cooler while the other two sections are responsible for heat recovery from the topping and bottoming cycle turbines exhaust. In this paper, thermodynamic and thermo-economic analyses are carried out to study the main merits and demerits of RMBC against MBC configuration. Thermodynamic optimization results indicate that the maximum achievable efficiency for MBC and RMBC incorporation in a simple gas turbine power plant are 39.40% and 44.73%, respectively. Finally, thermo-economic optimization shows that the optimum levelized cost of electricity for MBC and RMBC power plants are 62.922 US$/MWh and 58.154 US$/MWh, respectively.

  11. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  12. A review of the OECD/NEA Study on the economics of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Zarimpas, N.; Stevens, G.H.; Nuclear Energy Agency

    1994-01-01

    The paper presents an overview of the recent study carried out by OECD's Nuclear Energy Agency on the economics of the nuclear fuel cycle. The investment appraisal method of deriving the lifetime levelised fuel cost required the examination of the entire fuel cycle cash outflow based on component prices. The cash outflows were discounted to a base date using the selected discount rate which was set, for the reference case, at 5 per cent per annum (real). The levelised fuel cycle cost was derived in mills/kWh terms by equating the net present value of the entire fuel cycle cost and the net present value of the total electrical output over the station lifetime, where both have been discounted to the same date. The study's reference fuel cycle options and costs are discussed and a comparison with earlier NEA work is provided. 6 refs., 2 tabs., 3 figs

  13. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  14. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  15. CONSIDERATIONS ON FISCAL POLICY AS A TOOL OF ECONOMIC RECOVERY

    Directory of Open Access Journals (Sweden)

    Stoichin Elena Mădălina

    2012-03-01

    Full Text Available One of the most important components of social and economic life is the public finances, with direct implications on the formation and distribution of gross domestic product. State, in order to establish their own funds to set up the concept according to which, any natural or legal person carrying out an income or owns a dime in the category of those taxable in the State due to tax or duty. Starting from these considerations, the paper analyses, on the one side, the influencing factors and effects of increasing fiscal pressure, and, on the other side, the role of fiscal policy in the economic relaunch.

  16. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  17. Opportunities for biomaterials : economic, environmental and policy aspects along their life cycle

    NARCIS (Netherlands)

    Hermann, B.G.

    2010-01-01

    Little was known at the start of these studies regarding the environmental impacts of bulk chemicals production from biomass and whether they could be produced economically. We have therefore analysed the entire life cycle of biomaterials: the production of bio-based chemicals, the application of

  18. Combined-cycle steam section parametric analysis by thermo-economic simulation

    International Nuclear Information System (INIS)

    Macor, A.; Reini, M.

    1991-01-01

    In the case of industrial cogeneration plants, thermal power production is, in general, strictly dependent on the technological requirements of the production cycle, whereas, the electrical power which is produced can be auto- consumed or ceded to the utility grid. In both cases, an economic worth is given to this energy which influences the overall economic feasibility of the plant. The purpose of this paper is to examine parametric inter-relationships between economic and thermodynamic performance optimization techniques. Comparisons are then made of the results obtained with the use of the thermo- economic analysis technique suggested in this paper with those obtained with the use of indicators in other exergo-economic analysis techniques

  19. Economic evaluation of externally fired gas turbine cycles for small-scale biomass cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    In this conceptual study, externally fired gas turbine (EFGT) cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approx} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing efficiency. Aside from a thermodynamic performance analysis, the study includes an economic analysis of both the closed and open externally fired gas turbine configurations, and comparisons are made with existing and emerging alternatives for small-scale biomass cogeneration. Simulation results show that thermodynamic performance varies slightly between the different configurations and working fluids, with electrical efficiencies of 31-38% (LHV) and total efficiency of 85-106% (LHV). The economic evaluation shows that the turbomachinery and the CFB furnace dominate the total plant cost, with each contributing about 1/3 of the total installed equipment cost. The specific capital cost for installation in Sweden in 1998 currency is calculated as 26-31 kSEK/kW{sub e} which is equivalent to 3 200-3 900 USD/kW{sub e} or 2 700-3 300 EUR/kW{sub e} .The cost of electricity, COE, is estimated to 590-670 SEK/MWh{sub e} (equivalent to 73-84 USD/MWh{sub e} or 62-71 EUR/MWh{sub e}) for 4 000 full load hours per year in a cogeneration application. Comparing the economic results for the externally fired gas turbine cycles in a slightly larger scale (40-50 MW{sub f}) to the economics of conventional biomass fired steam turbine cycles shows that the cost of electricity for the two plant configurations are roughly the same with a COE of 300-350 SEK/MWh{sub e}. It is believed that the economic performance of the EFGT

  20. Ecological and resource economics as ecosystem management tools

    Science.gov (United States)

    Stephen Farber; Dennis. Bradley

    1999-01-01

    Economic pressures on ecosystems will only intensify in the future. Increased population levels, settlement patterns, and increased incomes will raise the demands for ecosystem resources and their services. The pressure to transform ecosystem natural assets into marketable commodities, whether by harvesting and mining resources or altering landscapes through...

  1. Textile designs and fashion as strategic resource tools for economic ...

    African Journals Online (AJOL)

    Textile designs and fashion no doubt should be a part of the culture and economy of the development of a nation like Nigeria. There is no gainsaying the fact that all of the instruments of advancement of any nation, economy is predominant. The economic drive of any nation is majorly routed on generation of income from ...

  2. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    International Nuclear Information System (INIS)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-01-01

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs

  3. The Impact of Menstrual Cycle Phase on Economic Choice and Rationality.

    Science.gov (United States)

    Lazzaro, Stephanie C; Rutledge, Robb B; Burghart, Daniel R; Glimcher, Paul W

    2016-01-01

    It is well known that hormones affect both brain and behavior, but less is known about the extent to which hormones affect economic decision-making. Numerous studies demonstrate gender differences in attitudes to risk and loss in financial decision-making, often finding that women are more loss and risk averse than men. It is unclear what drives these effects and whether cyclically varying hormonal differences between men and women contribute to differences in economic preferences. We focus here on how economic rationality and preferences change as a function of menstrual cycle phase in women. We tested adherence to the Generalized Axiom of Revealed Preference (GARP), the standard test of economic rationality. If choices satisfy GARP then there exists a well-behaved utility function that the subject's decisions maximize. We also examined whether risk attitudes and loss aversion change as a function of cycle phase. We found that, despite large fluctuations in hormone levels, women are as technically rational in their choice behavior as their male counterparts at all phases of the menstrual cycle. However, women are more likely to choose risky options that can lead to potential losses while ovulating; during ovulation women are less loss averse than men and therefore more economically rational than men in this regard. These findings may have market-level implications: ovulating women more effectively maximize expected value than do other groups.

  4. The Impact of Menstrual Cycle Phase on Economic Choice and Rationality.

    Directory of Open Access Journals (Sweden)

    Stephanie C Lazzaro

    Full Text Available It is well known that hormones affect both brain and behavior, but less is known about the extent to which hormones affect economic decision-making. Numerous studies demonstrate gender differences in attitudes to risk and loss in financial decision-making, often finding that women are more loss and risk averse than men. It is unclear what drives these effects and whether cyclically varying hormonal differences between men and women contribute to differences in economic preferences. We focus here on how economic rationality and preferences change as a function of menstrual cycle phase in women. We tested adherence to the Generalized Axiom of Revealed Preference (GARP, the standard test of economic rationality. If choices satisfy GARP then there exists a well-behaved utility function that the subject's decisions maximize. We also examined whether risk attitudes and loss aversion change as a function of cycle phase. We found that, despite large fluctuations in hormone levels, women are as technically rational in their choice behavior as their male counterparts at all phases of the menstrual cycle. However, women are more likely to choose risky options that can lead to potential losses while ovulating; during ovulation women are less loss averse than men and therefore more economically rational than men in this regard. These findings may have market-level implications: ovulating women more effectively maximize expected value than do other groups.

  5. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  6. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    Energy Technology Data Exchange (ETDEWEB)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  7. Economic aspects of the development of nuclear power and fuel-cycle plants in the USSR

    International Nuclear Information System (INIS)

    Dergachev, N.P.; Kruglov, A.K.; Sedov, V.M.; Shuklin, S.V.

    1977-01-01

    Different possible versions of the construction programme for nuclear power stations and fuel-cycle plants in the USSR are discussed in relation to the target level of installed electrical capacity for 1980 and the predictions for the year 2000. The likely structure of the nuclear power industry is considered and the role of nuclear power stations with fast reactors is discussed, including their effect on the natural uranium supply situation. The effect of the development of fuel-cycle plants and of the organization of the reprocessing of fuel from nuclear power stations on the rate of introduction of fast reactor stations is analysed, and the effect of the technical and economic characteristics of fuel-cycle plants on the economic indices of nuclear power is studied. (author)

  8. Software Integration of Life Cycle Assessment and Economic Analysis for Process Evaluation

    DEFF Research Database (Denmark)

    Kalakula, Sawitree; Malakula, Pomthong; Siemanonda, Kitipat

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design...... of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, to definedesign/retrofit targets for process improvements. Economic analysis is performed to evaluate the profitability of the process........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...

  9. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  10. Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol, E-mail: csy@kaeri.re.kr; Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr; Ko, Won Il, E-mail: nwiko@kaeri.re.kr

    2014-10-01

    Highlights: • Dynamic behavior of system costs, both reactor and fuel cycle costs, is analyzed. • Relative economics of once-through and closed fuel cycles is explored. • Probabilistic approaches are adopted for levelized electricity generation costs. • Main cost drivers for cost gaps between once-through and closed cycles are identified. - Abstract: Although no consensus about the best approach to manage spent fuels has been achieved, economics is one of the major criteria for assessing and selecting acceptable management options. This study compares the reactor and fuel cycle costs of the closed system associated with sodium-cooled fast reactors and pyroprocessing versus the once-through system. We specifically investigated the fuel cycle transition cases of the Republic of Korea from 2013 to 2100. The results revealed that the closed system (34.00 mills/kWh as a mean value) could be more expensive than the once-through system (32.75 mills/kWh). In contrast, the once-through fuel cycle costs (8.31 mills/kWh), excluding reactor costs, were projected to be greater than the closed fuel cycle costs (7.77 mills/kWh) because of the increased costs of interim storage estimated by the Korean government and the limited contribution of backend fuel cycle components to the discounted costs. The capital cost of sodium-cooled fast reactor is the largest component contributing to the cost gap between the two systems. Among fuel cycle components, pyroprocessing has the largest uncertainty contribution to the cost gap. We also calculated the breakeven unit costs of SFR capital cost and PWR spent fuel pyroprocessing cost.

  11. TOOLS OF MARKETING COMMUNICATIONS IN POLITICS AND THE ECONOMY, DEPENDING ON THE LIFE CYCLE

    Directory of Open Access Journals (Sweden)

    Tatyana L. Shklyar

    2014-01-01

    Full Text Available This article demonstrates how much can be similar absolutely different areas as politics and economy.Analyzing the approaches to marketing in these areas, you can gather a lot of valuable and useful. The authors discuss the tools of marketing communications, depending on the life cycle of goods and drawa parallel between business and politics. Note that thetools of marketing communications are very numerousand diverse but is most effective at a particular time. Provides specific recommendations on the relevance of tools, aimed at promotion of the goods in the certaintime intervals life cycle.

  12. Selection and evaluation of nuclear fuel cycle strategies. Technical and economic aspects

    International Nuclear Information System (INIS)

    Clarke, F.J.P.; Main, F.K.

    1983-01-01

    The original choices of thermal reactors and fuel cycles were largely determined by specific national circumstances and by experience and facilities acquired from defence-related programmes. These led to the development of LWRs in the USA and to the natural uranium/gas/graphite system in the United Kingdom and France, while Canada selected the HWR. Most countries with nuclear power programmes saw the plutonium-fuelled fast reactor, with its breeding potential, as the means to ensure that exhaustion of economic uranium resources would not prematurely curtail the contribution of nuclear power to world energy supplies. Fuel reprocessing was essential to this fuel cycle or indeed to other recycling options to make better use of the available uranium; it was also favoured for waste management reasons. Early expectations of nuclear power growth suggested that a transition from thermal to fast reactors would occur during the present century but the urgency has been reduced by world economic recession, slower increases in nuclear capacity and the continued availability of supplies of low-priced uranium. Reprocessing costs have risen and economics of scale favour large plants, which are therefore most likely to be built in countries with substantial thermal reactor capacities; these countries will be able to provide reprocessing services to others. As the ultimate strategic need for fast reactors has not been reduced by this slowdown it is important to continue the development and demonstration of fast-reactor technology and the associated fuel cycles. Uncertainties in future fuel prices mean that it could be advantageous to introduce fast reactors as soon as they become an economic, although not necessarily the most economic, choice. Notably, fast reactors may be installed initially when and where they become economic compared to coal-fired generation, in order to lay the foundation for more rapid expansion when economic break-even with thermal reactors occurs. (author)

  13. Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking

    DEFF Research Database (Denmark)

    Zhao, Chunli; Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl

    2018-01-01

    Abstract This paper explores the urban form, demographic and socio-economic dependencies of walking, cycling and e-biking in Beijing based on a survey (N = 1427) of daily travel among residents in eight neighborhoods, enriched with urban form variables. The results show that walking is most...... frequently used, followed by cycling, which in turn is more frequent than e-biking. Walking and cycling are preferred when the accessibility of public facilities and services is good, while e-bikes are used when public transport provision is low. Urban form variables of population density, job employment...... be encouraged to keep on walking, cycling and e-biking even if their income situation may improve in the future....

  14. Thermo-economic assessment of the integration of steam cycles on offshore platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    thermodynamic and economic performance indicators. The results illustrate the benefits of converting the gas turbines into a combined cycle. Using seawater results in smaller power generation and greater CO2-emissions than using process water, as the additional power generation in the combined cycle......The integration of steam bottoming cycles on oil platforms is often seen as a possible route to mitigate the CO2-emissions offshore. In this paper, a North Sea platform and its energy requirements are systematically analysed. The site-scale integration of steam networks is assessed by using...... is compensated by the significant pumping demand. This work emphasises that energy improvement efforts should be analysed at the scale of the overall site and not solely at the level of the combined cycle....

  15. A life cycle cost economics model for projects with uniformly varying operating costs. [management planning

    Science.gov (United States)

    Remer, D. S.

    1977-01-01

    A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.

  16. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  17. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  18. Climate change and macro-economic cycles in pre-industrial europe.

    Science.gov (United States)

    Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.

  19. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    International Nuclear Information System (INIS)

    Rodríguez, Iván Merino; Álvarez-Velarde, Francisco; Martín-Fuertes, Francisco

    2014-01-01

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR E VOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  20. The Index of Sustainable Economic Welfare (ISEW) as a tool in the sustainabledevelopment – Poland case

    NARCIS (Netherlands)

    Swiatkowska, Marta

    2008-01-01

    The research is based on the index of sustainable economic welfare (ISEW) as a tool in the sustainable development. The new index was developed to answer the growing number of critiques over the GDP indicator which measures only the economic activity of a

  1. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  2. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  3. A GIS tool for the economic assessment of renewable technologies

    International Nuclear Information System (INIS)

    Mahmmud, F.; Woods, J.; Watson, S.; Halliday, J.; Hossain, J.

    1997-01-01

    A Geographical Information System (GIS) has the potential to analyse a large area for the optimum selection and siting of renewable energy systems. This paper reports on a GIS based scheme for the economic assessment of a selected number of wind and photovoltaic systems in the state of Karnataka, in India. This involved the implementation of an appropriate GIS methodology. The preparation of the GIS database is often the most arduous task in GIS operations. Thus, a description of the GIS methodology and the preparation of the database for the analysis of a selection of wind and photovoltaic systems is given. This approach has enabled the identification of the high potential areas in terms of the levelised electricity costs. An overall assessment of the region for present and future scenarios is also given. (author)

  4. Some aspects of the economics of fast reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    Sweet, C.

    1982-01-01

    The economics of Fast Reactor Fuel Cycles is a subject marked by a more than usual degree of uncertainty. An evaluation of the future costs and benefits is therefore a necessarily tentative exercise, and the proposed paper will be written within the limitations imposed by the present state of knowledge. It will be no less limited by the present ''state of the art'', which while contingent on the availability of information, is primarily to do with questions of economic method and conception as applied to this field of study. (author)

  5. Value chain analysis of CO2 storage by using the Ecco tool: Storage economics

    NARCIS (Netherlands)

    Loeve, D.; Bos, C.; Chitu, A.; Loveseth, S.; Wahl, P.E.; Coussy, P.; Eickhoff, C.

    2013-01-01

    The ECCO Tool [1, 2] has been developed in the “ECCO – European value chain for CO2” project [3]. ECCO was a collaborating project under the 7th framework programme for research of the EU. The ECCO Tool is a software program designed to evaluate quantitatively the post-tax economics of Carbon

  6. THE RELATIONSHIP BETWEEN ECONOMIC VALUE ADDED AND CASH CONVERSION CYCLE IN COMPANIES LISTED ON THE WSE

    Directory of Open Access Journals (Sweden)

    Monika Bolek

    2012-06-01

    Full Text Available Economic Value Added (EVA a profitability measure and a Cash Conversion Cycle a liquidity and profitability measure are presented in this article. These ratios represent the dynamic approach to management of companies. The relationship between them may be considered as an advanced approach to management in a current economy based on intangible assets and know- how and capital allocated fast and efficient according to information common access.

  7. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    OpenAIRE

    Suresh Baral; Kyung Chun Kim

    2015-01-01

    The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC) water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal ef...

  8. Economics of the back-end of fuel cycle: Controversy, uncertainties and the industrial evidence

    International Nuclear Information System (INIS)

    Guais, J.C.

    1987-01-01

    This paper underlines the usefulness of the document issued by OECD/NEA on the ''economics of the nuclear fuel cycle,'' as a reference methodology. As regards the technical and costs assumptions, we feel that COGEMA as the most important reprocessor to date has accumulated a large industrial experience allowing a better knowledge of the various costs included in the back-end operations, from spent fuel transportation handling and storage, to reprocessing and wastes conditioning. A comparative analysis of the two main options for the fuel cycle: reprocessing/recycling versus once-through, is performed on these grounds. In the economic conditions prevailing in Western Europe and in Japan, the resulting cost comparison is in favor of the reprocessing/recycling cycle. The authors conclude that economics is important as it is, is not the only criteria to be considered then assessing the back-end options: overall strategy, energy policy, environmental consideration and public acceptance are the other view-points to use to reach a sound decision in this field

  9. Economic cycles and their synchronization: Spectral analysis of macroeconomic series from Italy, The Netherlands, and the UK

    Science.gov (United States)

    Sella, Lisa; Vivaldo, Gianna; Ghil, Michael; Groth, Andreas

    2010-05-01

    The present work applies several advanced spectral methods (Ghil et al., Rev. Geophys., 2002) to the analysis of macroeconomic fluctuations in Italy, The Netherlands, and the United Kingdom. These methods provide valuable time-and-frequency-domain tools that complement traditional time-domain analysis, and are thus fairly well known by now in the geosciences and life sciences, but not yet widespread in quantitative economics. In particular, they enable the identification and characterization of nonlinear trends and dominant cycles --- including low-frequency and seasonal components --- that characterize the behavior of each time series. We explore five fundamental indicators of the real (i.e., non-monetary), aggregate economy --- namely gross domestic product (GDP), consumption, fixed investments, exports and imports --- in a univariate as well as multivariate setting. A single-channel analysis by means of three independent spectral methods --- singular spectrum analysis (SSA), the multi-taper method (MTM), and the maximum-entropy method (MEM) --- reveals very similar near-annual cycles, as well as several longer periodicities, in the macroeconomic indicators of all the countries analyzed. Since each indicator represents different features of an economic system, we combine them to infer if common oscillatory modes are present, either among different indicators within the same country or among the same indicators across different countries. Multichannel-SSA (M-SSA) reinforces the previous results, and shows that the common modes agree in character with solutions of a non-equilibrium dynamic model (NEDyM) that produces endogenous business cycles (Hallegatte et al., JEBO, 2008). The presence of these modes in NEDyM results from adjustment delays and other nonequilibrium effects that were added to a neoclassical Solow (Q. J. Econ., 1956) growth model. Their confirmation by the present analysis has important consequences for the net impact of natural disasters on the

  10. Application of a personal computer relational data base management system to fuel cycle economic scoping

    International Nuclear Information System (INIS)

    Malone, J.P.; Dooley, G.D.

    1986-01-01

    A personal computer (PC) relational data base management system (RDBMS) permits large quantities of data to be maintained in a data base composed of structured data sets or files and provides data access through a software environment, procedure, or program language. The features of an RDBMS-based system create an environment on a PC that can provide significant benefits to any fuel cycle economics analysis. The ability to maintain a separate data set for each fuel cycle parameter group and the ability to manipulate the data through a series of independent calculation modules combine to provide the fuel cycle analyst with more time to examine and use the data, because less time is required to manipulate it

  11. Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost

    Science.gov (United States)

    Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.

    2018-03-01

    In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.

  12. ECONOMIC MECHANISMS OF POPULATION PROTECTION AGAINST PENSION RISKS AS A TOOL FOR SOCIO-ECONOMIC DEVELOPMENT OF THE REGION

    Directory of Open Access Journals (Sweden)

    Lyubov V. Grigoryeva

    2017-06-01

    Full Text Available The problem of finding effective economic instruments for socio-economic development of the regions has recently become of increasing relevance. Strengthening the regional differentiation, highlighting the leading and lagging regions, the lack of own resources in the regions has forced regional authorities to use new instruments of territorial development, in particular, economic mechanisms of protection against pension risks. The use of these mechanisms has a dual effect (economic and social, due to the attraction of the regions with additional financial resources in the form of “long money” and increasing the protection of citizens against pension risks (the increase in the level of pension payments. The analysis of the current use of economic mechanisms of protection against pension risks in the regions of the Southern Federal District helped to articulate key issues of their use, in particular, low pension literacy of the population, distrust towards specialized financial institutions, the investment policy of the regions does not take into account the possibility of attracting private pension funds into regional projects, and there is no mechanism to support regional National Pension Fund. Territorial analysis revealed the potential application of economic mechanisms to protect against pension risks in the regions of the Southern Federal District as a tool for socio-economic development, which is based on the existence of regional pension funds and insurance companies (providing services for pension insurance, as well as participation in private pension provision. The Krasnodar, Rostov and Volgograd regions have the highest potential among the regions of the Southern Federal District, as there already exist regional National Pension Fund, and the participation in private pension insurance is confirmed by the statistics of the contributions paid. The study of existing economic mechanisms to protect against pension risks will provide the

  13. A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants.

    Science.gov (United States)

    Mu, Dongyan; Addy, Min; Anderson, Erik; Chen, Paul; Ruan, Roger

    2016-03-01

    This study used life cycle assessment and technical economic analysis tools in evaluating a novel Scum-to-Biodiesel technology and compares the technology with scum digestion and combustion processes. The key variables that control environmental and economic performance are identified and discussed. The results show that all impacts examined for the Scum-to-Biodiesel technology are below zero indicating significant environmental benefits could be drawn from it. Of the three technologies examined, the Scum-to-Biodiesel technology has the best environmental performance in fossil fuel depletion, GHG emissions, and eutrophication, whereas combustion has the best performance on acidification. Of all process inputs assessed, process heat, glycerol, and methanol uses had the highest impacts, much more than any other inputs considered. The Scum-to-Biodiesel technology also makes higher revenue than other technologies. The diesel price is a key variable for its economic performance. The research demonstrates the feasibility and benefits in developing Scum-to-Biodiesel technology in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Are the lessons of the techno-economic studies on the sulphur-iodine cycle applicable to the other cycles?

    International Nuclear Information System (INIS)

    Werkoff, F.; Mansilla, C.

    2007-01-01

    Further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. To explore these opportunities, several countries are involved in a forum on the development of next generation nuclear energy systems known as 'Generation IV'. Six concepts have been chosen by the forum, to be studied. The Very High Temperature Reactor (VHTR) offers perspectives for producing electricity and hydrogen with high efficiencies. Nuclear production of hydrogen by thermochemical means is one of the prime candidates for powering the hydrogen economy without producing green house gases. Among them, the Sulphur-Iodine (S-I) thermochemical cycle appeared well fitted with the VHTR, due to the temperature needed for the decomposition of the sulphuric acid. It was invented in the 1970's and it benefits from a revival of interest in the framework of Generation IV. In the last past years, assessments of the S-I process, coupled with a VHTR have been carried out. It appeared that these assessments have to be considered, looking with a particular care to the recommendations of the Generation IV crosscutting economics group [1]: a Generation IV system will: 1. Have a clear life-cost advantage over other energy systems. 2. Have a level of financial risk comparable to other energy projects. The experience gained from techno-economic studies [2, 3] which consider the S-I cycle, indicates that the choice of alternatives cycles to the S-I one must be driven by the characteristic of a previously selected nuclear reactor, mainly the temperature at the nuclear core outlet. Moreover, the net efficiency of the thermochemical cycle must be higher than a reference value defined from the alkaline electrolysis fed by the electricity produced from the selected reactor. Besides, the technical feasibility of the thermochemical processes is not yet established and the production cost of hydrogen from these processes is the result of the sum of several cost factors which are

  15. REFCO83, Nuclear Fuel Cycle Cost Economics Using Discounted Cash Flow Analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Hermann, O.W.

    2001-01-01

    1 - Description of program or function: REFCO83 utilizes a discounted cash flow (DCF) analysis procedure to calculate batch, cycle, and lifetime levelized average nuclear fuel cycle costs. The DCF analysis establishes an energy 'cost' associated with the fuel by requiring that the revenues from the sale of energy be adequate to pay the required return on outstanding capital, to pay all expenses including taxes, and to retire the outstanding investment to zero by the end of the economic life of the set of fuel investments. The program uses reactor mass flow information together with individual fuel cost parameters and utility capital structure and money costs to calculate levelized costs cumulatively through any batch or cycle. 2 - Method of solution: A fuel cycle cost component is considered to be any fuel material purchase, processing cost, or discharge material credit in the complete fuel cycle. The costs for each individual component, i.e. uranium, enrichment, etc., may either be expensed or capitalized for tax purposes or, in the case of waste disposal, the cost may also be made proportional to power production. To properly account for the effect of income taxes, all calculations in REFCO83 are done using 'then' current dollars, including price escalations caused by inflation. The database used for the default values for REFCO83 was taken from the Nuclear Energy Cost Data Base. 3 - Restrictions on the complexity of the problem: The maximum number of fuel batches is 120

  16. Social Life Cycle Assessment as a Management Tool: Methodology for Application in Tourism

    Directory of Open Access Journals (Sweden)

    Roberto Merli

    2013-08-01

    Full Text Available As is widely known, sustainability is an important factor in competition, increasing the added value of a company in terms of image and credibility. However, it is important that sustainability assessments are effectively addressed in a global perspective. Therefore, life cycle tools are adopted to evaluate environmental and social impacts. Among these, and of particular significance, appears the Social Life Cycle Assessment (SLCA, which, although in its early stage of development, seems to have extremely promising methodological features. For this reason, it seemed interesting to propose a first application to the tourism sector, which could be better than other methods, studied in terms of social sustainability data. The particular characteristics of service delivery lend themselves more to the development of data related to social sustainability than other sectors. In this paper the results of a case study carried out using social accounting and business management tools are shown.

  17. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  18. Economic competitiveness of small modular reactors versus coal and combined cycle plants

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Bilbao, Sama; Valle, Edmundo del

    2016-01-01

    Small modular reactors (SMRs) may be an option to cover the electricity needs of isolated regions, distributed generation grids and countries with small electrical grids. Previous analyses show that the overnight capital cost for SMRs is between 4500 US$/kW and 5350 US$/kW, which is between a 6% and a 26% higher than the average cost of a current large nuclear reactor. This study analyzes the economic competitiveness of small modular reactors against thermal plants using coal and natural gas combined cycle plants. To assess the economic competitiveness of SMRs, three overnight capital costs are considered 4500 US$/kW, 5000 US$/kW and 5350 US$/kW along with three discount rates for each overnight cost considered, these are 3, 7, and 10%. To compare with natural gas combined cycle (CC) units, four different gas prices are considered, these are 4.74 US$/GJ (5 US$/mmBTU), 9.48 US$/GJ (10 US$/mmBTU), 14.22 US$/GJ (15 US$/mmBTU), and 18.96 US$/GJ (20 US$/mmBTU). To compare against coal, two different coal prices are considered 80 and 120 US$/ton of coal. The carbon tax considered, for both CC and coal, is 30 US$/ton CO_2. The results show what scenarios make SMRs competitive against coal and/or combined cycle plants. In addition, because the price of electricity is a key component to guarantee the feasibility of a new project, this analysis calculates the price of electricity for the economically viable deployment of SMRs in all the above scenarios. In particular, this study shows that a minimum price of electricity of 175 US$/MWh is needed to guarantee the feasibility of a new SMR, if its overnight capital cost is 5350 US$/kWe and the discount rate is 10%. Another result is that when the price of electricity is around 100 US$/MWh then the discount rate must be around 7% or less to provide appropriate financial conditions to make SMRs economically feasible. - Highlights: • Small modular reactor (SMR) are economically assessed. • SMR are compared against gas and coal

  19. Economic optimization of the combined cycle integrated with multi-product gasification system

    International Nuclear Information System (INIS)

    Liszka, M.; Ziebik, A.

    2009-01-01

    The system taken into consideration consists of the Corex unit, combined cycle power plant and air separation unit (ASU). The Corex process (trademark of Siemens-VAI) is one of technologies for cokeless hot metal production. Coal is gasified by oxygen in the hot metal environment. The excess gas can be used out of installation. It has been assumed that the Corex export gas is fired in combined cycle. The gas turbine (GT) structure was assumed as a fixed simple cycle while the heat recovery steam generator (HRSG) and steam turbine arrangements are free for optimization. The examples of independent variables selected for optimization are number of HRSG pressure levels, GT pressure ratio, minimal temperature differences in HRSG, flow rate of compressed air form GT compressor to ASU. Finally, 16 independent variables have been qualified for optimization. The synthesis optimization is based on the superstructure method. The economic net present value (NPV) has been chosen as the objective function. All power plant facilities have been modeled on the GateCycle software. The off-design models include, among others, the GT blade cooling and HRSG heat transfer coefficient analyses. Two optimization methods - genetic algorithm and Powells conjugate directions have been coupled in one hybrid procedure. The whole optimization analysis has been repeated several times for different price scenarios on the coal, iron and electricity markets

  20. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  1. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  2. Life Cycle Assessment as Entrepreneurial Tool for Business Management and Green Innovations

    Directory of Open Access Journals (Sweden)

    Cassiano Moro Piekarski

    2013-01-01

    Full Text Available A transition for a green economy has encouraged companies to use new tools which promote internal corporate entrepreneurship, increase the competitiveness and achieve sustainable results. This article presented a theoretical discussion of how the Life Cycle Assessment (LCA can presents as an entrepreneurial tool for modern business management and green innovation. Studies of LCA were analyzed showing benefits and applications in the areas of strategic planning, production, process of development of products, search and development, social and environmental responsibility, and marketing. As for green innovations, there were analyzed studies of innovations in products, processes and services. The tool assists in making sustainable decisions, fortifies the management of the business processes, the management of operations and the promotion of greener innovations.

  3. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  4. A Framework for Sustainable Design of Algal Biorefineries: Economic Aspects and Life Cycle Analysis

    DEFF Research Database (Denmark)

    Cheali, Peam; Loureiro da Costa Lira Gargalo, Carina; Gernaey, Krist

    2015-01-01

    mathematically as a mixed integer nonlinear programming problem, and is solved first to identify the optimal designs with respect to economic optimality. These optimal designs are then analyzed further in terms of environmental performance using life cycle analysis. For sustainability analysis, in total five...... of algae feedstock for the production of biodiesel and co-products. Relevant data and parameters for each process such as yield, conversion, operational cost is then collected using a standardized format (a generic model) and stored in a database. The sustainable design problem is then formulated...... of future and sustainable algal biorefinery concepts....

  5. Developing Green GDP Accounting for Thai Agricultural Sector Using the Economic Input Output - Life Cycle Assessment to Assess Green Growth

    OpenAIRE

    Attavanich, Witsanu; Mungkung, Rattanawan; Mahathanaseth, Itthipong; Sanglestsawai, Santi; Jirajari, Athiwatr

    2016-01-01

    There is no indicator measuring Thailand’s green growth by valuing the resource degradation and environmental damage costs. This article aims to estimate Thailand’s green gross domestic (GDP) that takes into account environmental damage costs with the detailed analysis on the agricultural sector using the Economic Input Output - Life Cycle Assessment (EIO-LCA) approach. The representative product in each sector was selected based on the available life cycle inventory data, economic values and...

  6. Overall performance assessment of a combined cycle power plant: An exergo-economic analysis

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.; Al-Sharafi, Abdullah; Yilbas, Bekir S.; Khaliq, Abdul

    2016-01-01

    Highlights: • An exergo-economic analysis is carried out for a combined cycle power plant. • An overall performance index (OPI) is defined to analyze the power plant. • Four performance indicators and three scenarios are considered in the analysis. • The optimum configuration of the power plant differs for each scenarios considered. - Abstract: An exergo-economic analysis is carried out for a combined cycle power plant using the first law and the second law of thermodynamics, and the economic principles while incorporating GT PRO/PEACE Software Packages. An overall performance index (OPI) is defined to assess and analyze the optimum operational and design configurations of the power plant. Four performance indicators are considered for the analysis; namely, energy efficiency (ENE), exergy efficiency (EXE), levelized cost of electricity (COE), and the total investment (TI) cost. Three possible scenarios are considered in which different weight factor is assigned to the performance indicators when assessing the performance. These scenarios are: (i) the conventional case in which the levelized cost of electricity is given a high priority, (ii) environmental conscious case in which the exergy efficiency is given a high priority, and (iii) the economical case in which the total cost of investment is given a high priority. It is shown that the optimum size and the configuration of the power plant differ for each scenarios considered. The selection and optimization of the size and configuration of the power plant are found to be depending on the user priorities and the weight factors assigned to the performance indicators.

  7. Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel

    International Nuclear Information System (INIS)

    Lee, Ji-Yong; Yoo, Moosang; Cha, Kyounghoon; Hur, Tak; Lim, Tae Won

    2009-01-01

    This study uses a life cycle costing (LCC) methodology to identify when hydrogen can become economically feasible compared to the conventional fuels and which energy policy is the most effective at fostering the penetration of hydrogen in the competitive fuel market. The target hydrogen pathways in this study are H 2 via natural gas steam reforming (NG SR), H 2 via naphtha steam reforming (Naphtha SR), H 2 via liquefied petroleum gas steam reforming (LPG SR), and H 2 via water electrolysis (WE). In addition, the conventional fuels (gasoline, diesel) are also included for the comparison with the H 2 pathways. The life cycle costs of the target fuels are computed and several key factors are examined to identify the economical feasibilities of the target systems: fuel cell vehicle (FCV) price, social cost of greenhouse gases (GHGs) and regulated air emissions (CO, VOC, SO x , NO x , PM), fuel efficiency of FCV, capital costs of H 2 equipments at a H 2 fueling station. The life cycle costs of a H 2 pathway also depend on the production capacity. Although, at present, all H 2 pathways are more cost efficient than the conventional fuels in the fuel utilization stage, the H 2 pathways have lack competitiveness against the conventional fuels in the life cycle (well to wheel) costs due to the high price of FCV. From future scenario analyses in 2015, all H 2 pathways are expected to have lower life cycle costs than the conventional fuels as a transportation fuel. It is evident that the FCV price is the most important factor for encouraging the hydrogen economy and FCVs. Unless the FCV price is below US $62,320, it is necessary for the institution to subsidize the FCV price by any amount over US $62,320 in order to inject H 2 into the market of transportation fuel. The incentive or taxes on GHGs and regulated air emissions are also expected to effectively encourage the diffusion of H 2 and FCV, especially for the H 2 pathway of WE with wind power (WE[Wind]). The uncertainties

  8. U.S. - GERMAN BILATERAL WORKING GROUP WORKSHOP ON: ECONOMIC TOOLS FOR SUSTAINABLE BROWNFIELDS REDEVELOPMENT

    Science.gov (United States)

    This CD-ROM contains information from a two-day workshop discussing innovative brownfields financing and economic strategies in the United States and Germany. A special emphasis was given to the identification of advantages and disadvantages of different financial tools, economi...

  9. ADVISHE: A new tool to report validation of health-economic decision models

    NARCIS (Netherlands)

    Vemer, P.; Corro Ramos, I.; Van Voorn, G.; Al, M.J.; Feenstra, T.L.

    2014-01-01

    Background: Modelers and reimbursement decision makers could both profit from a more systematic reporting of the efforts to validate health-economic (HE) models. Objectives: Development of a tool to systematically report validation efforts of HE decision models and their outcomes. Methods: A gross

  10. Towards a New Approach of the Economic Intelligence Process: Basic Concepts, Analysis Methods and Informational Tools

    Directory of Open Access Journals (Sweden)

    Sorin Briciu

    2009-04-01

    Full Text Available One of the obvious trends in current business environment is the increased competition. In this context, organizations are becoming more and more aware of the importance of knowledge as a key factor in obtaining competitive advantage. A possible solution in knowledge management is Economic Intelligence (EI that involves the collection, evaluation, processing, analysis, and dissemination of economic data (about products, clients, competitors, etc. inside organizations. The availability of massive quantities of data correlated with advances in information and communication technology allowing for the filtering and processing of these data provide new tools for the production of economic intelligence.The research is focused on innovative aspects of economic intelligence process (models of analysis, activities, methods and informational tools and is providing practical guidelines for initiating this process. In this paper, we try: (a to contribute to a coherent view on economic intelligence process (approaches, stages, fields of application; b to describe the most important models of analysis related to this process; c to analyze the activities, methods and tools associated with each stage of an EI process.

  11. Ageing and the economic life cycle: The National Transfer Accounts approach.

    Science.gov (United States)

    Temple, Jeromey B; Rice, James M; McDonald, Peter F

    2017-12-01

    To illustrate the use of National Transfer Accounts (NTA) for understanding ageing and the economic life cycle in Australia. The NTA methodology is applied utilising a range of unit record, demographic and administrative data sets from 1981 to 2010. During early and later life, total consumption (public and private) is greater than labour income. On a time series and cohort basis, we show that each successive generation has improved their level of well-being (as measured by consumption) relative to the previous years or previous cohorts from 1981 to 1982 onwards. We also show a substantial increase in labour income earned by mature age workers over this period. International comparisons show Australia to have consumption and labour income age profiles very similar to those of Canada but dissimilar to many other countries, driven by differences in demographic and policy settings. The NTA approach provides a powerful framework to track differences in the economic life cycle across age groups, across time, across cohorts and across countries. © 2017 AJA Inc.

  12. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-16

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal Energy for Production of Heat and electricity (IR) Economically Simulated). GEOPHIRES combines reservoir, wellbore, surface plant and economic models to estimate the capital, and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy of a geothermal plant. The available end-use options are electricity, direct-use heat and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to couple to an external reservoir simulator, updated cost correlations, and more flexibility in selecting the time step and number of injection and production wells. An overview of all the updates and two case-studies to illustrate the tool's new capabilities are provided in this paper.

  13. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal energy for Production of Heat and electricity ('IR') Economically Simulated). GEOPHIRES combines engineering models of the reservoir, wellbores, and surface plant facilities of a geothermal plant with an economic model to estimate the capital and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy. The available end-use options are electricity, direct-use heat, and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to import temperature data (e.g., measured or from stand-alone reservoir simulator), updated cost correlations, and more flexibility in selecting the time step and number of injection and production wells. In this paper, we provide an overview of all the updates and two case studies to illustrate the tool's new capabilities.

  14. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  15. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  16. The influence of economic business cycles on United States suicide rates.

    Science.gov (United States)

    Wasserman, I M

    1984-01-01

    A number of social science investigators have shown that a downturn in the economy leads to an increase in the suicide rate. However, the previous works on the subject are flawed by the fact that they employ years as their temporal unit of analysis. This time period is so large that it makes it difficult for investigators to precisely determine the length of the lag effect, while at the same time removing the autocorrelation effects. Also, although most works on suicide and the business cycle employ unemployment as a measure of a downturn in the business cycle, the average duration of unemployment represents a better measure for determining the social impact of an economic downturn. From 1947 to 1977 the average monthly duration of unemployment is statistically related to the suicide rate using multivariate time-series analysis. From 1910 to 1939 the Ayres business index, a surrogate measure for movement in the business cycle, is statistically related to the monthly suicide rate. An examination of the findings confirms that in most cases a downturn in the economy causes an increase in the suicide rate.

  17. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  18. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  19. Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects

    International Nuclear Information System (INIS)

    Ferreira, Joaquim; Pinheiro, Manuel Duarte; Brito, Jorge de

    2013-01-01

    Europe is facing one of its most challenging crises since Great Depression and the construction sector is one of the worst affected. Refurbishment is therefore often suggested as one of the most useful solutions for the current real estate crisis in consolidated areas like the EU. On the other hand, it is imperative to construct buildings according to sustainable principles regarding economic, environmental and social issues. Therefore, proper decision-support methods are needed to help designers, investors and policy makers to choose the most sustainable solution for a refurbishment project, especially for energy retrofit works. This paper reviews the works relating to sustainable refurbishment decision-support tools which have already been developed. For this purpose we have analysed and classified 40 different methods, with particular focus on their main common aims. They are also compared with other classifications proposed. This paper further highlights the role of energy as a driving factor and discusses what other research developments are needed to create related tools for the future that could respond to actual construction requirements. - Highlights: • Sustainable refurbishment as an important challenge. • Proper decision-support methods are needed to refurbishment. • The paper reviews 40 different methods, focusing their main common aims. • The paper highlights the role of the energy as key factor to search sustainability. • It also stresses the importance of life cycle approach in refurbishment projects

  20. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  1. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  2. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.

    Science.gov (United States)

    Roberts, Kelli G; Gloy, Brent A; Joseph, Stephen; Scott, Norman R; Lehmann, Johannes

    2010-01-15

    Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.

  3. IT Tools and their Use in Strategy Creation in Respect of Economic Results of a Company

    Directory of Open Access Journals (Sweden)

    Ladislav Pálka

    2016-01-01

    Full Text Available Purpose of the article: The article analyzes the current state of information technology in terms of their use in a strategy creation of a company in relation to monitoring the economic results of a company. It investigates, identifies and evaluates the overall situation of the concept and principles of these tools, their effectiveness in drawing up the strategy and strategic company goals, the ability to perform a variety of economic analysis without the need of a complex operation and understanding, but also for an effective evaluation of data for a planning support, management and deciding of management components, leading to the overall success of a company. The reason for this monitoring is a considerable difference between strategic company planning and its real results. Methodology/methods: In terms of methodology, the literature review of the current state of the issue has been used. – Primary: interviews, observations, expert estimation. – Secondary: evaluation of the data from the database of IS, documentation of seminars. – Quantitative Research: mapping the orientation of the issue, the confrontation with the theory. – Qualitative research: projective, structured interview (by users and suppliers. Scientific aim: The main aim of the work is to solve the problems of management and evaluation of the economic process in respect of information technology tools in connection with the formation of corporate strategy and monitoring of financial results of the company. The reason for selecting of the above-mentioned issue is the fact that information technology resources are currently not used in the creation of corporate strategy, specifically in the area of economic goals. Findings: To describe the situation in the region and to clearly define the basic problems used as a basis for the use of IT support tools in creation of corporate strategy, namely economic goals and the use of feedback of information support tools for assessing

  4. Tool-life prediction under multi-cycle loading during metal forming: a feasibility study

    Directory of Open Access Journals (Sweden)

    Hu Yiran

    2015-01-01

    Full Text Available In the present research, the friction and wear behaviour of a hard coating were studied by using ball-on-disc tests to simulate the wear process of the coated tools for sheet metal forming process. The evolution of the friction coefficient followed a typical dual-plateau pattern, i.e. at the initial stage of sliding, the friction coefficient was relatively low, followed by a sharp increase due to the breakdown of the coatings after a certain number of cyclic dynamic loadings. This phenomenon was caused by the interactive response between the friction and wear from a coating tribo-system, which is often neglected by metal forming researchers, and constant friction coefficient values are normally used in the finite element (FE simulations to represent the complex tribological nature at the contact interfaces. Meanwhile, most of the current FE simulations consider single-cycle loading processes, whereas many metal-forming operations are conducted in a form of multi-cycle loading. Therefore, a novel friction/wear interactive friction model was developed to, simultaneously, characterise the evolutions of friction coefficient and the remaining thickness of the coating layer, to enable the wear life of coated tooling to be predicted. The friction model was then implemented into the FE simulation of a sheet metal forming process for feasibility study.

  5. Tool life prediction under multi-cycle loading conditions: A feasibility study

    Directory of Open Access Journals (Sweden)

    Yuan Xi

    2015-01-01

    Full Text Available In the present research, the friction and wear behaviour of a hard coating were studied by using ball-on-disc tests to simulate the wear process of the coated tools for sheet metal forming process. The evolution of the friction coefficient followed a typical dual-plateau pattern, i.e. at the initial stage of sliding, the friction coefficient was relatively low, followed by a sharp increase due to the breakdown of the coatings after a certain number of cyclic dynamic loadings. This phenomenon was caused by the interactive response between the friction and wear from a coating tribo-system, which has not been addressed so far by metal forming researchers, and constant friction coefficient values are normally used in the FE simulations to represent the complex tribological nature at the contact interfaces. Meanwhile, most of the current FE simulations are single cycle, whereas most sheet metal forming operations are conducted as multi-cycle. Therefore, a novel friction/wear interactive friction model was developed to, simultaneously, characterise the evolutions of friction coefficient and the remaining thickness of the coating layer, to enable the wear life of coated tooling to be predicted. The friction model was then implemented into the FE simulation of a sheet metal forming process for feasibility study.

  6. EXPRESSION OF THE TRANSPORT SECTOR OPERATIONAL EFFICIENCY EVALUATION METHODOLOGY (TRENDS AT DIFFERENT STAGES OF THE ECONOMIC CYCLE

    Directory of Open Access Journals (Sweden)

    Deimena KIYAK

    2017-12-01

    Full Text Available It is important to evaluate the impact of economic fluctuations on the transport sector operational efficiency, since such an analysis is a source of economic information which contributes to the identification of the sector's potential and advantages, the establishment of the risky areas of activity, and the exploration of the opportunities to increase its effectiveness. The aim of the study was to apply mathematical evaluation methods to the exploration of the operational efficiency of the Lithuanian transport sector companies and, based on the outcomes, to validate the opportunity of predicting a potential change of the economic cycle. The operational efficiency of the Lithuanian transport sector was analysed in the context of the cyclical national economy, and not in individual economic boom or recession periods, as that allowed for more detailed evaluation of the specific activities of the sector and its impact on Lithuanian economy. To achieve the aim, three different stages of the economic cycle in Lithuania were identified, and calculations were made during them. Based on the aggregate financial data, four different economic efficiency indicators were developed that reflected the efficiency level of the entire transport sector, and the sensitivity of the transport sector to economic fluctuations was identified. The comparison of the changes in the transport sector and in Lithuanian economy made it obvious that the level of the sector's operational efficiency could be regarded as a leading indicator of the economic cycle.

  7. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications

    International Nuclear Information System (INIS)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Lee, Dong Hyun; Usman, Muhammad; Heo, Manki

    2014-01-01

    Highlights: • Thermo-economic optimization of regenerative ORC is performed. • Optimization is performed using multi objective genetic algorithm. • Objective function is maximum cycle efficiency and minimum specific investment. • Evaporation pressure, pinch point and superheat are decision variables. • Sensitivity analysis is performed to investigate effect of decision variables. - Abstract: Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal

  8. A new tool for life cycle inventories of agricultural machinery operations

    Directory of Open Access Journals (Sweden)

    Daniela Lovarelli

    2016-03-01

    Full Text Available The interest in environmental assessments about agricultural processes is fast growing and asking for new tools for accurate impact evaluations. The methodology commonly used to go through these studies is the life cycle assessment, of which the inventory phase (life cycle inventory, LCI is an essential step. For studies focusing on agricultural productions, the completion of LCI is particularly complex: taking into account the pedo-climatic and mechanical operative variability is evidently difficult. However, the prediction of the environmental impact of mechanical operations caused by the agricultural sector is essential to quantify the impact categories for which it is responsible. A new tool, ENVIAM, was developed to complete LCI to guarantee the availability of local data that describe the mechanical and pedo-climatic conditions occurring in the Po Valley area and widely applicable as well. It calculates mechanical power requests, directly consumed inputs (i.e., fuel, lubricant and material consumption of a productive system by taking into account soil texture, specific machinery operations and coupling solutions as defined by the user. A subdivision of working time and defined engine load have been considered to calculate fuel consumption; with regard to outputs, exhaust gases emissions from internal combustion engines have been assessed by evaluating the emissive stages of belonging as stated by the EU Directive. A case study was also performed to highlight the differences that occur when an analysis is fulfilled in a context with features different from the average, and resulted in significant variations for the inventory. In more details, a comparison was carried out both with Ecoinvent database and within ENVIAM. With regard to fuel consumption, by changing the soil texture, the analysis showed a range between 64%-184% for sandy and clay soils, respectively, if compared with medium texture ones. With this tool, local contexts defined

  9. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  10. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  11. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  12. Economic input-output life-cycle assessment of trade between Canada and the United States.

    Science.gov (United States)

    Norman, Jonathan; Charpentier, Alex D; MacLean, Heather L

    2007-03-01

    With increasing trade liberalization, attempts at accounting for environmental impacts and energy use across the manufacturing supply chain are complicated by the predominance of internationally supplied resources and products. This is particularly true for Canada and the United States, the world's largest trading partners. We use an economic input-output life-cycle assessment (EIO-LCA) technique to estimate the economy-wide energy intensity and greenhouse gas (GHG) emissions intensity for 45 manufacturing and resource sectors in Canada and the United States. Overall, we find that U.S. manufacturing and resource industries are about 1.15 times as energy-intensive and 1.3 times as GHG-intensive as Canadian industries, with significant sector-specific discrepancies in energy and GHG intensity. This trend is mainly due to a greater direct reliance on fossil fuels for many U.S. industries, in addition to a highly fossil-fuel based electricity mix in the U.S. To account for these differences, we develop a 76 sector binational EIO-LCA model that implicitly considers trade in goods between Canada and the U.S. Our findings show that accounting for trade can significantly alter the results of life-cycle assessment studies, particularly for many Canadian manufacturing sectors, and the production/consumption of goods in one country often exerts significant energy- and GHG-influences on the other.

  13. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses

    Directory of Open Access Journals (Sweden)

    Kamyar Darvish

    2015-11-01

    Full Text Available The thermodynamic performance of a regenerative organic Rankine cycle that utilizes low temperature heat sources to facilitate the selection of proper organic working fluids is simulated. Thermodynamic models are used to investigate thermodynamic parameters such as output power, and energy efficiency of the ORC (Organic Rankine Cycle. In addition, the cost rate of electricity is examined with exergo-economic analysis. Nine working fluids are considered as part of the investigation to assess which yields the highest output power and exergy efficiency, within system constraints. Exergy efficiency and cost rate of electricity are used as objective functions for system optimization, and each fluid is assessed in terms of the optimal operating condition. The degree of superheat and the pressure ratio are independent variables in the optimization. R134a and iso-butane are found to exhibit the highest energy and exergy efficiencies, while they have output powers in between the systems using other working fluids. For a source temperature was equal to 120 °C, the exergy efficiencies for the systems using R134a and iso-butane are observed to be 19.6% and 20.3%, respectively. The largest exergy destructions occur in the boiler and the expander. The electricity cost rates for the system vary from 0.08 USD/kWh to 0.12 USD/kWh, depending on the fuel input cost, for the system using R134a as a working fluid.

  14. Utilization of debate as an educational tool to learn health economics for dental students in Malaysia.

    Science.gov (United States)

    Khan, Saad A; Omar, Hanan; Babar, Muneer Gohar; Toh, Chooi G

    2012-12-01

    Health economics, a special branch of science applying economic principles to the health delivery system, is a relatively young subdiscipline. The literature is scanty about teaching health economics in the medical and dental fields. Delivery methods of this topic vary from one university to another, with lectures, seminars, and independent learning reported as teaching/learning tools used for the topic. Ideally, debates should foster the development of logical reasoning and communication skills. Health economics in dentistry is taught under the community oral health module that constitutes part of an outcome-based dental curriculum in a private dental school in Kuala Lumpur, Malaysia. For this study, the students were divided into two groups: active participants (active debaters) and supporting participants (nonactive debaters). The debate style chosen for this activity was parliamentary style. Active and nonactive debaters' perceptions were evaluated before and after the activity through a structured questionnaire using a five-point rating scale addressing the topic and perceptions about debate as an educational tool. Cronbach's alpha coefficient was used as a measure of internal consistency for the questionnaire items. Among a total of eighty-two third-year dental students of two successive cohorts (thirty-eight students and forty-four students), seventy-three completed the questionnaire, yielding a response rate of 89 percent. Students' responses to the questionnaire were analyzed with the Kruskal-Wallis analysis of variance test. Results revealed that the students felt that their interest in debate, knowledge of the topic, and reinforcement of the previous knowledge had improved following participation in the debate. Within the limitations of this study, it can be concluded that debate was a useful tool in teaching health economics to dental students.

  15. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    Science.gov (United States)

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Science.gov (United States)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  17. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  18. Integrating health economics modeling in the product development cycle of medical devices: a Bayesian approach.

    Science.gov (United States)

    Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry

    2008-01-01

    Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.

  19. Economic Analysis for Setting Appropriate Repair Cycles on the Fixed Materials and Facilities in the Public Rental Housing

    Directory of Open Access Journals (Sweden)

    Sung-Min Choi

    2016-01-01

    Full Text Available Currently, repair and maintenance cycles that follow the completion of construction facilities lead to the necessitation of subsequent data on the analysis of study and plan for maintenance. As such, an index of evaluation was drafted and a plan of maintenance cycle was computed using the investigation data derived from surveying target housing units in permanent rental environmental conditions, with a minimum age of 20 years, and their maintenance history. Optimal maintenance and replacement methods were proposed based on this data. Economic analysis was conducted through the Risk-Weighted Life Cycle Cost (RWLCC method in order to determine the cost analysis of maintenance life cycle methods used for repair. Current maintenance cycle methods that have been used for 20 years were also compared with alternative maintenance cycles.

  20. Retro-Techno-Economic Analysis: Using (Bio)Process Systems Engineering Tools to Attain Process Target Values

    DEFF Research Database (Denmark)

    Furlan, Felipe F.; Costa, Caliane B B; Secchi, Argimiro R.

    2016-01-01

    Economic analysis, allied to process systems engineering tools, can provide useful insights about process techno-economic feasibility. More interestingly, rather than being used to evaluate specific process conditions, this techno-economic analysis can be turned upside down to achieve target valu...

  1. Tools and Strategies for Product Life Cycle Management ñ A Case Study in Foundry

    Science.gov (United States)

    Patil, Rajashekar; Kumar, S. Mohan; Abhilash, E.

    2012-08-01

    Advances in information and communication technology (ICT) have opened new possibilities of collaborations among the customers, suppliers, manufactures and partners to effectively tackle various business challenges. Product Life Cycle Management(PLM) has been a proven approach for Original Equipment Manufacturers (OEMs) to increase their productivity, improve their product quality, speed up delivery, and increase their profit and to become more efficient. However, their Tier 2 and Tier 3 suppliers like foundry industries are still in their infancy without adopting PLM. Hence to enhance their understanding, the basic concepts, the tools and strategies for PLM are presented is this paper. By selecting and implementing appropriate PLM strategies in a small foundry, an attempt was also made to understand the immediate benefits of using PLM tools (commercial PLM software and digital manufacturing tools). This study indicated a reduction in lead time and improved utilization of organizational resources in the production of automobile impeller. These observations may be further extrapolated to other multiproduct, multi-discipline and multi-customer companies to realize the advantages of using PLM technology

  2. A Performance Measurement Tool Leading Wastewater Treatment Plants toward Economic Efficiency and Sustainability

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini

    2016-11-01

    Full Text Available Wastewater treatment is an important link in the water cycle that allows for water sanitation and reuse, facilitates energy generation, and allows for the recovery of products from waste. The scientific community has paid significant attention to wastewater treatment, especially from a technical point of view. Extensive literature is available on new technologies, processes, and materials to improve wastewater treatment. However, scant studies have been conducted in the management field focusing on the development of a performance measurement tool that supports plant managers. The current article addresses this literature gap, developing a reporting tool that integrates technical and cost measures and implements it in a large wastewater utility. The tool successfully identifies cause and effect linkages among key plant performance drivers and supports management in finding activities with poor performance and allows them to delay non-relevant measures of control.

  3. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  4. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil

    International Nuclear Information System (INIS)

    Campos Rodríguez, Carlos Eymel; Escobar Palacio, José Carlos; Venturini, Osvaldo J.; Silva Lora, Electo E.; Cobas, Vladimir Melián; Marques dos Santos, Daniel; Lofrano Dotto, Fábio R.; Gialluca, Vernei

    2013-01-01

    This paper deals with the thermodynamic analysis, of both the first and second law of thermodynamic of two different technologies, (ORC and Kalina cycle) for power production through an enhanced geothermal system (EGS). In order to find a better performance of both thermal cycles it were evaluated 15 different working fluids for ORC and three different composition of the ammonia–water mixture for the Kalina cycle. In this work, the Aspen-HYSYS software was used to simulate both thermal cycles and to calculate the thermodynamic properties based on Peng–Robinson Stryjek–Vera (PRSV) Equation of State (EoS). At the end the two cycles was compared using an economic analysis with the fluid that offers the best performance for each thermal cycle which are R-290 for ORC and for Kalina cycle a composition of the mixture of 84% of ammonia mass fraction and 16% of water mass fraction. For this conditions the Kalina cycle produce 18% more net power than the ORC. A levelized electricity costs of 0.22 €/kW h was reached for ORC and 0.18 €/kW h for Kalina cycle. Finally a sensitivity analysis of the EGS LCOE was carried out for a few economic parameters to determinate how is the variation of LCOE for a % change from the base case. -- Highlights: ► The aim of this paper is to compare both cycles (ORC and Kalina). ► Kalina cycle offer 18% more net power than ORC and require 37% less mass flow rate. ► It was obtained 17.8% lower levelized electricity costs for Kalina cycle over the ORC

  5. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campos Rodríguez, Carlos Eymel, E-mail: eymelcampos@hotmail.com [Federal University of Itajuba (UNIFEI), Mechanical Engineering Institute – IEM, Excellence Group in Thermal Power and Distributed Generation (NEST), Minas Gerais (Brazil); Escobar Palacio, José Carlos; Venturini, Osvaldo J.; Silva Lora, Electo E.; Cobas, Vladimir Melián [Federal University of Itajuba (UNIFEI), Mechanical Engineering Institute – IEM, Excellence Group in Thermal Power and Distributed Generation (NEST), Minas Gerais (Brazil); Marques dos Santos, Daniel, E-mail: danielmarques.Santos@aes.com [AES Tietê, Bauru, São Paulo (Brazil); Lofrano Dotto, Fábio R., E-mail: fabio@farolconsultoria.com.br [FAROL Pesquisa, Desenvolvimento e Consultoria (Brazil); Gialluca, Vernei [Gênera Serviços e Comércio LTDA (Brazil)

    2013-04-05

    This paper deals with the thermodynamic analysis, of both the first and second law of thermodynamic of two different technologies, (ORC and Kalina cycle) for power production through an enhanced geothermal system (EGS). In order to find a better performance of both thermal cycles it were evaluated 15 different working fluids for ORC and three different composition of the ammonia–water mixture for the Kalina cycle. In this work, the Aspen-HYSYS software was used to simulate both thermal cycles and to calculate the thermodynamic properties based on Peng–Robinson Stryjek–Vera (PRSV) Equation of State (EoS). At the end the two cycles was compared using an economic analysis with the fluid that offers the best performance for each thermal cycle which are R-290 for ORC and for Kalina cycle a composition of the mixture of 84% of ammonia mass fraction and 16% of water mass fraction. For this conditions the Kalina cycle produce 18% more net power than the ORC. A levelized electricity costs of 0.22 €/kW h was reached for ORC and 0.18 €/kW h for Kalina cycle. Finally a sensitivity analysis of the EGS LCOE was carried out for a few economic parameters to determinate how is the variation of LCOE for a % change from the base case. -- Highlights: ► The aim of this paper is to compare both cycles (ORC and Kalina). ► Kalina cycle offer 18% more net power than ORC and require 37% less mass flow rate. ► It was obtained 17.8% lower levelized electricity costs for Kalina cycle over the ORC.

  6. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  7. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martinez, Ana

    2009-01-01

    CO 2 capture systems based on the carbonation/calcination loop have gained rapid interest due to promising carbonator CO 2 capture efficiency, low sorbent cost and no flue gases treatment is required before entering the system. These features together result in a competitively low cost CO 2 capture system. Among the key variables that influence the performance of these systems and their integration with power plants, the carbonation conversion of the sorbent and the heat requirement at calciner are the most relevant. Both variables are mainly influenced by CaO/CO 2 ratio and make-up flow of solids. New sorbents are under development to reduce the decay of their carbonation conversion with cycles. The aim of this study is to assess the competitiveness of new limestones with enhanced sorption behaviour applied to carbonation/calcination cycle integrated with a power plant, compared to raw limestone. The existence of an upper limit for the maximum average capture capacity of CaO has been considered. Above this limit, improving sorbent capture capacity does not lead to the corresponding increase in capture efficiency and, thus, reduction of CO 2 avoided cost is not observed. Simulations calculate the maximum price for enhanced sorbents to achieve a reduction in CO 2 removal cost under different process conditions (solid circulation and make-up flow). The present study may be used as an assessment tool of new sorbents to understand what prices would be competitive compare with raw limestone in the CO 2 looping capture systems. (author)

  8. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    Science.gov (United States)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  9. Assessment of nuclear fuel cycles with respect to assurance of energy supply; economic aspects; environmental aspects; non-proliferation

    International Nuclear Information System (INIS)

    1979-01-01

    This paper, which was presented to all INFCE Working Groups gives a broad qualitative assessment in tabular form of the following five fuel cycles: LWR once-through, LWR with thermal recycle, HWR once-through, HTR with uranium recycle, fast breeder reactor. The assessment is given of the assurance of supply aspects, the macro- and micro-economic aspects, the environmental aspects, and the non-proliferation, including safeguards, aspects of each fuel cycle

  10. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  11. Status of the natural and enriched uranium market: the basic economical factor for the development of the fuel cycle

    International Nuclear Information System (INIS)

    Nochev, T.

    1999-01-01

    Status of the Natural and Enriched Uranium Market - the Basic. Economical Factor for the Development of the Fuel Cycle An overview of the status of the natural and enriched uranium market has been performed and it offers a possibility to estimate the changes and tendencies, the knowledge of which is needed in negotiations about the fresh fuel. The simplified financial analysis presented here demonstrates the economical profitability of the storage of the spent fuel making now the allocations for the future reprocessing

  12. Adaptive Cycle as a Tool to Select Resilient Patterns of Rural Development

    Directory of Open Access Journals (Sweden)

    Rosanna Salvia

    2015-08-01

    Full Text Available Changes in agriculture, including simultaneous intensification and abandonment, have significantly shaped the evolution of rural areas. The assessment of resilience in agricultural systems could provide insights into the ability of many rural areas to survive and regain competitiveness following disturbances. The aim of this study is to use the adaptive cycle heuristic as a diagnostic tool to study dynamics of change in two agricultural sectors (durum wheat/sheep and goat farming in the Basilicata region of Southern Italy over the last seventy years. The heuristic was applied through a participatory approach in a community of stakeholders who have conceived, in collaboration with researchers, the Manifesto “Let’s Think Basilicata” as a regional instrument of analysis and a laboratory of ideas and development of proposals. Despite some methodological difficulties, the adaptive cycle heuristic proved useful to describe processes of change in the socio-ecological system and could have enormous potential in shaping policy instruments for rural areas. However, much greater research is needed, both in terms of theory and methodology, before policy impacts on resilience in socio-ecological systems can be fully understood.

  13. Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry

    OpenAIRE

    Laso Cortabitarte, Jara; Margallo Blanco, María; Celaya, Julia; Fullana i Palmer, Pere; Bala Gala, Alba; Gazulla Santos, Cristina; Irabien Gulías, José Ángel; Aldaco García, Rubén

    2016-01-01

    The anchovy canning industry has high importance in the Cantabria Region (North Spain) from economic, social and touristic points of view. The Cantabrian canned anchovy is world-renowned owing to its handmade and traditional manufacture. The canning process generates huge amounts of several food wastes, whose suitable management can contribute to benefits for both the environment and the economy, closing the loop of the product life cycle. Life cycle assessment methodology was used in this wo...

  14. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - IV: DUPIC Fuel Cycle Cost

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hangbok; Yang, Myung Seung

    2001-01-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.21 to 6.34 mills/kW.h for DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.07 to 0.27 mills/kW.h. Considering the uncertainty (0.40 to 0.44 mills/kW.h) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by ∼20% and reduce the spent fuel arising by ∼65% compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle is comparable with the once-through fuel cycle from the viewpoint of FCC. In the future, it should be important to consider factors such as the environmental benefit owing to natural uranium savings, the capability of reusing spent pressurized water reactor fuel, and the safeguardability of the fuel cycle when deciding on an advanced nuclear fuel cycle option

  15. Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants

    International Nuclear Information System (INIS)

    Tajik Mansouri, Mohammad; Ahmadi, Pouria; Ganjeh Kaviri, Abdolsaeid; Jaafar, Mohammad Nazri Mohd

    2012-01-01

    Highlights: ►To conduct the comprehensive exergy and economic analysis for advanced combined cycle power plant. ►To study three different HRSG configurations, dual and triple pressure HRSG, based on thermodynamic relations. ►To have a better performance assessment of the system studied using exergy and economic criteria. - Abstract: In the present research study, the effect of HRSG pressure levels on exergy efficiency of combined cycle power plants is investigated. Hence, three types of gas turbine combined cycles, with the same gas turbine as a topping cycle are evaluated. A double pressure, and two triple pressure HRSGs (with and without reheat) are modeled. The results show how an increase in the number of pressure levels of the HRSG affect the exergy losses due to heat transfer in the HRSG and the exhaust of flue gas to the stack. Moreover, the results show that an increase in the number of pressure levels affects the exergy destruction rate in HRSG, and as a result, it causes a tangible increase in exergy efficiency of the whole cycle. The results from thermodynamic analysis show that the losses due to heat transfer in the HRSG and the exhaust of flue gas to the stack in a triple pressure reheat combined cycle are less than the other cases. From the economic analysis, it is found that increasing the number of pressure levels of steam generation leads to an increase for the total and specific investment cost of the plant for about 6% and 4% respectively. The net present value (NPV) of the plant increases for about 7% for triple pressure reheat compared to with the double pressure CCPP. Therefore, the results of economic analysis show that it is economically justifiable to increase the number of pressure levels of steam generation in HRSG.

  16. Closing the nuclear fuel cycle in the U.S., economics and business models

    International Nuclear Information System (INIS)

    Ratti, Stefano; Hanson, Alan; Shakir, Sam; Louvet, Thibault

    2007-01-01

    There are different strategies available for managing used nuclear fuel. Some countries recycle used fuel to re-utilize valuable material, while others store used fuel for future disposal in geologic repositories ('once-through' fuel cycle). For the last twenty years, the U.S. has adopted the once-through cycle and has begun the development of a geologic repository for used fuel disposal at Yucca Mountain. Several factors have emerged in the last few years and have started to re-open the debate on what is the appropriate used fuel management strategy in the U.S. Most notably, cost estimates for the development of a geologic repository have escalated and are expected to keep increasing in the near future. At the same time, the U.S. is seeing a renewed interest in nuclear energy and significant nuclear power generation capacity is expected to be added to the current base. Moreover, price of uranium have experience a dramatic rise, as much as a seven-fold increase, in the last two years. Finally, the recycling strategy has proven to be operationally effective in countries other than the U.S. and a solid industrial experience base has accumulated. Recycling as part of a comprehensive nuclear waste management strategy and complementary to an exclusive once-through strategy appear to be a viable option that requires serious consideration. Several questions need to be addressed to determine the viability of recycling in the U.S. What are the underlying economics and how does recycling compare with alternative options? What approach for technology and funding has the highest success rate for such a capital-intensive project? What kind of infrastructure (recycling plant, transportation, process, etc.) is needed? What is the most appropriate development schedule? Several scenarios have been evaluated through economic modeling and analyses of system dynamics. Results indicate that a recycling approach that includes a commercially-developed integrated recycling facility

  17. Comparison of lead and sodium-cooled reactors - Safety, fuel cycle performance and some economical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Johan; Tucek, Kamil; Wider, Hartmut [Joint Research Centre, EC-JRC, Westerduinweg 3, P.O. Box 2, NL-0 1755 ZG Petten (Netherlands)

    2006-07-01

    This paper compares the Lead-cooled Fast Reactor (LFR) and the Sodium-cooled Fast Reactor (SFR) regarding different aspects of the coolant, safety and economics. A brief review of design and safety experience of an SFR (BN-600) and some safety philosophy of the most developed LFR (BREST) are presented as well. The pros and cons of the lead and the sodium coolants are discussed. This paper presents results concerning the coolant temperature evolution during three accident scenarios, i.e. Loss-Of- Flow (LOF), Loss-Of-Heat-Sink (LOHS), and Total-Loss-Of-Power (TLOP). It also studies possible moderators, like BeO and hydrides, for the core designs to have negative reactivity feedbacks and favorable reactivity swings. LFR seems to be able to accommodate more minor actinides than SFR at comparable coolant and Doppler feedbacks. We show that LFR can be designed both to breed and burn transuranics from LWRs. The hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. It is shown that the LFR can handle the LOF transient better than the SFR. This is due to the much lower pressure drop in the LFR core. The coolant outlet temperatures stabilize at 2050 K and 940 K for SFR and LFR, respectively when no feedbacks are considered. Investigations also concern the SFR's performance when the pitch-to-diameter was increased from 1.2 to 1.4. For the LOHS and TLOP accidents their temperature evolutions are milder for the LFR since lead has a 50% larger volumetric heat capacity. For the TLOP the core outlet temperature of the LFR peaks at 1080 K after 2 days. Regarding economics it appears easier to avoid an intermediate cycle in an LFR than an SFR. (authors)

  18. Comparison of lead and sodium-cooled reactors - Safety, fuel cycle performance and some economical aspects

    International Nuclear Information System (INIS)

    Carlsson, Johan; Tucek, Kamil; Wider, Hartmut

    2006-01-01

    This paper compares the Lead-cooled Fast Reactor (LFR) and the Sodium-cooled Fast Reactor (SFR) regarding different aspects of the coolant, safety and economics. A brief review of design and safety experience of an SFR (BN-600) and some safety philosophy of the most developed LFR (BREST) are presented as well. The pros and cons of the lead and the sodium coolants are discussed. This paper presents results concerning the coolant temperature evolution during three accident scenarios, i.e. Loss-Of- Flow (LOF), Loss-Of-Heat-Sink (LOHS), and Total-Loss-Of-Power (TLOP). It also studies possible moderators, like BeO and hydrides, for the core designs to have negative reactivity feedbacks and favorable reactivity swings. LFR seems to be able to accommodate more minor actinides than SFR at comparable coolant and Doppler feedbacks. We show that LFR can be designed both to breed and burn transuranics from LWRs. The hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. It is shown that the LFR can handle the LOF transient better than the SFR. This is due to the much lower pressure drop in the LFR core. The coolant outlet temperatures stabilize at 2050 K and 940 K for SFR and LFR, respectively when no feedbacks are considered. Investigations also concern the SFR's performance when the pitch-to-diameter was increased from 1.2 to 1.4. For the LOHS and TLOP accidents their temperature evolutions are milder for the LFR since lead has a 50% larger volumetric heat capacity. For the TLOP the core outlet temperature of the LFR peaks at 1080 K after 2 days. Regarding economics it appears easier to avoid an intermediate cycle in an LFR than an SFR. (authors)

  19. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  20. Opportunities for biomaterials. Economic, environmental and policy aspects along their life cycle

    International Nuclear Information System (INIS)

    Hermann, B.

    2010-01-01

    Little was known at the start of these studies regarding the environmental impacts of bulk chemicals production from biomass and whether they could be produced economically. We have therefore analysed the entire life cycle of bio materials: the production of bio-based chemicals, the application of bio-based polymers in packaging and finally the waste treatment of biodegradable materials. Numerous bio-based chemicals offer economic opportunities, the extent of which depends on the prices of the petrochemical and bio-based feed-stocks and can be further improved by technological progress in the future. Almost all bio-based chemicals have lower carbon and energy footprints than their petrochemical counterparts, and savings can be substantially increased in the future. Bio-based materials also offer savings when used for a specific food packaging application, but these savings can become smaller when the comparison is made not per kg of material but considering the functionality and material properties. Biodegradable materials are advantageous in that they are suitable for biological waste treatment options whose carbon and energy footprints are currently at least equally good as incineration, but have the additional benefit of producing a soil conditioner which can improve soil carbon content. Finally, consistent policy measures supporting bio-based and/or biodegradable materials are necessary to ensure this market's success. The progress made in terms of quantifying the benefits, the start of major research and development programmes and the start-up of production facilities have increased the likelihood for many bio-based chemicals and plastics to enter the market. So there are clear opportunities for bio materials, but policy measures are needed to ensure that they can start competing on a larger scale.

  1. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  2. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    Science.gov (United States)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences

  3. Understanding the stakeholders' intention to use economic decision-support tools: A cross-sectional study with the tobacco return on investment tool.

    Science.gov (United States)

    Cheung, Kei Long; Evers, Silvia M A A; Hiligsmann, Mickaël; Vokó, Zoltán; Pokhrel, Subhash; Jones, Teresa; Muñoz, Celia; Wolfenstetter, Silke B; Józwiak-Hagymásy, Judit; de Vries, Hein

    2016-01-01

    Despite an increased number of economic evaluations of tobacco control interventions, the uptake by stakeholders continues to be limited. Understanding the underlying mechanism in adopting such economic decision-support tools by stakeholders is therefore important. By applying the I-Change Model, this study aims to identify which factors determine potential uptake of an economic decision-support tool, i.e., the Return on Investment tool. Stakeholders (decision-makers, purchasers of services/pharma products, professionals/service providers, evidence generators and advocates of health promotion) were interviewed in five countries, using an I-Change based questionnaire. MANOVA's were conducted to assess differences between intenders and non-intenders regarding beliefs. A multiple regression analysis was conducted to identify the main explanatory variables of intention to use an economic decision-support tool. Ninety-three stakeholders participated. Significant differences in beliefs were found between non-intenders and intenders: risk perception, attitude, social support, and self-efficacy towards using the tool. Regression showed that demographics, pre-motivational, and motivational factors explained 69% of the variation in intention. This study is the first to provide a theoretical framework to understand differences in beliefs between stakeholders who do or do not intend to use economic decision-support tools, and empirically corroborating the framework. This contributes to our understanding of the facilitators and barriers to the uptake of these studies. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. The effect of steam cycle conditions upon the economics and design of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Philpott, E.F.; Pounder, F.; Willby, C.R.

    1978-01-01

    The paper studies the effect of variation of steam and feedwater conditions upon the economics, design and layout of a sodium-cooled fast reactor. The parameters investigated are steam temperature and pressure, feedwater temperature, and boiler recirculation ratio. The paper also includes an assessment of the effects of associating the fast reactor with saturated steam cycle conditions. (author)

  5. Toward a synthetic economic systems modeling tool for sustainable exploitation of ecosystems.

    Science.gov (United States)

    Richardson, Colin; Courvisanos, Jerry; Crawford, John W

    2011-02-01

    Environmental resources that underpin the basic human needs of water, energy, and food are predicted to become in such short supply by 2050 that global security and the well-being of millions will be under threat. These natural commodities have been allowed to reach crisis levels of supply because of a failure of economic systems to sustain them. This is largely because there have been no means of integrating their exploitation into any economic model that effectively addresses ecological systemic failures in a way that provides an integrated ecological-economic tool that can monitor and evaluate market and policy targets. We review the reasons for this and recent attempts to address the problem while identifying outstanding issues. The key elements of a policy-oriented economic model that integrates ecosystem processes are described and form the basis of a proposed new synthesis approach. The approach is illustrated by an indicative case study that develops a simple model for rainfed and irrigated food production in the Murray-Darling basin of southeastern Australia. © 2011 New York Academy of Sciences.

  6. The unidirectional relationship between consumer confidence and PSI-20 returns - The influence of the economic cycle

    Directory of Open Access Journals (Sweden)

    Maria Elisabete Duarte Neves

    Full Text Available ABSTRACT The aim of this paper is to determine the relationship between market sentiment and rates of return on the main Portuguese benchmark and verify whether this relationship is influenced by different economic cycles. Given the subjectivity inherent to the use of variables capturing investor sentiment, the Consumer Confidence Index (CCI was used as a benchmark. To achieve the proposed objective, an analysis of time series stationarity, Pearson correlation, and Granger causality using the autoregressive vectors model was carried out, followed by the Least Squares Method with macroeconomic variables. The results obtained suggest a one-way relationship between stock market returns and the sentiment variable. In fact, in times of recession, investor pessimism induces linear behavior and the sentiment-return relationship is more evident. This article will thus be of interest both to the academic community, in providing a basis for future investigations, and to managers and investors, with regards to the perception that the predictability of returns will be easier in periods of recession.

  7. Economic evaluation of the steam-cycle high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1983-07-01

    The High Temperature Gas-Cooled Reactor is unique among current nuclear technologies in its ability to generate energy in temperature regimes previously limited to fossil fuels. As a result, it can offer commercial benefits in the production of electricity, and at the same time, expand the role of nuclear energy to the production of process heat. This report provides an evaluation of the HTGR-Steam Cycle (SC) system for the production of baseloaded electricity, as well as cogenerated electricity and process steam. In each case the HTGR-SC system has been evaluated against appropriate competing technologies. The computer code which was developed for this evaluation can be used to present the analyses on a cost of production or cash flow basis; thereby, presenting consistent results to a utility, interested in production costs, or an industrial steam user or third party investor, interested in returns on equity. Basically, there are two economic evaluation methodologies which can be used in the analysis of a project: (1) minimum revenue requirements, and (2) discounted cash flow

  8. Economic comparison of long-term nuclear fuel cycle management scenarios: The influence of the discount rate

    International Nuclear Information System (INIS)

    Le Dars, Aude; Loaec, Christine

    2007-01-01

    This article presents some main economic results obtained by the CEA in the DERECO project, which aimed to evaluate the global cost of contrasted and long-term nuclear fuel cycle scenarios. The scenarios have been studied for the period 2000-2150 in the French context. They all assume a sustainable nuclear development. These scenarios must not be considered as forecasts and do not reflect any industrial strategy. The article focuses on the comparison of five scenarios including the Generation IV fast reactors and their associated fuel cycles. Common trends as well as specific features can be identified. The article describes the scenarios with the replacement of the nuclear power and the associated fuel cycle. It details the main technical and economic assumptions common to all the scenarios, and exposes some main key results, concerning the flows and inventories as well as concerning economic evaluation. Economic results are given in a comparative manner due to the level of uncertainties at this time horizon. The key economic elements described in the article deal with the sensitivity of the results to the choice of the discount rate

  9. OECD/NEA study on economics of the Back-end of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Urso, Maria Elena; Cameron, Ron

    2013-01-01

    Recommendations: 1. While there may be reasons to extend the interim storage of SNF, these should not prevent governments from maintaining vigorous efforts towards the establishment of deep geological repositories, thereby addressing legitimate public expectations and fulfilling the “intergenerational equity” principle. 2. Public involvement in the establishment and implementation of the SNF management strategy is considered vital: mechanisms to improve stakeholder participation and transparency should be a high priority. 3. Governments should continue to be vigilant in ensuring that the funding systems adopted are stable and robust and that financial resources accrued by waste producers for the management of their waste will be adequate and available at the time they are needed. The following features are considered essential: – Regular and frequent reviews to allow for newly accrued knowledge on technical aspects and actual fund developments, as well as other qualitative factors (e.g. sociopolitical), to be taken into account, and, importantly, for emerging shortfalls to be swiftly addressed through the necessary corrective actions. – Ring-fencing of funds to ensure that resources are only used for the intended purposes. 4. For countries that are committed to ongoing use or development of nuclear energy, comparisons of the costs of different strategies for managing the back end should be drawn on the basis of the full fuel cycle cost. For countries which are phasing out or have already exited nuclear power, a direct back-end cost comparison may be more appropriate. In any case, assessments made for total or partial FC cost comparisons should be transparent about the assumptions made and the scope of the analysis. 5. In any decision-making process regarding the choice of SNF management strategy, a multicriteria approach should be adopted at the national level that expands the quantitative economic considerations to include qualitative factors. These can

  10. System capacity and economic modeling computer tool for satellite mobile communications systems

    Science.gov (United States)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  11. Optimization of Life Cycle Extension of Asphalt Concrete Mixtures in regard to Material Properties, Structural Design, and Economic Implications

    Directory of Open Access Journals (Sweden)

    Jan Mikolaj

    2016-01-01

    Full Text Available Design of ACM life cycle is defined with respect to traffic load acting on the pavement and road class for a period of about 20 years. In practice, reconstruction is usually pending until the end of the life cycle after which the reconstruction takes place and the original materials are replaced by new materials. Life cycle of the pavement construction in road structure is significantly longer than that of the ACM; it is therefore necessary to consider ACM from a long term viewpoint, that is, exceeding their life expectancy. This paper describes a methodology which consists of analytical calculations, experimental measurements, and optimization of the ACM life cycle with the use of a rehabilitation action to provide new physical properties of pavement surfacing in different periods of the original life cycle. The aim is to attain maximal economic effectiveness, by minimizing financial costs for rehabilitation and maintenance and economic costs of road user. Presented method allows deriving optimal life cycle from various rehabilitation alternatives for particular ACM with the fact that all the necessary parameters are derived from specific experimental measurements and calculations. The method is applicable to all types of ACM materials; however, for each material, it is necessary to carry out the necessary measurements and tests. The article describes the methodology and case study results for a particular type of ACM material.

  12. Development of a methodology for the economical analysis of fuel cycles, application to the Laguna Verde central

    International Nuclear Information System (INIS)

    Malfavon, S.M.; Trejo, M.G.; Hernandez, H.; Francois, J.L.; Ortega, R.F.

    2003-01-01

    In this work a methodology developed to carry out the economical analysis of the fuel cycle of a nuclear reactor is presented. The methodology was applied to the Laguna Verde Nuclear Power Station (CNLV). The design of the reload scenarios of the CNLV are made with the Core Master Presto code (CM-Presto), three-dimensional simulator of the reactor core, the launched data by this, as well as the information of the Energy use plan (PUE), it allowed us to obtain reliable results through the fitness of an algorithm of economic calculation that considers all the components of the fuel cycle to present worth. With the application of the methodology it was obtained the generated energy, as well as their respective cost of each sub lot type of assemblies by operation cycle, from the start-up of the CNLV until September 13, 2002. Using the present worth method its were moved all the values at November 5, 1988, date of operation beginning. To the final of the analysis an even cost of 6.188 mills/kWh was obtained for those first 9 cycles of the Unit 1 of the CNLV, being observed that the costs of those first 3 operation cycles are the more elevated. Considering only the values starting from the cycle 4, the levelled cost turns out to be of 5.96 mills/kWh. It was also obtained the cost by fuel lot to evaluate the performance of assemble with the same physical composition. (Author)

  13. LCA-ship. Design tool for energy efficient ships. A Life Cycle Analysis Program for Ships. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jiven, Karl; Sjoebris, Anders [MariTerm AB, Goeteborg (Sweden); Nilsson, Maria [Lund Univ. (Sweden). Stiftelsen TEM; Ellis, Joanne; Traegaardh, Peter; Nordstroem, Malin [SSPA Sweden AB, Goeteborg (Sweden)

    2004-05-01

    In order to make it easier to include aspects during ship design that will improve environmental performance, general methods for life cycle calculations and a prototype tool for LCA calculations of ships and marine transportation have been developed. The base of the life cycle analyses is a comprehensive set of life cycle data that was collected for the materials and consumables used in ship construction and vessel operations. The computer tool developed makes it possible to quickly and simply specify (and calculate) the use of consumables over the vessel's life time cycle. Special effort has been made to allow the tool to be used for different types of vessels and sea transport. The main result from the project is the computer tool LCA ship, which incorporates collected and developed life cycle data for some of the most important materials and consumables used in ships and their operation. The computer application also contains a module for propulsion power calculations and a module for defining and optimising the energy system onboard the vessel. The tool itself is described in more detail in the Computer application manual. The input to the application should, as much as possible, be the kind of information that is normally found in a shipping company concerning vessel data and vessel movements. It all starts with defining the ship to be analysed and continues with defining how the ship is used over the lifetime. The tool contains compiled and processed background information about specific materials and processes (LCA data) connected to shipping operations. The LCA data is included in the tool in a processed form. LCA data for steel will for example include the environmental load from the steel production, the process to build the steel structure of the ship, the scrapping and the recycling phase. To be able to calculate the environmental load from the use of steel the total amount of steel used over the life cycle of the ship is also needed. The

  14. The Biobank Economic Modeling Tool (BEMT): Online Financial Planning to Facilitate Biobank Sustainability

    Science.gov (United States)

    Odeh, Hana; Miranda, Lisa; Rao, Abhi; Vaught, Jim; Greenman, Howard; McLean, Jeffrey; Reed, Daniel; Memon, Sarfraz; Fombonne, Benjamin; Guan, Ping

    2015-01-01

    Background: Biospecimens are essential resources for advancing basic and translational research. However, there are little data available regarding the costs associated with operating a biobank, and few resources to enable their long-term sustainability. To support the research community in this effort, the National Institutes of Health, National Cancer Institute's Biorepositories and Biospecimen Research Branch has developed the Biobank Economic Modeling Tool (BEMT). The tool is accessible at http://biospecimens.cancer.gov/resources/bemt.asp. Methods: To obtain market-based cost information and to inform the development of the tool, a survey was designed and sent to 423 biobank managers and directors across the world. The survey contained questions regarding infrastructure investments, salary costs, funding options, types of biospecimen resources and services offered, as well as biospecimen pricing and service-related costs. Results: A total of 106 responses were received. The data were anonymized, aggregated, and used to create a comprehensive database of cost and pricing information that was integrated into the web-based tool, the BEMT. The BEMT was built to allow the user to input cost and pricing data through a seven-step process to build a cost profile for their biobank, define direct and indirect costs, determine cost recovery fees, perform financial forecasting, and query the anonymized survey data from comparable biobanks. Conclusion: A survey was conducted to obtain a greater understanding of the costs involved in operating a biobank. The anonymized survey data was then used to develop the BEMT, a cost modeling tool for biobanks. Users of the tool will be able to create a cost profile for their biobanks' specimens, products and services, establish pricing, and allocate costs for biospecimens based on percent cost recovered, and perform project-specific cost analyses and financial forecasting. PMID:26697911

  15. The Biobank Economic Modeling Tool (BEMT): Online Financial Planning to Facilitate Biobank Sustainability.

    Science.gov (United States)

    Odeh, Hana; Miranda, Lisa; Rao, Abhi; Vaught, Jim; Greenman, Howard; McLean, Jeffrey; Reed, Daniel; Memon, Sarfraz; Fombonne, Benjamin; Guan, Ping; Moore, Helen M

    2015-12-01

    Biospecimens are essential resources for advancing basic and translational research. However, there are little data available regarding the costs associated with operating a biobank, and few resources to enable their long-term sustainability. To support the research community in this effort, the National Institutes of Health, National Cancer Institute's Biorepositories and Biospecimen Research Branch has developed the Biobank Economic Modeling Tool (BEMT). The tool is accessible at http://biospecimens.cancer.gov/resources/bemt.asp. To obtain market-based cost information and to inform the development of the tool, a survey was designed and sent to 423 biobank managers and directors across the world. The survey contained questions regarding infrastructure investments, salary costs, funding options, types of biospecimen resources and services offered, as well as biospecimen pricing and service-related costs. A total of 106 responses were received. The data were anonymized, aggregated, and used to create a comprehensive database of cost and pricing information that was integrated into the web-based tool, the BEMT. The BEMT was built to allow the user to input cost and pricing data through a seven-step process to build a cost profile for their biobank, define direct and indirect costs, determine cost recovery fees, perform financial forecasting, and query the anonymized survey data from comparable biobanks. A survey was conducted to obtain a greater understanding of the costs involved in operating a biobank. The anonymized survey data was then used to develop the BEMT, a cost modeling tool for biobanks. Users of the tool will be able to create a cost profile for their biobanks' specimens, products and services, establish pricing, and allocate costs for biospecimens based on percent cost recovered, and perform project-specific cost analyses and financial forecasting.

  16. The economics of the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cameron, Ron; Urso, Maria Elena; Lokhov, Alexey

    2014-01-01

    options was conducted and estimates developed using a simplified economic model based on data supplied from member countries. The industrial fuel cycle options, direct disposal or partial recycling, as well as any prospective advanced option, will ultimately require the final disposal of HLW or SNF (treated as HLW in the once-through fuel cycle). There is general agreement that deep geological repositories (DGRs) offer the best solution in this regard. The major difference in the deep geological repository needed for the different back-end options will be in relative size. Significant advances have occurred in several national programmes in the deployment of DGRs for HLW and SNF disposal. Conditions favouring progress include the maturity of the national industry, the long-term continuity in policy positions and a high degree of emphasis on community partnerships in the implementation of strategies. In some countries, stepwise approaches that foster partnerships with potential host communities have resulted in improved public acceptance. (authors)

  17. An interactive economic GIS tool for Europe using map objects for Java

    Science.gov (United States)

    Srinivasan, Vaishnavi

    Europe is one of the world's seven continents, which has approximately 50 countries and all are rich in culture, traditions, economy, biodiversity, among other things. This thesis focuses on creating a GIS application about Europe which will give an overview of Europe in various aspects. It covers 50 countries including financial centers, currency used, population, GDP growth, private banks, central banks, stock exchange, coat of arms and flags for each country, using the HotLink Tool. A reference link is also provided for detailed understanding of the above mentioned aspects. The other part of the thesis mainly focuses on the economics of the European Union as well as each country independently, which gives a thorough knowledge about the current investment climate in Europe. A part of this idea is to ensure transparency after the financial crisis in 2008. Further the capital markets of the European Union and other European countries are brought to light to provide a clear picture of their present financial situation. The application can help in improving policy and decision making, foreign investments, business environment for various development organizations. So this GIS application will be an effective tool for customers to understand the risks in investments by learning about the economic conditions of Europe.

  18. Using Economic Impact Models as an Educational Tool in Community Economic Development Programming: Lessons from Pennsylvania and Wisconsin.

    Science.gov (United States)

    Shields, Martin; Deller, Steven C.

    2003-01-01

    Outlines an educational process designed to help provide communities with economic, social, and political information using community economic impact modeling. Describes the process of community meetings using economic impact, community demographics, and fiscal impact modules and the local preconditions that help make the process successful. (SK)

  19. An audit cycle of consent form completion: A useful tool to improve junior doctor training.

    Science.gov (United States)

    Leng, Catherine; Sharma, Kavita

    2016-01-01

    Consent for surgical procedures is an essential part of the patient's pathway. Junior doctors are often expected to do this, especially in the emergency setting. As a result, the aim of our audit was to assess our practice in consenting and institute changes within our department to maintain best medical practice. An audit of consent form completion was conducted in March 2013. Standards were taken from Good Surgical Practice (2008) and General Medical Council guidelines. Inclusion of consent teaching at a formal consultant delivered orientation programme was then instituted. A re-audit was completed to reassess compliance. Thirty-seven consent forms were analysed. The re-audit demonstrated an improvement in documentation of benefits (91-100%) and additional procedures (0-7.5%). Additional areas for improvement such as offering a copy of the consent form to the patient and confirmation of consent if a delay occurred between consenting and the procedure were identified. The re-audit demonstrated an improvement in the consent process. It also identified new areas of emphasis that were addressed in formal teaching sessions. The audit cycle can be a useful tool in monitoring, assessing and improving clinical practice to ensure the provision of best patient care.

  20. Investigation of economics of nuclear fuel cycle options in the Republic of Korea based on once-through - 5468

    International Nuclear Information System (INIS)

    Cho, S.K.; Yim, M.S.

    2015-01-01

    This study performs an economic evaluation of future nuclear fuel cycle options based on once-through strategy. Various factors of the future development in Korea are also considered including nuclear phase-out, continuous use of nuclear energy at varying growth rate, and the reunification of the Korean peninsula. A spreadsheet model is developed as part of the methodology of screening material flow and economic evaluation and results are discussed for policy planning for Korea as well as for nuclear developing countries. Results indicated that economics improves as the size of nuclear power system increases. We found some significant factors that affect LCOE (levelized cost of electricity) of the back end fuel cycle. Expanded nuclear power program with further construction of nuclear power plant (continuous use and/or the reunification) is a major political variable for LCOE. To keep the cost of nuclear power as low as possible, it is very important to have a proper strategy for the back-end fuel cycle including decommissioning. For continued use of nuclear energy, the Korea needs to develop soon a long-term policy for the back-end fuel cycle rather than taking the 'sit and watch' approach to make best out of the use of nuclear power into the future

  1. A contingency safe, responsible, economic, increased capacity spent nuclear fuel (SNF) advance fuel cycle

    International Nuclear Information System (INIS)

    Levy, S.

    2008-01-01

    plan at YM will start sooner, be safer, more responsible, and much more economical than the proposed GNEP strategy because it does not need advanced fast reactors and multiple recycles. There is a need for a strong and continued development program to assure the success of the proposed contingency fuel cycle strategy. As suggested by a DOE 'Path to Sustainable Nuclear Energy' (9) it emphasizes waste forms reaching YM assures their compatibility with YM environment, and provides potential to grow the capacity of YM. It is briefly outlined during the description of the contingency plan. (authors)

  2. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  3. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings

    International Nuclear Information System (INIS)

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-01-01

    Highlights: • A lifecycle optimization model for distributed energy systems is developed. • Model estimates costs and environmental impacts of meeting the building energy demand. • Design and operating strategies to reduce costs and environmental impacts are discussed. • Pareto frontiers of costs vis-à-vis environmental impacts are presented. • Distributed generation can reduce the environmental impacts of the building sector. - Abstract: Distributed generation, namely cogeneration and solar technologies, is expected to play an important role in the future energy supply mix in buildings. This calls for a methodological framework to assess the economic and environmental performance of the building sector when such technologies are employed. A life-cycle model has been developed, combining distributed generation and conventional sources to calculate the cost and environmental impacts of meeting the building energy demand over a defined planning period. Three type of cogeneration technologies, solar photovoltaic and thermal, as well as conventional boilers along with the Portuguese electricity generation mix comprise the energy systems modeled. Pareto optimal frontiers are derived, showing the trade-offs between different types of impacts (non-renewable cumulative energy demand, greenhouse gas emissions, acidification, eutrophication) and cost to meet the energy demand of a commercial building. Our analysis shows that according to the objective to employ distributed generation (reducing cost or environmental impacts), a specific design and operational strategy for the energy systems shall be adopted. The strategies to minimize each type of impact and the associated cost trade-offs by exploring the solutions located on the Pareto optimal frontiers are discussed

  4. Cost analysis and economic comparison for alternative fuel cycles in the heavy water cooled canadian reactor (CANDU)

    International Nuclear Information System (INIS)

    Yilmaz, S.

    2000-01-01

    Three main options in a CANDU fuel cycle involve use of: (1) natural uranium (0.711 weight percent U-235) fuel, (2) slightly enriched uranium (1.2 weight percent U-235) fuel, and (3) recovered uranium (0.83 weight percent U-235) fuel from light water reactor spent fuel. ORIGEN-2 computer code was used to identify composition of the spent fuel for each option, including the standard LWR fuel (3.3 weight percent U-235). Uranium and plutonium credit calculations were performed using ORIGEN-2 output. WIMSD-5 computer code was used to determine maximum discharge burnup values for each case. For the 3 cycles selected (natural uranium, slightly enriched uranium, recovered uranium), levelized fuel cycle cost calculations are performed over the reactor lifetime of 40 years, using unit process costs obtained from literature. Components of the fuel cycle costs are U purchase, conversion, enrichment, fabrication, SF storage, SF disposal, and reprocessing where applicable. Cost parameters whose effects on the fuel cycle cost are to be investigated are escalation ratio, discount rate and SF storage time. Cost estimations were carried out using specially developed computer programs. Share of each cost component on the total cost was determined and sensitivity analysis was performed in order to show how a change in a main cost component affects the fuel cycle cost. The main objective of this study has been to find out the most economical option for CANDU fuel cycle by changing unit prices and cost parameters

  5. The large uranium deposits, their position in the geological cycle, their distribution in the world and their economic importance

    International Nuclear Information System (INIS)

    Cuney, M.; Cathelineau, M.; Nguyen Trung, C.; Pagel, M.; Poty, B.; Aumaitre, R.; Leroy, J.; Ruhlman, F.

    1994-01-01

    The nine types of geological formations with uranium deposits (superficial, precambrian conglomerates, sandstones...) are reviewed. U ore deposits are generally the product of successive enrichments during the geological cycle. Two main mechanisms control U fractionation during the cycle: partial melting followed or not by fractional crystallization and redox reactions. Most of the U ore deposits were formed in relation with major geodynamic events. The most interesting deposits from an economical point of view are the Proterozoic unconformity related deposits which contain very large reserves at a much higher grade than in other deposits

  6. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle

    International Nuclear Information System (INIS)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J.

    2015-09-01

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  7. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  8. Environmental and economic analysis of end of life management options for an HDPE product using a life cycle thinking approach.

    Science.gov (United States)

    Simões, Carla L; Pinto, Lígia M Costa; Bernardo, C A

    2014-05-01

    Manufacturers have been increasingly considering the implication of materials used in commercial products and the management of such products at the end of their useful lives (as waste or as post-consumer secondary materials). The present work describes the application of the life cycle thinking approach to a plastic product, specifically an anti-glare lamellae (used for road safety applications) made with high-density polyethylene (HDPE). This study shows that optimal environmental and economic outcomes associated with this product can be realized by recovering the material at the end of its useful life (end of life, EoL) and by using the recycled HDPE as a raw material in the production of new similar products. The study confirmed the applicability of the life cycle thinking approach by industry in sustainable products development, supporting the development of robust environmental and economic guidelines.

  9. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  10. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  11. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  12. Transition of chaotic motion to a limit cycle by intervention of economic policy: an empirical analysis in agriculture.

    Science.gov (United States)

    Sakai, Kenshi; Managi, Shunsuke; Vitanov, Nikolay K; Demura, Katsuhiko

    2007-04-01

    This paper investigates the transition of dynamics observed in an actual real agricultural economic dataset. Lyapunov spectrum analysis is conducted on the data to distinguish deterministic chaos and the limit cycle. Chaotic and periodic oscillation were identified before and after the second oil crisis, respectively. The statitonarity of the time series is investigated using recurrence plots. This shows that government intervention might reduce market instability by removing a chaotic market's long-term unpredictability.

  13. GENDER DISPARITIES REGARDING WAGE AS A MOTIVATIONAL TOOL IN THE CURRENT ECONOMIC CONTEXT

    Directory of Open Access Journals (Sweden)

    DEMYEN SUZANA

    2014-02-01

    Full Text Available The deepening process of globalization, negative trends regarding demographic evolution both nationally and internationally, also the emigration phenomenon and the long-term effects of the economic crisis, are the main challenges in terms of creating a general support and to encourage a fair and effective management of human resources, regardless of the industry they are developing their activity. Motivation consists in a series of problems that need to be solved in order to generate both individual and team performance, and wage is seen as one of the most important motivational tools. Though we have witnessed a less serious gap between wages according to the gender criterion, still there can be identified certain issues that need to be solved regardless the most recent trends in management

  14. Environmental macroeconomics : Environmental policy, business cycles, and directed technical change

    NARCIS (Netherlands)

    Fischer, Carolyn; Heutel, Garth

    Environmental economics has traditionally fallen in the domain of microeconomics, but approaches from macroeconomics have recently been applied to studying environmental policy. We focus on two macroeconomic tools and their application to environmental economics. First, real-business-cycle models

  15. A Life-Cycle Model of Outmigration and Economic Assimilation of Immigrants in Germany

    NARCIS (Netherlands)

    Bellemare, C.

    2004-01-01

    This paper estimates a structural dynamic life-cycle model of outmigration where, in each period, immigrants choose whether to work in the host country, not to work but remain in the host country, or outmigrate.The model incorporates several features of existing life-cycle theories of outmigration

  16. Developing Students' Understanding of Industrially Relevant Economic and Life Cycle Assessments

    Science.gov (United States)

    Bode, Claudia J.; Chapman, Clint; Pennybaker, Atherly; Subramaniam, Bala

    2017-01-01

    Training future leaders to understand life cycle assessment data is critical for effective research, business, and sociopolitical decision-making. However, the technical nature of these life cycle reports often makes them challenging for students and other nonexperts to comprehend. Therefore, we outline here the key takeaways from recent economic…

  17. Visualizing the Cardiac Cycle: A Useful Tool to Promote Student Understanding

    Directory of Open Access Journals (Sweden)

    Ivan Shun Ho

    2011-03-01

    Full Text Available The cardiac cycle is an important concept presented in human anatomy and physiology courses. At Kingsborough Community College, all Allied Health majors taking Anatomy & Physiology must understand the cardiac cycle to grasp more advanced concepts. Contemporary textbooks illustrate the cardiac cycle’s concurrent events via linear models with overlapping line segments as physiological readouts. This presentation is appropriate for reference but, in the interactive classroom the promotion of understanding through clear, concise visual cues is essential. Muzio and Pilchman created a diagram to summarize events of the cardiac cycle. After discussions with one of the authors, I modified the diagram to aid visualization of the cycle and emphasize it as a repetitive, continuous process. A flow diagram presenting the portions of the cycle individually and progressively was also constructed. Three labeled phases are made from the diagram, based on grouped events occurring at different points. The simple, compartmentalized, cyclical diagram presented here promotes understanding of the cardiac cycle visually.

  18. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  19. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool STIRPAT

    Directory of Open Access Journals (Sweden)

    Jong-Chao Yeh

    2017-01-01

    Full Text Available Carbon emission has increasingly become an issue of global concern because of climate change. Unfortunately, Taiwan was listed as top 20 countries of carbon emission in 2014. In order to provide appropriate measures to control carbon emission, it appears that there is an urgent need to address how such factors as population and economic growth impact the emission of carbon dioxide in any developing countries. In addition to total population, both the percentages of population living in urban area (i.e., urbanization percentage, and non-dependent population may also serve as limiting factors. On the other hand, the total energy-driven gross domestic production (GDP and the percentage of GDP generated by the manufacturing industries are assessed to see their respective degree of impact on carbon emission. Therefore, based on the past national data in the period 1990–2014 in Taiwan, an analytic tool of Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT was employed to see how well those aforementioned factors can describe their individual potential impact on global warming, which is measured by the total amount of carbon emission into the atmosphere. Seven scenarios of STIRPAT model were proposed and tested statistically for the significance of each proposed model. As a result, two models were suggested to predict the impact of carbon emission due to population and economic growth by the year 2025 in Taiwan.

  20. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dupree, S.A.; O'Malley, L.C.

    1980-10-01

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  1. The economic value of innovative treatments over the product life cycle: the case of targeted trastuzumab therapy for breast cancer.

    Science.gov (United States)

    Garrison, Louis P; Veenstra, David L

    2009-01-01

    Pharmacoeconomic analyses typically project the expected cost-effectiveness of a new product for a specific indication. This analysis develops a dynamic life-cycle model to conduct a multi-indication evaluation using the case of trastuzumab licensed in the United States for both early-stage and metastatic (or late-stage) human epidermal growth factor receptor 2 (HER2)-positive breast cancer therapy (early breast cancer [EBC]; metastatic breast cancer [MBC]), approved in 2006 and 1998, respectively. This dynamic model combined information on expected incremental cost-utility ratios for specific indications with an epidemiologically based projection of utilization by indication over the product life cycle-from 1998 to 2016. Net economic value was estimated as the cumulative quality-adjusted life years (QALYs) gained over the life cycle multiplied by a societal valuation of health gains ($/QALY) minus cumulative net direct treatment costs. Sensitivity analyses were performed under a range of assumptions. We projected that the annual number of EBC patients receiving trastuzumab will be more than three times that of MBC by 2016, in part because adjuvant treatment reduces the future incidence of MBC. Over this life cycle, the estimated overall incremental cost-effectiveness ratio (ICER) was $35,590/QALY with a total of 432,547 discounted QALYs gained. Under sensitivity analyses, the overall ICER varied from $21,000 to $53,000/QALY, and the projected net economic value resulting from trastuzumab treatment ranged from $6.2 billion to $49.5 billion. Average ICERs for multi-indication compounds can increase or decrease over the product life cycle. In this example, the projected overall life-cycle ICER for trastuzumab was less than one half of that in the initial indication. This dynamic perspective-versus the usual static one-highlights the interdependence of drug development decisions and investment incentives, raising important reimbursement policy issues.

  2. Economic incentives as a policy tool to promote safety and health at work.

    Science.gov (United States)

    Kankaanpää, Eila

    2010-06-01

    Incentives are regarded as a promising policy tool for promoting occupational safety and health (OSH). This article discusses the potential of different kinds of incentives in light of economic theory and evidence from research. When incentives are used as a policy tool, it implies the existance of an institution that has both the interest and the power to apply incentives to stakeholders, usually to employers. Governments can subsidize employers' investments in OSH with subsidies and tax structures. These incentives are successful only if the demand for OSH responds to the change in the price of OSH investments and if the suppliers of OSH are able to increase their production smoothly. Otherwise, the subsidy will only lead to higher prices for OSH goods. Both public and private insurance companies can differentiate insurance premiums according to claim behavior in the past (experience rating). There is evidence that this can effectively lower the frequency of claims, but not the severity of cases. This papers concludes that incentives do not directly lead to improvement. When incentives are introduced, their objective(s) should be clear and the end result (ie what the incentive aims to promote) should be known to be effective in achieving healthy and safe workplaces.

  3. Development of tools for life cycle environmental management in the packaging company of Hartmann Ltd., Denmark

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Alting, Leo

    1997-01-01

    into the decision making processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criterions from the life cycles of products and other company activities into the company management processes. LCEM investigations are carried out at the packaging company...

  4. Comparative analysis of methods and tools for open and closed fuel cycles modeling: MESSAGE and DESAE

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Korovin, Yu.A.; Murogov, V.M.; Fedorova, E.V.; Fesenko, G.A.

    2006-01-01

    Comparative analysis of optimization and simulation methods by the example of MESSAGE and DESAE programs is carried out for nuclear power prospects and advanced fuel cycles modeling. Test calculations for open and two-component nuclear power and closed fuel cycle are performed. Auxiliary simulation-dynamic model is developed to specify MESSAGE and DESAE modeling approaches difference. The model description is given [ru

  5. Evaluating the transport, health and economic impacts of new urban cycling infrastructure in Sydney, Australia - protocol paper.

    Science.gov (United States)

    Rissel, Chris; Greaves, Stephen; Wen, Li Ming; Capon, Anthony; Crane, Melanie; Standen, Chris

    2013-10-17

    There are repeated calls to build better cycling paths in Australian cities if the proportion of people cycling is to increase. Yet the full range of transport, health, environmental and economic impacts of new cycling infrastructure and the extent to which observed changes are sustained is not well understood. The City of Sydney is currently building a new bicycle network, which includes a new bicycle path separated from road traffic in the south Sydney area. This protocol paper describes a comprehensive method to evaluate this new cycling infrastructure. A cohort of residents within two kilometres of the new bicycle path will be surveyed at baseline before a new section of bicycle path is built, and again 12 and 24 months later to assess changes in travel behaviour, sense of community, quality of life and health behaviours. Residents in a comparable area of Sydney that will not get a new separated bike path will act as a comparison group. At baseline a sub-set of residents who volunteer will also take a small GPS device with them for one week to assess travel behaviour. This research should contribute to the advancement in evaluation and appraisal methods for cycling projects.

  6. The structure and economics of the nuclear fuel cycle service industry

    International Nuclear Information System (INIS)

    Hyett, A.J.

    1984-01-01

    The subject is covered in sections, entitled; introduction; mining and milling of uranium ore; the nuclear energy process; enrichment; burnup; reprocessing; fast reactors; waste disposal; international aspects of the nuclear fuel cycle (international trade). (U.K.)

  7. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    -water mixture evaporates and condenses with a temperature glide, thus providing a better match with the heat source/sink temperature profile. This better match results in reduced thermal irreversibility, but at the cost of relatively larger heat exchanger areas. The parabolic trough collector is the most mature...... heat transfer correlations, and appropriate cost functions were used to estimate the costs for the various plant components. The optimal capital investment costs were determined for several values of the turbine inlet ammonia mass fraction and among the compared cases, the Kalina cycle has the minimum......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  8. The Analysis of Simulation Based Acquisition (SBA) Economic Breakpoints in the Life Cycle of Major Programs

    National Research Council Canada - National Science Library

    Hunt, George

    2002-01-01

    ...). Application of SBA initiatives relies upon the use of modeling and simulation, among other methods, to effectively use scarce resources funds, manpower, equipment in the life cycle of major programs...

  9. Development of an Nearly Zero Emission Building (nZEB Life Cycle Cost Assessment Tool for Fast Decision Making in the Early Design Phase

    Directory of Open Access Journals (Sweden)

    Hae Jin Kang

    2017-01-01

    Full Text Available An economic feasibility optimization method for the life cycle cost (LCC has been developed to apply energy saving techniques in the early design stages of a building. The method was developed using default data (e.g., operation schedules, energy consumption prediction equations and cost prediction equations utilizing design variables considered in the early design phase. With certain equations developed, an LCC model was constructed using the computational program MATLAB, to create an automated optimization process. To verify the results from the newly developed assessment tool, a case study on an office building was performed to outline the results of the designer’s proposed model and the cost optimal model.

  10. Economic performances optimization of the transcritical Rankine cycle systems in geothermal application

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • The optimal economic performance of the TRC system are investigated. • In economic evaluations, R125 performs the most satisfactorily, followed by R41 and CO 2 . • The TRC system with CO 2 has the largest averaged temperature difference. • Economic optimized pressures are always lower than thermodynamic optimized operating pressures. - Abstract: The aim of this study is to investigate the economic optimization of a TRC system for the application of geothermal energy. An economic parameter of net power output index, which is the ratio of net power output to the total cost, is applied to optimize the TRC system using CO 2 , R41 and R125 as working fluids. The maximum net power output index and the corresponding optimal operating pressures are obtained and evaluated for the TRC system. Furthermore, the analyses of the corresponding averaged temperature differences in the heat exchangers on the optimal economic performances of the TRC system are carried out. The effects of geothermal temperatures on the thermodynamic and economic optimizations are also revealed. In both optimal economic and thermodynamic evaluations, R125 performs the most satisfactorily, followed by R41 and CO 2 in the TRC system. In addition, the TRC system operated with CO 2 has the largest averaged temperature difference in the heat exchangers and thus has potential in future application for lower-temperature heat resources. The highest working pressures obtained from economic optimization are always lower than those from thermodynamic optimization for CO 2 , R41, and R125 in the TRC system

  11. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    A. Nehrozoglu

    2004-12-01

    Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and

  12. The Logistics Management Decision Support System (LMDSS) : an effective tool to reduce life cycle support costs of aviation systems

    OpenAIRE

    Moore, Ellen E.; Snyder, Carolynn M.

    1998-01-01

    Approved for public release; distribution is unlimited This thesis assesses the capability of the Logistics Management Decision Support System (LMDSS) to meet the information needs of Naval Air Systems Command (NAVAIR) logistics managers based on surveys of logistics managers and interviews with LMDSS program representatives. The LMDSS is being introduced as a tool to facilitate action by NAVAIR logistics managers to reduce the life cycle support costs of aviation systems while protecting ...

  13. Economic research of the transcritical Rankine cycle systems to recover waste heat from the marine medium-speed diesel engine

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2017-01-01

    The aim of this study is to investigate the economic performance of a transcritical Rankine cycle (TRC) system for recovering waste heat from the exhaust gas of a marine medium-speed diesel engine. The variation of net power output, total cost of equipments and exergy destruction are investigated for the TRC system. Furthermore, to evaluate the economic performance of energy utilization, a parameter, net power output index, which is the ratio of net power output to the total cost, is introduced of the TRC system using R125, R143a, R218 and R1234yf as working fluids. The results show that R1234yf performs the highest economic performance, followed by R143a, R125 and R218 of the TRC system. It reveals that R1234yf not only has the smallest high and low pressures of the TRC system for reducing the purchased cost of equipments, but also promotes a larger pressure ratio of the expander for generating power output among these working fluids. The comparisons of optimal pressure ratios obtained from thermodynamic and economic optimizations for these working fluids in the TRC system are also reported. In addition, an evaluation method using thermal efficiency and operating pressure ratio as parameters is proposed to assess the suitability of the working fluids of TRC system in economic analysis for waste heat recovery from the exhaust gas of a diesel engine.

  14. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Ibn-Mohammed, Taofeeq; Mostafa, Hassan; Reaney, Ian M.; Koh, Lenny S. C.; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle

  15. Financing prevention: opportunities for economic analysis across the translational research cycle.

    Science.gov (United States)

    Crowley, D Max; Jones, Damon

    2016-03-01

    Prevention advocates often make the case that preventive intervention not only improves public health and welfare but also can save public resources. Increasingly, evidence-based policy efforts considering prevention are focusing on how programs can save taxpayer resources from reduced burden on health, criminal justice, and social service systems. Evidence of prevention's return has begun to draw substantial investments from the public and private sector. Yet, translating prevention effectiveness into economic impact requires specific economic analyses to be employed across the stages of translational research. This work discusses the role of economic analysis in prevention science and presents key translational research opportunities to meet growing demand for estimates of prevention's economic and fiscal impact.

  16. Tools of Realization of Social Responsibility of Industrial Business for Sustainable Socio-economic Development of Mining Region's Rural Territory

    Science.gov (United States)

    Jurzina, Tatyana; Egorova, Natalia; Zaruba, Natalia; Kosinskij, Peter

    2017-11-01

    Modern conditions of the Russian economy do especially relevant questions of social responsibility of industrial business of the mining region for sustainable social and economic development of rural territories that demands search of the new strategy, tools, ways for positioning and increase in competitiveness of the enterprises, which are carrying out the entrepreneurial activity in this territory. The article opens problems of an influence of the industrial enterprises on the territory of presence, reasons the theoretical base directed to the formation of practical tools (mechanism) providing realization of social responsibility of business for sustainable social and economic development of rural territories of the mining region.

  17. Tools of Realization of Social Responsibility of Industrial Business for Sustainable Socio-economic Development of Mining Region's Rural Territory

    Directory of Open Access Journals (Sweden)

    Jurzina Tatyana

    2017-01-01

    Full Text Available Modern conditions of the Russian economy do especially relevant questions of social responsibility of industrial business of the mining region for sustainable social and economic development of rural territories that demands search of the new strategy, tools, ways for positioning and increase in competitiveness of the enterprises, which are carrying out the entrepreneurial activity in this territory. The article opens problems of an influence of the industrial enterprises on the territory of presence, reasons the theoretical base directed to the formation of practical tools (mechanism providing realization of social responsibility of business for sustainable social and economic development of rural territories of the mining region.

  18. HP-HMG versus rFSH in treatments combining fresh and frozen IVF cycles: success rates and economic evaluation.

    Science.gov (United States)

    Wex-Wechowski, Jaro; Abou-Setta, Ahmed M; Kildegaard Nielsen, Sandy; Kennedy, Richard

    2010-08-01

    The economic implications of the choice of gonadotrophin influence decision making but their cost-effectiveness in frozen-embryo transfer cycles has not been adequately studied. An economic evaluation was performed comparing highly purified human menopausal gonadotrophin (HP-HMG) and recombinant FSH (rFSH) using individual patient data (n=986) from two large randomized controlled trials using a long agonist IVF protocol. The simulation model incorporated live birth data and published UK costs of IVF-related medical resources. After treatment for up-to-three cycles (one fresh and up to two subsequent fresh or frozen cycles conditional on availability of cryopreserved embryos), the cumulative live birth rate was 53.7% (95% CI 49.3-58.1%) for HP-HMG and 44.6% (40.2-49.0%) for rFSH (OR 1.44, 95% CI 1.12-1.85; Pcosts per IVF treatment for HP-HMG and rFSH were pound5393 ( pound5341-5449) and pound6269 ( pound6210-6324), respectively (number needed to treat to fund one additional treatment was seven; Pcosts applied, the median cost per IVF baby delivered with HP-HMG was pound11,157 ( pound11,089-11,129) and pound14,227 ( pound14,183-14,222) with rFSH (Pcost saving using HP-HMG remained after varying model parameters in a probabilistic sensitivity analysis. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Dynamics of the Economic Effect in the Process of Managing the Life Cycle of Innovations in Terms of Their Commercialization

    Directory of Open Access Journals (Sweden)

    Tymofeyev Dmytro V.

    2017-01-01

    Full Text Available The article is aimed at studying the theoretical aspects of changes in the dynamics of economic effect in the processes of management of life cycle of the industrial innovations at the stage of their commercialization. On the basis of an analysis of the scientific papers by the domestic and the foreign authors on methods of commercialization of the innovative products, the current status and essence of the definitions of «innovation», «commercialization», and «economic effect» was researched. Possibilities of managing the duration of the stage of commercialization of innovations were researched. It has been proposed to implement extension of the maturity stage of the life cycle of innovation by reducing the phase of designing and creating the innovative product and, as a consequence, change of value of the cumulative economic effect. Further researches should focus on the interdependence of development costs, creating an innovation and time period for the implementing, as well as determine the mechanism for calculating the quantitative indicators of commercialization of innovations.

  20. Development and validation of a multilateral index to determine economic status in developing countries: the Patient Financial Eligibility Tool (PFET).

    Science.gov (United States)

    Saba, Joseph; Audureau, Etienne; Bizé, Marion; Koloshuk, Barbara; Ladner, Joël

    2013-04-01

    The objective was to develop and validate a multilateral index to determine patient ability to pay for medication in low- and middle-income countries. Primary data were collected in 2009 from 117 cancer patients in China, India, Thailand, and Malaysia. The initial tool included income, expenditures, and assets-based items using ad hoc determined brackets. Principal components analysis was performed to determine final weights. Agreement (Kappa) was measured between results from the final tool and from an Impact Survey (IS) conducted after beginning drug therapy to quantify a patient's actual ability to pay in terms of number of drug cycles per year. The authors present the step-by-step methodology employed to develop the tool on a country-by-country basis. Overall Cronbach value was 0.84. Agreement between the Patient Financial Eligibility Tool (PFET) and IS was perfect (equal number of drug cycles) for 58.1% of patients, fair (1 cycle difference) for 29.1%, and poor (>1 cycle) for 12.8%. Overall Kappa was 0.76 (Ptool for determining an individual's ability to pay for medication. Combined with tiered models for patient participation in the cost of medication, it could help to increase access to high-priced products in developing countries.

  1. Cycle frequency in standard Rock-Paper-Scissors games: Evidence from experimental economics

    Science.gov (United States)

    Xu, Bin; Zhou, Hai-Jun; Wang, Zhijian

    2013-10-01

    The Rock-Paper-Scissors (RPS) game is a widely used model system in game theory. Evolutionary game theory predicts the existence of persistent cycles in the evolutionary trajectories of the RPS game, but experimental evidence has remained to be rather weak. In this work, we performed laboratory experiments on the RPS game and analyzed the social-state evolutionary trajectories of twelve populations of N=6 players. We found strong evidence supporting the existence of persistent cycles. The mean cycling frequency was measured to be 0.029±0.009 period per experimental round. Our experimental observations can be quantitatively explained by a simple non-equilibrium model, namely the discrete-time logit dynamical process with a noise parameter. Our work therefore favors the evolutionary game theory over the classical game theory for describing the dynamical behavior of the RPS game.

  2. TECHNOLOGICAL ELEMENTS OF THE SYSTEM OF STRATEGIC PLANNING AS TOOLS FOR PROVIDING THE ECONOMIC DEVELOPMENT OF THE SERVICES SPHERE

    Directory of Open Access Journals (Sweden)

    V. V. Gromov

    2015-01-01

    Full Text Available Topicality article is to determine the composition of the technological elements of the strategic planning system, the interaction of which is aimed at achieving the planned economic results in the changing factors influence macro microenvironments on the activities of institutions and economic activities of services. The articles structurally is made on the basis of respect for the logical sequence of interactions of technological elements of strategic planning and combat their negative factors of external and internal environment. Active interaction of technological elements of strategic planning tools is to ensure long-term development planning authorities of economic entities, economic activities service sector for sustainable economic growth. Contribution of the author in the scope of this article is to generalize the definition of the target composition and installation of technological elements of strategic planning and development institutions and industry components of the service sector.

  3. Nuclear cycle length economics strategy using stochastic and deterministic Monte Carlo computation models

    International Nuclear Information System (INIS)

    Wook Ahn, T.

    2014-01-01

    Nuclear power plants (NPP) have historically been a low cost base-load electricity source because of their high fuel density and operational reliability. In the United States, NPPs typically run 18- to 24-month cycles to limit outage times and maximize capacity factor. recently, however, increased volatility in energy and fuel prices, lower natural gas prices, higher material costs, and new sources are challenging the nuclear industry. This warrants a study in developing a more robust cycle length and fuel burnup strategy to make NPPs more competitive. (Author)

  4. Nuclear cycle length economics strategy using stochastic and deterministic Monte Carlo computation models

    Energy Technology Data Exchange (ETDEWEB)

    Wook Ahn, T.

    2014-07-01

    Nuclear power plants (NPP) have historically been a low cost base-load electricity source because of their high fuel density and operational reliability. In the United States, NPPs typically run 18- to 24-month cycles to limit outage times and maximize capacity factor. recently, however, increased volatility in energy and fuel prices, lower natural gas prices, higher material costs, and new sources are challenging the nuclear industry. This warrants a study in developing a more robust cycle length and fuel burnup strategy to make NPPs more competitive. (Author)

  5. Exergo-economic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study

    International Nuclear Information System (INIS)

    Oguz, Arslan

    2010-01-01

    Abstract Recent technical developments have made it possible to generate electricity from geothermal resources with low and medium enthalpy. One of these technologies is the Kalina Cycle System (KCS-34). In this study, electricity generation from Simav geothermal field is investigated. The optimum operating conditions for the KCS-34 plant design are determined on the basis of the exergetic and life-cycle-cost concepts. With the best design, power generation of 41.2 MW and electricity production of 346.1 GWh/a can be obtained with an energetic efficiency of 14.9% and exergetic efficiency of 36.2%. It is shown that, with the currently prevailing interest and inflation rates, the plant designs considered are economically feasible for values of the present worth factor (PWF) higher than 6. (author)

  6. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  7. Analysis of economic impacts on waste management and disposal in different nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    The costs for waste management and disposal have been estimated for the comparison of the seven reference fuel cycles selected by INFCE working group 7, covering the waste management of all steps in each fuel cycle: mining and milling, conversion and enrichment, fuel fabrication, reactor operation, reprocessing or spent fuel packaging, and disposal in a geologic formation (salt or hard rock). Values for a large variety of parameters had to be assumed. The cost figures as broken down in detail in the report have been calculated for an electricity production of 50 Gigawatt-years per year. The sum totals amount to about 8 to 17 million US (as of January 1, 1978) per Gigawattyear electricity produced, depending on the fuel cycle and on the geologic host formation of the repository. No savings should be obtained for a larger capacity, but a capacity of 10 Gigawatt would entail figures 10 to 25% higher. This result has to be seen under the perspective of the sometimes conservative and arbitrary assumptions of WG 7 with respect to waste arisings and their disposal. Furthermore, as compared to the revenues for the electricity sold, the relative difference between the reference fuel cycles in costs of waste management and disposal does not appear to be significant, as they range only from 1 to 2% of the total electricity costs

  8. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  9. The individual life-cycle, annuity market imperfections and economic growth

    NARCIS (Netherlands)

    Heijdra, Ben J.; Mierau, Jochen O.

    We study the effects of an annuity market imperfection on individual agents' life-cycle decisions and on the macroeconomic growth rate in an overlapping generations model with single-sector endogenous growth. Our model features both age-dependent mortality and labour productivity. We model imperfect

  10. Recessions and Tax-Cuts: Economic Cycles' Impact on Individual Giving, Philanthropy, and Higher Education

    Science.gov (United States)

    Drezner, Noah D.

    2006-01-01

    Few researchers have examined how individual giving to higher education is effected by the economy, specifically during downturns and periodic changes in tax laws. Further understanding the relationship between the economy's cycles and philanthropic giving, including the correlation of tax cuts to donations, will help colleges and universities…

  11. The individual life cycle and economic growth : An essay on demographic macroeconomics

    NARCIS (Netherlands)

    Heijdra, B.J.; Mierau, J.O.

    We develop a demographic macroeconomic model that captures the salient life-cycle features at the individual level and, at the same time, allows us to pinpoint the main mechanisms at play at the aggregate level. At the individual level the model features both age-dependent mortality and productivity

  12. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  13. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  14. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada

    Institute of Scientific and Technical Information of China (English)

    Krish Homagain; Chander Shahi; Nancy Luckai; Mahadev Sharma

    2017-01-01

    Background:Replacement of fossil fuel based energy with biochar-based bioenergy production can help reduce greenhouse gas emissions while mitigating the adverse impacts of climate change and global warming.However,the production of biochar-based bioenergy depends on a sustainable supply of biomass.Although,Northwestern Ontario has a rich and sustainable supply of woody biomass,a comprehensive life cycle cost and economic assessment of biochar-based bioenergy production technology has not been done so far in the region.Methods:In this paper,we conducted a thorough life cycle cost assessment (LCCA) of biochar-based bioenergy production and its land application under four different scenarios:1) biochar production with low feedstock availability;2) biochar production with high feedstock availability;3) biochar production with low feedstock availability and its land application;and 4) biochar production with high feedstock availability and its land application-using SimaPro(R),EIOLCA(R) software and spreadsheet modeling.Based on the LCCA results,we further conducted an economic assessment for the break-even and viability of this technology over the project period.Results:It was found that the economic viability of biochar-based bioenergy production system within the life cycle analysis system boundary based on study assumptions is directly dependent on costs of pyrolysis,feedstock processing (drying,grinding and pelletization) and collection on site and the value of total carbon offset provided by the system.Sensitivity analysis of transportation distance and different values of C offset showed that the system is profitable in case of high biomass availability within 200 km and when the cost of carbon sequestration exceeds CAD S60 per tonne of equivalent carbon (CO2e).Conclusions:Biochar-based bioenergy system is economically viable when life cycle costs and environmental assumptions are accounted for.This study provides a medium scale slow-pyrolysis plant scenario and

  15. Influence of the economic cycle on the determinants of nascent entrepreneurial activity. An empirical analysis of the Spanish case

    Directory of Open Access Journals (Sweden)

    Jesús Martínez Mateo

    2013-01-01

    Full Text Available This paper explores the contribution of a selection of elements representative of human capital and perception as determinants of entrepreneurship in different stages of the economic cycle. The results confirm the significance of self efficacy, the perception of opportunities, and the fear of failure, and highlight the importance of personal knowledge of entrepreneurs. They remain influential in different economic times in which their analyses have been replicated, although some differences are felt that point to, in contraction periods, a loss of influence of the confidence in one’s own abilities, compared to an increase in the case of judgment on the existence of opportunities in the environment, and in the case of the presence of entrepreneurs in the surrounding context. In contrast, the behavior of the fear of failure, as a barrier to entrepreneurship, remains unchanged in an adverse context with respect to a positive context due to reduced opportunity costs.

  16. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  17. Compression and rupture cycles as tools for compressibility characterization application to apatitic calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Pontier, C. [S.P.C.T.S., Faculte des Sciences, Limoges (France); G.E.F., Faculte de Pharmacie, Limoges (France); Viana, M.; Chulia, D. [G.E.F., Faculte de Pharmacie, Limoges (France); Champion, E.; Bernache-Assollant, D. [S.P.C.T.S., Faculte des Sciences, Limoges (France)

    2002-07-01

    Measurement of the cycles of compression and rupture helps to understand the phenomena occurring during compaction. Different parameters are deduced from the cycles, such as the packing of the material and energies used during compression. The ratio between the energy of rupture and the energy of compaction defines the efficacy of compaction of the materials. This technique is applied to ceramic materials using apatitic calcium phosphates with a Ca/P molar ratio of 1.5 (apatitic tricalcium phosphate and {beta}-tricalcium phosphate) and 1.667 (stoichiometric hydroxyapatite). The methodology uses a uniaxial instrumented press to plot the cycles of compaction and rupture. The results point out the good compaction and cohesion properties of apatitic tricalcium phosphate, compared to the other apatitic materials. (orig.)

  18. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    Science.gov (United States)

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  19. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung

    2015-01-01

    Graphical abstract: Schematic diagram of the CWHRS for a marine diesel engine. - Highlights: • The economic optimization of a CWHRS of a marine engine is investigated. • The environmental protection refrigerant, R1234yf is used as the working fluid of the TRC system. • The optimal analysis and comparison of three models for waste heat recovering have been carried out. • The optimization of payback periods, CO_2 emission reducing and diesel oil saving are reported. - Abstract: The aim of this study is to investigate the economic performance of a novel compact waste heat recovering system for the marine diesel engine. The transcritical Rankine cycle is employed to convert the waste heat resources to useful work with R1234yf. To evaluate the utilizing efficiency and economic performance of waste heat resources, which are exhaust gas, cylinder cooling water and scavenge air cooling water, three operating models of the system are investigated and compared. The levelized energy cost, which represents the total cost per kilo-watt power, is employed to evaluate the economic performance of the system. The economic optimization and its corresponding optimal parameters of each operating model in the compact waste heat recovering system are obtained theoretically. The results show that the minimal levelized energy cost of the proposed system operated in Model I is the lowest of the three models, and then are Model II and Model III, which are 2.96% and 9.36% lower for, respectively. Similarly, the CO_2 emission reduction is the highest for Model I of the three models, and 21.6% and 30.1% lower are obtained for Model II and Model III, respectively. The compact waste heat recovering system operated in Model I has superiority on the payback periods and heavy diesel oil saving over the others. Finally, the correlations using specific work of working fluid and condensation temperature as parameters are proposed to assess the optimal conditions in economic performance

  20. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  1. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    International Nuclear Information System (INIS)

    Norwood, Zack; Kammen, Daniel

    2012-01-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh −1 electricity and $0.03 kWh −1 thermal, for a system with a life cycle global warming potential of ∼80 gCO 2 eq kWh −1 of electricity and ∼10 gCO 2 eq kWh −1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m −3 , water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m −3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions. (letter)

  2. Women Empowerment and Participation in Economic Activities: Indispensable Tools for Self-Reliance and Development of Nigerian Society

    Science.gov (United States)

    E. N., Ekesionye; A. N., Okolo

    2012-01-01

    The objective of the study was to examine women empowerment and participation in economic activities as tools for self-reliance and development of the Nigerian society. Research questions and hypothesis were used to guide the study. Structured questionnaire was used as the major instrument for data collection. Copies of questionnaires were…

  3. More than just numbers: Suicide rates and the economic cycle in Portugal (1910–2013

    Directory of Open Access Journals (Sweden)

    João Pereira dos Santos

    2016-12-01

    Full Text Available Suicides are a major concern for public health first and foremost because they are an avoidable cause of death. Moreover, they can be an indicator of self-reported emotional satisfaction and a good marker of overall well-being.In this study we examine how different economic and social aspects affected Portuguese suicide rates for more than one hundred years (1910–2013. We place this exercise in the specific historical context of the XX and early XXI century in Portugal, emphasizing the role of economic recessions and expansions. Controlling for aspects like wars, health care availability, political instability, and demographic changes, we find a strong association between a decline in the growth rate of real output and an increase in suicide rates for the whole population. In this regard, while male suicide rates are non-negligibly influenced by economic downturns, female suicide rates are in general more responsive to a more open political and economic environment. Our results are robust if we consider the mid-term cyclical relationship.Our findings advocate that, during recessions, public health responses should be seen as a crucial component of suicide prevention. Keywords: Suicide rates, Portugal, Mental health, Crisis, Austerity, Marriage

  4. Sovereign defaults, business cycles and economic growth in Latin America, 1870-2012

    NARCIS (Netherlands)

    Boonman, Tjeerd M.

    2013-01-01

    Sovereign debt crises have regained attention since the recent crises in several European countries. This paper focuses on a particular aspect of the debt crisis literature: the impact of sovereign default on economic growth. Previous research agrees on the negative impact, but not on size and

  5. Revision Cycles for Economics Textbooks: An Application of the Theory of Durable Goods Monopoly

    Science.gov (United States)

    Li, Xin

    2011-01-01

    In this dissertation, I study economics textbook markets as an example of durable goods monopoly. Textbooks are protected by copyrights, and from a student's point of view, different textbooks are not good substitutes because students wish to use the textbook adopted by their instructors. Therefore sellers have market power. Textbooks can be…

  6. Economic Inequality, Educational Inequity, and Reduced Career Opportunity: A Self-Perpetuating Cycle?

    Science.gov (United States)

    Torraco, Richard

    2018-01-01

    Economic inequality--the income gap between the wealthy and the poor--is increasing. Educational inequity has also increased with low-income students less likely to complete college than their wealthier counterparts. As the gap widens between the education "haves" and "have-nots," those with inadequate education are faced with…

  7. More than just numbers: Suicide rates and the economic cycle in Portugal (1910-2013).

    Science.gov (United States)

    Dos Santos, João Pereira; Tavares, Mariana; Barros, Pedro Pita

    2016-12-01

    Suicides are a major concern for public health first and foremost because they are an avoidable cause of death. Moreover, they can be an indicator of self-reported emotional satisfaction and a good marker of overall well-being. In this study we examine how different economic and social aspects affected Portuguese suicide rates for more than one hundred years (1910-2013). We place this exercise in the specific historical context of the XX and early XXI century in Portugal, emphasizing the role of economic recessions and expansions. Controlling for aspects like wars, health care availability, political instability, and demographic changes, we find a strong association between a decline in the growth rate of real output and an increase in suicide rates for the whole population. In this regard, while male suicide rates are non-negligibly influenced by economic downturns, female suicide rates are in general more responsive to a more open political and economic environment. Our results are robust if we consider the mid-term cyclical relationship. Our findings advocate that, during recessions, public health responses should be seen as a crucial component of suicide prevention.

  8. Economic benefits comparison of two pig breeding cycle modes -- Taking Liaoning Province as an example

    Science.gov (United States)

    Xue, Yunan; Wang, Hui; Ma, Yu

    2018-01-01

    Pig breeding pollution has become one of the important sources of environmental pollution, and the circular economy has provided an effective way to alleviate the pollution of pig breeding. In this paper, the “Three-in-one” and “Four-in-one” mode of circular economy with methane as link were constructed, and taking Liaoning Province as the research area, the economic benefits of different pig breeding modes were compared and analyzed. The results show that: (1) The modes of circular economy use the pig manure waste as raw materials through the digesters, solar greenhouse to generate new resources, compared with the traditional farming methods, created considerable economic benefits and also alleviated the pressure of pollution, is an effective way to control the pollution of pig breeding. (2) The economic benefit of the “Four-in-one” mode in Liaoning was much higher than the “Three-in-one” mode. The economic benefits of biogas digesters were higher than the “Three-in-one” mode of 125 million yuan, while the solar greenhouse would introduce the planting industry into the recycling chain, with a net profit of about 38.64*108 yuan.

  9. The global economic cycle and satellite-derived NO2 trends over shipping lanes

    NARCIS (Netherlands)

    Ruyter de Wildt, de M.; Eskes, H.J.; Boersma, K.F.

    2012-01-01

    In recent years, space-borne spectrometers have been used to detect shipping emissions of nitrogen oxides. Driven by economic growth, these emissions have been increasing for several decades, yet in few studies it has been attempted to detect trends in ship emitted NO2 from space. Here a method is

  10. Development of substance flow based Life Cycle Assessment tool for sewage sludge treatment and disposal

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte

    Life Cycle Assessment (LCA) is a method to quantify environmental impacts of products or systems. It is often done by correlating material and energy demands with certain input characteristics. An attempt was made to evaluate the robustness of the substance flow based LCA for wastewater and sludg...

  11. A sensitivity analysis and assessment on the reactivity, economics and resorce implications of reactor systems and cycles with respect to uncertainity in nuclear data and other reactor parameters

    International Nuclear Information System (INIS)

    Quan, B.L.

    1980-01-01

    A general sensitivity analysis system for analyzing the effects of uncertainity in nuclear data and reactor parameters on fuel cycle economics, resources and physics has been developed. The sensitivity analysis has been performed on various reactor systems and cycles such as the thorium cycles, plutonium cycles, CANDU reactor fuel cycles and alternate once-through LWR cycles such as the 18 month cycle. Sensitivity coefficients were generated for a variety of materials pertinent to the LWR fuel cycle using a series of fast running codes developed for this purpose and running on a local PDP-15 computer. Their relative order of importance were assessed and the reasons explaining this difference were examined. This work is a result of EPRI project in determining the data needs for the LWR industry and should be valuable in identifying areas in which data improvements are worthwhile

  12. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    OpenAIRE

    Lin Gao; Zach C. Winfield

    2012-01-01

    Many advanced vehicle technologies, including electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs), are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG) emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles:...

  13. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  14. Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC Simulation Tool

    Directory of Open Access Journals (Sweden)

    Davide Ziviani

    2016-05-01

    Full Text Available Despite the increasing interest in organic Rankine cycle (ORC systems and the large number of cycle models proposed in the literature, charge-based ORC models are still almost absent. In this paper, a detailed overall ORC simulation model is presented based on two solution strategies: condenser subcooling and total working fluid charge of the system. The latter allows the subcooling level to be predicted rather than specified as an input. The overall cycle model is composed of independent models for pump, expander, line sets, liquid receiver and heat exchangers. Empirical and semi-empirical models are adopted for the pump and expander, respectively. A generalized steady-state moving boundary method is used to model the heat exchangers. The line sets and liquid receiver are used to better estimate the total charge of the system and pressure drops. Finally, the individual components are connected to form a cycle model in an object-oriented fashion. The solution algorithm includes a preconditioner to guess reasonable values for the evaporating and condensing temperatures and a main cycle solver loop which drives to zero a set of residuals to ensure the convergence of the solution. The model has been developed in the Python programming language. A thorough validation is then carried out against experimental data obtained from two test setups having different nominal size, working fluids and individual components: (i a regenerative ORC with a 5 kW scroll expander and an oil flooding loop; (ii a regenerative ORC with a 11 kW single-screw expander. The computer code is made available through open-source dissemination.

  15. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  16. Diagrammatic representation of economic factors affecting the nuclear fuel cycle strategy within the European Community

    International Nuclear Information System (INIS)

    1979-05-01

    This paper, which also appears as an Appendix to the Final Working Group 4 Report, forms part of the overall economic evaluation of reprocessing. The indicative position and illustrative ''phase diagram'' for the Commission of the European Communities (CEC) is presented. The European Community has to import 80% or more of the uranium needed to fuel its nuclear power capacity. Nuclear fuel reprocessing together with recycle of the recovered uranium and plutonium has the potential to reduce the uranium needs of the Community some 20 to 25% during the near term period 1990-2000 and in the longer term (after 2000) with the gradual introduction of fast breeder reactors to decrease sharply the need to import uranium. This illustrates the high economic value assigned to fuel reprocessing within the European Community

  17. Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Golestaneh, Faranak; Gooi, Hoay Beng; Lin, Jeremy; Bavafa, Farhad; Terzija, Vladimir

    2016-01-01

    Highlights: • Suggesting a new UC mixing a probabilistic security and incentive demand response. • Investigating the effects of uncertainty on UC using chance-constraint programming. • Proposing an efficient spinning reserve satisfaction based on a new ED correction. • Presenting a new operational cycles way to convert binary variable to discrete one. - Abstract: We propose a probabilistic unit commitment problem with incentive-based demand response and high level of wind power. Our novel formulation provides an optimal allocation of up/down spinning reserve. A more efficient unit commitment algorithm based on operational cycles is developed. A multi-period elastic residual demand economic model based on the self- and cross-price elasticities and customers’ benefit function is used. In the proposed scheme, the probability of residual demand falling within the up/down spinning reserve imposed by n − 1 security criterion is considered as a stochastic constraint. A chance-constrained method, with a new iterative economic dispatch correction, wind power curtailment, and commitment of cheaper units, is applied to guarantee that the probability of loss of load is lower than a pre-defined risk level. The developed architecture builds upon an improved Jaya algorithm to generate feasible, robust and optimal solutions corresponding to the operational cost. The proposed framework is applied to a small test system with 10 units and also to the IEEE 118-bus system to illustrate its advantages in efficient scheduling of generation in the power systems.

  18. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  19. The relationship between default and economic cycles for retail portfolios across countries

    OpenAIRE

    Breeden, J.L.; Thomas, Lyn C.

    2008-01-01

    In this paper, we collect consumer delinquency data from several economic shocks in order to study the creation of stress-testing models. We leverage the dual-time dynamics modeling technique to better isolate macroeconomic impacts whenever vintage-level performance data is available. The stress-testing models follow a framework described here of focusing on consumer-centric macroeconomic variables so that the models are as robust as possible when predicting the impacts of future shocks.

  20. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    Science.gov (United States)

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  1. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    Science.gov (United States)

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  3. Designer ecosystems, capitalism, and boom-bust economic cycles: linking political economy and hydroecology

    Science.gov (United States)

    Doyle, M. W.; Rigby, J.

    2011-12-01

    The basic premise of the term "anthropocene" is that human practices are becoming a primary force in shaping ecosystems even at the global scale. Ecohydrologists and hydroecologists often consider human effects to be a collective term that is culturally and politically invariant. "Anthropogenic change" is often cited regardless of whether these changes occur in liberal democracies or totalitarian autocracies. Yet there is potential for socio-politically driven variation in basic human impacts on the environment. Analyzing the anthropocene requires considering the rise in global population convolved with dramatically shifting political and economic conditions. How humans affect the environment, and how environmental change feedbacks operate, are likely highly dependent on cultural and political contexts. We posed the question, "Does capitalism leave a distinct signature on the hydroecological landscape?" We analyzed emerging designer ecosystems markets using Mankiw-Whinston free-entry equilibria model coupled with simple species-area curves and tested it with an extensive database of ecosystem service trades in North Carolina. Free-entry leads to a diffusion of small restored ecosystems whereas restricted entry leads to fewer, large sites; the difference in site locations and sizes in turn impact regional species distribution and water quality. We next analyzed the effect of deregulating electricity markets on river flow regimes in North Carolina; market deregulation increases potential profits derived from rapid power production in response to price changes on the spot market to which hydropower is uniquely able to respond. Results showed the potential for increased flow variability associated with price volatility in purely market-driven cases, but additional constraints required of infrastructure (e.g., flood control) restrict purely market-driven flow regimes. Changes in macro-economic conditions may also leave distinct signatures, often reflecting political

  4. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  5. Life cycle assessment as a tool to promote sustainable thermowood boards: a portuguese case study

    OpenAIRE

    Ferreira, J.; Esteves, B.; Ribeiro Nunes, L. M.; Domingos, I.

    2015-01-01

    The aim of the present work was to conduct a Life Cycle Assessment study of thermally-modified Atlanticwood® pine boards based on real data provided by the Santos & Santos Madeiras company. Atlanticwood® pine boards have several applications, but are mainly used for exterior decking and the cladding facades of buildings. The LCA study was conducted based on the ISO 14040/44 standard and PCR “Product Category Rules for preparing an environmental product declaration for Constr...

  6. Building Information Management as a Tool for Managing Knowledge throughout whole Building Life Cycle

    Science.gov (United States)

    Nývlt, Vladimír; Prušková, Kristýna

    2017-10-01

    BIM today is much more than drafting in 3D only, and project participants are further challenging, what is the topic of both this paper, and further research. Knowledge of objects, their behaviour, and other characteristics has high impact on whole building life cycle. Other structured and unstructured knowledge is rightfully added (e.g. historically based experience, needs and requirements of users, investors, needs for project and objects revisions) Grasping of all attributes into system for collection, managing and time control of knowledge. Further important findings lie in the necessity of understanding how to manage knowledge needs with diverse and variable ways, when BIM maturity levels are advanced, as defined by Bew and Richards (2008). All decisions made would always rely on good, timely, and correct data. Usage of BIM models in terms of Building Information Management can support all decisions through data gathering, sharing, and using across all disciplines and all Life Cycle steps. It particularly significantly improves possibilities and level of life cycle costing. Experience and knowledge stored in data models of BIM, describing user requirements, best practices derived from other projects and/or research outputs will help to understand sustainability in its complexity and wholeness.

  7. Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment

    Directory of Open Access Journals (Sweden)

    Ankita Juneja

    2017-03-01

    Full Text Available Algae, a renewable energy source, has an added advantage of consuming nutrients from wastewater and consequently aiding in wastewater treatment. The algae thus produced can be processed using alternative paths for conversion to fuels. However, due to high moisture content of algae, wet algae processing methods are being encouraged to avoid the dewatering cost and energy. Hydrothermal liquefaction is one such technology that converts the algae into high heating value bio-oil under high temperature and pressure. This bio-oil can be further upgraded to renewable diesel (RD which can be used in diesel powered vehicles without any modifications. The objective of this study is to evaluate the economic viability and to estimate the energy use and greenhouse gas (GHG emissions during life cycle of RD production from algae grown in wastewater using hydrothermal liquefaction. Economic analysis of RD production on commercial scale was performed using engineering process model of RD production plant with processing capacity of 60 Mgal wastewater/day, simulated in SuperPro designer. RD yields for algae were estimated as 10.18 MML/year with unit price of production as $1.75/RD. The GHG emissions during life cycle of RD production were found to be 6.2 times less than those produced for conventional diesel. Sensitivity analysis indicated a potential to reduce ethanol production cost either by using high lipid algae or increasing the plant size. The integrated economic and ecological assessment analyses are helpful in determining long-term sustainability of a product and can be used to drive energy policies in an environmentally sustainable direction.

  8. Experimental, economical and ecological substantiation of fuel cycle based on pyroelectrochemical reprocessing and vibropac technology

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Skiba, O.V.; Mayershin, A.A.; Bychkov, A.V.; Demidova, L.S.; Porodnov, P.T.

    1997-01-01

    The humanity comes to the border of centuries. While growing the population, capacity of manufacture in various industries increases. It will be impossible to solve problems, facing the humanity, without introducing safe and high-efficient technologies. The following principles are considered to be the most important ones for technologies of the future: 1) The closed cycle, i.e. internal isolation of technological processes, aimed at reducing a gross output of dangerous substances, which are harmful to an environment, from industry, 2) Optimization of technological systems which is intended for achieving necessary results (both technological and commercial) with the maximal exception of excessive stages and processes, 3) Maximum level of internally inherent safety, i.e. using processes, in which safety is based not only on engineering barriers of safety, but also on its own, > properties of technological system, which creates a low degree of ecological damage probability. These principles have influence both on general safety and on economy in equal degree. The external nuclear fuel cycle, as a complex technological system, is to be built under the same principles. It is necessary to take into account, that, as a whole, the technologies connected with reprocessing and preparation of nuclear fuel were formed in 50-s years and, besides, the majority of modern technologies were developed as military technologies continuation. It is for this reason, that many technologies have not been optimized yet if real society needs are taken into consideration. (J.P.N.)

  9. Life cycle assessment of three water systems in Copenhagen-a management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K C; Trautner, A.

    2011-01-01

    the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorised in environmental impact categories. The use of LCA in the water sector...

  10. Life cycle assessment of three water systems in Copenhagen - A management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K.C.; Trautner, A.

    2010-01-01

    the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorized in environmental impact categories. The use of LCA in the water sector...

  11. A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships

    International Nuclear Information System (INIS)

    Godoy, E.; Benz, S.J.; Scenna, N.J.

    2011-01-01

    Optimal combined cycle gas turbine power plants characterized by minimum specific annual cost values are here determined for wide ranges of market conditions as given by the relative weights of capital investment and operative costs, by means of a non-linear mathematical programming model. On the other hand, as the technical optimization allows identifying trends in the system behavior and unveiling optimization opportunities, selected functional relationships are obtained as the thermodynamic optimal values of the decision variables are systematically linked to the ratio between the total heat transfer area and the net power production (here named as specific transfer area). A strategy for simplifying the resolution of the rigorous economic optimization problem of power plants is proposed based on the economic optima distinctive characteristics which describe the behavior of the decision variables of the power plant on its optima. Such approach results in a novel mathematical formulation shaped as a system of non-linear equations and additional constraints that is able to easily provide accurate estimations of the optimal values of the power plant design and operative variables. Research highlights: → We achieve relationships between power plants' economic and thermodynamic optima. → We achieve functionalities among thermodynamic optimal values of decision variables. → The rigorous optimization problem is reduced to a non-linear equations system. → Accurate estimations of power plants' design and operative variables are obtained.

  12. Economics.

    Science.gov (United States)

    Palley, Paul D; Parcero, Miriam E

    2016-10-01

    A review of literature in the calendar year 2015 dedicated to environmental policies and sustainable development, and economic policies. This review is divided into these sections: sustainable development, irrigation, ecosystems and water management, climate change and disaster risk management, economic growth, water supply policies, water consumption, water price regulation, and water price valuation.

  13. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    Science.gov (United States)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  14. Immigration policy and economic cycle effects on spousal reunification in Spain

    Directory of Open Access Journals (Sweden)

    Francisco Javier Mato Díaz

    2017-09-01

    Full Text Available This paper analyzes the influence of immigration policy and the Great Recession on spousal reunification in Spain. After a significant immigration boom (2000-2008, family-related migration has contributed to the significant flows that continued to arrive in Spain during the economic crisis. But this type of migration was subject to both the crisis and immigration policy changes, such as visa conditions, which may not have been specifically addressed to influence these flows. Using data from the Spanish Labor Force Survey (LFS, the research considers married primary immigrants who came to Spain from the four main countries of origin (Ecuador, Colombia, Romania and Morocco and concludes, first, that tighter conditions to visit the country—particularly tourist border controls—discourage spousal reunification. The reason could be that during the immigration boom, illicit immigration abounded and secondary immigrants were arriving as tourists. Secondly, reunification was slowed down by the Great Recession for the majority of the countries considered, except Ecuador. Unsurprisingly, given the job losses in typical male jobs, the negative influence of the crisis is greater for female primary immigrants. Third, contrary to the expectations that placed secondary immigrants as people with relatively low ties to the labor market, the research shows that because spousal reunification coincided with a deep economic and job crisis, female secondary immigrants increased the family labor supply in order to maintain consumption and/or remittance in what looks like an added-worker effect.

  15. The System Cost Model: A tool for life cycle cost and risk analysis

    International Nuclear Information System (INIS)

    Hsu, K.; Lundeen, A.; Shropshire, D.; Sherick, M.

    1996-01-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors began development of the System Cost Model (SCM) application. The SCM estimates life cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, and transuranic waste. The SCM uses parametric cost functions to estimate life cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at DOE installations. In addition, SCM can model new TSD facilities based on capacity needs over the program life cycle. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction, operations and maintenance, and decommissioning these waste management facilities. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. A complement to the SCM is the System Cost Model-Risk (SCM-R) model, which provides relative Environmental, Safety, and Health (ES and H) risk information. A relative ES and H risk basis has been developed and applied by LITCO at the INEL. The risk basis is now being automated in the SCM-R to facilitate rapid risk analysis of system alternatives. The added risk functionality will allow combined cost and risk evaluation of EM alternatives

  16. Resources changes: a key factor in a new uranium production economic cycle

    International Nuclear Information System (INIS)

    Capus, G.; Caumartin, P.

    1996-01-01

    Since the end of 1994, a change has been underway in the uranium market. As usual in such cases, surprise and disbelief first dominated, but the market actors have been adjusting quickly to what now appears to be a return to primary production as the predominant factor in uranium supply. It is a matter of fact that the fundamentals will determine the course of the uranium market, as with other cyclical commodity markets. Comparing 1995 with 1975, a time of rocketing prices and production, and forecasting another cycle with similar characteristics to the last one is tempting, but illusory. However, examining the relative conditions prevailing at these times provides keys that may be helpful in understanding future developments. (author)

  17. A New Tool for Environmental and Economic Optimization of Hydropower Operations

    Science.gov (United States)

    Saha, S.; Hayse, J. W.

    2012-12-01

    As part of a project funded by the U.S. Department of Energy, researchers from Argonne, Oak Ridge, Pacific Northwest, and Sandia National Laboratories collaborated on the development of an integrated toolset to enhance hydropower operational decisions related to economic value and environmental performance. As part of this effort, we developed an analytical approach (Index of River Functionality, IRF) and an associated software tool to evaluate how well discharge regimes achieve ecosystem management goals for hydropower facilities. This approach defines site-specific environmental objectives using relationships between environmental metrics and hydropower-influenced flow characteristics (e.g., discharge or temperature), with consideration given to seasonal timing, duration, and return frequency requirements for the environmental objectives. The IRF approach evaluates the degree to which an operational regime meets each objective and produces a score representing how well that regime meets the overall set of defined objectives. When integrated with other components in the toolset that are used to plan hydropower operations based upon hydrologic forecasts and various constraints on operations, the IRF approach allows an optimal release pattern to be developed based upon tradeoffs between environmental performance and economic value. We tested the toolset prototype to generate a virtual planning operation for a hydropower facility located in the Upper Colorado River basin as a demonstration exercise. We conducted planning as if looking five months into the future using data for the recently concluded 2012 water year. The environmental objectives for this demonstration were related to spawning and nursery habitat for endangered fishes using metrics associated with maintenance of instream habitat and reconnection of the main channel with floodplain wetlands in a representative reach of the river. We also applied existing mandatory operational constraints for the

  18. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2011-11-01

    Full Text Available Nitrogen (N fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs are often overestimated over the rice (Oryza sativa L. growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR, such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha−1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  19. Evaluation of the physical dew point in the economizer of a combined cycle burning natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Pena, F.; Blanco, J.M. [Universidad del Pais Vasco/E.H.U. Alameda de Urquijo s/n, Bilbao (Spain). Dpto. Maquinas y Motores Termicos, Escuela Sup. de Ingenieria

    2007-08-15

    Natural gas contents a considerable percentage of hydrogen, so is obvious to expect an amount of water vapour in its combustion exhaust gases, which would raise the dew point temperature. That means a higher speed of corrosion over the whole exposed physical area, which could represent a serious risk of breakdown, especially in pressurized hot-water equipments. In this work, a new methodology for determining the physical dew point inside a economizer depending on the fuel type burned (in this case is natural gas) has been developed. The calculation of the total amount of condensed water has also been carried out as well as the localization of the area where this condensation occurs. Acid dew point has not been taken into account here although exhaust gases are acidic, due mainly to the low sulphur content which is almost undetectable when burning natural gas, but it will be performed in a later study coming soon. (author)

  20. 'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems

    Science.gov (United States)

    Francisco Rodriguez y Silva; Armando Gonzalez-Caban

    2010-01-01

    Historically, in Spain and most European countries, forest fire budgets have never been subjected to an objective and rigorous economic analysis indicative of the returns on investments in fire management protection programs. Thus far we have witnessed expansive growth of costs without any investment planning. New economic realities and more focussed oversight by...

  1. Synthetic spider silk sustainability verification by techno-economic and life cycle analysis

    Science.gov (United States)

    Edlund, Alan

    Major ampullate spider silk represents a promising biomaterial with diverse commercial potential ranging from textiles to medical devices due to the excellent physical and thermal properties from the protein structure. Recent advancements in synthetic biology have facilitated the development of recombinant spider silk proteins from Escherichia coli (E. coli), alfalfa, and goats. This study specifically investigates the economic feasibility and environmental impact of synthetic spider silk manufacturing. Pilot scale data was used to validate an engineering process model that includes all of the required sub-processing steps for synthetic fiber manufacture: production, harvesting, purification, drying, and spinning. Modeling was constructed modularly to support assessment of alternative protein production methods (alfalfa and goats) as well as alternative down-stream processing technologies. The techno-economic analysis indicates a minimum sale price from pioneer and optimized E. coli plants at 761 kg-1 and 23 kg-1 with greenhouse gas emissions of 572 kg CO2-eq. kg-1 and 55 kg CO2-eq. kg-1, respectively. Spider silk sale price estimates from goat pioneer and optimized results are 730 kg-1 and 54 kg-1, respectively, with pioneer and optimized alfalfa plants are 207 kg-1 and 9.22 kg-1 respectively. Elevated costs and emissions from the pioneer plant can be directly tied to the high material consumption and low protein yield. Decreased production costs associated with the optimized plants include improved protein yield, process optimization, and an Nth plant assumption. Discussion focuses on the commercial potential of spider silk, the production performance requirements for commercialization, and impact of alternative technologies on the sustainability of the system.

  2. The Economic, repository and proliferation implications of advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    Deinert, Mark; Cady, K.B.

    2011-01-01

    The goal of this project was to compare the effects of recycling actinides using fast burner reactors, with recycle that would be done using inert matrix fuel burned in conventional light water reactors. In the fast reactor option, actinides from both spent light water and fast reactor fuel would be recycled. In the inert matrix fuel option, actinides from spent light water fuel would be recycled, but the spent inert matrix fuel would not be reprocessed. The comparison was done over a limited 100-year time horizon. The economic, repository and proliferation implications of these options all hinge on the composition of isotopic byproducts of power production. We took the perspective that back-end economics would be affected by the cost of spent fuel reprocessing (whether conventional uranium dioxide fuel, or fast reactor fuel), fuel manufacture, and ultimate disposal of high level waste in a Yucca Mountain like geological repository. Central to understanding these costs was determining the overall amount of reprocessing needed to implement a fast burner, or inert matrix fuel, recycle program. The total quantity of high level waste requiring geological disposal (along with its thermal output), and the cost of reprocessing were also analyzed. A major advantage of the inert matrix fuel option is that it could in principle be implemented using the existing fleet of commercial power reactors. A central finding of this project was that recycling actinides using an inert matrix fuel could achieve reductions in overall actinide production that are nearly very close to those that could be achieved by recycling the actinides using a fast burner reactor.

  3. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  4. Predicting the mean cycle time as a function of throughput and product mix for cluster tool workstations using EPT-based aggregate modeling

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Herk, van J.; Rooda, J.E.

    2009-01-01

    Predicting the mean cycle time as a function of throughput and product mix is helpful in making the production planning for cluster tools. To predict the mean cycle time, detailed simulation models may be used. However, detailed models require much development time, and it may not be possible to

  5. Economism

    Directory of Open Access Journals (Sweden)

    P. Simons

    2010-07-01

    Full Text Available Modern society is characterised not only by a fascination with scientific technology as a means of solving all problems, especially those that stand in the way of material progress (technicism, but also by an obsessive interest in everything that has to do with money (economism or mammonism. The article discusses the relationship between technicism and economism, on the basis of their relationship to utilitarian thinking: the quest for the greatest happiness for the greatest number of people. Recent major studies of neo-liberalism (seen as an intensification of utilitarianism by Laval and Dardot are used as reference to the development of utilitarianism. It is suggested that the western view of the world, as expressed in economism and technicism, with a utilitarian ethics, features three absolutisations: those of theoretical thinking, technology and economics. In a second part, the article draws on the framework of reformational philosophy to suggest an approach that, in principle, is not marred by such absolutisations.

  6. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    International Nuclear Information System (INIS)

    Stout, R.B.; Merckx, K.R.; Holm, J.S.

    1981-01-01

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels

  7. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  8. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  9. GEM, Fuel Cycle Cost and Economics for Thermal Reactor, Present Worth Analysis

    International Nuclear Information System (INIS)

    Hughes, J.A.; Hang, D.F.

    1974-01-01

    1- Description of problem or function: GEM is used to predict fuel cycle costs for any type nuclear system (i.e., BWR, HTGR, PWR, LMFBR, GCFR,... ). The current version is limited to thermal reactors. GEM is designed for production use by large utilities which have several reactor types on their system. GEM has been written so as to accommodate all major fuel management activities undertaken by a utility - (1) fuel bid analysis, (2) evaluation of actual day to day operation, and (3) system simulation and optimization studies. 2 - Method of solution: Costs are calculated using present-worth techniques and continuous compounding. The equations are based on an investor-owned utility capitalization structure which easily covers the range of industrial, private, and public (government) owned utilities. Three distinct types of analysis (cash flow, allocated costs, yearly cash flow) are performed, each yielding identical results. Using these as a basis many other analyses are undertaken. 3 - Restrictions on the complexity of the problem: Dimensions of all arrays are carried as variables throughout the analysis. The maximum size of each array is set by the user in program MAIN. Current values are set so that maxima are: 50 batches per case study, 20 year batch life, 30 year case study, 120 batch burn time-steps, 20 individual payments (sales) associated with each cost component

  10. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran

    International Nuclear Information System (INIS)

    Rajaeifar, Mohammad Ali; Akram, Asadolah; Ghobadian, Barat; Rafiee, Shahin; Heidari, Mohammad Davoud

    2014-01-01

    In this study the energy and economic flows and greenhouse gas (GHG) emissions of olive oil production in Iran were investigated in terms of a life cycle assessment with considering four main stages of agricultural olive production, olive transportation, olive oil extraction and its oil transportation to the customer centers. Data was collected from 150 olive growers in Guilan province of Iran. Results revealed that the total energy consumption through the olive oil life cycle was 20 344 MJ ha −1 while the mass-based allocation method results indicated that the total energy consumption was 8035 MJ ha −1 . The total energy output was estimated as 23 568 MJ ha −1 . The total GHG emissions was estimated to 1333 kg ha −1 (CO 2 eq) while the mass-based allocation method results indicated that the total GHG emissions was 525 kg ha −1 (CO 2 eq). The agricultural production stage ranked the first in GHG emissions among the four stages with the share of 93.81% of total GHG emissions. Results of econometric model estimation revealed that the impact of human labor, farmyard manure and electricity on olive oil yield and the impact of electricity and chemical fertilizers on GHG emissions were significantly positive. - Highlights: • Energy and economic flows and GHG emissions of olive oil production in Iran were investigated. • The total energy consumption of olive oil production was calculated as 20 344 MJ ha −1 . • The mass-based allocation showed the energy consumption of olive oil production was 8035 MJ ha −1 . • The total GHG emissions of olive oil production was 1333 kg ha −1 (CO 2 eq). • The mass-based allocation showed the total GHG emissions of olive oil production was 525 kg ha −1 (CO 2 eq)

  11. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    Science.gov (United States)

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.

  12. Pathology economic model tool: a novel approach to workflow and budget cost analysis in an anatomic pathology laboratory.

    Science.gov (United States)

    Muirhead, David; Aoun, Patricia; Powell, Michael; Juncker, Flemming; Mollerup, Jens

    2010-08-01

    The need for higher efficiency, maximum quality, and faster turnaround time is a continuous focus for anatomic pathology laboratories and drives changes in work scheduling, instrumentation, and management control systems. To determine the costs of generating routine, special, and immunohistochemical microscopic slides in a large, academic anatomic pathology laboratory using a top-down approach. The Pathology Economic Model Tool was used to analyze workflow processes at The Nebraska Medical Center's anatomic pathology laboratory. Data from the analysis were used to generate complete cost estimates, which included not only materials, consumables, and instrumentation but also specific labor and overhead components for each of the laboratory's subareas. The cost data generated by the Pathology Economic Model Tool were compared with the cost estimates generated using relative value units. Despite the use of automated systems for different processes, the workflow in the laboratory was found to be relatively labor intensive. The effect of labor and overhead on per-slide costs was significantly underestimated by traditional relative-value unit calculations when compared with the Pathology Economic Model Tool. Specific workflow defects with significant contributions to the cost per slide were identified. The cost of providing routine, special, and immunohistochemical slides may be significantly underestimated by traditional methods that rely on relative value units. Furthermore, a comprehensive analysis may identify specific workflow processes requiring improvement.

  13. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC

    Directory of Open Access Journals (Sweden)

    Ruixiong Li

    2016-12-01

    Full Text Available The compressed air energy storage (CAES system, considered as one method for peaking shaving and load-levelling of the electricity system, has excellent characteristics of energy storage and utilization. However, due to the waste heat existing in compressed air during the charge stage and exhaust gas during the discharge stage, the efficient operation of the conventional CAES system has been greatly restricted. The Kalina cycle (KC and organic Rankine cycle (ORC have been proven to be two worthwhile technologies to fulfill the different residual heat recovery for energy systems. To capture and reuse the waste heat from the CAES system, two systems (the CAES system combined with KC and ORC, respectively are proposed in this paper. The sensitivity analysis shows the effect of the compression ratio and the temperature of the exhaust on the system performance: the KC-CAES system can achieve more efficient operation than the ORC-CAES system under the same temperature of exhaust gas; meanwhile, the larger compression ratio can lead to the higher efficiency for the KC-CAES system than that of ORC-CAES with the constant temperature of the exhaust gas. In addition, the evolutionary multi-objective algorithm is conducted between the thermodynamic and economic performances to find the optimal parameters of the two systems. The optimum results indicate that the solutions with an exergy efficiency of around 59.74% and 53.56% are promising for KC-CAES and ORC-CAES system practical designs, respectively.

  15. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  16. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    Science.gov (United States)

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  18. Economic justification of robotic systems using graphical simulation as a tool

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1995-01-01

    This paper outlines the simulation and analysis approach taken to address radiation dose reduction using robotic automation from the operational and economic standpoints for the DOE Civilian Radioactive Waste Management system and for the transuranic wave loading facilities within the DOE complex. Simulations of the robotic operations using validated software are described. These simulations provide through-put, capital and operating costs for an economic benefit-cost analysis. Benefit-cost analysis results are also presented

  19. Market Regulators of Service Spheres Innovative Development as a Tool of Regional Socio-Economic Policy

    OpenAIRE

    Pugacheva, Anna S.; Filippova, Viktoriya P.; Kon, Andrei Y.; Dorzhieva, Lyudmila B.; Silchenok, Igor S.; Pugacheva, Natalya B.; Lunev, Alexander N.; Mustafina, Alfiya A.

    2016-01-01

    The relevance of the study is conditioned by the innovative development of service spheres as the reduction of territorial social and economic differentiation to the level, due to objective differences of the regions and to balance of their revenue base and expenditure commitments. The service sector is one of the most dynamic and growing segments of regional markets and one of the characteristics of effective socio-economic policy in the region. Innovative development of service spheres as a...

  20. State regulation as a tool for improving the economic security of the regions

    Directory of Open Access Journals (Sweden)

    Yu. M. Sokolinskaya

    2017-01-01

    Full Text Available Providing economic security for the development of regions, increasing their competitiveness, risk-free and sustainable activities are the main tasks of the regional program of social and economic development, which occupies a special place in the system of instruments for public management of these processes. The program of social and economic development is a unique strategy of the region aimed at security and optimization of the spatial structure and relations between the center and the regions in order to ensure economic security and growth by maximizing the effective use of existing internal and external factors. The institutional influence of the state in order to improve the economic security of regions and enterprises occurs palliatively when the business of the region is supported in direct – subsidies, and more often indirectly – compliance with the laws and regulations of the Russian Federation and the region, on the principles of institutional and market synergies. Adaptation of enterprises in the region to the market is difficult, when specific socio-organizational, economic, technical and technological, scientific, information activities in their interrelations function in the field of Russian laws. The search for ways to improve the economic security of the Russian Federation, regions and enterprises takes place in the context of global integration through the improvement of the mechanism of state regulation. An important task of the current stage of economic security of the country and regions is the construction of a system of its institutional organization that would be able to balance the levers of government with the opportunities of private enterprises, provide a quality level of providing the business with protection from terrorism, predation, financial risks, legal competition etc.

  1. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam

    2017-02-22

    As the world economy grows and industrialization of the developing countries increases, the demand for energy continues to rise. Triboelectric nanogenerators (TENGs) have been touted as having great potential for low-carbon, non-fossil fuel energy generation. Mechanical energies from, amongst others, body motion, vibration, wind and waves are captured and converted by TENGs to harvest electricity, thereby minimizing global fossil fuel consumption. However, only by ascertaining performance efficiency along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle assessment of two representative examples of TENG modules, one with a high performance efficiency (Module A) and the other with a lower efficiency (Module B) both fabricated using low-cost materials. The results are discussed across a number of sustainability metrics in the context of other energy harvesting technologies, notably photovoltaics. Module A possesses a better environmental profile, lower cost of production, lower CO2 emissions and shorter energy payback period (EPBP) compared to Module B. However, the environmental profile of Module B is slightly degraded due to the higher content of acrylic in its architecture and higher electrical energy consumption during fabrication. The end of life scenario of acrylic is environmentally viable given its recyclability and reuse potential and it does not generate toxic gases that are harmful to humans and the environment during combustion processes due to its stability during exposure to ultraviolet radiation. Despite the adoption of a less optimum laboratory manufacturing route, TENG modules generally have a better environmental profile than commercialized Si based and organic solar cells, but Module B has a slightly higher energy payback period than PV technology based

  2. Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle - The case of Lithuania

    International Nuclear Information System (INIS)

    Raslavicius, Laurencas; Bazaras, Zilvinas

    2010-01-01

    In this article, diverse liquid biofuels of the first generation were compared as partial or infant substitutes for fossil diesel fuel applied in cogeneration plant of the average capacity of 340 kW. The study concentrates on agricultural and economic conditions as well as legislative basis distinctive to Lithuania. At the laboratory of the Lithuanian University of Agriculture Institute of Agro-Engineering an experimental diesel engine powered generator was fuelled with rapeseed oil methyl ester (pure and in the blend with fossil diesel and dyed diesel fuels) and rapeseed oil with excellent energy balances and emissions characteristics more favorable than fossil diesel. Detailed estimations were proposed in order to assess the economic feasibility of complementing renewable electricity and heat generated in the final output cycle. The carried out analysis showed, that good perspectives are forecasted for using diesel engines in cogeneration plants, if they run on rapeseed oil produced by farmers themselves. The operation of such a plant would realize 184960 EUR of annual income for sold electricity, allowing to pay annual depreciation expenses and exceed the production cost for thermal energy to be 0.033 EUR/kW h. This price lies under the established one by the centralized energy suppliers, accordingly 0.058 EUR/kW h. (author)

  3. A parametric study, based on physical and economic aspects, of the in-pile fuel cycle of pressurized light water reactor cores

    International Nuclear Information System (INIS)

    Guillet, J.-L.

    1978-01-01

    A method of determining the first core of a P.W.R. reactor was developed. This method is simple, inexpensive and takes the form of general laws expressing the effect of an enrichment variation from one batch to an other on the cycle characteristics (cycle length, end-of-cycle burn-up). These considerations are based upon an economic study which gives an idea of the financial consequences on the technical solution finally adopted. The parameters considered are the fuel cycle cost and the fuel investment cost. The computing methods used are based on a notion of purely theoretical core reactivity control which keeps stationary the power distributions during the cycle. A poisoned configuration involving burnable poisons, worked out on a particular case on the basis of this optimum control approach, has led to power distributions more uniform during the cycle and an appreciable limitation of the respective power peaks [fr

  4. OMNIITOX - operational life-cycle impact assessment models and information tools for practitioners

    DEFF Research Database (Denmark)

    Molander, S; Lidholm, Peter; Schowanek, Diederik

    2004-01-01

    of the characterisation model(s) and limited input data on chemical properties, which often has resulted in the omission of toxicants from the LCIA, or at best focus on well characterised chemicals. The project addresses both problems and integrates models, as well as data, in an information system – the OMNIITOX IS....... There is also a need for clarification of the relations between the (environmental) risk assessments of toxicants and LCIA, in addition to investigating the feasibility of introducing LCA into European chemicals legislation, tasks that also were addressed in the project.......This article is the preamble to a set of articles describing initial results from an on-going European Commission funded, 5th Framework project called OMNIITOX, Operational Models aNd Information tools for Industrial applications of eco/TOXicological impact assessments. The different parts...

  5. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools.

    Science.gov (United States)

    Bains, Rasneer S; Wells, Sara; Sillito, Rowland R; Armstrong, J Douglas; Cater, Heather L; Banks, Gareth; Nolan, Patrick M

    2018-04-15

    An important factor in reducing variability in mouse test outcomes has been to develop assays that can be used for continuous automated home cage assessment. Our experience has shown that this has been most evidenced in long-term assessment of wheel-running activity in mice. Historically, wheel-running in mice and other rodents have been used as a robust assay to determine, with precision, the inherent period of circadian rhythms in mice. Furthermore, this assay has been instrumental in dissecting the molecular genetic basis of mammalian circadian rhythms. In teasing out the elements of this test that have determined its robustness - automated assessment of an unforced behaviour in the home cage over long time intervals - we and others have been investigating whether similar test apparatus could be used to accurately discriminate differences in distinct behavioural parameters in mice. Firstly, using these systems, we explored behaviours in a number of mouse inbred strains to determine whether we could extract biologically meaningful differences. Secondly, we tested a number of relevant mutant lines to determine how discriminative these parameters were. Our findings show that, when compared to conventional out-of-cage phenotyping, a far deeper understanding of mouse mutant phenotype can be established by monitoring behaviour in the home cage over one or more light:dark cycles. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  7. Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO_2 power cycle: A comparative study through combined thermodynamic and economic analysis

    International Nuclear Information System (INIS)

    Mondal, Subha; De, Sudipta

    2017-01-01

    Both Organic flash cycle and transcritical CO_2 power cycle (T-CO_2 power cycle) allow cooling of hot flue gas stream to an appreciably lower temperature due to the absence of pinch limitation. In the present study, a combined thermodynamic and economic comparison is conducted between a T-CO_2 power cycle and Organic flash cycles using R-245fa and R600 as the working fluids. It is observed that work output per kg of flue gas flow rate is slightly higher for the T-CO_2 power cycle if the flue gas is allowed to cool to the corresponding lowest possible temperature in the Heat Recovery Unit (HRU). It is also observed that with maximum possible cooling of flue gas, minimum bare module costs (BMCs) for each kW power output of OFCs are somewhat higher compared to that of T-CO_2 power cycle. Minimum BMCs for each kW output of OFCs can be reduced substantially by increasing terminal temperature difference at the low temperature end of the HRU. However, the increasing terminal temperature difference at the low temperature end of the HRU is having negligible effect on BMC ($/kW) of T-CO_2 power cycle. - Highlights: • Combined thermodynamic and economic analysis done for T-CO_2 power cycle and OFC. • With highest heat recovery, T-CO_2 cycle produces slightly higher work output/kg of flue gas. • With highest heat recovery, minimum bare module costs in $/kW is slightly higher for OFCs. • Work outputs/kg of flue gas of all cycles are almost equal for these minimum BMCs. • BMCs in $/kW for OFCs sharply decrease with larger flue gas exit temperature.

  8. A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion

    International Nuclear Information System (INIS)

    Ciliberti, Carlo; Jordaan, Sarah M.; Smith, Stephen V.; Spatari, Sabrina

    2016-01-01

    Feed-in tariffs and Renewable Portfolio Standards (RPS) are among the most prominent policies to address anthropogenic influence on climate change. Implementation of RPS favorably affects renewable energy supply and rural development while reducing the land available for meeting demand for food and feed resulting from global population growth. Even in the vast Great Plains of the United States, land requirements are primary considerations between increasing renewable energy capacity and food and feed production. This study applied life cycle assessment (LCA) and project economics to estimate and compare the land intensity and profitability of anaerobic digestion and wind energy projects in the Great Plains. The results show that significantly more energy and revenue can be generated per hectare of land using wind versus anaerobic digestion. Economically, the benefit-to-cost ratios of wind farms were almost twice as favorable as anaerobic digester facilities. Wind farms have consistent benefit-to-cost ratios of 2.15 while the anaerobic digester facilities benefit to cost ratios range from 1.2 to 1.25. Legislature changes to RPS could incentivize increasing the number of anaerobic digesters while also assisting in reversing the current trend of diminishing dairy farms while reducing climate change risks and creating new economic opportunities for renewable energy. - Highlights: • Wind 1160 GW h to 28,706 GW h between 2 and 129 ha. • AD 29 GW h to 393 GW h between 14 and 105 ha. • More energy and revenue can be generated per hectare using wind energy AD. • An ideal solution for dairy farmers may be an integrated solution • State legislature changes to RPS could incentivize increasing AD facilities.

  9. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry.

    Science.gov (United States)

    Laso, J; Margallo, M; Celaya, J; Fullana, P; Bala, A; Gazulla, C; Irabien, A; Aldaco, R

    2016-08-01

    The anchovy canning industry has high importance in the Cantabria Region (North Spain) from economic, social and touristic points of view. The Cantabrian canned anchovy is world-renowned owing to its handmade and traditional manufacture. The canning process generates huge amounts of several food wastes, whose suitable management can contribute to benefits for both the environment and the economy, closing the loop of the product life cycle. Life cycle assessment methodology was used in this work to assess the environmental performance of two waste management alternatives: Head and spine valorisation to produce fishmeal and fish oil; and anchovy meat valorisation to produce anchovy paste. Fuel oil production has been a hotspot of the valorisation of heads and spines, so several improvements should be applied. With respect to anchovy meat valorisation, the production of polypropylene and glass for packaging was the least environmentally friendly aspect of the process. Furthermore, the environmental characterisation of anchovy waste valorisation was compared with incineration and landfilling alternatives. In both cases, the valorisation management options were the best owing to the avoided burdens associated with the processes. Therefore, it is possible to contribute to the circular economy in the Cantabrian canned anchovy industry. © The Author(s) 2016.

  11. Economic analysis of extended cycles in the Laguna Verde nuclear power plant; Analisis economico de ciclos de extendidos en la Central Nucleoelectrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Hernandez M, J.L.; Francois L, J.L. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. E-mail: hermilo@correo.unam.mx

    2004-07-01

    The present work presents a preliminary analysis of economic type of extended cycles of operation of the Unit One in the Laguna Verde nuclear power plant. It is analysed an equilibrium cycle of 18 months firstly, with base to the Plan of Use of Energy of the Federal Commission of Electricity, being evaluated the cost of the energy until the end of the useful life of the plant. Later on an alternative recharge scenario is presented with base to an equilibrium cycle of 24 months, implemented to the beginning of the cycle 11, without considering transition cycles. It is added in both cycles the cost of the substitution energy, considering the unitary cost of the fuel of a dual thermoelectric power station of 350 M We and evaluating in each operation cycle, in both scenarios, the value of the substitution energy. The results show that a reduction of the days of recharge in the cycle of 24 months could make this option but favorable economically. The duration of the period of recharge rebounds in considerable grade in the cost of energy generation for concept of fuel. (Author)

  12. Towards an Advanced Modelling of Complex Economic Phenomena Pretopological and Topological Uncertainty Research Tools

    CERN Document Server

    Aluja, Jaime Gil

    2012-01-01

    Little by little we are being provided with an arsenal of operative instruments of a non-numerical nature, in the shape of models and algorithms, capable of providing answers to the “aggressions” which our economics and management systems must withstand, coming from an environment full of turmoil.   In the work which we are presenting, we dare to propose a set of elements from which we hope arise focuses capable of renewing those structures of economic thought which are upheld by the geometrical idea.   The concepts of pretopology and topology, habitually marginalized in economics and management studies, have centred our interest in recent times.  We consider that it is not possible to conceive formal structures capable of representing the Darwinism concept of economic behaviour today without recurring to this fundamental generalisation of metric spaces.   In our attempts to find a solid base to the structures proposed for the treatment of economic phenomena, we have frequently resorted to the theory ...

  13. Organization of international sporting events as a country’s promotional economic image tool

    Directory of Open Access Journals (Sweden)

    Božo Skoko

    2008-12-01

    Full Text Available The article concentrates on the important aspect of image in a country’s political and economic objectives and deals with the role of sports in managing countries as brands. Analyzing the biggest sporting events in the world, such as the Olympic Games, football (soccer championships and others, authors attempt to detect and display their economic and promotional potential for host cities and countries as well as for participating nations. Special focus is on global media, which are essential in "creating" the events, transferring images and communicating impressions of the host city/country to the global public. The authors conclude that the most important role is that of the organizers, whose creativity and capabilities will for the most part determine the promotional and economic contribution of hosting such a sporting event. Activities prior to the main event and those following the event are also of great importance for the host country.

  14. Technical and economical tools to assess customer demand response in the commercial sector

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Bel, Carlos; Ortega, Manuel Alcazar; Escriva, Guillermo Escriva [Institute for Energy Engineering, Universidad Politecnica de Valencia, Camino de Vera, s/n, edificio 8E, escalera F, 5a planta. 46022 Valencia (Spain); Gabaldon Marin, Antonio [Dept. of Electrical Engineering, Universidad Politecnica de Cartagena, Campus de la Muralla al Mar. 30202 Cartagena (Spain)

    2009-10-15

    The authors present a methodology to evaluate and quantify the economic parameters (costs and benefits) attached to customer electricity consumption by analyzing the service provided by the different ''pieces'' of absorbed electricity. The first step of this methodology is to perform a process oriented market segmentation to identify segments according to their flexibility potential. After that, a procedure based on comprehensive simulations to identify and quantify the actual demand that can be managed in the short term is presented and, finally, the required economic analysis is performed. The methodology, which is demonstrated with some applications to the commercial sector, not only helps the customers to integrate in flexible distribution systems but also offers the necessary economical parameters for them to integrate in electricity markets. (author)

  15. The economical contracting management in Agricultural Cooperatives: tools for evaluating their performance.

    Directory of Open Access Journals (Sweden)

    Rafael Enrique Viña Echevarría

    2014-06-01

    Full Text Available The economic and management contracts involve strategic actions, legal and operational purposes that make possible to convert the goal of an organization on results that express the fulfillment of the mandates and satisfies customers on the basis of the duties and obligations set out in the negotiating document. This article aims to get inside into the performance evaluation of the management of the recruitment of Agricultural Cooperatives and to reflex about the insufficiencies evidenced in this process. To which we developed a theoretical valuation and economic procurement praxiological showing a group of deficiencies that have impacted in the contracts management The study was able to obtain, process, analyze, interpret and argue the problems associated with economic contracting and justify the need to propose a system of indicators to assess recruitment management Agricultural Cooperatives in the province of Sancti Spiritus, the results revealed the ineffectiveness of the process and the negative impact on the productive base.

  16. Technical and economical tools to assess customer demand response in the commercial sector

    International Nuclear Information System (INIS)

    Alvarez Bel, Carlos; Ortega, Manuel Alcazar; Escriva, Guillermo Escriva; Gabaldon Marin, Antonio

    2009-01-01

    The authors present a methodology to evaluate and quantify the economic parameters (costs and benefits) attached to customer electricity consumption by analyzing the service provided by the different ''pieces'' of absorbed electricity. The first step of this methodology is to perform a process oriented market segmentation to identify segments according to their flexibility potential. After that, a procedure based on comprehensive simulations to identify and quantify the actual demand that can be managed in the short term is presented and, finally, the required economic analysis is performed. The methodology, which is demonstrated with some applications to the commercial sector, not only helps the customers to integrate in flexible distribution systems but also offers the necessary economical parameters for them to integrate in electricity markets. (author)

  17. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool.

    Science.gov (United States)

    Rollin, E; Dhuyvetter, K C; Overton, M W

    2015-12-01

    Clinical mastitis results in considerable economic losses for dairy producers and is most commonly diagnosed in early lactation. The objective of this research was to estimate the economic impact of clinical mastitis occurring during the first 30 days of lactation for a representative US dairy. A deterministic partial budget model was created to estimate direct and indirect costs per case of clinical mastitis occurring during the first 30 days of lactation. Model inputs were selected from the available literature, or when none were available, from herd data. The average case of clinical mastitis resulted in a total economic cost of $444, including $128 in direct costs and $316 in indirect costs. Direct costs included diagnostics ($10), therapeutics ($36), non-saleable milk ($25), veterinary service ($4), labor ($21), and death loss ($32). Indirect costs included future milk production loss ($125), premature culling and replacement loss ($182), and future reproductive loss ($9). Accurate decision making regarding mastitis control relies on understanding the economic impacts of clinical mastitis, especially the longer term indirect costs that represent 71% of the total cost per case of mastitis. Future milk production loss represents 28% of total cost, and future culling and replacement loss represents 41% of the total cost of a case of clinical mastitis. In contrast to older estimates, these values represent the current dairy economic climate, including milk price ($0.461/kg), feed price ($0.279/kg DM (dry matter)), and replacement costs ($2,094/head), along with the latest published estimates on the production and culling effects of clinical mastitis. This economic model is designed to be customized for specific dairy producers and their herd characteristics to better aid them in developing mastitis control strategies. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Nature of macroeconomic equilibrium and driving force of economic cycles in the light of difference between money and exergy forms in cost estimations

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.V. [National Politechnical Univ., Kiev (Ukraine); Brodianskii, V.M. [Moscow Power Engineering Inst. Technical Univ. (Russian Federation)

    1996-11-01

    The main problem of exergy application directly in economic analysis is to find valid correlation between money-based cost and exergy based one (including exergy expenses of labour) and to define exergy cost as an economic category among the existing traditional economic ones. The present report is aimed to search the way for this macroeconomic problems` solution. It is demonstrated that exergy-based cost can be recalculated in a monetary form using a coefficient, defined as a ratio between money supply and the total exergy of all natural resources involved in production process, i.e. as a ratio between monetary and exergy bases. The difference between `natural` and current prices (P) can be used directly both for general quantitative characteristics of an economic cycles driving force and for control of market relationship imperfection. It is shown that for the period of time with the positive P, that is, current price is lower than a `natural` one, the recoveries in business cycles are observed. For the period of time with the negative P, that is, current price is higher than a natural one, economic recessions are observed. The moment of time when P = 0 corresponds to the turning point of a business cycle. In such a way the possibility to predict the turning points of business cycles is demonstrated. 14 refs, 2 figs, 2 tabs

  19. Laboratory Experiments as a Tool in the Empirical Economic Analysis of High-Expectation Entrepreneurship

    Science.gov (United States)

    Curley, Martin; Formica, Piero

    2008-01-01

    High-expectation start-ups are firms launched by entrepreneurs with high ambitions for growth. The encounter between new technology and entrepreneurship that characterizes such new ventures has a significant impact on the nature and speed of economic development, driving the growth of high-technology industries and helping to make the economic…

  20. New CSIR tool produces detailed maps of SA’s economic geography

    CSIR Research Space (South Africa)

    Mass media

    2007-10-01

    Full Text Available A new digital mapping and geographic analysis platform (GAP) is enabling researchers and decision-makers to estimate the spatial distribution of economic activity in South Africa in greater detail than ever before. The result of an 18 month...

  1. Forestry-based biomass economic and financial information and tools: An annotated bibliography

    Science.gov (United States)

    Dan Loeffler; Jason Brandt; Todd Morgan; Greg Jones

    2010-01-01

    This annotated bibliography is a synthesis of information products available to land managers in the western United States regarding economic and financial aspects of forestry-based woody biomass removal, a component of fire hazard and/or fuel reduction treatments. This publication contains over 200 forestry-based biomass papers, financial models, sources of biomass...

  2. Teaching and Learning about Economics and Business Using Web GIS Tools

    Science.gov (United States)

    Kerski, Joseph J.

    2017-01-01

    Teaching about economics and business has a long tradition in geography. Planning the optimal site for a business or service in a community; examining the demographics and behavior of a certain target market; studying supply chain management to build a specific product such as a mobile phone or a piece of furniture; and examining median income by…

  3. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  4. Incorporating transportation network modeling tools within transportation economic impact studies of disasters

    Directory of Open Access Journals (Sweden)

    Yi Wen

    2014-08-01

    Full Text Available Transportation system disruption due to a disaster results in "ripple effects" throughout the entire transportation system of a metropolitan region. Many researchers have focused on the economic costs of transportation system disruptions in transportation-related industries, specifïcally within commerce and logistics, in the assessment of the regional economic costs. However, the foundation of an assessment of the regional economic costs of a disaster needs to include the evaluation of consumer surplus in addition to the direct cost for reconstruction of the regional transportation system. The objective of this study is to propose a method to estimate the regional consumer surplus based on indirect economic costs of a disaster on intermodal transportation systems in the context of diverting vehicles and trains. The computational methods used to assess the regional indirect economic costs sustained by the highway and railroad system can utilize readily available state departments of transportation (DOTs and metropolitan planning organizations (MPOs traffic models allowing prioritization of regional recovery plans after a disaster and strengthening of infrastructure before a disaster. Hurricane Katrina is one of the most devastating hurricanes in the history of the United States. Due to the significance of Hurricane Katrina, a case study is presented to evaluate consumer surplus in the Gulf Coast Region of Mississippi. Results from the case study indicate the costs of rerouting and congestion delays in the regional highway system and the rent costs of right-of-way in the regional railroad system are major factors of the indirect costs in the consumer surplus.

  5. International symposium on uranium production and raw materials for the nuclear fuel cycle - Supply and demand, economics, the environment and energy security. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The IAEA periodically organizes nical meetings and international symposia on all areas of the uranium production cycle. This publication contains 160 extended synopses related to the 2005 international symposium on 'Uranium Production and Raw Materials for the Nuclear Fuel Cycle - Supply and Demand, Economics, the Environment and Energy Security'. They cover all areas of natural uranium resources and production cycle including uranium supply and demand; uranium geology and deposit; uranium exploration; uranium mining and milling; waste management; and environment and regulation. Each synopsis was indexed individually.

  6. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    International Nuclear Information System (INIS)

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao

    2017-01-01

    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  7. Case study of an organic Rankine cycle applied for excess heat recovery: Technical, economic and policy matters

    International Nuclear Information System (INIS)

    Lemmens, Sanne; Lecompte, Steven

    2017-01-01

    Highlights: • Case study of an organic Rankine cycle for heat recovery from an industrial kiln. • The costs and financial feasibility of the system are discussed in detail. • The cost structure is most defined by the capital costs, annual costs are limited. • The system is financially feasible, but subsidies remain important. • The results are most sensitive to changes in load hours and electricity price. - Abstract: Many industrial processes inevitably produce excess heat as by-product. Recovering this heat is a matter of waste management and provides opportunities to improve the energy use efficiency. The excess heat can be used for heating purposes (e.g., in processes, or delivered to district heating systems or buildings) or to generate electricity. An increasingly applied technology for industrial excess heat recovery is the organic Rankine cycle (ORC), suitable to recover low-grade heat from 90 °C onwards. Although ORCs are studied intensively, few studies have examined the economics of commissioned ORC systems. This paper investigates a 375 kW_g_r_o_s_s ORC system employed for flue gas heat recovery from an industrial kiln in Flanders, Belgium. The purpose of the study is twofold: providing insight into a practical ORC case; and evaluating the financial feasibility while taking the specific policy circumstances into account. The financial appraisal takes account of the specific technical setup, the diverse costs of the system, the external economic parameters, and the policy circumstances in Europe, Belgium and Flanders. A sensitivity analysis illustrates the influence of each parameter on the results. The analysis demonstrates the dominance of the investment costs (4217 €_2_0_1_3/kW_g_r_o_s_s) in the expenses. Under the valid conditions the investment has a positive financial return, but the financial support from the government is indispensable. Finally, the sensitivity analysis reveals the importance of attaining sufficient load hours and the

  8. Economic viability in concrete dams by multivariable regression tool for implantation of small hydroelectric plants

    International Nuclear Information System (INIS)

    Lima, Reginaldo Agapito de; Ribeiro Junior, Leopoldo Uberto

    2010-01-01

    For implantation of a SHP, the barrage is the main structure where its sizing represents from 30% - 50% of general cost of civil works. Considering this it is very important to have a fast, didactic and accurate tool for elaborating a budget, also allowing a quantitative analysis of inherent cost for civil building of barrages concrete made for small hydropower plants. In face of this, the multi changing regression tool is very important as it allows a fast and correct establishing of preliminary costs, even approximate, for estimates of barrages in concrete cost, enabling to ease the budget, guiding feasibility decisions for selecting or neglecting new alternatives of fall. (author)

  9. Internal Audit as a Tool for Combating Economic Fraud. Case Study of the Misappropriation Process of Company’s Assets

    Directory of Open Access Journals (Sweden)

    Michał Falkowski

    2010-12-01

    Full Text Available The paper deals with the problem of economic fraud and the role of Internal Audit as a tool for preventing it. As the economic downturn intensifies, the possibility of disputes and other difficulties arises more frequently. More often employees and contracting parties try to shift their own losses on to other economic entities. When internal rules are broken or either are not established, organizations are exposed to risks and problems that they are often not used to dealing with. As the analyzed case study showed threats of an economic fraud can come also from inside the company. Embezzlement concerning expense reimbursement is one of the most “popular” ways to steal money from inside the company. To prevent such situations from happening Internal Audit Unit has to perform assurance and consulting actions to deter this particular and any other type of fraud. When the actual fraud occurs an important element, is the properly divide roles between an internal auditor and the forensic specialist who is adequately prepared to lead the investigation, find evidence, and bring fraudsters to justice.

  10. Integrating health economics into the product development cycle: a case study of absorbable pins for treating hallux valgus.

    Science.gov (United States)

    Vallejo-Torres, Laura; Steuten, Lotte; Parkinson, Bonny; Girling, Alan J; Buxton, Martin J

    2011-01-01

    The probability of reimbursement is a key factor in determining whether to proceed with or abandon a product during its development. The purpose of this article is to illustrate how the methods of iterative Bayesian economic evaluation proposed in the literature can be incorporated into the development process of new medical devices, adapting them to face the relative scarcity of data and time that characterizes the process. A 3-stage economic evaluation was applied: an early phase in which simple methods allow for a quick prioritization of competing products; a mid-stage in which developers synthesize the data into a decision model, identify the parameters for which more information is most valuable, and explore uncertainty; and a late stage, in which all relevant information is synthesized. A retrospective analysis was conducted of the case study of absorbable pins, compared with metallic fixation, in osteotomy to treat hallux valgus. The results from the early analysis suggest absorbable pins to be cost-effective under the beliefs and assumptions applied. The outputs from the models at the mid-stage analyses show the device to be cost-effective with a high probability. Late-stage analysis synthesizes evidence from a randomized controlled trial and informative priors, which are based on previous evidence. It also suggests that absorbable pins are the most cost-effective strategy, although the uncertainty in the model output increased considerably. This example illustrates how the method proposed allows decisions in the product development cycle to be based on the best knowledge that is available at each stage.

  11. Incorporation of a health economic modelling tool into public health commissioning: Evidence use in a politicised context.

    Science.gov (United States)

    Sanders, Tom; Grove, Amy; Salway, Sarah; Hampshaw, Susan; Goyder, Elizabeth

    2017-08-01

    This paper explores how commissioners working in an English local government authority (LA) viewed a health economic decision tool for planning services in relation to diabetes. We conducted 15 interviews and 2 focus groups between July 2015 and February 2016, with commissioners (including public health managers, data analysts and council members). Two overlapping themes were identified explaining the obstacles and enablers of using such a tool in commissioning: a) evidence cultures, and b) system interdependency. The former highlighted the diverse evidence cultures present in the LA with politicians influenced by the 'soft' social care agendas affecting their local population and treating local opinion as evidence, whilst public health managers prioritised the scientific view of evidence informed by research. System interdependency further complicated the decision making process by recognizing interlinking with departments and other disease groups. To achieve legitimacy within the commissioning arena health economic modelling needs to function effectively in a highly politicised environment where decisions are made not only on the basis of research evidence, but on grounds of 'soft' data, personal opinion and intelligence. In this context decisions become politicised, with multiple opinions seeking a voice. The way that such decisions are negotiated and which ones establish authority is of importance. We analyse the data using Larson's (1990) discursive field concept to show how the tool becomes an object of research push and pull likely to be used instrumentally by stakeholders to advance specific agendas, not a means of informing complex decisions. In conclusion, LA decision making is underpinned by a transactional business ethic which is a further potential 'pull' mechanism for the incorporation of health economic modelling in local commissioning. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Twitter as a teaching tool in the Social Sciences faculties. A case study from the Economic History

    Directory of Open Access Journals (Sweden)

    Misael Arturo López Zapico

    2013-08-01

    Full Text Available 0 0 1 127 701 USAL 5 1 827 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} The increasing use of social networking among university students ease the way for teachers to use these kinds of tools towards achieving the objectives set in the European Higher Education Area. In this sense, Twitter appears as a highly versatile learning tool that perfectly fits with the skill-based education approach, as evidenced by the literature. This paper describes the methodology, as well as, discusses the results of three experiments that took place during the 2011-2012 Academic Year at the School of Economics and Business of the University of Oviedo. Twitter was used during those experiments to debate the today’s economic crisis. The indicators obtained are used to conclude that microblogging services are a proper tool not only for teaching Economic History but also for doing so for any Social Sciences.

  13. Economic tools for biodiversity. An elaboration of TEEB recommendations with regard to the Taskforce Biodiversity

    International Nuclear Information System (INIS)

    Davidson, M.D.; Bergsma, G.C.; Blom, M.J.

    2011-07-01

    The working group on Economic Instruments of the Biodiversity and Natural Resources Task Force addressed the question how the recommendations of the report of the United Nations 'The Economics of Ecosystems and Biodiversity' (TEEB) can be realized in the Netherlands. A selection of topics has been made for which policy proposals are developed which might be promising and can lead to a better protection of the biodiversity. The following proposals were investigated and/or elaborated: decrease of the social discount rate; further greening of the tax system; import levy on bulk commodities; taxes on non-sustainable wood; levy on the use of open space; differential tax on animal proteins; and a revision of biomass incentives. [nl

  14. Collaborative innovation as a tool for environmental, economic and social sustainability in regional governance

    DEFF Research Database (Denmark)

    Torfing, Jacob; Hofstad, Hege

    2015-01-01

    solutions to common problems. The paper analyses the efforts of Norwegian regions to enhance collaborative innovation through the formation of interactive governance arenas. It compares three different policy areas in order to better understand how different forms of interactive governance enhance...... collaborative innovation for economic, social and environmental sustainability. The ultimate goal is to assess the ability and potential of Norwegian regions to solve wicked and unruly problems through collaborative innovation.......In the Scandinavian countries, the regional level of governance is neither the locus of large-scale policy reforms nor a significant provider of welfare to citizens. Nevertheless, it has some important policy tasks in the area of environmental, economic, and social sustainability. These policy...

  15. Internship – tool for improving the employability of Economic Science graduates

    Directory of Open Access Journals (Sweden)

    Silvia SUMEDREA

    2016-07-01

    Full Text Available Romania's economy has undergone major changes as a result of various technological, economic and social factors, so that the labor market has undergone major changes too, which puts more acute the problem of youth employability. The article presents the results of a project to develop human resources financed by European Union funds aimed at improving the way students realize internship, the ultimate goal of implementation of the project being to accustom students with employers' demands and rigors of a job to thus contribute to increasing the employability of future graduates of economic studies. Internship results are presented by taking into account the students’ opinions and some suggestions are made in order to improve this activity in the future.

  16. QChain - integrating social, environmental and economic value: a tool to support innovation in production chains

    NARCIS (Netherlands)

    Kassahun, A.; Chatenier, du E.; Bots, P.W.G.; Hofstede, Gert Jan; Bloemhof, J.M.; Scholten, H.; Korver, S.; Beulens, A.J.M.

    2011-01-01

    Today's consumers increasingly demand products that are produced sustainably and ethically. As a result, businesses need to address sustainability and social responsibility issues and find a proper balance between people, planet and profit (PPP) aspects of their production chains. Software tools can

  17. GENDER DISPARITIES REGARDING WAGE AS A MOTIVATIONAL TOOL IN THE CURRENT ECONOMIC CONTEXT

    OpenAIRE

    DEMYEN SUZANA; LALA POPA ION

    2014-01-01

    The deepening process of globalization, negative trends regarding demographic evolution both nationally and internationally, also the emigration phenomenon and the long-term effects of the economic crisis, are the main challenges in terms of creating a general support and to encourage a fair and effective management of human resources, regardless of the industry they are developing their activity. Motivation consists in a series of problems that need to be solved in order to g...

  18. IEA SHC Task 42/ECES Annex 29 – A Simple Tool for the Economic Evaluation of Thermal Energy Storages

    DEFF Research Database (Denmark)

    Rathgeber, Christoph; Hiebler, Stefan; Lävemann, Eberhard

    2016-01-01

    Within the framework of IEA SHC Task 42 / ECES Annex 29, a simple tool for the economic evaluation of thermal energy storages has been developed and tested on various existing storages. On that account, the storage capacity costs (costs per installed storage capacity) of thermal energy storages...... have been evaluated via a Top-down and a Bottom-up approach. The Top-down approach follows the assumption that the costs of energy supplied by the storage should not exceed the costs of energy from the market. The maximum acceptable storage capacity costs depend on the interest rate assigned...

  19. Japan – China: Official Development Assistance as a Tool of Economic Interaction

    Directory of Open Access Journals (Sweden)

    Eugene Borisovich Kovrigin

    2012-09-01

    Full Text Available The paper deals with the outstanding role and implications of Japan’s ODA to the People’s Republic of China in the bilateral relations from the early 1980s till its termination in the 2000s. Being by far the biggest single provider of low-interest loans and grants to a state with a totally different political system Japan sought to achieve its own economic and political aims. The controversial nature of government financial flows from Tokyo to Beijing resulted in substantial economic gains (foreign trade and direct investment and vice versa a disappointment in the political realm. The paper reveals peculiarities of Japan’s ODA to the PRC in the framework of international economic relations, its significance for the modernization of China’s industrial and social infrastructure, unparalleled conditions for receiving Japanese aid which were imposed by China’s authorities, the change of public opinion in Japan towards the problem, etc. The article also explores the current transformation of China from the status of leading recipient of Japanese assistance to Japan’s successful «competitor» as a donor of financial resources and technical assistance to the numerous nations of Africa, Southeast Asia and other regions

  20. Being born under adverse economic conditions leads to a higher cardiovascular mortality rate later in life: evidence based on individuals born at different stages of the business cycle

    DEFF Research Database (Denmark)

    van den Berg, Gerard J; Doblhammer-Reiter, Gabriele; Christensen, Kaare

    2011-01-01

    since the 1870s and including the cause of death. To capture exogenous variation of conditions early in life, we use the state of the business cycle around birth. We find significant negative effects of economic conditions around birth on the individual CV mortality rate at higher ages...

  1. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  2. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  3. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China

    International Nuclear Information System (INIS)

    Hu, Zhiyuan; Tan, Piqiang; Lou, Diming; Yan, Xiaoyu

    2008-01-01

    Life cycle energy, environment and economic assessment for conventional diesel (CD) and soybean-based biodiesel (SB) in China was carried out in this paper. The results of the assessment have shown that compared with CD, SB has similar source-to-tank (StT) total energy consumption, 76% lower StT fossil energy consumption, 79% higher source-to-wheel (StW) nitrogen oxides (NO X ) emissions, 31%, 44%, 36%, 29%, and 67% lower StW hydrocarbon (HC), carbon monoxide (CO), particulate matter (PM), sulfur oxides (SO X ), and carbon dioxide (CO 2 ) emissions, respectively. SB is thus considered to be much more renewable and cleaner than CD. However, the retail price of SB at gas stations would be about 86% higher than that of CD without government subsidy according to the cost assessment and China had to import large amount of soybean to meet the demand in recent years. Therefore, although SB is one of the most promising clean and alternative fuels, currently it is not a good choice for China. It is strategically important for China to diversify the feedstock for biodiesel and to consider other kinds of alternative fuels to substitute CD. (author)

  4. OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Lenzmann, Frank O.; Ryley, Stephen

    2013-01-01

    Organic photovoltaic modules have been evaluated for their integration in mobile electronic applications such as a laser pointer. An evaluation of roll-to-roll processed indium and silver free polymer solar cells has been carried out from different perspectives: life cycle assessment, cost analysis...... and layer quality evaluation using inline optical and functional inspection tools. The polymer solar cells were fabricated in credit card sized modules by three routes, and several encapsulation alternatives have been explored, with the aim to provide the simplest but functional protection against moisture...... a low carbon footprint. From the economic perspective there is a huge reduction in the cost of the ITO- and silver-free options, reaching as low as 0.25 V for the OPV module. We used inspection tools such as a roll-to-roll inspection system to evaluate all processing steps during the fabrication...

  5. The South Florida Ecosystem Portfolio Model - A Map-Based Multicriteria Ecological, Economic, and Community Land-Use Planning Tool

    Science.gov (United States)

    Labiosa, William B.; Bernknopf, Richard; Hearn, Paul; Hogan, Dianna; Strong, David; Pearlstine, Leonard; Mathie, Amy M.; Wein, Anne M.; Gillen, Kevin; Wachter, Susan

    2009-01-01

    The South Florida Ecosystem Portfolio Model (EPM) prototype is a regional land-use planning Web tool that integrates ecological, economic, and social information and values of relevance to decision-makers and stakeholders. The EPM uses a multicriteria evaluation framework that builds on geographic information system-based (GIS) analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to regional land-use/land-cover (LULC) change. The EPM uses both economics (monetized) and multiattribute utility (nonmonetized) approaches to valuing these endpoints and consequences. This hybrid approach represents a methodological middle ground between rigorous economic and ecological/ environmental scientific approaches. The EPM sacrifices some degree of economic- and ecological-forecasting precision to gain methodological transparency, spatial explicitness, and transferability, while maintaining credibility. After all, even small steps in the direction of including ecosystem services evaluation are an improvement over current land-use planning practice (Boyd and Wainger, 2003). There are many participants involved in land-use decision-making in South Florida, including local, regional, State, and Federal agencies, developers, environmental groups, agricultural groups, and other stakeholders (South Florida Regional Planning Council, 2003, 2004). The EPM's multicriteria evaluation framework is designed to cut across the objectives and knowledge bases of all of these participants. This approach places fundamental importance on social equity and stakeholder participation in land-use decision-making, but makes no attempt to determine normative socially 'optimal' land-use plans. The EPM is thus a map-based set of evaluation tools for planners and stakeholders to use in their deliberations of what is 'best', considering a balancing of disparate interests within a regional perspective. Although

  6. Effect of External Economic-Field Cycle and Market Temperature on Stock-Price Hysteresis: Monte Carlo Simulation on the Ising Spin Model

    Science.gov (United States)

    Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut

    2017-09-01

    In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.

  7. Debt swapping as a tool for economic and social stabilization in Russia's closed nuclear cities

    International Nuclear Information System (INIS)

    JL Fuller; KM Leek

    2000-01-01

    The magnitude of Russian foreign debt, both official bilateral and commercial, compounded by collapse of the Russian economic system, is an obstacle in preventing the Russian Federation from effectively increasing the domestic priority of drawing down its nuclear weapons complex and providing a healthy, competitive environment to its nuclear cities. Debt-for-nature swaps, introduced in the early 1980s, provide debtor nations with a means of converting a portion of foreign debt into local currency, often at steep discounts, to use for purposes such as environmental protection that serve both a domestic and international need. This paper presents the debt-for-nature concept as a model for providing an infusion of funds to further U.S. and international nonproliferation objectives to help stabilize Russian closed city economic conditions through direct work on proliferation problems and remediation of the environment. A specific proposal is presented to demonstrate the utility and efficacy of the dept swap concept through initial collaboration with the city administration of Ozersk. The purpose of the proposal is to facilitate making Ozersk a safe, healthy competitive city, providing useful employment for its scientists and population and converting its superior infrastructure into productive activities

  8. Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries.

    Science.gov (United States)

    Rivela, B; Moreira, M T; Bornhardt, C; Méndez, R; Feijoo, G

    2004-03-15

    A representative leather tannery industry in a Latin American developing country has been studied from an environmental point of view, including both technical and economic analysis. Life Cycle Analysis (LCA) methodology has been used for the quantification and evaluation of the impacts of the chromium tanning process as a basis to propose further improvement actions. Four main subsystems were considered: beamhouse, tanyard, retanning, and wood furnace. Damages to human health, ecosystem quality, and resources are mainly produced by the tanyard subsystem. The control and reduction of chromium and ammonia emissions are the critical points to be considered to improve the environmental performance of the process. Technologies available for improved management of chromium tanning were profoundly studied, and improvement actions related to optimized operational conditions and a high exhaustion chrome-tanning process were selected. These actions related to the implementation of internal procedures affected the economy of the process with savings ranging from US dollars 8.63 to US dollars 22.5 for the processing of 1 ton of wet salt hides, meanwhile the global environmental impact was reduced to 44-50%. Moreover, the treatment of wastewaters was considered in two scenarios. Primary treatment presented the largest reduction of the environmental impact of the tanning process, while no significant improvement for the evaluated impact categories was achieved when combining primary and secondary treatments.

  9. Development of an integrated economic decision-support tool for the remediation of contaminated sites. Overview note

    International Nuclear Information System (INIS)

    Samson, R.; Bage, G.

    2004-05-01

    This report concludes the first design phase of an innovative software tool which, when completed, will allow managers of contaminated sites to make optimal decisions with respect to site remediation. The principal objective of the project was to develop the foundations for decision-support software (SITE VII) which will allow a comprehensive and rigorous approach to the comparison of remediation scenarios for sites contaminated with petroleum hydrocarbons. During this first phase of the project, the NSERC Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal has completed four stages in the design of a decision-support tool that could be applied by any site manager using a simple computer. These four stages are: refinement of a technico-economic evaluation model; development of databases for five soil remediation technologies; design of a structure for integration of the databases with the technico-economic model; and simulation of the remediation of a contaminated site using the technico-economic model and a subset of the databases. In the interim report, the emphasis was placed on the development of the technico-economic model, supported by a very simple, single-technology simulation of remediation. In the present report, the priority is placed on the integration of the different components required for the creation of decision-support software based on the technico-economic model. An entire chapter of this report is devoted to elaborating the decision structure of the software. The treatment of information within the software is shown schematically and explained step-by-step. Five remediation technologies are handled by the software: three in-situ technologies (bio-venting, bio-slurping, bio-sparging) and two ex-situ technologies (thermal desorption, Bio-pile treatment). A technology file has been created for each technology, containing a brief description of the technology, its performance, its criteria of applicability

  10. THE FLEXIBLE BUDGET– BASIC TOOL OF THE MANAGEMENT CONTROL IN THE ECONOMIC ENTITIES

    Directory of Open Access Journals (Sweden)

    Mariana RADU

    2015-06-01

    Full Text Available In the content of this article we emphasize the importance of flexible budgeting of expenses for an economic entity. We focused on indirect costs of production, since they include both variable costs and fixed costs, and the way of their budgeting is different. In the first part of the paper we illustrate how to prepare a flexible budget for more predictable levels of activity, and in the second part, we show how to recalculate budgeted expenses for the actual volume of activity. The budget recalculated for the actual volume of activity allows the comparison, in the correct way, of expenditure forecast to those actually incurred, expenses that relate to the same volume of activity.

  11. Foreign language as a tool for professional mobility development for students specialising in economics

    Directory of Open Access Journals (Sweden)

    Polenova Anna, YU.

    2015-03-01

    Full Text Available The paper considers the practical aspects of professional mobility development for students specializing in Economics by means of foreign language. It is noted that the potential of a foreign language is not used in full since training in this discipline is delivered separately with the development of professional competence of the future expert. The article analyzes the existing experience of teaching English at non- linguistic faculties using CLIL (Content and Language Integrated Learning approach. The article suggests the ways of professional mobility development by means of foreign language. It discusses the advantages of innovative teaching, which is aimed at meeting the professional and educational needs of students, the development of professional mobility and creative thinking. It is concluded that studying a foreign language and non-language subject at the same time is an additional means to achieve high educational outcomes.

  12. Implementation of Economic Value Added and Market Value Added Analysis as Valuation Tools of Invest Feasibility

    Directory of Open Access Journals (Sweden)

    Achmad Daengs GS

    2017-09-01

    Full Text Available For the investors, financial statement is a benchmark of investors in assessing the company's performance. In fact, investors are not always receiving the accurate company's financial statements information and its levels of fairness are in doubt. The financial statement analysis with using financial ratios is not enough. The investors may need to use alternatives financial statement analyses techniques that reflect the actual company's performance. Therefore, both of the investors and the prospective can use Economic Value Added (EVA and Market Value Added (MVA analysis. With these technical analyses, the investors may know the company's performance where they are invested or to be used as a place to invest whether it has value added or not. With the results of these analyses, it is the expected for the investors to be more confident in making decision whether to buy, sell or hold the ownership in the company.

  13. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino

  14. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  15. Life cycle assessment as a tool to evaluate the impact of reducing crude protein in pig diets

    Directory of Open Access Journals (Sweden)

    Alessandra Nardina Trícia Rigo Monteiro

    Full Text Available ABSTRACT: Environmental impacts of livestock systems, especially pig production, have come under increasing debate in recent years. The challenge is in meeting the growing demand for food at an affordable cost, without compromising environmental integrity. Previous studies have shown that feed production is responsible for the majority of CO2-eq. emission resulting from pig farming systems. This seems to indicate that feed strategies could be an effective tool to achieve the sustainability of the pork chain. Therefore, dietary crude protein reduction, through the addition of industrial amino acids, lessens the nitrogen excretion by pigs and, consequently, could mitigate the effects on the environment of pig production. In this sense, to effectively evaluate the environmental impacts of pig production systems, life cycle assessment has been widely used in agriculture, but the effects of feed are still understudied in Brazilian conditions. Owing to the importance and the great concern in this research area, we presented in this paper an updated review focusing on the nutritional techniques and their potential to reduce the global warming potential of pig production, considering both the direct effects, related to the choice of feed ingredients and the indirect effects, related to changes in the efficiency of use of nutrient by the animals.

  16. Responses of agricultural bioenergy sectors in Brandenburg (Germany) to climate, economic and legal changes: An application of Holling's adaptive cycle

    International Nuclear Information System (INIS)

    Grundmann, Philipp; Ehlers, Melf-Hinrich; Uckert, Götz

    2012-01-01

    Agricultural bioenergy production is subject to dynamics such as yield fluctuations, volatile prices, resource competition, new regulation and policy, innovation and climate change. This raises questions, to what extent bioenergy production is able to adapt to changes and overcome critical events. These dynamics have important implications for effective policy development. Using a case study method, which draws on various data sources, we investigate in detail how agricultural bioenergy sectors in the German State of Brandenburg adapted to diverse past events. The case analysis rests on the adaptive-cycle concept and the system properties potential, connectedness and resilience as defined by . Our case study concludes that Brandenburg's biogas sector has a low potential and connectedness within the system, and a low resilience against crop failures. The biofuels sector displays similar properties in the short term. In the medium term the potential could increase in both sectors. The properties imply risks and opportunities for biogas production and the possibility to develop towards a stage with a higher potential and a higher connectedness. But adaptive capacity is limited and there are certain barriers for the agricultural bioenergy sectors to overcome potentially critical states. Policy needs to be tailored accordingly. - Highlights: ► Bioenergy sectors respond to climatic, economic and legal changes in different ways. ► Responses to changes expose critical features and bottlenecks of bioenergy sectors. ► Resilience, potential and connectedness are critical features for bioenergy sectors. ► Stages of development of the biogas and biofuel production sectors are identified. ► Effective policy design needs to match the sectors' features and development stages.

  17. Use of Culture as Economic Developmen Tool and the Role of Enviromental Educacion

    Directory of Open Access Journals (Sweden)

    Dionis Mauri Penning Blank

    2015-04-01

    Full Text Available Phenomena like the culturalization of contemporary cities and the mercantilism of cultural heritage are current issues that require further exploration and understanding. Thus, the objective of this research work was to present the environmental education, translated in the ideals of an ecological citizen able to identify, discuss and act as a solution for addressing these phenomena and its negative effects, such as uniqueness, loss local memory and gentrification. The property occupies a privileged position in the settings of cultural legitimacy, in the reflections on identity and the social bond policies. In societies of consumption and mass culture, the use of heritage, its interpretation and even your simulation are to be local development instruments and national. Consequently, environmental education is revealed as a tool capable of providing the proper use of culture as urban revitalization instrument.

  18. International symposium on uranium raw material for the nuclear fuel cycle: Exploration, mining, production, supply and demand, economics and environmental issues (URAM-2009). Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    The International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009) addressed all aspects of the uranium fuel cycle, from the availability of raw materials to the long-term sustainability of nuclear power. The revival of the uranium industry in recent years has caused a dramatic increase in uranium exploration and mining activities in several countries. URAM-2009 was intended to bring together scientists, exploration and mining geologists, engineers, operators, regulators and fuel cycle specialists to exchange information and discuss updated research and current issues in uranium geology and deposits, exploration, mining and processing, production economics, and environmental and legal issues. Contributed papers covered uranium markets and economics (including supply and demand); social licensing in the uranium production cycle; uranium exploration (including uranium geology and deposits); uranium mining and processing; environmental and regulatory issues; human resources development. There was a poster session throughout the symposium, as well as an exhibition of topical photographs. A workshop on recent developments in Technical Cooperation Projects relevant to the Uranium Production Cycle area was also organized. On the last day of the symposium, there was an experts' Panel Discussion. The presentations and discussions at URAM-2009 (a) led to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand, (b) provided information on new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources, (c) described new production technology having the potential to more efficiently and economically exploit new uranium resources; (d) documented the environmental compatibility of uranium production and the overall effectiveness of the final

  19. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  20. REDISCOVERING MISES-HAYEK MONETARY AND BUSINESS CYCLE THEORY IN LIGHT OF THE CURRENT CRISIS: CREDIT EXPANSION AS A SOURCE OF ECONOMIC BOOM AND BUST

    Directory of Open Access Journals (Sweden)

    Marcin Mrowiec

    2013-10-01

    Full Text Available The article starts with a brief description of Mises’ monetary theory, with emphasis on the Misesian differentiation of two kinds of credit: commodity and circulation credit, and with the description of the impact of circulation credit expansion on the business cycle. Further on it is described how Mises’ insights constituted the kernel of Austrian Business Cycle Theory, and how the same observations on the nature of credit constituted the kernel of the Chicago Plan (though Mises’ views on the nature of credit led him to different conculsions than it led the authors of the Chicago Plan, and how this plan is being “rediscovered” now. The following sections deal with observations of one of the preeminent current macroeconomic researches, Mr. Claudio Borio, on the elasticity of credit as the source of the current crisis, and on the importance of the financial cycle in analysing the current economic crisis. The author of this text demonstrates that Austrian Business Cycle Theory gave the same answer regarding the sources of economic crises that now modern macroeconomic theory seems to be approaching, and that the postulates for successful financial cycle modeling are already included in the ABCT. Finally, some observations on the current crisis, as well as proposals of avenues of further research are proposed.

  1. Thermo economical optimization of a jet nozzle cooling cycle assisted by solar energy; Otimizacao termoeconomica de ciclo de refrigeracao por compressao por ejetor auxiliado com energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, Gabriel I. Medina; Colle, Sergio [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: gabriel@emc.ufsc.br; colle@emc.ufsc.br

    2000-07-01

    The present work deals with the analysis of the jet nozzle cooling cycle assisted by solar energy. Both, a thermodynamic and economic optimization are carried out, for ammonia as working fluid. The optimization of the ejector is also focussed, for different values of the relevant design parameters. The method P{sub 1} - {sub P}2 for economical optimization of solar energy systems is used in order to find out the optimum collector area, which corresponds to the maximum value of the life time cost saving. The numerical results are presented in terms of the specific costs of the auxiliary energy, as well as the collector area. (author)

  2. A planning tool for tree species selection and planting schedule in forestation projects considering environmental and socio-economic benefits.

    Science.gov (United States)

    Rollan, Catherine Denise; Li, Richard; San Juan, Jayne Lois; Dizon, Liezel; Ong, Karl Benedict

    2018-01-15

    Species selection is a crucial step in the planning phase of forestation programs given its impact on the results and on stakeholder interactions. This study develops a planning tool for forestation programs that incorporates the selection of tree species and the scheduling of planting and harvesting, while balancing the maximization of the carbon sequestered and income realized, into the forestation decision-making and planning process. The validation of the goal programming model formulated demonstrates that the characteristics of natural tree species along with the behavior of growth and timing of yield are significant factors in achieving the environmental and socio-economic aspirations. The proposed model is therefore useful in gauging species behavior and performance over time. Sensitivity analysis was also conducted where the behavior of the income generated and carbon sequestered with respect to the external factors such as carbon market prices, percentage area allocated for protection and discount factor was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Preventative maintenance cycle of contact switches for nuclear power plants based on lifetime assessment and economic analysis

    International Nuclear Information System (INIS)

    Shi Jie

    2010-01-01

    An approach to determine the preventive maintenance cycle was proposed in consideration of the lifetime, optimal cost and economy. Two parameters Weibull distribution was used to calculate the lifetime of contact switch. The block replacement model and age replacement model were built with the objective of optimal cost, and the preventive replacement cycle was accounted. Eight proposals for preventive replacement cycle were given. Economy model was applied to assess those proposals and the optimal proposal was confirmed. (authors)

  4. Public outlook on small and medium enterprises as a strategic tool for economic growth and job creation in South Africa

    Directory of Open Access Journals (Sweden)

    Lawrence Mpele Lekhanya

    2015-10-01

    Full Text Available In spite of the key role played by the Small and Medium enterprises in economic development, there has been little effort to look at what needs to be done to improve survival and growth of SMEs. There is still a general lack of in-depth understanding from policy makers and other relevant stakeholders of how SMEs can be used as a strategic tool for economic growth and job creation in South Africa. These misperceptions and misunderstand leads to continuous failure to SMEs survival and growth. This study seeks to address this research gap. The study investigates the public views on what needs to be done to grow South African economy through the development of SMEs. Quantitative research approach was used to collect and analyse data for the study. Primary data was collected from four (4 provinces of South Africa. 230 people participated in the study. Questionnaires were emailed to each respondent and follow-ups were made via telephone. It was found that many SMEs fail within five years of their existence due to the various reasons. The most critical of these were related to lack of access to finance, lack of management experience as well as human capital. Study further revealed that most the SMEs owners/managers do not have business management related skills but rather they are just ordinary entrepreneurs

  5. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.

    2017-01-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  6. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    Science.gov (United States)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  7. The transmission tariff - the economic tool for the network infrastructure development

    International Nuclear Information System (INIS)

    Popescu, Vifor Bogdan; Cirlan, Florica; Mihailescu, Florentina

    2004-01-01

    The free access to the transmission network is one of the key elements of the electricity market development both at the national and regional levels. The operation of the electricity market needs the appropriate development of its basic infrastructure, the transmission network. In the frame work of the electricity market, the network ensures the electricity transmission under reliable conditions, from the generators to the suppliers and eligible consumers and creates market opportunities for its users. One of the main market tools, which may influence the optimal development of the network structure, by an efficient location signal of the large consumers and generators, is the pricing system. The overall costs of the Transmission System Operator (TSO) for providing the transmission service may be distinctly focused by categories as follows: - Costs of the existing transmission network (fixed costs), maintenance and operation costs, capital costs; - Costs of electricity losses (variable costs); - Development costs needed to eliminate the network congestion (variable costs). The recovery of all costs involved by the transmission service is based on regulated tariff system approved by ANRE. By the tariff system, the transmission and system operator aims both to cover the transmission service cost and provide locational signals for all market players which should lead to the efficient grid operation as well as to the optimal development of its structure. The tariff values reflect the polarization existing in the Romanian Power System (PS), namely: surplus power in the South area of the PS (4G zone) and a power deficit in the North areas of the PS (2G and 5G zones). Electricity demand is more evenly distributed in the territory than the electricity generated. This assertion is based on the following statement: - the tariffs value range of electricity delivered in the transmission network is wider, between 1.13 and 2.39 USD/MWh (51%) than the one related to the zones of

  8. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  9. Being born under adverse economic conditions leads to a higher cardiovascular mortality rate later in life: evidence based on individuals born at different stages of the business cycle.

    Science.gov (United States)

    van den Berg, Gerard J; Doblhammer-Reiter, Gabriele; Christensen, Kaare

    2011-05-01

    We connect the recent medical and economic literatures on the long-run effects of early-life conditions by analyzing the effects of economic conditions on the individual cardiovascular (CV) mortality rate later in life, using individual data records from the Danish Twin Registry covering births since the 1870s and including the cause of death. To capture exogenous variation of conditions early in life, we use the state of the business cycle around birth. We find significant negative effects of economic conditions around birth on the individual CV mortality rate at higher ages. There is no effect on the cancer-specific mortality rate. From variation within and between monozygotic and dizygotic twin pairs born under different conditions, we conclude that the fate of an individual is more strongly determined by genetic and household-environmental factors if early-life conditions are poor. Individual-specific qualities come more to fruition if the starting position in life is better.

  10. Techno-economic comparison of combined cycle gas turbines with advanced membrane configuration and MEA solvent at part load conditions

    NARCIS (Netherlands)

    Van Der Spek, Mijndert; Bonalumi, Davide; Manzolini, Giampaolo; Ramirez, Andrea; Faaij, André P.C.

    2018-01-01

    This work compares the part load techno-economic performance of CO2 capture from a CCGT using a membrane configuration with selective CO2 recycle and using MEA solvent, under the assumption of flexible power plant dispatch. This is the first time that the techno-economic performance of CO2 capture

  11. "Sleuthing through the Rock Cycle": An Online Guided Inquiry Tool for Middle and High School Geoscience Education

    Science.gov (United States)

    Schifman, Laura; Cardace, Dawn; Kortz, Karen; Saul, Karen; Gilfert, Amber; Veeger, Anne I.; Murray, Daniel P.

    2013-01-01

    The rock cycle is a key component of geoscience education at all levels. In this paper, we report on a new guided inquiry curricular module, "Sleuthing through the Rock Cycle," which has a blended online/offline constructivist design with comprehensive teaching notes and has been successful in pilot use in Rhode Island middle and high…

  12. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  13. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  14. CASE technology and the Systems Development Life Cycle: a proposed integration of CASE tools with DoD STD-2167A

    OpenAIRE

    Batt, Gary Thomas

    1989-01-01

    Approved for public release; distribution unlimited The use of Computer Aided Software Engineering (CASE) t ools has been marketed as a remedy for the software development crisis by automating analysis, design, and coding. The Systems Development Life Cycle (SDLC) has been employed in an attempt to ease the development backlog by applying structured methods to the development of software systems. This study reviews CASE tool components and the future of CASE integrated toolkits, compares a...

  15. Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic Rankine cycle (DORC)

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Gao, Yuanyuan; Shu, Gequn; Zhao, Mingru; Yan, Nanhua

    2017-01-01

    Highlights: • Various mixtures based on siloxanes used in the DORC system are proposed. • Thermo-economic analysis is conducted to explore mixtures’ application potential. • Cycle performances of D4/R123 (0.3/0.7) and MD2M/R123 (0.35/0.65) are superior. - Abstract: Siloxanes are usually used in the high temperature organic Rankine cycle (ORC) for engine waste heat recovery, but their flammability limits the practical application. Besides, blending siloxanes with retardants often brings a great temperature glide, causing the large condensation heat and the reduction in net output power. In view of this, the zeotropic mixtures based on siloxanes used in a dual-loop organic Rankine cycle (DORC) system are proposed in this paper. Three kinds of binary zeotropic mixtures consisting of R123 and various siloxanes (octamethylcyclotetrasiloxane ‘D4’, octamethyltrisiloxane ‘MDM’, decamethyltetrasiloxane ‘MD2M’), represented by D4/R123, MDM/R123 and MD2M/R123, are selected as the working fluid of the high temperature (HT) cycle. Meanwhile, R123 is always used in the low temperature (LT) cycle. The net output power and utilization of heat source are considered as the evaluation indexes to select the optimal mixture ratios for further analysis. Based on the thermodynamic and economic model, net output power, thermal efficiency, exergy efficiency, exergy destruction and electricity production cost (EPC) of the DORC system using the selected mixtures have been investigated under different operating parameters. According to the results, the DORC based on D4/R123 (0.3/0.7) shows the best thermodynamic performance with the largest net power of 21.66 kW and the highest thermal efficiency of 22.84%. It also has the largest exergy efficiency of 48.6% and the smallest total exergy destruction of 19.64 kW. The DORC using MD2M/R123 (0.35/0.65) represents the most economic system with the smallest EPC of 0.603 $/kW h. Besides, the irreversibility in the internal heat

  16. OPV for mobile applications. An evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools

    Energy Technology Data Exchange (ETDEWEB)

    Espinos, N.; Angmo, D.; Hoesel, M.; Soendergaard, R.R.; Joergensen, M.; Krebs, F.C. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Lenzmann, F.O. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Ryley, S. [UK Materials Technology Research Institute, Nottingham Road, Melton Mowbray (United Kingdom); Huss, D.; Dafinger, S.; Gritsch, S. [Dr. Schenk GmbH Industriemesstechnik, Einsteinstrasse 37, D-82152 Planegg (Germany); Kroon, J.M. [ECN Solar Energy, High Tech Campus 5 P-61, 5656 AE Eindhoven (Netherlands)

    2013-05-08

    Organic photovoltaic modules have been evaluated for their integration in mobile electronic applications such as a laser pointer. An evaluation of roll-to-roll processed indium and silver free polymer solar cells has been carried out from different perspectives: life cycle assessment, cost analysis and layer quality evaluation using inline optical and functional inspection tools. The polymer solar cells were fabricated in credit card sized modules by three routes, and several encapsulation alternatives have been explored, with the aim to provide the simplest but functional protection against moisture and oxygen, which could deteriorate the performance of the cells. The analysis shows that ITO- and silver-free options are clearly advantageous in terms of energy embedded over the traditional modules, and that encapsulation must balance satisfying the protection requirements while having at the same time a low carbon footprint. From the economic perspective there is a huge reduction in the cost of the ITO- and silver-free options, reaching as low as 0.25 euro for the OPV module. We used inspection tools such as a roll-to-roll inspection system to evaluate all processing steps during the fabrication and analyse the layers' quality and forecast whether a module will work or not and establish any misalignment of the printed pattern or defects in the layers that can affect the performance of the devices. This has been found to be a good tool to control the process and to increase the yield.

  17. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water

  18. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling.

    Science.gov (United States)

    Quinn, Jason C; Davis, Ryan

    2015-05-01

    Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal(-1) consistent with large variability reported in the life cycle literature, -75 to 534 gCO2-eq MJ(-1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  20. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...

  1. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • A new parameter is proposed for optimizing economic performance of the ORC system. • Maximal thermodynamic and economic performances of an ORC system are presented. • The corresponding operating pressures in turbine of optimum thermodynamic and economic performances are investigated. • An optimal effectiveness of pre-heater is obtained for the ORC system. - Abstract: The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO 2 emission per kilowatt-hour

  2. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle

    International Nuclear Information System (INIS)

    Taheri, M.H.; Mosaffa, A.H.; Farshi, L. Garousi

    2017-01-01

    In this work, a novel integrated biomass based multigeneration energy system is presented and investigated for power, cooling and hydrogen production. The proposed system consists of a combination of biomass integrated gasifier-gas turbine cycle, a Rankine cycle, a cascade organic Rankine cycle, an absorption refrigeration system and a PEM to produce hydrogen. This system uses cold energy of LNG as a thermal sink. Comprehensive thermodynamic and economic analyses as well as an optimization are performed. The effects of operating parameters on thermodynamic performance and total cost rate are investigated for overall system and subsystems. The results show that the fuel mass flow rate is the dominant factor affecting the variation of energy efficiency and total cost rate. An increase in fuel mass flow rate from 4 kg s"−"1 to 10 kg s"−"1 leads to a decrease of 8.5% and an increase of 122.8% overall energy efficiency and total cost rate, respectively. Also, the largest increase in exergy efficiency occurs when gas turbine inlet temperature increases. The results of optimization showed that the highest net power output, mass flow rate of natural gas delivered to city and the flue gas temperature discharged to the environment are obtained for the exergy efficiency optimal design. - Highlights: • A novel multigeneration system is investigated and optimized thermodynamically and economically. • This system is proposed for power, cooling and hydrogen production. • Proposed system uses LNG cold energy thermal sink that can generate power after vaporization. • The effects of operating parameters on energy and exergy efficiencies and total cost rate are investigated. • An optimization is applied based on the energy, exergy and economic viewpoints.

  3. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    International Nuclear Information System (INIS)

    Björklund, Anna

    2012-01-01

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: ► LCA was explored as analytical tool in an SEA process of municipal energy planning. ► The process also integrated LCA with scenario planning and public participation. ► Benefits of using LCA were a systematic framework and wider systems perspective. ► Integration of tools required some methodological challenges to be solved. ► This proved an innovative approach to define alternatives and scope of assessment.

  4. Recovery of flue gas energy in heat-integrated gasification combined cycle (IGCC) power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2011-03-01

    Full Text Available (flue gas) stream of a heat-integrated gasification combined cycle (IGCC) design of the Elcogas plant adopted from previous studies. The underlying support for this idea was the direct relationship between efficiency of the IGCC and the boiler feedwater...

  5. A hybrid algorithm for solving the economic lot and delivery scheduling problem in the common cycle case

    DEFF Research Database (Denmark)

    Clausen, Jens; Ju, S.

    2006-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different types to a consumer in batches. The task is to determine the cycle time, i.e., the time between deliveries, which minimizes the total cost per time unit. This includes the d...

  6. Techno-economic felling cycles for selected energy plantation species in the arid areas of western Rajasthan

    Energy Technology Data Exchange (ETDEWEB)

    Kalla, J.C.; Gyan, C.; Vyas, D.L.; Gehlot, N.S.

    1978-01-01

    Analysis of data collected from research plots at Pali, Rajasthan, predicted that the maximum fuel yields per tree would be reached at rotations of 50 years for (a) Azadirachta indica (51 kg), 25 years for (b) Acacia tortilis (39 kg), 14 years for (c) Albizzia (Abizia) lebbek (15 kg) and 13 years for (d) Acacia nilotica (6 kg). The best economic rotations would be 23 years for (a) yielding 24 kg/tree, 8 years for (b) yielding 20 kg/tree and 11 years for (c) yielding 6 kg/tree. Harvesting (d) for fuel would not be economic.

  7. [Clinical outcomes and economic analysis of two ovulation induction protocols in patients undergoing repeated IVF/ICSI cycles].

    Science.gov (United States)

    Chen, Xiao; Geng, Ling; Li, Hong

    2014-04-01

    To compare the clinical outcomes and cost-effectiveness of luteal phase down-regulation with gonadotrophin-releasing hormone (GnRH) agonist protocol and GnRH antagonist protocol in patients undergoing repeated in vitro fertilization and intracytoplasmic sperm injection (IVF-ICSI) cycles. A retrospective analysis of clinical outcomes and costs was conducted among 198 patients undergoing repeated IVF-ICSI cycles, including 109 receiving luteal phase down-regulation with GnRH agonist protocol (group A) and 89 receiving GnRH antagonist protocol (group B). The numbers of oocytes retrieved and good embryos, clinical pregnancy rate, abortion rate, the live birth rate, mean total cost, and the cost-effective ratio were compared between the two groups. In patients undergoing repeated IVF-ICSI cycles, the two protocols produced no significant differences in the number of good embryos, clinical pregnancy rate, abortion rate, or twin pregnancy rate. Compared with group B, group A had better clinical outcomes though this difference was not statistically significant. The number of retrieved oocytes was significantly greater and live birth rate significantly higher in group A than in group B (9.13=4.98 vs 7.11=4.74, and 20.2% vs 9.0%, respectively). Compared with group B, group A had higher mean total cost per cycle but lower costs for each oocyte retrieved (2729.11 vs 3038.60 RMB yuan), each good embryo (8867.19 vs 9644.85 RMB yuan), each clinical pregnancy (77598.06 vs 96139.85 RMB yuan). For patients undergoing repeated IVF/ICSI cycle, luteal phase down-regulation with GnRH agonist protocol produces good clinical outcomes with also good cost-effectiveness in spite an unsatisfactory ovarian reserve.

  8. Integrating Health Economics Into the Product Development Cycle: A Case Study of Absorbable Pins for Treating Hallux Vargus

    NARCIS (Netherlands)

    Vallejo-Torres, Laura; Steuten, Lotte Maria Gertruda; Parkinson, Bonny; Girling, Alan J.; Buxton, Martin J.

    2011-01-01

    Background. The probability of reimbursement is a key factor in determining whether to proceed with or abandon a product during its development. The purpose of this article is to illustrate how the methods of iterative Bayesian economic evaluation proposed in the literature can be incorporated into

  9. Evaluation of environmental management cost estimating capabilities for the subject area ''Life-cycle economics for radioactive waste management and environmental remediation''

    International Nuclear Information System (INIS)

    Hombach, W.G.

    1995-01-01

    This paper provides a comprehensive perspective on the scope of Environmental Management (EM) activities and on the existing capability to estimate their costs. The scope is defined in terms of both activities and associated cost driving factors. The capability to estimate this scope was determined by evaluating existing cost estimating tools identified through a survey of the US Department of Energy (DOE), the US Department of Defense (DoD), the US Environmental Protection Agency, and private industry. This paper is largely based on the results of a report produced for the Office of the Secretary of Defense, US Department of Defense, entitled, Evaluation of Environmental Management Cost-Estimating Capabilities of Major Defense Acquisition Programs, March 22, 1995. The DoD sponsored report was designed to have a broad application relevant not only to DoD, but to other government agencies, and industry. In addition to DoD, it has particular application to DOE because significant portions of the analyses and data were derived from DOE environmental management databases, cost models, reports, and work breakdown structures. This paper provides the basis used and methodology employed to conduct an evaluations of selected EM cost estimating tools. The following topics are discussed: Life Cycle of EM Activities; Major Elements of EM Activities; Cost Tool Evaluation Matrix; Results of Cost Tool Evaluations; Cost Tool Development Plan

  10. Designing an ICT tool platform to support SME business model innovation: Results of a first design cycle

    NARCIS (Netherlands)

    de Reuver, G.A.; Athanasopoulou, A.; Haaker, T.I.; Roelfsema, M.; Riedle, M; Breitfuss, G.

    2016-01-01

    Business model innovation (BMI) is becoming increasingly relevant for enterprises as they are faced with profound changes like digitalization. While business model thinking in academia has advanced, practical tooling that supports business model innovation for small and medium sized enterprises

  11. Investigation of economics of back-end nuclear fuel cycle options in the Republic of Korea based on Once-through

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok-Ki; Yim, Man-Sung [Korea Advance Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The purpose of this study is to examine these questions and perform economic evaluations of various cases of Once-through back-end fuel cycles in the ROK. Therefore, the study is to support decision making in terms of how the long term spent nuclear fuel (SNF) management strategy should be developed. A spreadsheet model was developed to plan reactor construction, the interim storage and the HLW repository construction within engineered constraints, based on the estimation of the spent fuel flow and the energy supply of the nuclear power program. The model computes the back-end levelized costs for various fuel cycle choices. The scenarios assumed in the model include (1) 0 year/10year/20year of licensed operation period extension; (2) the phase-out of NPP program and the continuous use including the reunification of Korean peninsula; (3) reactor decommissioning and construction lead times - 10 years and 5 years respectively in this study; (4) geological constraints of siting for a new reactor - 38 for without the reunification and 70 for with the reunification; (5) the first initiation of reactor decommissioning and operation of HLW repository - assumed to be 2020 and 2050; and (6) capacity factor of reactor operation and the on-site wet storage pool capacity - 0.85 and 0.498 MTHM per MWe which is equivalent with APR1400. The capacity factor for PHWR reactors was assumed at 0.85 and the plan for PHWR was fixed as phase-out. The spreadsheet model conducts computation for annual expenditures of the back-end fuel cycle and calculates the levelized costs. Licensed operation period extension enhances not only economic efficiency, stable energy supply, but also reduces burden of siting for a new reactor and waste disposal. And regardless the reunification, continuous use of nuclear energy lowers the back-end fuel cycle cost. With projection that a large portion of social cost is included in the current back-end fuel cycle cost, nuclear energy likely has more competency in

  12. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review.

    Science.gov (United States)

    De Luca, Anna Irene; Iofrida, Nathalie; Leskinen, Pekka; Stillitano, Teodora; Falcone, Giacomo; Strano, Alfio; Gulisano, Giovanni

    2017-10-01

    Life cycle (LC) methodologies have attracted a great interest in agricultural sustainability assessments, even if, at the same time, they have sometimes been criticized for making unrealistic assumptions and subjective choices. To cope with these weaknesses, Multi-Criteria Decision Analysis (MCDA) and/or participatory methods can be used to balance and integrate different sustainability dimensions. The purpose of this study is to highlight how life cycle approaches were combined with MCDA and participatory methods to address agricultural sustainability in the published scientific literature. A systematic and critical review was developed, highlighting the following features: which multi-criterial and/or participatory methods have been associated with LC tools; how they have been integrated or complemented (methodological relationships); the intensity of the involvement of stakeholders (degree of participation); and which synergies have been achieved by combining the methods. The main typology of integration was represented by multi-criterial frameworks integrating LC evaluations. LC tools can provide MCDA studies with local and global information on how to reduce negative impacts and avoid burden shifts, while MCDA methods can help LC practitioners deal with subjective assumptions in an objective way, to take into consideration actors' values and to overcome trade-offs among the different dimensions of sustainability. Considerations concerning the further development of Life Cycle Sustainability Assessment (LCSA) have been identified as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of day-night cycle on distribution of food intake and economic choice among imposed food opportunities in mice.

    Science.gov (United States)

    Minaya, Dulce M; Rowland, Neil E; Robertson, Kimberly L

    2016-10-01

    We have shown previously that mice given access to four discrete feeding opportunities (FOs) per day show a characteristic sequence of sizes across ordinal FOs. The purpose of the present experiments was to determine the relative contributions of external and internal factors on the sequencing of FO size. The external factors were the light:dark Zeitgeber and the cost of food, imposed via different fixed unit prices (FUP) in a closed operant economy, and the internal factors were signals relating to energy status including time since last food and weight loss. In the first experiment, mice were given 4 FOs spaced 4-h apart, but with the timing of the FOs relative to the Zeitgeber altered by a 4-h Zeitgeber advance or delay of the cycle. Food intake, and associated body weight, declined as price increased, but the temporal order of FO size was invariant within a Zeitgeber condition. The Zeitgeber advanced group showed clear evidence of a shift in meal sequence relating to the light:dark cycle. Thus, external factors seem to be a more important determinant of total intake and sequencing than internal factors. In the second experiment, mice were given the choice between continuous costly (CC) and intermittent inexpensive (II) food. II food was available for four-15min intervals every 4-h, and the timing of the 15min intervals was varied relative to the Zeitgeber cycle. In spite of a 20-fold difference in price between CC and II food, mice took approximately equal amounts from each, and all food intake took place during the dark phase. Mice consumed II food only if it was available during the dark phase. Food intake was strongly linked to the light:dark cycle, largely independent of food cost. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Measuring Business Cycle Time.

    OpenAIRE

    Stock, James H

    1987-01-01

    The business cycle analysis of Arthur F. Burns and Wesley C. Mitchell and the National Bureau of Economic Research presumed that aggregate economic variables evolve on a time scale defined by business cycle turning points rather than by months or quarters. Do macroeconomic variables appear to evolve on an economic rather than a calendar time scale? Evidence presented here suggests that they do. However, the estimated economic time scales are only weakly related to business cycle time scales, ...

  15. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    Science.gov (United States)

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  16. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    International Nuclear Information System (INIS)

    Udomsri, Seksan; Martin, Andrew R.; Fransson, Torsten H.

    2010-01-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO 2 levels by 3% in comparison with current thermal power plants.

  17. The impact of science on economic growth and its cycles the mathematical dynamics determined by the basic macroeconomic facts

    CERN Document Server

    Aulin, Arvid

    1998-01-01

    The author shows that the enormous gap between theory and facts in modern macroeconomics can only be eliminated by nonlinear macroeconomic dynamics with the following special characteristics: First of all, only certain group-theoretical invariants generate the correct growth cycles with irregularly varying lengths, not any stochastic process as usually applied for this purpose. Furthermore, a special extended value function and generalized human capital are needed for a correct representation of scientific and technological innovation. Finally, the correct nonlinear macroeconomic dynamics are not reducible to microeconomics, for both of the above mentioned reasons.

  18. The public health impact of economic fluctuations in a Latin American country: mortality and the business cycle in Colombia in the period 1980-2010.

    Science.gov (United States)

    Arroyave, Ivan; Hessel, Philipp; Burdorf, Alex; Rodriguez-Garcia, Jesus; Cardona, Doris; Avendaño, Mauricio

    2015-05-27

    Studies in high-income countries suggest that mortality is related to economic cycles, but few studies have examined how fluctuations in the economy influence mortality in low- and middle-income countries. We exploit regional variations in gross domestic product per capita (GDPpc) over the period 1980-2010 in Colombia to examine how changes in economic output relate to adult mortality. Data on the number of annual deaths at ages 20 years and older (n = 3,506,600) from mortality registries, disaggregated by age groups, sex and region, were linked to population counts for the period 1980-2010. We used region fixed effect models to examine whether changes in regional GDPpc were associated with changes in mortality. We carried out separate analyses for the periods 1980-1995 and 2000-2010 as well as by sex, distinguishing three age groups: 20-44 (predominantly young working adults), 45-64 (middle aged working adults), and 65+ (senior, predominantly retired individuals). The association between regional economic conditions and mortality varied by period and age groups. From 1980 to 1995, increases in GDPpc were unrelated to mortality at ages 20 to 64, but they were associated with reductions in mortality for senior men. In contrast, from 2000 to 2010, changes in GDPpc were not associated with old age mortality, while an increase in GDPpc was associated with a decline in mortality at ages 20-44 years. Analyses restricted to regions with high registration coverage yielded similar albeit less precise estimates for most sub-groups. The relationship between business cycles and mortality varied by period and age in Colombia. Most notably, mortality shifted from being acyclical to being countercyclical for males aged 20-44, while it shifted from being countercyclical to being acyclical for males aged 65+.

  19. Does it matter which Life Cycle Assessment (LCA) tool you choose? - a comparative assessment of SimaPro and GaBi

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Moltesen, Andreas

    2015-01-01

    SimaPro and GaBi are the leading software tools used for life cycle assessments. Assessing product systems applying the exact same unit process foundation would be expected to yield comparable result sets with either tool. The software performances are compared based on a random sample of 100 unit...... of these differences are so large that they could influence the conclusions. For some of the 100 unit processes, six elementary flows were inventoried differently in SimaPro and GaBi, with an extreme maximum comparat