WorldWideScience

Sample records for cycle assessment environmental

  1. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  2. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  3. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  4. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  5. Comparative environmental life cycle assessment of composite materials

    International Nuclear Information System (INIS)

    De Vegt, O.M.; Haije, W.G.

    1997-12-01

    The aim of the present study is to compare and quantify the environmental impact of three rotorblades made of different materials and to establish which stage in the life cycle contributes most. The life cycle of a product can be represented by the production phase, including depletion of raw materials (mining) and production (machining) of products, the utilisation phase, including use of energy, maintenance and cleaning, and the disposal phase, including landfill, incineration, recycling, etc. The environmental impact of a product is not only determined by the materials selected but also by the function of the product itself. E.g. when natural fibres are applied in vehicles as a substitution for metals the environmental impact in the use phase will be reduced due to a lower energy consumption caused by a lower car weight. The influence on the environmental impact of the production phase must also be taken into account. The material relation between the production phase and the use phase and the disposal phase is complicated. In general the lifetime of a product use phase can be extended (positive aspect), e.g. by application of a coating onto the surface. Due to the coating the product can not easily be recycled, which is a negative aspect. The three types of composites used in the rotorblade of the wind energy converter considered in this study are: flaxfibre reinforced epoxy, carbon fibre reinforced epoxy and glassfibre reinforced polyester. The assessment is performed using the computer program Simapro 3, which is based on the Dutch CML method for the environmental life-cycle assessment of products using the Eco-Indicator 95 evaluation method. The CML method defines five phases for an LCA: goal definition and scoping; inventory; classification; impact assessment; and improvement analysis. The improvement analysis is not part of this work. Performing an LCA is a time-consuming process due to the detailed information that is required. In chapter five some

  6. ENVIRONMENTAL ASSESSMENT OF ROAD TRANSPORT IN A PASSENGER CAR USING THE LIFE CYCLE APPROACH

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2017-06-01

    Full Text Available Environmental issues are an increasingly important aspect of management in the transport sector; new methods have been developed for assessment of the environment in the transport sector using the life cycle approach. The paper presents the application of Well to Wheel (WTW and Life Cycle Assessment (LCA in the transport sector. The WTW method focuses on energy analysis and greenhouse gas emissions during the life cycle of fuels. WTW is used to support decision-making on the environmental aspects of transport, particularly with regard to fuel life cycle management, but this method omits important stages in the life cycle, particularly the ones regarding important circular economy guidelines such as reduction of natural resource consumption, impact on human health, etc. The LCA method provides a much broader approach to environmental assessment than WTW. LCA takes into consideration environmental impact in the whole life cycle of the vehicle, from the stage of production, through the period of exploitation, and finally its disposal.

  7. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Global guidance on environmental life cycle impact assessment indicators: Progress and case study

    DEFF Research Database (Denmark)

    Frischknecht, Rolf; Fantke, Peter; Tschümperlin, Laura

    2016-01-01

    Purpose The life cycle impact assessment (LCIA) guidance flagship project of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative aims at providing global guidance and building scientific consensus on environmental LCIA in...

  9. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana

    NARCIS (Netherlands)

    Agyekum, Eric Ofori; Fortuin, K.P.J.; Harst-Wintraecken, van der E.J.M.

    2017-01-01

    This case study assessed the environmental and social impact of bicycle frames made from wild Ghanaian bamboo. The environmental life cycle assessment (LCA) of the bamboo frame was compared to the LCA results of an aluminium frame and a steel frame. The results show that the overall environmental

  10. Quantitative assessment of the environmental footprint of the French nuclear fuel cycle by life cycle assessment

    International Nuclear Information System (INIS)

    Poinssot, Christophe; Bourg, Stephane; Ouvrier, Noel; Serp, Jerome

    2015-07-01

    Full text of publication follows: Nuclear energy contributes to most than 75% of the French electricity thanks to the operation of 58 generation 2 reactors located on 19 sites built from the 70's to the end of the 90's. France also developed for a long time a fully integrated nuclear industry covering the whole nuclear fuel cycle, from the ore mining to the fabrication of the fuel for the front-end, from the reprocessing up to the MOX fuel fabrication and storage facility and in the near-future geological repository for the back-end. This investment allows France to produce a low-carbon electricity with the second lowest GHG emissions intensity, in the range of 90 g CO 2 /KWh. Such a very beneficial figure is directly related to the high contribution of nuclear in the electricity mix combined with renewables energies, in particular hydro. Greenhouse gases emissions are very relevant to assess the respective influence on the global climate change, but they do not address the whole potential environmental impact of any activity. However, such a question is crucial for assessing the respective sustainability of such an activity, in particular nuclear energy which is thought to be very detrimental by a large part of the public opinion. In order to address this question, we developed a dedicated life cycle assessment (LCA) tools referred to as NELCAS, the specificity of which is to focus on the first order parameters and avoiding any 'black-box' effect which can exist in commercial LCA tool. Thanks to the recent transparency and nuclear safety law (2006), in- and out- fluxes of matter and energy for any of the fuel cycle facilities are now publicly available. We hence used this significant set of measured data to feed our model and assess the most usual environmental indicators such as land use, different types of atmospheric emissions (GHG, SOx, NOx, particles...) and aqueous release (chemical effluents, eutrophication potential,...)... We also

  11. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  12. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  13. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  14. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  15. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  16. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  17. Preliminary assessment of the environmental and health impacts of nuclear and coal fuel cycles

    International Nuclear Information System (INIS)

    Yang Yin; Chen Zhuzhou; Pan Ziqiang

    1992-01-01

    The paper reports on the environmental impacts and health effects of coal and nuclear fuel cycles in China. Data of interest for China are presented in a comparative manner; epidemiological investigations in Shanxi province indicate that the incidences of chronic pulmonary diseases and infant cogenital malformation were apparently increased over the fall-out areas of coal-fired power stations and coal mines. The authors outline the framework of a research project on environmental assessment of nuclear energy and other energy systems. The main features of the project are: environmental and health impacts of coal and nuclear fuel cycles, environmental impact assessment of coal transportation, cost accounting of nuclear and other energy sources, health risk assessment. (author). 24 refs, 4 tabs

  18. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  19. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  20. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  1. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input......A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator....

  2. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  3. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  4. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  5. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  6. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  7. Risk Assessment and Life Cycle Assessment, Environmental Strategies, Nordic Workshop, Vedbæk 1999

    DEFF Research Database (Denmark)

    Poll, Christian

    At a Nordic workshop on Product-oriented Environmental Strategies the roles of risk and hazard assessment and life cycle assessment of products in the future regulation of chemicals were discussed by participants representing administration, academia and industry from the Nordic countries....... This report compiles the papers and presentations given at the workshop. The papers present and discuss the different assessment tools and procedures - for individual chemicals through hazard and risk assessments and for products, materials and services through life-cycle assessment. The report also contains......, consultants and private enterprises to consider these well-established tools as individually necessary for the future regulation of the chemical pressure on the environment and to accept them as complementary to each other. Together with other process- or chain oriented tools like Substance or Material Flow...

  8. Potential of life cycle assessment to support environmental decision making at commercial dairy farms

    NARCIS (Netherlands)

    Meul, M.; Middelaar, van C.E.; Boer, de I.J.M.; Passel, van S.; Fremaut, D.; Haesaert, G.

    2014-01-01

    In this paper, we evaluate the potential of life cycle assessment (LCA) to support environmental decision making at commercial dairy farms. To achieve this, we follow a four-step method that allows converting environmental assessment results using LCA into case-specific advice for farmers. This is

  9. Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective is Not So Easy

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Lemming, Gitte; Hauschild, Michael Zwicky

    2013-01-01

    Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site reme...... about the environmental sustainability of remediation technologies.......Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site...

  10. Life Cycle Environmental Impact Assessment of Local Wine Production and Consumption in Texas: Using LCA to Inspire Environmental Improvements

    OpenAIRE

    Poupart, Ashley

    2017-01-01

    The future viability of wine production is directly linked to its environmental impacts and conditions in which it is required to operate. The environmental impacts related to the production of a food product are directly influenced by the amount of materials, energy, waste and the emissions the product releases throughout the products life cycle. A life cycle assessment (LCA) provides a framework that can identify a food products relative environmental impacts and provides insights into the ...

  11. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  12. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    International Nuclear Information System (INIS)

    Welz, Tobias; Hischier, Roland; Hilty, Lorenz M.

    2011-01-01

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  13. assessment of environmental impacts in comfortable furniture production process using life cycle assessment (LCA technique

    Directory of Open Access Journals (Sweden)

    hejhar abbasi

    2016-12-01

    Full Text Available Furniture industry releases annually a large amount of volatile organic compound to the environment due to the use of adhesives, textiles, paints and coating materials. There are some different methods to measure the load of pollutions and the environmental impacts. Life cycle assessment (LCA is one of the best techniques. LCA is a technique in which all environmental impacts related to a product assessed all over its life cycle, from cradle to grave, and ultimately can be used to improve the production process and to prevent unsuitable environmental impacts. In summary, it can be concluded that the use of this technique is the basis for sustainable development and improving social, economic, and environmental indices. This study focused on the collecting of a comprehensive life cycle inventory data for comfortable furniture in two different production processes (B1 and B2 located in Tehran province, and analyzed the environmental impacts during the production process as gate to gate investigation. The results revealed that emissions in production process B1 were higher than that of production process B2. The reason for this is that basic operations such as sawing and frame assembling along with final operation have been done in the same unit for case B1. Textile production and usage, and polyurethane foam were identified as the main hotspots, respectively. Moreover, the results showed that comfortable furniture production process has the highest effects on ecosystem quality, human health, and resources (fossil fuels and mines, respectively.

  14. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  15. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    Science.gov (United States)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences

  16. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Science.gov (United States)

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  18. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    Science.gov (United States)

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  19. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  20. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  1. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  2. Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment

    OpenAIRE

    Petit, Anna

    2014-01-01

    In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. Th...

  3. Combined nutritional and environmental life cycle assessment of fruits and vegetables

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Fantke, Peter; Jolliet, Olivier

    2016-01-01

    -LCA) framework that compares environmental and nutritional effects of foods in a common end -point metric, Disability Adjusted Life Years (DALY). In the assessment, environmental health impact categories include green house gases, particulate matter (PM), and pesticide residues on fruits and vegetables, while......; 35 μDALY/serving fruit benefit compared to a factor 10 lower impact. Replacing detrimental foods, such as trans-fat and red meat, with fruits or vegetables further enhances health benefit. This study illustrates the importance of considering nutritional effects in food-LCA.......Nutritional health effects from the ‘use stage’ of the life cycle of food products can be substantial, especially for fruits and vegetables. To assess potential one-serving increases in fruit and vegetable consumption in Europe, we employ the Combined Nutritional and Environmental LCA (CONE...

  4. Environmental Performance of Kettle Production: Product Life Cycle Assessment

    Science.gov (United States)

    Marcinkowski, Andrzej; Zych, Krzysztof

    2017-12-01

    The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  5. ENVIRONMENTAL PERFORMANCE OF KETTLE PRODUCTION: PRODUCT LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Andrzej MARCINKOWSKI

    2017-10-01

    Full Text Available The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach where the main function is boiling 3360 l of water during 4- year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g. The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste sce-nario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix which determined final comparison results. Basing on LCA results, some im-provements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  6. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  7. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Heller, Martin C.; Fulgoni III, Victor L.

    2016-01-01

    of less healthy foods (sugar-sweetened beverages). Further studies are needed to test whether this conclusion holds within a more comprehensive assessment of environmental and nutritional health impacts. Conclusions This case study provides the first quantitative epidemiology-based estimate......Purpose While there has been considerable effort to understand the environmental impact of a food or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). Methods We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE......-LCA) framework that evaluates and compares in parallel the environmental and nutritional effects of foods or diets. We applied this framework to assess human health impacts, expressed in Disability Adjusted Life Years (DALYs), in a proof-of conceptcase study that investigated the environmental and nutritional...

  8. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  9. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  10. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  11. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  12. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  13. Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ahmad Faiz Abd Rashid

    2017-02-01

    Full Text Available The building industry has a significant impact on the environment due to massive natural resources and energy it uses throughout its life cycle. This study presents a life cycle assessment of a semi-detached residential building in Malaysia as a case study and assesses the environmental impact under cradle-to-grave which consists of pre-use, construction, use, and end-of-life phases by using Centre of Environmental Science of Leiden University (CML 2001. Four impact categories were evaluated, namely, acidification, eutrophication, global warming potential (GWP, and ozone layer depletion (ODP. The building operation under use phase contributed the highest global warming potential and acidification with 2.41 × 103 kg CO2 eq and 1.10 × 101 kg SO2 eq, respectively. In the pre-use phase, concrete in the substructure has the most significant overall impact with cement as the primary raw material. The results showed that the residential building in Malaysia has a fairly high impact in GWP but lower in acidification and ODP compared to other studies.

  14. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA

    Directory of Open Access Journals (Sweden)

    S. Khoramdel

    2017-02-01

    Full Text Available In order to evaluate life cycle assessment (LCA for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic and tresstrial ecosystems and global warming. The results showed that the highest paddy yield was obtained 5.35 t.ha-1 in 190-200 kg N ha. The maximum aquatic eutrophication potential was computed for more than 220 kg N ha-1 with 0.79 PO4 equiv./t paddy. EcoX per one tone paddy and maximum environmental impacts was belonged to aquatic eutrophication (0.13 Eco-index per one tone paddy. It seems that system management including green manure, nitrogen fixing species and reduced tillage could be regarded to reduce problematic environmental impacts in rice production systems.

  15. Beginning LCA. A guide into environmental life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.W. [ed.; Huppes, G. [Centre of Environmental Science CLM, Leiden University, Leiden (Netherlands); Dutilh, C.E. [Unilever, Van den Bergh Netherlands, Rotterdam (Netherlands)

    1995-02-01

    The main goal of this document is to provide practical guidance for those who want to start with Life Cycle Assessment (LCA). The document has been set up in the form of modules. Module 1 provides arguments to decide whether or not LCA is the right tool to use in a particular case. In this module other ways to study interactions with the environment will be mentioned as well. Module 2 explains the process of formulating the purpose and scope of the study. The results will give a general picture of the characteristics of the LCA. The next step, which is called the inventory analysis, represents the largest amount of work and is split up into four parts, i.e. Modules 3,4,5, and 6. Module 3 gives guidelines and detailed examples on how to construct a flowchart of the study. Module 5 describes how to collect the required data and Module 4 how to define the system boundaries. Finally, the processing of data is described in Module 6. The result of the inventory is a list of emissions and extractions for all processes involved in manufacturing and required for the functioning of a product, service or activity during the entire life cycle. Sometimes results are so clear that you may decide to stop after the inventory stage. Usually however, it is useful to carry out the impact assessment, which is split up into two parts (Modules 7 and 8). Instructions are given on how to translate the list of environmental interventions of the entire life cycle of the product into a table with scores on environmental themes: the classification/characterization. A basic substance list that might be used is added (Module 7). Also a description showing how to evaluate the results of the classification/characterization is given, so that conclusions may be drawn on the information that has been generated (Module 8). Module 9, the last module, describes how to complete the LCA. It provides suggestions on how to present the results and indications about the improvement analysis.

  16. ENVIRONMENTAL ASSESSMENT METHODOLOGY FOR THE NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D. L.; Soldat, J. K.; McNeese, J. A.; Watson, E. C.

    1977-07-01

    This report describes the methodology for determining where environmental control technology is required for the nuclear fuel cycle. The methodology addresses routine emission of chemical and radioactive effluents, and applies to mining, milling, conversion, enrichment, fuel fabrication, reactors (LWR and BWR) and fuel reprocessing. Chemical and radioactive effluents are evaluated independently. Radioactive effluents are evaluated on the basis of maximum exposed individual dose and population dose calculations for a 1-year emission period and a 50-year commitment. Sources of radionuclides for each facility are then listed according to their relative contribution to the total calculated dose. Effluent, ambient and toxicology standards are used to evaluate the effect of chemical effluents. First, each chemical and source configuration is determined. Sources are tagged if they exceed existirrg standards. The combined effect of all chemicals is assessed for each facility. If the additive effects are unacceptable, then additional control technology is recommended. Finally, sources and their chemicals at each facility are ranked according to their relative contribution to the ambient pollution level. This ranking identifies those sources most in need of environmental control.

  17. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  18. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  19. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    Science.gov (United States)

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  20. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  1. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  2. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  3. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.

    2010-01-01

    for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO......The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...

  4. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  5. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  6. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  7. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  8. Environmental assessment of contaminated site remediation in a life cycle perspective

    DEFF Research Database (Denmark)

    Lemming, Gitte

    is an environmental assessment tool that compiles a very wide array of environmental exchanges (emissions to air, water, and soil, and resource consumption) associated with the life cycle of a product or service .and translates them to impacts (global warming, acidification, human toxicity, ecotoxicity, etc...... fate and transport models. This made it possible to account for important processes, such as the formation of chlorinated degradation products and to include the site-specific exposure of humans via ingestion of groundwater used for drinking water. The inclusion of primary impacts in the environmental......-cleaning and industries. Chloroethenes are dense non-aqueous phase liquids (DNAPLs) with high density and viscosity and low solubility in water. These characteristics allow a spill to migrate deep into the subsurface, where it can act as long-term source of dissolved-phase groundwater contamination. Due to the longevity...

  9. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  10. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  11. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  12. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  13. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  14. Printed and tablet e-paper newspaper from an environmental perspective - A screening life cycle assessment

    International Nuclear Information System (INIS)

    Moberg, Asa; Johansson, Martin; Finnveden, Goeran; Jonsson, Alex

    2010-01-01

    Viable alternatives to conventional newspapers, such as electronic papers, e-papers or e-readers, are intended to have many of the qualities of paper, such as reading using reflective light, high resolution, 180 deg. viewing angle. It has been suggested that the environmental impact of e-paper can be lower than for printed and internet-based newspapers. However, in order to find the facts of the matter, a thorough life cycle perspective covering raw material acquisition, production, use and disposal should preferably be used to study the environmental performance of the different products. A screening life cycle assessment was performed to describe the potential environmental impacts of two product systems; printed on paper and tablet e-paper newspapers. Results show that the most significant phase of the life cycle for both product systems was the production of substrate or platform. Accordingly, key aspects that may affect the resulting environmental performance of newspaper product systems were for the printed newspaper number of readers per copy and number of pages per issue and for the tablet e-paper newspaper lifetime and multi-use of the device. The printed newspaper in general had a higher energy use, higher emissions of gases contributing to climate change and several other impact categories than the tablet e-paper newspaper. It was concluded that tablet e-paper has the potential to decrease the environmental impact of newspaper consumption. However, further studies regarding the environmental impact of production and waste management of electronic devices and internet use, as well as more comprehensive assessment of toxicological impacts are needed. As the data on the electronic devices becomes more comprehensive this may prove to be a major limitation of electronic newspaper systems. Developers are suggested to strive towards minimisation of toxic and rare substances in production.

  15. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  16. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Life cycle assessment of sisal fibre – Exploring how local practices can influence environmental performance

    NARCIS (Netherlands)

    Broeren, M.L.M.; Dellaert, S.N.C.; Cok, B.; Patel, M.K.; Worrell, E.; Shen, L.

    2017-01-01

    Sisal fibre can potentially replace glass fibre in natural fibre composites. This study focuses on the environmental performance of sisal fibre production by quantifying the greenhouse gas (GHG) emissions and energy use of producing sisal fibre in Tanzania and Brazil using life cycle assessment

  18. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  19. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    International Nuclear Information System (INIS)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier

    2013-01-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  20. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier [MINES ParisTech, Sophia Antipolis (France). Observation, Impacts, Energy Center

    2013-07-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  1. Environmental Life Cycle Assessment of long-term organic rice production in a Subtropical area of China

    DEFF Research Database (Denmark)

    Xueqing, He; Qiao, Yuhui; Liang, Long

    2018-01-01

    a considerable environmental impact and changing from conventional to organic rice cultivation might therefore have a potentially great impact. Meanwhile, it takes time for the organic farming systems to reach a new steady state after conversion to organic. Thus, the environmental profile of the organic products...... will change over time and it is therefore important to examine whether the difference to conventional will be reduced (and disappear) or be increased over time. The aim of the present study was therefore to assess the environmental impact of organic rice production 5 (OR5), 10 (OR10) and 15 (OR15) years since...... conversion and compare it to conventional rice (CR) in subtropical China. The life cycle assessment (LCA) method was used to assess environmental impact of rice production systems with regard to nine environmental impact categories: Non-renewable Energy Depletion (NED), Water Depletion (WD), Land Occupation...

  2. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  3. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  4. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit.

    Science.gov (United States)

    Vanwolleghem, Griet; Van Dyck, Delfien; Ducheyne, Fabian; De Bourdeaudhuij, Ilse; Cardon, Greet

    2014-06-10

    Google Street View provides a valuable and efficient alternative to observe the physical environment compared to on-site fieldwork. However, studies on the use, reliability and validity of Google Street View in a cycling-to-school context are lacking. We aimed to study the intra-, inter-rater reliability and criterion validity of EGA-Cycling (Environmental Google Street View Based Audit - Cycling to school), a newly developed audit using Google Street View to assess the physical environment along cycling routes to school. Parents (n = 52) of 11-to-12-year old Flemish children, who mostly cycled to school, completed a questionnaire and identified their child's cycling route to school on a street map. Fifty cycling routes of 11-to-12-year olds were identified and physical environmental characteristics along the identified routes were rated with EGA-Cycling (5 subscales; 37 items), based on Google Street View. To assess reliability, two researchers performed the audit. Criterion validity of the audit was examined by comparing the ratings based on Google Street View with ratings through on-site assessments. Intra-rater reliability was high (kappa range 0.47-1.00). Large variations in the inter-rater reliability (kappa range -0.03-1.00) and criterion validity scores (kappa range -0.06-1.00) were reported, with acceptable inter-rater reliability values for 43% of all items and acceptable criterion validity for 54% of all items. EGA-Cycling can be used to assess physical environmental characteristics along cycling routes to school. However, to assess the micro-environment specifically related to cycling, on-site assessments have to be added.

  5. Assessment of nuclear fuel cycles with respect to assurance of energy supply; economic aspects; environmental aspects; non-proliferation

    International Nuclear Information System (INIS)

    1979-01-01

    This paper, which was presented to all INFCE Working Groups gives a broad qualitative assessment in tabular form of the following five fuel cycles: LWR once-through, LWR with thermal recycle, HWR once-through, HTR with uranium recycle, fast breeder reactor. The assessment is given of the assurance of supply aspects, the macro- and micro-economic aspects, the environmental aspects, and the non-proliferation, including safeguards, aspects of each fuel cycle

  6. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  7. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  8. Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations

    Science.gov (United States)

    Richard Bergman; Elaine Oneil; Maureen Puettmann; Ivan Eastin; Indroneil Ganguly

    2014-01-01

    The marketplace has an increasing desire for credible and transparent product eco-labels based on life-cycle assessment (LCA) data, especially involving international trade. Over the past several years, stakeholders in the U.S. wood products industry have developed many such “eco-labels” under the ISO standard of LCA-based environmental product declarations (EPDs). The...

  9. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  10. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  11. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  12. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  13. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    OpenAIRE

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  14. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  15. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  16. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

    Science.gov (United States)

    Heller, Martin C; Keoleian, Gregory A; Willett, Walter C

    2013-11-19

    Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.

  18. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  19. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  20. A study on the environmental impact analysis with life cycle assessment of O and M in NPP

    International Nuclear Information System (INIS)

    Jeong, H. S.; Kim, S. S.; Yoon, S. W.; Yang, M. H.; Kim, H. Z.

    2002-01-01

    In the modern times, characterized by mass-consumption, technologies have to evaluated not only in terms of usefulness but also in the aspects of resources exhaustion and environmental destruction. This study quantified environmental burdens from the stage of operation and maintenance in selected nuclear power plants. Four factors are evaluated, such as green house gas, hydrosphere, atmosphere and resources exhaustion for the selected PWR and PHWR with life cycle assessment(LCA)

  1. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  2. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique

  3. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique when it comes to

  4. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  5. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  6. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  7. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    International Nuclear Information System (INIS)

    Björklund, Anna

    2012-01-01

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: ► LCA was explored as analytical tool in an SEA process of municipal energy planning. ► The process also integrated LCA with scenario planning and public participation. ► Benefits of using LCA were a systematic framework and wider systems perspective. ► Integration of tools required some methodological challenges to be solved. ► This proved an innovative approach to define alternatives and scope of assessment.

  8. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  9. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  10. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-02-15

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  11. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  12. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-11-01

    Full Text Available This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  13. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  14. Life cycle assessment of supercharger for automotive use. Small displacement, high charging pressure engine and environmental load; Jidosha tosaiyo supercharger no life cycle assessment (LCA hyoka). Shohaikiryo kokakyu engine no kankyo eno yasashisa

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, S; Sonoya, T; Hara, M [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-10-01

    In resent years environmental conservation requires low fuel consumption and low emission engine. And environmental load of every car life stage (production, using, abolition) is considered. Life Cycle Assessment of supercharging small displacement engine is reported, compared with natural aspirated engine as same maximum torque and maximum power as supercharging engine. 6 refs., 8 figs., 3 tabs.

  15. SOFIAS – Software for life-cycle assessment and environmental rating of buildings

    Directory of Open Access Journals (Sweden)

    Oregi Isasi, X.

    2016-06-01

    Full Text Available This paper describes the development process of a new software tool, called SOFIAS (Software for a Sustainable Architecture, funded by the Spanish Ministry of Economy and Competitivenes. Following CEN/TC 350 standard on environmental assessment of buildings, the tool aims at assisting building professionals on reducing the life-cycle environmental impact through the design of new buildings and the refurbishment of existing ones. In addition, SOFIAS provides a rating system based on the Life Cycle Assessment (LCA methodology. This paper explains the innovative aspects of this software, the working methodology and the different type of results that can be obtained using SOFIAS.Este artículo describe el proceso de desarrollo de la nueva herramienta informática SOFIAS (Software de Funciones Integradas para una Arquitectura Sostenible, financiado por el Ministerio de Economía y Competitividad del Gobierno de España. En base al estandar de la evaluación ambiental de los edificios definido por el CEN/TC 350, esta nueva herramienta tiene como objetivo ayudar a los técnicos de la construcción en reducir el impacto ambiental durante el ciclo de vida a través del diseño optimizado de nuevos edificios o edificios rehabilitados. De forma paralela, SOFIAS proporciona un nuevo sistema de calificación basado en la metodología del Análisis de Ciclo de Vida (ACV. Este artículo expone los aspectos innovadores de esta herramienta informática, la metodología de trabajo y los diferentes tipos de resultados que se pueden obtener tras su aplicación.

  16. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  17. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  18. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  19. Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2011-01-01

    and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise...... quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable...... with composting (for “organics”) and incineration (for “recyclable paper”). This however requires high degree of control over gas and leachate emissions, high gas collection efficiency and extensive gas utilization at the landfill. For the other waste fractions, recycling and incineration are favourable, although...

  20. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  1. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives.

    Science.gov (United States)

    Vozzola, Eric; Overcash, Michael; Griffing, Evan

    2018-04-11

    Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Life Cycle Assessment Of Hydrogen Production From Natural Gas Reforming Process

    International Nuclear Information System (INIS)

    Ozturk, M.

    2010-01-01

    Society has become concerned about the issues of natural resource depletion and environmental degradation. The environmental performance of products or processes has become a key issue, which is why ways to minimize the effects on the environment are investigated. The most effective tool for this purpose is called life cycle assessment (LCA). This concept considers the entire life cycle of product or process. The life cycle of a product begins with the extraction of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA makes it possible to estimate the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses. Therefore, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product selection. In the case of this study, life cycle assessments of hydrogen production via natural gas reforming process are investigated for environmental affect.

  3. Life cycle assessment perspectives on delivering an infant in the US

    International Nuclear Information System (INIS)

    Campion, Nicole; Thiel, Cassandra L.; DeBlois, Justin; Woods, Noe C.; Landis, Amy E.; Bilec, Melissa M.

    2012-01-01

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. - Highlights: ► Life cycle assessment helps identify the environmental impacts of medical procedures. ► Disposable custom packs represent a large portion of environmental impacts of births. ► Electricity loading contributes to global warming potential and respiratory effects. ► Impact improvements should focus on heating, ventilation, and air conditioning and disposable custom packs.

  4. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  5. Evaluating Environmental Governance along Cross-Border Electricity Supply Chains with Policy-Informed Life Cycle Assessment: The California-Mexico Energy Exchange.

    Science.gov (United States)

    Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B

    2018-05-01

    This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.

  6. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    Science.gov (United States)

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  7. Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Menikpura, S.N.M.; Bonnet, Sebastien; Gheewala, Shabbir H. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Joint Graduate School of Energy and Environment; Ministry of Education (Thailand). Center for Energy Technology and Environment

    2010-07-01

    At present, many Asian developing countries are practicing poor Municipal Solid Waste (MSW) management methods such as open dumping and non-engineered landfilling. This creates severe burdens on the environment and threat to human health. The quantification of the environmental impacts resulting from such poor MSW management practices is necessary to serve as a baseline against which alternative treatment technology options can be assessed for implementation of more environmentally sustainable MSW management systems that are adapted to local situation. In this study, existing MSW management systems in Ski Lanka and India were evaluated in order to assess the severity of their environmental impacts with focus on global warming potential and abiotic resource depletion. Life Cycle Assessment methodology was followed to perform this investigation. Results from this study reveal that the existing MSW management methods used in both countries cause severe environmental damages. However, the situation in India is slightly better as compared to Sri Lanka since 24% of its MSW is being composted. The implementation of landfill with landfill gas recovery for energy was identified as an important initial step to overcome the existing environmental impacts assessed. The results obtained revealed that implementation of such systems would help substantially to reduce global warming potential and abiotic resources depletion. (orig.)

  8. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  9. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    Science.gov (United States)

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  11. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  12. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  13. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  14. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  15. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  16. A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Applying exergy, environment and sustainability analyses to the three (novel M-Cycle based) air coolers. ► Assessing energy and exergy efficiencies, environmental impact and sustainability. ► Proposing System II (using PV-based electricity) as the most environmentally friendly air cooler. ► Proposing System III (using coal-based electricity) as the most efficient air cooler. - Abstract: In this study, three various novel air coolers based on M-Cycle are evaluated using energy and exergy analyses based efficiency assessments along with environmental impact and sustainability parameters. The M-Cycle systems are considered to cool a building room air while their inlet air parameters are same, but outlet cooled air parameters are different. Systems I and III draw electricity directly taken from an electric grid in the building while System II, which is stand alone system, produces and draws electricity from its solar PV panels. In the energy analysis, wet bulb effectiveness, cooling capacity, Coefficient of Performance (energetic COP) and Primary Energy Ratio (PER) are found. In the exergy analysis, exergy input and output rates, exergy loss rate, exergy destruction rate, Exergetic Coefficient of Performance (COP ex ), Primary Exergy Ratio (PE x R) and exergy efficiency are obtained for six different dead state temperatures changing between 10 °C and 35 °C. Also, sustainability assessments of the systems are obtained using sustainability index (SI) tool for these various dead state temperatures. Finally, environmental assessments of the systems are calculated from their greenhouse gas (GHG) emissions (gCO 2 /kW h) due to their electricity consumptions. Maximum exergy efficiencies and sustainability assessments are found to be 35.13% and 1.5415 for System III and 34.94% and 1.5372 for System II, respectively. GHG emissions of the systems are calculated to be 2119.68 gCO 2 /day, 153.6 gCO 2 /day and 3840 gCO 2 /day for Systems I, II and III

  17. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  18. Environmental profile evaluations of piezoelectric polymers using life cycle assessment

    Science.gov (United States)

    Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace

    2018-05-01

    Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.

  19. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    International Nuclear Information System (INIS)

    Kim, Kyong Ju; Yun, Won Gun; Cho, Namho; Ha, Jikwang

    2017-01-01

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  20. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr; Ha, Jikwang, E-mail: wlrhkd29@gmail.com

    2017-05-15

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  1. Life cycle assessment perspectives on delivering an infant in the US

    Energy Technology Data Exchange (ETDEWEB)

    Campion, Nicole [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); Thiel, Cassandra L., E-mail: clt31@pitt.edu [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); DeBlois, Justin [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States); Woods, Noe C. [Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15235 (United States); Landis, Amy E. [Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306 (United States); Bilec, Melissa M. [University of Pittsburgh, 949 Benedum Hall, Pittsburgh, PA 15261 (United States)

    2012-05-15

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. - Highlights: Black-Right-Pointing-Pointer Life cycle assessment helps identify the environmental impacts of medical procedures. Black-Right-Pointing-Pointer Disposable custom packs represent a large portion of environmental impacts of births. Black-Right-Pointing-Pointer Electricity loading contributes to global warming potential and respiratory effects. Black-Right-Pointing-Pointer Impact improvements should focus on heating, ventilation, and air conditioning and disposable custom packs.

  2. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  3. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    1996-01-01

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  4. Life Cycle Assessment of Polymers in Qatar

    OpenAIRE

    ÖZERKAN, Nesibe Gözde; ADEED, Mariam AIMa’; KAHRAMAN, Ramazan

    2011-01-01

    Life Cycle Assessment (LCA) is gaining wider acceptance as a method that evaluates the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and assesses the impact of those energy and material used and released to the environment. It is also considered as one of the best environmental management tools that can be used to compare alternative eco-performances of recycling or disposal...

  5. Environmental sustainability assessments of pharmaceuticals: an emerging need for simplification in life cycle assessments.

    Science.gov (United States)

    De Soete, Wouter; Debaveye, Sam; De Meester, Steven; Van der Vorst, Geert; Aelterman, Wim; Heirman, Bert; Cappuyns, Philippe; Dewulf, Jo

    2014-10-21

    The pharmaceutical and fine chemical industries are eager to strive toward innovative products and technologies. This study first derives hotspots in resource consumption of 2839 Basic Operations in 40 Active Pharmaceutical Ingredient synthesis steps through Exergetic Life Cycle Assessment (ELCA). Second, since companies are increasingly obliged to quantify the environmental sustainability of their products, two alternative ways of simplifying (E)LCA are discussed. The usage of averaged product group values (R(2) = 3.40 × 10(-30)) is compared with multiple linear regression models (R(2) = 8.66 × 10(-01)) in order to estimate resource consumption of synthesis steps. An optimal set of predictor variables is postulated to balance model complexity and embedded information with usability and capability of merging models with existing Enterprise Resource Planning (ERP) data systems. The amount of organic solvents used, molar efficiency, and duration of a synthesis step were shown to be the most significant predictor variables. Including additional predictor variables did not contribute to the predictive power and eventually weakens the model interpretation. Ideally, an organization should be able to derive its environmental impact from readily available ERP data, linking supply chains back to the cradle of resource extraction, excluding the need for an approximation with product group averages.

  6. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework

    International Nuclear Information System (INIS)

    Bauer, Christian; Hofer, Johannes; Althaus, Hans-Jörg; Del Duce, Andrea; Simons, Andrew

    2015-01-01

    Highlights: • We perform Life Cycle Assessment (LCA) of current and future passenger vehicles. • We include gasoline, diesel and natural gas as well as battery and fuel cell cars. • An integrated vehicle simulation framework guarantees consistency. • Only electric cars with “clean” electricity and H_2 allow for pollution mitigation. • Complete LCA is mandatory for environmental evaluation of vehicle technologies. - Abstract: This paper contains an evaluation of the environmental performance of a comprehensive set of current and future mid-size passenger vehicles. We present a comparative Life Cycle Assessment (LCA) based on a novel integrated vehicle simulation framework, which allows for consistency in vehicle parameter settings and consideration of future technological progress. Conventional and hybrid gasoline, diesel and natural gas cars as well as battery and fuel cell electric vehicles (BEV and FCV) are analyzed, taking into account electricity and hydrogen production chains from fossil, nuclear and renewable energy resources. Our results show that a substantial mitigation of climate change can be obtained with electric passenger vehicles, provided that non-fossil energy resources are used for electricity and hydrogen production. However, in terms of other environmental burdens such as acidification, particulate matter formation, and toxicity, BEV may in some cases and FCV are likely to perform worse than modern fossil fueled cars as a consequence of emissions along vehicle and fuel production chains. Therefore, the electrification of road transportation should be accompanied by an integration of life cycle management in vehicle manufacturing chains as well as energy and transport policies in order to counter potential environmental drawbacks.

  7. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  8. Life cycle assessment of energy products: environmental impact assessment of biofuels; Ecobilan d'agents energetiques. Evaluation ecologique de biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  9. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  10. Application of a life cycle assessment to compare environmental performance in coal mine tailings management.

    Science.gov (United States)

    Adiansyah, Joni Safaat; Haque, Nawshad; Rosano, Michele; Biswas, Wahidul

    2017-09-01

    This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and variations of OPT 1 using combinations of technology improvement and renewable energy sources (OPT 1A-D). Electrical energy was found to contribute more than 90% of the environmental impacts. The magnitude of land-use impacts associated with OPT 3 (thickened tailings) were 2.3 and 1.55 times higher than OPT 1 (tailings cake) and OPT 2 (tailings paste) respectively, while OPT 1B (tailings belt filter press with technology improvement and solar energy) and 1D (tailings belt press filter with technology improvement and wind energy) had the lowest ratio of environmental impact to land-use. Further analysis of an economic cost model and reuse opportunities is required to aid decision making on sustainable tailings management and industrial symbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  12. Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda

    NARCIS (Netherlands)

    Bosma, R.H.; Pham Thi Ahn,; Potting, J.

    2011-01-01

    Purpose Intensive striped catfish production in the Mekong Delta has, in recent years, raised environmental concerns. We conducted a stakeholder-based screening life cycle assessment (LCA) of the intensive farming system to determine the critical environmental impact and their causative processes in

  13. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    Science.gov (United States)

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  14. Influence of service life on Life Cycle Assessments

    NARCIS (Netherlands)

    van Nunen, H.; Hendriks, N.A.; Erkelens, P.A.

    2003-01-01

    Environmental assessment is part of present decision making. But, because of difficulties the assessments are not as profound as could be. Life Cycle Assessment (LCA) is a cradle-to-grave approach and consequently a time factor is embedded. Until now this time factor is fixed and calculations are

  15. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - a life cycle assessment

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used...... on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry...... separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house...

  16. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  17. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  18. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  19. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  20. Using Life Cycle Assessment to identify potential environmental impacts of an agrifood sector: Application to the PDO Beaujolais and Burgundia wine sector

    Directory of Open Access Journals (Sweden)

    Penavayre Sophie

    2016-01-01

    Full Text Available The environmental impacts of the production system of emblematic French product under official quality marks was investigated using the Life Cycle Assessment (LCA methodology. The study looks at the PDO Beaujolais and Burgundy sector from a broad perspective, i.e. encompassing all steps linked with the products themselves but also complementary activities that belong to this wine sector. To build the Life Cycle Inventory (LCI, a methodology deriving from both product and organizational LCA was developed and applied. The LCI was built using a bottom-up approach. Inventories were first built for a sample of 17 representative companies. Then, these inventories were scaled-up to complete the global LCI at the agrifood sector level. Potential environmental impacts were assessed for 8 indicators. The LCA results show potential environmental impacts for each life cycle step: grape production, wine making and aging, packaging, distribution and activity of stakeholders belonging to the “close environment”. It provided two main outcomes: (i a methodology for the construction of an LCI adapted to the perimeter of an agrifood sector and composed by high quality data; and (ii the identification of potential environmental impacts of the studied agrifood sector, providing assistance for the definition of their strategic orientations for the future.

  1. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  2. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  3. Life Cycle Assessment of fresh dairy packaging at ELOPAK

    OpenAIRE

    Ruttenborg, Vegard

    2017-01-01

    Nearly all food and drink products require some packaging, and the impact from production and consumption is causing a strain on the environment. To counteract the bad effects, business is emphasizing the environmental performance of products and therefore utilising Life Cycle Assessment as a tool to quantify the environmental impacts from a products life cycle. Elopak, which is an International supplier of paper-based packaging for liquid food, is a such company. This thesis i...

  4. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Renzulli, Pietro A.; Bacenetti, Jacopo; Benedetto, Graziella

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...... their widespread use and from their particular nature. It is thus important for tools such as life cycle assessment (LCA) to be tailored to such cereal systems in order to be used as a means of identifying the negative environmental effects of cereal products and highlighting possible pathways to overall...

  5. Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People

    Directory of Open Access Journals (Sweden)

    Anna Lewandowska

    2017-07-01

    Full Text Available Sustainable production and consumption patterns require a change in approach at the early conceptual stages, i.e., when planning and designing products and services. This article presents an example of sustainable kitchen design aimed at the needs of seniors and people with physical disabilities, which takes into account social, economic, and environmental aspects. The interdisciplinary project team used a variety of traditional design methods such as the identification of requirements using QFD (Quality Function Deployment and FMEA (Failure Mode Effects Analysis, the development and verification of the technical concepts of the designed objects and their use, the development of construction and technological documentation, assembly drawings of the product architecture and its parts, function cost analysis, virtual and real prototyping, and tools based on the concept of a life cycle such as environmental life cycle assessment (LCA and life cycle costing (LCC. The analysis of the design solutions from the point of view of several criteria and several life cycle stages shows the complexity of the decision-making process and the difficulties in selecting a clearly favourable solution. Environmentally preferred materials may be difficult for users to accept due to their costs. On the other hand, materials that have a high environmental impact at the production stage may show great potential for final disposal.

  6. PRINCIPLES OF ENVIRONMENTAL ASSESSMENT IN THE LIFECYCLE OF PRODUCTS

    Directory of Open Access Journals (Sweden)

    Joanna Kulczycka

    2017-02-01

    Full Text Available One of the aims of the European Commission (EC activities is to introduce uniform rules for the environmental performance assessment based on the life cycle assessment method (LCA, which can be widely used e.g. in eco-labeling, assessment of goods, services, technology, etc. Therefore, from 1 November 2013 the European Commission implemented a pilot phase of the project on developing common methods for measuring the environmental performance of the product and organisation, aims to develop guidance documents in this field. The pilot phase includes development of the Category Rules relating to the calculation, verification and communication for environmental footprint of the 25 categories of products and two organizations. Therefore, the article presents the principle of environmental performance based on life cycle assessment in relation to the objectives of the proposed methodology of environmental footprint.

  7. Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate

    International Nuclear Information System (INIS)

    Wang, Zhiwei; Li, Zaifeng; Lei, Tingzhou; Yang, Miao; Qi, Tian; Lin, Lu; Xin, Xiaofei; Ajayebi, Atta; Yang, Yantao; He, Xiaofeng; Yan, Xiaoyu

    2016-01-01

    Highlights: • The first LCA of cornstalk-based ethyl levulinate. • Life cycle energy consumption and environmental emissions were evaluated. • Detailed foreground data from a demonstration project in China was used. • Criteria emissions in the combustion stage were based on engine tests. • Sensitivity analysis was performed based on different cornstalk prices. - Abstract: This study analysed the sustainability of fuel-ethyl levulinate (EL) production along with furfural, as a by-product, from cornstalk in China. A life cycle assessment (LCA) was conducted using the SimaPro software to evaluate the energy consumption (EC), greenhouse gas (GHG) and criteria emissions, from cornstalk growth to EL utilisation. The total life cycle EC was found to be 4.54 MJ/MJ EL, of which 94.7% was biomass energy. EC in the EL production stage was the highest, accounting for 96.8% of total EC. Fossil EC in this stage was estimated to be 0.095 MJ/MJ, which also represents the highest fossil EC throughout the life cycle (39.5% of the total). The ratio of biomass to fossil EC over the life cycle was 17.9, indicating good utilisation of renewable energy in cornstalk-based EL production. The net life cycle GHG emissions were 96.6 g CO_2-eq/MJ. The EL production stage demonstrated the highest GHG emissions, representing 53.4% of the total positive amount. Criteria emissions of carbon monoxide (CO) and particulates ⩽10 μm (PM10) showed negative values, of −3.15 and −0.72 g/MJ, respectively. Nitrogen oxides (NO_x) and sulphur dioxide (SO_2) emissions showed positive values of 0.33 and 0.28 g/MJ, respectively, mainly arising from the EL production stage. According to the sensitivity analysis, increasing or removing the cornstalk revenue in the LCA leads to an increase or decrease in the EC and environmental emissions while burning cornstalk directly in the field results in large increases in emissions of NMVOC, CO, NO_x and PM10 but decreases in fossil EC, and SO_2 and GHG

  8. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  9. Life Cycle Impact Assessment in the Arctic: Challenges and Research Needs

    Directory of Open Access Journals (Sweden)

    Johan Berg Pettersen

    2017-09-01

    Full Text Available Life cycle assessment (LCA is increasingly used for environmental assessment of products and production processes to support environmental decision-making both worldwide and in the Arctic. However, there are several weaknesses in the impact assessment methodology in LCA, e.g., related to uncertainties of impact assessment results, absence of spatial differentiation in characterization modeling, and gaps in the coverage of impact pathways of different “archetypal” environments. Searching for a new resource base and areas for operation, marine and marine-based industries are continuously moving north, which underlines the need for better life cycle impact assessment in the Arctic, particularly to aid in industrial environmental management systems and stakeholder communications. This paper aims to investigate gaps and challenges in the application of the currently available impact assessment methods in the Arctic context. A simplified Arctic mining LCA case study was carried out to demonstrate the relevance of Arctic emissions at the midpoint and endpoint levels, as well as possible influences of the Arctic context on the impact assessment results. Results of this study showed that significant research gaps remain in Arctic-dependent life cycle impact assessment, particularly on: (i the possible influences of the Arctic-specific features on characterization factors for impact assessment (such as seasonality, cold climate, precipitation, and marine dependence; and (ii the coverage of impact pathways, especially on the under-addressed marine impacts and marine/near-shore dispersion processes. Addressing those identified research gaps and demand for future Arctic life cycle impact assessment could increase the credibility of LCA as an environmental decision-making support tool for Arctic industries and better support sustainable Arctic development.

  10. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  11. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    International Nuclear Information System (INIS)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio

    2017-01-01

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  12. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  13. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    OpenAIRE

    Portha J.-F.; Jaubert J.-N.; Louret S.; Pons M.-N.

    2010-01-01

    Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA) is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects du...

  14. FRG paper on assessment of fuel cycles

    International Nuclear Information System (INIS)

    1979-01-01

    The paper deals with the assessment of the nuclear fuel cycle under different aspects: Assured energy supply, economy, environmental aspects, and non-proliferation philosophy. The results of an assessment of nuclear fuel variants along these lines for several types of commercial reactors (light-water reactors, heavy-water reactors, high-temperature reactors, and fast breeders) are presented in tables

  15. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  16. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  17. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    International Nuclear Information System (INIS)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C.

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg −1 wet waste (ww) for the non-toxic categories and −0.9 to 28 mPE Mg −1 ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

  18. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Houshyar, E.

    2017-07-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  19. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    International Nuclear Information System (INIS)

    Houshyar, E.

    2017-01-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  20. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison...... will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  1. Life cycle assessment(Lca) of the power generation system for the establishment of environmental management system in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.

    2005-01-01

    The development of electricity technology from the environmental aspect has become the key factor for competitiveness, i.e., environmental friendliness is one of the most important considerations for technology development. Under the monopolised electric industry of the past, there was little motivation for individual companies to actually manage their company. However, because of the increasing demand for energy and the concerns for the environment, energy policies are shifting towards a sustainable development, which considers both the economics and environmental protection. According to the paradigm shift of the energy policy, it is necessary to compare two major electricity sources from the view of environmental management issues. It is effective with the common dimensionless unit concerning the various environmental categories including the radiological and non-radiological points of view, which can be realized by the new environmental impact assessment methodology such as the life cycle assessment (LCA). This study aims at a comparison of the environmental impacts of the nuclear and coal power generation systems using the LCA methodology. These results are very preliminary ones, however, this study will be helpful in making a decision on a long term electricity plan and the energy mix optimization when considering the environmental aspect in Korea and also the power generation companies could enhance their images by showing off their willingness to improve the environmental quality. (orig.)

  2. Methods for global sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.

    2017-01-01

    Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to

  3. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  4. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  5. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings

    International Nuclear Information System (INIS)

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-01-01

    Highlights: • A lifecycle optimization model for distributed energy systems is developed. • Model estimates costs and environmental impacts of meeting the building energy demand. • Design and operating strategies to reduce costs and environmental impacts are discussed. • Pareto frontiers of costs vis-à-vis environmental impacts are presented. • Distributed generation can reduce the environmental impacts of the building sector. - Abstract: Distributed generation, namely cogeneration and solar technologies, is expected to play an important role in the future energy supply mix in buildings. This calls for a methodological framework to assess the economic and environmental performance of the building sector when such technologies are employed. A life-cycle model has been developed, combining distributed generation and conventional sources to calculate the cost and environmental impacts of meeting the building energy demand over a defined planning period. Three type of cogeneration technologies, solar photovoltaic and thermal, as well as conventional boilers along with the Portuguese electricity generation mix comprise the energy systems modeled. Pareto optimal frontiers are derived, showing the trade-offs between different types of impacts (non-renewable cumulative energy demand, greenhouse gas emissions, acidification, eutrophication) and cost to meet the energy demand of a commercial building. Our analysis shows that according to the objective to employ distributed generation (reducing cost or environmental impacts), a specific design and operational strategy for the energy systems shall be adopted. The strategies to minimize each type of impact and the associated cost trade-offs by exploring the solutions located on the Pareto optimal frontiers are discussed

  6. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  7. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...

  8. Life cycle assessment of offshore and onshore sited wind farms

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report makes up the final reporting for the project 'Life cycle assessment (LCA) of turbines Analysis of possibilities of product directed environmental optimisation'. The purpose of the project is to carry through a life cycle assessment of an offshore wind farm and an onshore wind farm, respectively, as a basis for assessment of environmental improvement possibilities for wind farms through their life cycles. Likewise, the results are used to elaborate an environmental declaration of contents for power delivered to the grid from both types of wind farms. The project states the environmental impact for electricity produced at Horns Reef offshore wind farm and Tjaereborg onshore wind farm, respectively, as representatives for contemporary Danish offshore wind farms and onshore wind farms, respectively. Tjaereborg onshore wind farm is placed at an utmost favourably location with regard to wind, which means that the production at this wind farm is high compared with other onshore wind farms in Denmark. The high production rate is a factor that is taken into account when assessing the impact on the environment emanating from this wind farm. The results of the environmental life cycle assessments that have been carried out for the two wind farms do not show significant variance. If it is taken into account that Tjaereborg onshore wind farm is placed utmost favourably, the comparison shows that power from an average located onshore wind farm would have a more adverse or corresponding environmental impact as an unfavourably located offshore wind farm. The results show that it is the turbines that causes the largest environmental impact and not to a very high extent the transmission grid. For the turbines, the all-important environmental contribution comes from manufacturing and removal of the turbines, as it is the materials that cause the large environmental strain. The operation of the wind farms gives practically no contribution to the total

  9. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Life Cycle Assessment of age-related environmental impact of biogenic hydraulic fluids; Life Cycle Assessment der alterungsbedingten Umweltvertraeglichkeit biogener Hydraulik-Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bressling, Jana

    2012-07-01

    Biogenic hydraulic fluids, based on synthetic esters (category: HEES), have an excellent environmental profile in the unused state, so that they are typically classified into water hazard class 1 or as ''not hazardous to water''. During storage at room temperature and tribological application, occurring chemical and toxicological changes take no account in the classification of lubricants until now. However, the ageing and oxidation stability gets increasing importance, since it determines the service life of lubricants in tribological systems in addition to the storage time. Since it always comes to direct and uncontrolled entries into the environment in case of accidents or hydraulic leaks, it is essential to assess whether there is an environmental hazard by waste oils. With an increased use of biogenic hydraulic fluids in environmentally sensitive areas, thus the need for an appropriate monitoring and assessment approach as part of a Life Cycle Assessment (LCA). The aquatic and miniaturised test procedures applied in this work with the Water Soluble Fraction (WSF) concept, allows a simple and quick screening of age-related ecotoxic potential of lubricants by oxidative processes and tribological application. For detection of genotoxic potential the umu-test is a suitable indicator test to detect geno- and cytotoxic effects by oxidative reactions. The determination of biodegradability is essential for the assessment of the environmental impact of hydraulic fluids. The optimised biodegradability test system ''O2/CO2-Headspace Test'' has proved itself as a suitable procedure for the investigation of biogenic lubricants within the scope of a LCA and shows therefore a comparable method of the required test procedures for the assignment of ecolabels. In addition, the combination of biological test procedures and chemical analysis allows a comprehensive investigation of effects and causes of age-related changes of hydraulic

  11. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  12. Developing IAM for Life Cycle Safety Assessment

    NARCIS (Netherlands)

    Toxopeus, Marten E.; Lutters, Diederick; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This publication discusses aspects of the development of an impact assessment method (IAM) for safety. Compared to the many existing IAM’s for environmentally oriented LCA, this method should translate the impact of a product life cycle on the subject of safety. Moreover, the method should be

  13. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  14. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  15. Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance

    International Nuclear Information System (INIS)

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-01-01

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA–MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel–metal hydride (Ni–MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni–MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  16. Assessing the environmental impacts of freshwater consumption in LCA.

    Science.gov (United States)

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  17. Environmental life cycle assessment of water supply in South Africa ...

    African Journals Online (AJOL)

    The life cycle impact assessment (LCIA) phase of LCAs evaluates the ... considered where water is used in the manufacturing sector of South Africa, and to identify ... The boosting requirements attribute most to the electricity dependency of the ...

  18. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  19. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  20. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  1. Environmental assessment of wood domestic heating. Synthetic report

    International Nuclear Information System (INIS)

    2005-12-01

    This report proposes a synthesis of the results of an environmental assessment of wood domestic heating. This study is based on a life cycle analysis which quantifies the impacts on the environment of all the related activities: fuel extraction, retailing, final use, and so on. Environmental impacts are assessed by means of different indicators: energetic assessment, greenhouse effect assessment, air pollution (acidification), water pollution (eutrophication), toxic material emissions in air and into the soils. Wood is compared to other heating sources (gas, fuel, electricity). Ways to improve this environmental assessment are discussed for the different types of wood (logs, pellets)

  2. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA)

    OpenAIRE

    S. Khoramdel; J. Shabahang; A. Amin Ghafouri

    2017-01-01

    In order to evaluate life cycle assessment (LCA) for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha) during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic a...

  3. French environmental communication on sunflower and rapeseed oils based on life cycle assessment

    Directory of Open Access Journals (Sweden)

    Badey Laureen

    2013-07-01

    Full Text Available The French “Grenelle” laws sparked a French national experiment trialling the environmental labelling of fast-moving consumer goods. The data required for this labelling scheme are generated by carrying out a life cycle assessment (LCA. The aim of this study is to provide all necessary information to fit the national experiment for two standard oils: sunflower oil and rapeseed oil. The complete oil life cycle was studied, from oilseed farming through to the end-of-life of the packaging. We focused heavily on the impacts of crushing and refining. The seed processing data was collected from different plants that are representative of the French crushing/refining industry and packaging site practice. The data inventory was used to calculate the identified environmental labelling indicators, i.e. greenhouse gas (GHG emissions and water consumption. The production of 100g of refined bulk sunflower and rapeseed emits 89 and 127 g equivalent CO2 and consumes 1.7 L and 0.8 L of water, respectively. Most impacts on the studied indicators stem from the farming phase. Energy and water consumptions during crushing and refining also weigh on the studied indicators. The results of this study provide a relevant overview of all sunflower and rapeseed oils produced in France, and are usable as standard values for vegetable oil producers and users. Oil supply chain operators can use these values to compare to their own process values and gauge the improvements brought about by their ecodesign strategies. For example, using a biomass boiler, using less packaging, and making different choices on seed suppliers can lead to a lower set of impact values.

  4. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  5. Environmental hot spot analysis in agricultural life-cycle assessments – three case studies

    Directory of Open Access Journals (Sweden)

    Gerhard Piringer

    2016-06-01

    Full Text Available Present-day agricultural technology is facing the challenge of limiting the environmental impacts of agricultural production – such as greenhouse gas emissions and demand for additional land – while meeting growing demands for agricultural products. Using the well-established method of life-cycle assessment (LCA, potential environmental impacts of agricultural production chains can be quantified and analyzed. This study presents three case studies of how the method can pinpoint environmental hot spots at different levels of agricultural production systems. The first case study centers on the tractor as the key source of transportation and traction in modern agriculture. A common Austrian tractor model was investigated over its life-cycle, using primary data from a manufacturer and measured load profiles for field work. In all but one of the impact categories studied, potential impacts were dominated by the operation phase of the tractor’s life-cycle (mainly due to diesel fuel consumption, with 84.4-99.6% of total impacts. The production phase (raw materials and final assembly caused between 0.4% and 12.1% of impacts, while disposal of the tractor was below 1.9% in all impact categories. The second case study shifts the focus to an entire production chain for a common biogas feedstock, maize silage. System boundaries incorporate the effect of auxiliary materials such as fertilizer and pesticides manufacturing and application. The operation of machinery in the silage production chain was found to be critical to its environmental impact. For the climate change indicator GWP100 (global warming potential, 100-year reference period, emissions from tractor operation accounted for 15 g CO2-eq per kg silage (64% of total GWP100, followed by field emissions during fertilizer (biogas digestate application with 6 g CO2-eq per kg silage (24% of total GWP100. At a larger system scale that includes a silage-fed biogas plant with electricity generated by

  6. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  7. Transportation Life Cycle Assessment (LCA) Synthesis, Phase II

    Science.gov (United States)

    2018-04-24

    The Transportation Life Cycle Assessment (LCA) Synthesis includes an LCA Learning Module Series, case studies, and analytics on the use of the modules. The module series is a set of narrated slideshows on topics related to environmental LCA. Phase I ...

  8. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  9. Environmental analysis of the proton exchange membrane fuel cell on the subject of life cycle assessment

    International Nuclear Information System (INIS)

    Fukurozaki, Sandra Harumi

    2006-01-01

    The energy is the fuel of growth and an essential requirement for the socioeconomic development. However, the current production model is based on fossil fuels, considered as threat to man and nature. As for, the relating to the human activities and their effects on the environment, they are handled by the implementation of a more rigid model of environmental control and the mobilization of the society in favor of technologies with less energy impact. In view of this scenario, the Proton Exchange Membrane Fuel Cell - PEMFC has been recognized as a key for the vital need of a clean and efficient energy. Considering the conventional power generation system, their advantages during usage configure its application as an ideal option for several utilities, especially in the mobile sector. Even though, the focus on several environmental evaluations in energy systems is referred back to the initial stage of it use, the employment relating to production of the system and to final destination should be considered, since these also present impacts. In the case of PEMFC, their previous and subsequent phases of use are issues related to the platinum catalysts, which indicates an environmental importance that cannot be overlooked. In this sense, the Life Cycle Assessment has been used to understand and to question the risks and opportunities that are associated to certain product, starting from a systemic concept of their relationships with the environment. It is precisely in this context that the present research intends to present its major contribution, starting from an exploratory study towards the its objectives to provide an environmental analysis of such technology linked to post stage of powder-use of the membrane electrode assembly - MEA, concerning the platinum catalysts, on the subject of Life Cycle Assessment - LCA. To attain such aim, the relationships between energy, environment and development are presented and discussed, as well as, the Fuel Cell technology and

  10. A proposed tool to integrate environmental and economical assessments of products

    International Nuclear Information System (INIS)

    Senthil, Kumaran D.; Ong, S.K.; Nee, A.Y.C.; Tan, Reginald B.H.

    2003-01-01

    An attempt has been made to interpret the outcomes of a Life Cycle Assessment (LCA) in terms of environmental costs. This attempt ensures the environmental accountability of the products while LCA ensures their eco-friendly nature. Keeping this as an objective, a Life Cycle Environmental Cost Analysis (LCECA) model was developed. This new tool incorporates costing into the LCA practice. This model prescribes a life cycle environmental cost model to estimate and correlate the effects of these costs in all the life cycle stages of the product. The newly developed categories of eco-costs are: costs of effluent treatment/control/disposal, environmental management systems, eco-taxes, rehabilitation, energy and savings of recycling and reuse strategies. The mathematical model of LCECA determines quantitative expressions between the total cost of products and the various eco-costs. The eco-costs of the alternatives are compared with the computational LCECA model. This method enables the environmental as well as the economic assessment of products, which leads to cost-effective, eco-friendly design of products

  11. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Schöpp, Wolfgang; Verkuijlen, Evert; Heijungs, Reinout; Reijnders, Lucas

    2001-01-01

    Simple models are often used to assess the potential impact of acidifying and eutrophying substances released during the life cycle of products. As fate, background depositions, and ecosystem sensitivity are not included in these models, environmental life-cycle assessment of products (LCA) may

  13. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  14. Environmental macroeconomics : Environmental policy, business cycles, and directed technical change

    NARCIS (Netherlands)

    Fischer, Carolyn; Heutel, Garth

    Environmental economics has traditionally fallen in the domain of microeconomics, but approaches from macroeconomics have recently been applied to studying environmental policy. We focus on two macroeconomic tools and their application to environmental economics. First, real-business-cycle models

  15. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  16. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  17. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey

    Directory of Open Access Journals (Sweden)

    Zerrin Günkaya

    2016-10-01

    Full Text Available The aim of this paper was to determine how to change the environmental performance of electricity generation depending on the resources and their shares, in order to support decision-makers. Additionally, this paper presents an application of life cycle assessment (LCA methodology to determine the environmental burdens of electricity generation in Turkey. Electricity generation data in Turkey for the years 2012 and 2023 were used as a case study. The functional unit for electricity generation was 1 kWh. The LCA calculations were carried out using CML-IA (v3.00 data and the results were interpreted with respect to Monte Carlo simulation analysis (with the Monte Carlo function built in SimaPro 8.0.1 software. The results demonstrated that the fossil fuel consumption not only contributes to global warming, but it also has effects on the elemental basis of abiotic depletion due to raw material consumption for plant infrastructure. Additionally, it was observed that the increasing proportion of wind power in the electricity mix would also increase certain life cycle impacts (such as the elemental basis of abiotic depletion, human ecotoxicity, and terrestrial ecotoxicity in Turkey’s geography compared to increasing the share of other renewable energy sources, such as hydropower, geothermal, as well as solar.

  18. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  19. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  20. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  2. Integrating Life-cycle Assessment into Transport Cost-benefit Analysis

    DEFF Research Database (Denmark)

    Manzo, Stefano; Salling, Kim Bang

    2016-01-01

    Traditional transport Cost-Benefit Analysis (CBA) commonly ignores the indirect environmental impacts of an infrastructure project deriving from the overall life-cycle of the different project components. Such indirect impacts are instead of key importance in order to assess the long......-term sustainability of a transport infrastructure project. In the present study we suggest to overcome this limit by combining a conventional life-cycle assessment approach with standard transport cost-benefit analysis. The suggested methodology is tested upon a case study project related to the construction of a new...... fixed link across the Roskilde fjord in Frederikssund (Denmark). The results are then compared with those from a standard CBA framework. The analysis shows that indirect environmental impacts represent a relevant share of the estimated costs of the project, clearly affecting the final project evaluation...

  3. Comparative life cycle assessment of industrial multi-product processes

    OpenAIRE

    Jung, Johannes

    2014-01-01

    The demand for environmentally safe industrial processes is increasing. Therefore, environmental impacts of new processes have to be examined at an early stage. A method for analyzing environmental impacts is life cycle assessment (LCA). A major trouble of LCA are multi-functionality problems. Multi-functionality problems can be fixed using alternative methods such as system expansion, avoided burden and allocation. Each of the three methods requires choices by the LCA-practitioner. The choic...

  4. An integrated life cycle sustainability assessment of electricity generation in Turkey

    International Nuclear Information System (INIS)

    Atilgan, Burcin; Azapagic, Adisa

    2016-01-01

    This paper presents for the first time an integrated life cycle sustainability assessment of the electricity sector in Turkey, considering environmental, economic and social aspects. Twenty life cycle sustainability indicators (11 environmental, three economic and six social) are used to evaluate the current electricity options. Geothermal power is the best option for six environmental impacts but it has the highest capital costs. Small reservoir and run-of-river power has the lowest global warming potential while large reservoir is best for the depletion of elements and fossil resources, and acidification. It also has the lowest levelised costs, worker injuries and fatalities but provides the lowest life cycle employment opportunities. Gas power has the lowest capital costs but it provides the lowest direct employment and has the highest levelised costs and ozone layer depletion. Given these trade-offs, a multi-criteria decision analysis has been carried out to identify the most sustainable options assuming different stakeholder preferences. For all the preferences considered, hydropower is the most sustainable option for Turkey, followed by geothermal and wind electricity. This work demonstrates the importance for energy policy of an integrated life cycle sustainability assessment and how tensions between different aspects can be reconciled to identify win-win solutions. - Highlights: •First integrated life cycle sustainability assessment of the electricity sector in Turkey. •11 environmental, three economic and six social sustainability indicators estimated. •Multi-criteria decision analysis carried out to identify most sustainable options. •Hydro is the most sustainable option for Turkey, followed by geothermal and wind. •This work demonstrates how tensions among sustainability aspects can be reconciled.

  5. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  6. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  7. Land Use and Land-use Changes in Life Cycle Assessment

    DEFF Research Database (Denmark)

    De Rosa, Michele

    2017-01-01

    The assessment of Land Uses and Land-use Changes (LULUC) impacts has become increasingly complex. Sophisticated modelling tools such as Life Cycle Assessment (LCA) are employed to capture both direct and indirect damages. However, quantitative assessments are often incomplete, dominated...... by environmental aspects. Land uses are a multidisciplinary matter and environmental and sustainable development policies intertwine. Yet, LCAs mostly focus on environmental impacts excluding socioeconomic implications of land occupation. This paper investigates the limitations of current LULUC modelling practices....... Consequently, results informing land policies may be biased towards determined development strategies or hide indirect effects and socioeconomic damages caused by large-scale land acquisitions, such as violation of tenure rights, speculation and displacement. Quantitative assessments of LULUC impacts...

  8. Life cycle assessment. Specific indicators for Italy in impact evaluation

    International Nuclear Information System (INIS)

    Masoni, P.

    1999-01-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described [it

  9. Methodology for the Life Cycle Assessment of a Car-sharing Service

    OpenAIRE

    Guyon, Olivier

    2017-01-01

    Nowadays, circular economy is becoming more relevant in society. In the context of the automotive industry, we no longer simply work on emissions emitted during the vehicle use phase but rather on the environmental impacts induced during all phases of the vehicle's life cycle (manufacturing, logistics, use, maintenance and end of life). For this purpose, many automakers, including the Group PSA, use life cycle assessment (LCA) to determine these environmental impacts. Also, the economy of sha...

  10. Impact assessment modelling of matter-less stressors in the context of Life Cycle Assessment

    NARCIS (Netherlands)

    Cucurachi, Stefano

    2014-01-01

    In the last three decades, the Life Cycle Assessment (LCA) framework has grown to establish itself as the leading tool for the assessment of the environmental impacts of product systems.LCA studies are now conducted globally both in and outside the academia and also used as a basis for policy

  11. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.

    Science.gov (United States)

    Alston, Sue M; Arnold, J Cris

    2011-11-01

    Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.

  12. Life-cycle assessment of typical Portuguese cork oak woodlands.

    Science.gov (United States)

    González-García, Sara; Dias, Ana Cláudia; Arroja, Luis

    2013-05-01

    Cork forest systems are responsible for making an important economic contribution to the Mediterranean region, especially Portugal where the cork oak woodlands or montados contain about 32% of the world's area. The environmental profile derived from reproduction cork production and extraction in two Portuguese regions (Tagus valley and Alentejo) representative of the Portuguese sector were assessed in detail using the Life-Cycle Assessment (LCA) methodology from a cradle-to-gate perspective. The production line was divided into four stages considering all the processes involved: stand establishment, stand management, cork stripping and field recovery. According to the environmental results, there were remarkable differences between the two production scenarios mainly due to the intensity and repetition of forest activities even though the cork yield was reported to be the same. The management system in the Alentejo region presented the worse environmental profile in almost all the impact categories under assessment, mainly due to the shorter cycle duration of the mechanical cleaning and pruning processes. Cork stripping was identified in both scenarios as the production stage with the highest contribution to the environmental profile due to the cleaning and pruning processes. A sensitivity assessment concerning the cork yield was performed since the average production yields in the Portuguese montados are lower than the ones used in this study. Thus, if the cork yield is reduced, the environmental profile in both scenarios gets worse since almost all the forest activities involved are the same. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Integrated environmental and economic assessment of waste management systems

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica

    in the “Optimization approach” the scenarios are the results of an optimization process. • The cost approach describes cost principles and level of LCA integration. Conventional and Environmental LCCs are financial assessments, i.e. include marketed goods/services, but while Environmental LCCs include environmental...... assessment of SWM systems alongside environmental impacts assessment to take budget constrains into account. In light of the need for combined environmental and economic assessment of SWM, this PhD thesis developed a consistent and comprehensive method for integrated environmental and economic assessment...... of SWM technologies and systems. The method resulted from developing further the generic Life Cycle Costing (LCC) framework suggested by Hunkeler et al. (2008) and Swarr et al. (2011) to apply it on the field of SWM. The method developed includes: two modelling approaches (Accounting and Optimization...

  14. Application of life cycle assessment to production processes of environmentally sustainable concrete, prepared with artificial aggregates

    International Nuclear Information System (INIS)

    Vaccaro, R.; Colangelo, F.; Palumbo, M.; Cioffi, R.

    2005-01-01

    This paper is about the application of Life Cycle Assessment (L.C.A.) on environmentally sustainable concrete production processes. The goal of this experimentations is to assess environmental impact and energy demand related to concrete production, by using, in different admixtures, natural and artificial aggregates, belonging from treatments of different kind of industrial wastes characterized by very small particle sizes. Particular attention was concentrated on the utilization of fine fraction since it is difficult to recover in usual fields of recycling (i.e. aggers, crowl spaces, etc.). This study follows the approach from cradle to cradle. This experimentation was conducted in relation to four concrete admixtures produced, one of them containing only natural aggregate, and the other ones obtained by substituting the 10% of aggregate respectively with inert wastes as construction and demolition waste (CeD waste). cement kiln dust (CKD) and marble sludge. For all admixtures six different end-life scenarios have been proposed, one of them considers all materials transported in landfill while the other ones consider a partial transportation on landfill (15%) and a recycle of the 85% of wastes obtained after demolition of structures [it

  15. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    Science.gov (United States)

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item. © 2015 SETAC.

  16. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  17. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John

    2012-01-01

    ), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic...

  19. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment

    International Nuclear Information System (INIS)

    Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de

    2016-01-01

    Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy

  20. Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom county, Zanjan province

    Directory of Open Access Journals (Sweden)

    ehsan khodarezaie

    2017-10-01

    Full Text Available Introduction Horticulture industry consumes a significant part of the energy and materials and release pollutants into the environment. Olive (Olea europaea L. is one of the most cultivated plants in Iran, so the environmental impact assessment of these production systems is important. However, the consequences and environmental impacts of olive production systems have not been studied in Iran. Tarom County is one of the most important olive production centers in Iran. So, this study is performed to evaluate environmental impacts of olive production in Tarom region. Materials and Methods In this study, the LCA approach is used to assessment of environmental impacts of olive production. This study is conducted in Tarom County in 2012-2013. The aim of this study was to determine hot spots of olive life cycle and offering appropriate Solutions to reduce the related environmental impact in Tarom region. In this research, one ton of Olives was considered as functional unit. System boundary is defined as “from cradle to farm gate”. Primary data were collected through observation, sampling and questionnaires completing method. The climate and soil data were collected from the "Olive Research Center" located in the Tarom County. Data for the production of used inputs (Secondary data were taken from the EcoInvent®2.0 database, and SimaPro software was employed to analyze primary data. Impact categories were analyzed based on CML 2 baseline 2000 V2.04/ world, 1995/ characterization and SimaPro 7.2 software. CML 2 baseline 2000. Results and Discussion The obtained data from inventory are presented in the table 1. These data includes Inputs and outputs of olive production system in Tarom olive systems. Table 1- Inputs and outputs of olive production system (per 1 ton olive. Amount\tUnit\tInputs 48.04\tkg\tDiesel fuel Chemical fertilizer 62.8\tkg\tUrea 53.9\tkg\tTriple Super Phosphate 46.4\tkg\tPotassium sulphate 5.6\tkg\tPesticides 1222\tkg

  1. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  2. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    Science.gov (United States)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  3. Environmental impact assessment of conventional and organic milk production

    NARCIS (Netherlands)

    Boer, de I.J.M.

    2003-01-01

    Organic agriculture addresses the public demand to diminish environmental pollution of agricultural production. Until now, however, only few studies tried to determine the integrated environmental impact of conventional versus organic production using life cycle assessment (LCA). The aim of this

  4. Life Cycle Sustainability Assessment of Sediment Remediation at the London Olympic Park

    Science.gov (United States)

    Hou, D.; Al-Tabbaa, A.

    2013-12-01

    In recent years, there is an emerging 'green and sustainable remediation' (GSR) movement. It is drawing increasing attention from both the government and the industry, because this GSR movement is promising in accelerating process in addressing the contaminated land issue, by overcoming regulatory barriers, encouraging technological innovation, and balancing life cycle environmental stewardship with economic vitality and social well-being. Life cycle assessment (LCA) has been increasingly used by both researchers and industrial practitioners in an initiative to make environmental remediation greener and more sustainable. Life cycle sustainability assessment (LCSA), aiming at expanding the traditional LCA model in both breadth and depth (e.g. to incorporate both environmental and social-economic sustainability), is an important research direction in the existing LCA research field. The present study intends to develop a LCSA method based on a hybrid LCA model and economic input-output (EIO) data. The LCSA method is applied to a contaminated sediment remediation project conducted at the London Olympic Park site.

  5. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  6. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  7. Variability of building environmental assessment tools on evaluating carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S. Thomas, E-mail: tstng@hkucc.hku.hk; Chen Yuan, E-mail: chenyuan4@gmail.com; Wong, James M.W., E-mail: jmwwong@hku.hk

    2013-01-15

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA

  8. Variability of building environmental assessment tools on evaluating carbon emissions

    International Nuclear Information System (INIS)

    Ng, S. Thomas; Chen Yuan; Wong, James M.W.

    2013-01-01

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: ► Carbon emission evaluation in building environmental assessment schemes are studied. ► Simulative carbon emission is modeled for building environmental assessment schemes. ► Carbon assessments focus primarily on operational stage instead of entire lifecycle. ► Baseline and benchmark of carbon assessment vary greatly among BEA schemes. ► A more transparent and comprehensive framework for carbon assessment is required.

  9. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  10. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  11. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  12. Scenario Development and Delphi Application in Life Cycle Assessment for Assessing Environmental Impact of New Technology Case Study: Removal of Wind Turbines Project

    Directory of Open Access Journals (Sweden)

    Devina Fitrika Dewi

    2016-05-01

    Full Text Available Certain technology is intended to create eco-efficient products or process or is developed as answer to the recent challenge. This kind of technology consequently can also create another impact therefore it shall be assessed and analyzed.The focus of the study is on assessment method namely Life Cycle Analysis (LCA, Scenario development and Delphi application. The objective is to understand benefits and drawbacks of the combined methodology and observe practicality of its implementation for assessing new technology. The distinctive feature comes from the combination of social and technological foresight (as Delphi application and future studies (as Scenario development which are applied in the environmental assessment of a product (by Life Cycle Analysis.The utilization of LCA-Scenario-Delphi case study as an explanatory example is presented in the Removal Wind Turbines Project by the Danish Energy Agency. The wind turbine is considered new technology with some of it phases are yet to occur, for example: removal of turbines after phase out stage. Technology Assessment by LCA-Scenario-Delphi is complicated procedure, but necessary to validate the results. The drawbacks of this procedure are extensive time it consumes and the dependency on public participation and/or expert willingness to participate. Nonetheless, its advantages are due to its interactive feature; integration of knowledge from different areas of expertise and its assessment’s characteristic which focuses on process.

  13. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    International Nuclear Information System (INIS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-01-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals. (letter)

  14. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    Science.gov (United States)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  15. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  16. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  17. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    Science.gov (United States)

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018

  18. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.

    Science.gov (United States)

    Mak, Mark S H; Lo, Irene M C

    2011-12-01

    The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.

  20. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    Science.gov (United States)

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  1. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    Science.gov (United States)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  2. STATE INSPECTION METHODOLOGY OF ENVIRONMENTAL REGULATORY ACTIVITY FOCUSED ON THE LIFE CYCLE PROCESSESES

    Directory of Open Access Journals (Sweden)

    Yuniey Quiala Armenteros

    2016-10-01

    Full Text Available The Cuban Environmental Regulatory Activity has on the Environmental State Inspection an instrument for control and monitoring of compliance of current legal standards regarding environmental protection and rational use of natural resources. In this research, a design methodology for effective implementation of environmental regulatory activity in Cuba directed to processes is proposed; based on the life cycle assessment and the applicable environmental management standards, including new performance indicators, which form a new tool based on scientific criterions for the Center of Environmental Inspection and Control.

  3. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  4. Using Life Cycle Assessment to Inform Decision-Making for Sustainable Buildings

    Directory of Open Access Journals (Sweden)

    Mieke Vandenbroucke

    2015-05-01

    Full Text Available Because the student residences of the Vrije Universiteit Brussel built in 1973 are not adapted to current comfort standards, the university decided to construct new accommodation facilities at the border of the campus. However, besides demolition, there was no strategy on how to deal with the existing ones. In the search for a more sustainable strategy, the university’s administration assigned the TRANSFORM research team to define various design strategies and to assess the long-term environmental consequences in order to select the best strategy by the use of Life Cycle Environmental Assessment. Current Life Cycle Environmental Assessments generally include maintenance, repair, replacement and operational energy consumption during use, but do not include future refurbishments. However, it is likely that their impact cannot be neglected either. Therefore, this article offers a framework which takes future refurbishments into account, in addition to the standard use impacts: initial and end-of-life impact. We report on the construction assemblies, the results of the assessments conducted and the advice provided. The results confirm that the impact of future refurbishments cannot be neglected. In addition, we observed that there were significant environmental savings when transforming the residences compared to new construction, and long-term benefits of a design enabling the reuse of building elements.

  5. Environmental life cycle assessment of wood-based building materials and building product. Oekobilanzen von Baustoffen und Bauprodukten aus Holz; Zusammenfassung erster Erkenntnisse

    Energy Technology Data Exchange (ETDEWEB)

    Richter, K; Sell, J [Eidgenoessische Materialpruefungs- und Versuchsanstalt fuer Industrie, Bauwesen und Gewerbe, Duebendorf (Switzerland)

    1992-08-01

    This report presents a summary of the main studies on the topic carried out at EMPA wood department in the last 4 years.In its first part, the concept of an environmental life cycle analysis (LCA), whose purpose is to quantify the known environmental impacts of a product by means of a systematic input/output analysis, is described. Such evaluation must include all phases of a product's life cycle, from the extraction of resources to the final disposal. Raw material and energy supply are input values, whereas main products, by-products, and emissions to the environment are outputs. It is essential for a meaningful data collection as well as for the final interpretation of the results to define exact system boundaries and explain the models used for data aggregation which are, therefore, described in detail. The report's second part summarizes the results of an environmental assessment of wood as a raw material and construction component, and of some important wood-based products. First, some product-independent ecological values of wood are shown, which today cannot be quantified sufficiently in LCA (e.g. relations between forest management and multi-functional values of forests, sustainable reproduction of wood, careful and benign harvesting practices, CO[sub 2] cycling with wood, and the complete utilization of the resource for industrial productions). Although all these basic characteristics contribute to the out-standing ecologic value of wood, an environmental analysis has to concentrate on material- and product-related aspects. In our study, this is realized by assessing energy consumption and air pollution. In a case study the data compiled are used to compare a timber frame wall with several wall types of different materials, but with identical heat transmission and acoustic performance: as expected, the timber frame wall shows very good ratings. (author) figs., tabs., 21 refs.

  6. Assessment of the external costs of the coal fuel cycle and the wind energy cycle in Spain

    International Nuclear Information System (INIS)

    Linares, P.; Montes, J.; Saez, R.M.

    1995-09-01

    This study is part of the ExternE Project, a joint effort of the European Commission and the US Dept. of Energy to assess the externalities of different fuel cycles, and quantify them in monetary terms, as kWh price adders. For Spain, this assessment has been carried out for a coal plant hypothetically sited in Valdecaballeros, in Southwestern Spain, and for an existing farm in Cabo Villano, in the Northwestern corner. In this first stage, only environmental externalities have been assessed. The first section contains a description of the methodology used in the European project, based mostly on a damage function approach, and its adaptation to Spanish conditions. In the last section, this methodology has been applied to the fuel cycles mentioned. The impacts assessed have been, for the coal fuel cycle, health effects, agricultural and forest production losses, and global warming. For wind energy, the main impacts considered have been noise, loss of visual amenity, accidents and global warning. The results obtained can only be considered as underestimates, as there are still impacts that have not been assessed or quantified, specially for the coal fuel cycle. Thus, further research is needed for a complete assessment

  7. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  8. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.

    Science.gov (United States)

    Weinberg, Jana; Kaltschmitt, Martin

    2013-12-01

    An environmental assessment and a cost analysis were conducted for mobility options using electricity, hydrogen, ethanol, Fischer-Tropsch diesel and methane derived from wood. Therefore, the overall life cycle with regard to greenhouse gas emissions, acidifying emissions and fossil energy demand as well as costs is analysed. The investigation is carried out for mobility options in 2010 and gives an outlook to the year 2030. Results show that methane utilization in the car is beneficial with regard to environmental impacts (e.g. 58.5 g CO2-eq./km) and costs (23.1 €-ct./km) in 2010, especially in comparison to hydrogen usage (132.4 g CO2-eq./km and 63.9 €-ct./km). The electric vehicle construction has high environmental impacts and costs compared to conventional vehicles today, but with technical improvements and further market penetration, battery electric vehicles can reach the level of concepts with combustion engines in future applications (e.g. cost decrease from 38.7 to 23.4 €-ct./km). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Critical environmental factors for transportation cycling in children: a qualitative study using bike-along interviews.

    Science.gov (United States)

    Ghekiere, Ariane; Van Cauwenberg, Jelle; de Geus, Bas; Clarys, Peter; Cardon, Greet; Salmon, Jo; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2014-01-01

    Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10-12 yr old children. The current qualitative study used 'bike-along interviews' with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood. Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi-) urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library) within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach. The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (in)directly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities. Road safety is of major concern in this 10-12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport.

  10. Critical environmental factors for transportation cycling in children: a qualitative study using bike-along interviews.

    Directory of Open Access Journals (Sweden)

    Ariane Ghekiere

    Full Text Available Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10-12 yr old children. The current qualitative study used 'bike-along interviews' with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood.Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi- urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach.The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (indirectly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities.Road safety is of major concern in this 10-12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport.

  11. The factor of time in the life cycle assessment of housing

    NARCIS (Netherlands)

    Klunder, G.; van Nunen, H.

    2003-01-01

    Conducting life cycle assessments, or LCAs, involves many uncertainties, including those related to the factor of time. Time is very important in the environmental assessment of housing, because of the relatively long service life of houses. During a house's service life many changes occur, which

  12. Assessment of the environmental impact of three types of fertilizers on the cultivation of coffee at the Las Delicias indigenous reservation (Cauca) starting from the life cycle assessment

    OpenAIRE

    Vera-Acevedo, Luz Dinora; Vélez-Henao, Johan Andrés; Marulanda-Grisales, Natalia

    2016-01-01

    ABSTRACT This paper aims to assess and to compare the environmental performance of three different types of fertilizers in the production of coffee using the methodology of Life Cycle Assessment (LCA) in the Las Delicias indigenous reservation (located in the northern area of the State of Cauca) in order to standardize the process. In this sense, some coffee producers used chemical fertilizers; others used poultry manure, and most coffee producers, used compost. They also applied artisanal te...

  13. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  14. Environmental life cycle assessment of a large-scale grid-connected PV power plant. Case study Moura 62 MW PV power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suomalainen, Kiti

    2006-01-15

    An environmental life cycle assessment has been conducted for a 62 MW grid-connected photovoltaic installation to study the role of BOS components in the total environmental load. Also the influence of the current electricity supply has been investigated. For an alternative approach a net output approach has been used, where all electricity requirements are supplied by the photovoltaic installation itself. The components taken into account are monocrystalline silicon cells in frameless modules, steel support structures in concrete foundations, inverters, transformers, cables, transports and construction of roads and buildings. For stationary inert products without intrinsic energy requirements, such as cables, inverters, support structures etc., only raw material acquisition and processing are taken into account, since they are considered the most dominant stages in the life cycle. The results confirm a minor environmental load from BOS components compared to the module life cycle, showing approximately ten to twenty percent impact of the total. Uncertainties lie in the approximations for electronic devices as well as in the emissions from silicon processing. Concerning the electricity supply, the results differ considerably depending on which system perspective is used. In the net output approach the impacts decrease with approximately ninety percent from the traditional approach. Some increases are also shown in toxicity categories due to the increased module production needed for the enlargement of the installation.

  15. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  16. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  17. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.E.; Lee, K.J. [Korea Advanced Institute of Science and Technology, Dept. of Nuclear Engineering, Taejon (Korea, Republic of)

    2001-07-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO{sub 2} emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  18. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.; Lee, K.J.

    2001-01-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO 2 emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  19. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage.

    Science.gov (United States)

    Corona, Andrea; Ambye-Jensen, Morten; Vega, Giovanna Croxatto; Hauschild, Michael Zwicky; Birkved, Morten

    2018-09-01

    The Green biorefinery (GBR) is a biorefinery concept that converts fresh biomass into value-added products. The present study combines a Process Flowsheet Simulation (PFS) and Life Cycle Assessment (LCA) to evaluate the technical and environmental performance of different GBR configurations and the cascading utilization of the GBR output. The GBR configurations considered in this study, test alternatives in the three main steps of green-biorefining: fractionation, precipitation, and protein separation. The different cascade utilization alternatives analyse different options for press-pulp utilization, and the LCA results show that the environmental profile of the GBR is highly affected by the utilization of the press-pulp and thus by the choice of conventional product replaced by the press-pulp. Furthermore, scenario analysis of different GBR configurations shows that higher benefits can be achieved by increasing product yields rather than lowering energy consumption. Green biorefining is shown to be an interesting biorefining concept, especially in a Danish context. Biorefining of green biomass is technically feasible and can bring environmental savings, when compared to conventional production methods. However, the savings will be determined by the processing involved in each conversion stage and on the cascade utilization of the different platform products. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  1. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  2. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  3. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  4. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    Directory of Open Access Journals (Sweden)

    Sonia Longo

    2015-05-01

    Full Text Available The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause energy and environmental impacts during their life cycle, and in particular they are responsible of air pollutant emissions. In this context, the paper assesses the energy and environmental impacts of a 46 kW biomass boiler by applying the Life Cycle Assessment methodology, as regulated by the international standards of series ISO 14040, ISO 21930 and EN 15804. The following life-cycle steps are included in the analysis: raw materials and energy supply, manufacturing, installation, operation, transport, and end-of-life. The results of the analysis, showing a life-cycle primary energy consumption of about 2,622 GJ and emissions of about 21,664 kg CO2eq, can be used as a basis for assessing the real advantages due to the use of biomass boilers for heating and hot water production.

  5. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  6. Comparative assessment and management of the health and environmental impacts of energy systems. General framework and preliminary results for the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rostron, W; Schneider, T; Thieme, M; Dreicer, M

    1992-06-01

    The comparison of the effects of electricity producing systems is of growing importance in decision-making processes for energy planning. This report documents the preliminary results of a project for the CEC-DG XII Radiation Protection Programme on the comparative assessment and management of the health and environmental impacts of energy systems. The work reported in this document has also been supported by EDF - Mission Environnement. In order to profit from the comparative studies already existing, some of the most important ones were surveyed. The aim of these past energy comparison studies was mainly to obtain a global measure of the risks associated with an energy cycle, with a view to ranking the various electricity production systems; but this is now recognised as merely an academic exercise, with a limited impact in decision-making. For energy planning the development of a multi-dimensional approach seems more suitable, as this allows the different types of indicators and measures needed to assess the risks of different energy cycles to be compared. From the past studies it has been seen that health indicators are generally well established, but a weakness is noted with respect to indicators of environmental impacts. This remains a difficult subject, and until such indicators are established, surrogates like concentrations in the environment will have to be used, or qualitative comparisons must suffice. This report presents a general framework allowing for consistent comparisons between different energy systems. The key issues discussed are: assessment by fuel cycle, consideration of the dimensions of time and space, the impact pathway approach for assessing risk, and coherent indicators that can be used to measure the impacts. First results are presented for four activities of the nuclear fuel cycle according to the approach developed: (1) the construction and dismantling of a 900 MWe pressurized water reactor, (2) the transportation of materials between

  7. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend...

  8. Enquiring into the roots of bioenergy - epistemic uncertainties in life cycle assessments

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo

    global warming impacts than the respective fossil fuels they replace unless planted on abandoned lands. With Papers I-II, the selection of the land-use references and time horizons involved in LCA of biofuels was demonstrated to be crucial for the characterization of the resulting environmental impacts......The research for this Thesis was originally framed around the “sustainability assessment of full chain bioenergy”. However, it is known for some years that the critical impacts of dedicated bioenergy relate to induced land use changes (LUC). Their criticality derives from their potential...... to dominate environmental impacts from a life-cycle perspective and from the uncertainty that accompanies them. On the other hand, continued land use may be a concern for soil’s long-term sustainability (understood as fertility), which has recently received attention in environmental life-cycle assessments...

  9. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  10. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  11. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  12. Comprehensive Environmental Assessment and U.S. EPA Nanomaterial Case Studies

    Science.gov (United States)

    These case studies are not completed risk assessments but are structured around an approach known as comprehensive environmental assessment (CEA), which combines a product life cycle framework with the risk assessment paradigm (Davis, J.M., J. Nanosci. Nanotech. 7:402-9, 2007). ...

  13. Research Project: Analysis of environmental life cycle of nuclear fuel in Argentina

    International Nuclear Information System (INIS)

    Martinez, Pablo E.; Pasquevich, D.

    2009-01-01

    The growing World energy demand together with the run down of fossil fuel resources and the climate change threat has produced the resurgence of interest in nuclear energy as a clean electricity source in the electricity mix of the current century. Into this international context the study of primary energy sources sustainable has also became an important issue. The sustainable concept takes into account the good practice in renewable and nonrenewable resources exploitation and the minimization of the environmental impact generated by each energy source. The nuclear energy instead that shows low gaseous emissions, need to be assessed with this point of view also. Furthermore the electricity generation step in a nuclear power plant shows zero emissions of greenhouse gases, the upstream and downstream processes do (as it is the case of the nuclear fuel cycle supply, the heavy water fabrication and the spent fuel management). The upstream and downstream processes are usually known as the nuclear fuel cycle. The emissions assessment of each step of the nuclear electricity generation is very useful to quantify its sustainable against other electricity generation options. The sustainable assessment also allow to quantify the energy consumption in the overall supply chain and optimize the raw material and feedstock consumption. In the present work the life cycle assessment (LCA) methodology is presented and applied to the nuclear fuel cycle. The LCA is a mature and internationally accepted methodology in both fields scientific and industrial. Some of the applications of LCA are: product development, policy definition, marketing, product, process and services selection based on environmental aspect and decision making assistance. (author)

  14. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  15. Life cycle assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects

    International Nuclear Information System (INIS)

    Kloepffer, W.; Renner, I.; Schmidt, E.; Tappeser, B.; Gensch, C.O.; Gaugitsch, H.

    2001-01-01

    In the preceding project 'Life Cycle Assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects' for the first time the risks of deliberate release of genetically modified organisms (GMOs) into the environment have been taken into account in a Life Cycle Assessment (LCA). This was performed by a risk assessment in addition to a quantitative impact assessment. As from a methodological perspective this was not satisfactory, the Federal Environment Agency commissioned the C.A.U. GmbH and the Institute of Applied Ecology Freiburg to further develop the impact assessment methodology for the risks of GMOs. Any further development of the methodology of impact assessment in LCAs has to be performed on the basis of the standard EN/ISO 14042. There are 2 options for taking into account risks of deliberate release of GMOs: 1. allocation of the potential effects resulting from the genetic modification on human beings and the environment to existing categories of the impact assessment and attempt to quantify within those existing methods of characterization; 2. development of a new category, e.g. 'effects of genetically modified crop plants'. In order to asses the possibilities under option 1 various models of characterization within the categories human toxicity, ecotoxicity and land use (appropriation of environmental space) have been analyzed. The risks of GMOs identified and dealt with in the preceding study were allocated to these categories. It seemed to be impossible to integrate the risks in existing models of characterization for human toxicity and ecotoxicity, as these are based on exposure and impact factors. The development of a factor for exposure seems possible for GMOs, however a suitable impact factor is not possible to generate. In addition it was analyzed if in other impact categories which are difficult to quantify any solutions for operationalization exist. This does not seem to be the case. As a

  16. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  17. An attributional life cycle assessment for an Italian residential multifamily building.

    Science.gov (United States)

    Vitale, Pierluca; Arena, Umberto

    2017-09-06

    The study describes an attributional life cycle assessment carried out according to the ISO standards and focused on an Italian multifamily residential building. The aim was developing an exhaustive and reliable inventory of high-quality primary data, comparing the environmental impacts along the three stages of the building life cycle. The pre-use phase takes into account the production of all the construction materials, transportation, and on-site assembling. The use phase quantifies the resource consumptions for 50 years of the building utilization and ordinary maintenance. The end-of-life phase includes the building demolition and the management of generated wastes. The results quantify how the design criteria affect the environmental performances of the residential building along its life cycle. The role of the pre-use phase appears remarkable for global warming potential (GWP), due to the huge impacts of steel and concrete production processes. The use phase gives the largest contributions, which reach 77% and 84% of the total, for the categories of global warming and non-renewable energy. The end-of-life phase provides limited avoided impacts. A comparative analysis quantifies the improvements achievable with an alternative type of partitions and external walls. Acronyms: AC: air conditioning; C&DW: construction and demolition waste; CFL: compact fluorescent lamp; DHW: domestic hot water; EC: European Commission; EU: European Union; GDP: gross domestic product; GHG: greenhouse gases; GWP: global warming potential; LCA: life cycle assessment; LCI: life cycle inventory; LCIA: life cycle impact assessment; MFA: material flow analysis; NREP: non-renewable energy potential; RINP: respiratory inorganics potential; WFD: Waste Framework Directive.

  18. Regional and global environmental behaviour of radionuclides from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1983-02-01

    The operation of nuclear fuel cycle facilities entails the discharge of radioactive effluents to both the atmosphere and aquatic environment. These effluents may contain radionuclides which may be subject of concern for their long-range environmental consequences, in particular, in assessing the health detriment to populations in regions beyond the local environment. The present document reviews information on radionuclides, their environmental pathways and processes and related models and summarizes experiences and studies in this field

  19. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  20. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  1. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  2. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  3. Life cycle assessment of the Danish electricity distribution network

    DEFF Research Database (Denmark)

    Turconi, Roberto; Simonsen, Christian G.; Byriel, Inger P.

    2014-01-01

    Purpose This article provides life cycle inventory data for electricity distribution networks and a life cycle assessment (LCA) of the Danish transmission and distribution networks. The aim of the study was to evaluate the potential importance of environmental impacts associated with distribution...... complexity and material consumption. Infrastructure provided important contributions to metal depletion and freshwater eutrophication (copper and aluminum for manufacturing of the cables and associated recycling being the most important). Underground 50-kV lines had larger impacts than overhead lines, and 0...

  4. Life cycle assessment of construction and demolition waste management

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2015-01-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed...... of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most...... of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing...

  5. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming; TOPICAL

    International Nuclear Information System (INIS)

    Spath, P. L.; Mann, M. K.

    2000-01-01

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes

  6. Accident risk-based life cycle assessment methodology for green and safe fuel selection

    NARCIS (Netherlands)

    Khakzad, Sina; Khan, Faisal; Abbassi, Rouzbeh; Khakzad Rostami, N.

    2017-01-01

    Using the emissions produced during the entire life-cycle of a fuel or a product, Life-cycle assessment (LCA) is an effective technique widely used to estimate environmental impacts. However, most of the conventional LCA methods consider the impacts of voluntary releases such as discharged toxic

  7. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hamard, J.

    1975-01-01

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU) [de

  8. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    Energy Technology Data Exchange (ETDEWEB)

    Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be [Faculty of Applied Engineering, University of Antwerp, Rodestraat 4, 2000 Antwerp (Belgium); Braet, Johan, E-mail: johan.braet@uantwerpen.be [Department Engineering Management, Faculty of Applied Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp (Belgium)

    2016-09-15

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  9. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    International Nuclear Information System (INIS)

    Anthonissen, Joke; Van den bergh, Wim; Braet, Johan

    2016-01-01

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  10. Life Cycle Assessment in Management of Socially Responsible Enterprise

    Directory of Open Access Journals (Sweden)

    Tkaczyk Stanisław

    2014-12-01

    Full Text Available The following paper presents dangerous and evident phenomenon of communicational chaos in the field of environment protection and sustainable development in a turbulent external environment. It is pointed that this phenomenon gives organizations an opportunity to take pretended pro-environmental actions, such as socially critical greenwashing. As a counterbalance to those practices, a concept of Corporate Social Responsibility (CSR is presented, underlining the possibility of developing honest environmental marketing basing on methods such as Life Cycle Assessment.

  11. Life cycle assessment study of a Chinese desktop personal computer.

    Science.gov (United States)

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  12. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Duan Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li Jinhui

    2009-01-01

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  13. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    Science.gov (United States)

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N 2 /CO 2 : 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Supporting nanomaterial risk assessment by case studies of nano-titanium dioxide using comprehensive environmental assessment

    Science.gov (United States)

    Here we describe a comprehensive environmental assessment (CEA) approach for two case studies of nano-titanium dioxide (nano-TiO2) in real world applications: water treatment and sunscreen. CEA combines a product life cycle framework with the risk assessment paradigm.

  15. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke

    2017-01-01

    and certain cationic metals is included in existing characterization models within life cycle impact assessment (LCIA). However, a variety of additional inorganic substances used e.g. in the textile, personal care, and building and construction industry are included neither in current life cycle inventory...... databases, nor current LCIA methods. Without the integration of the various economically relevant and potentially human toxic and/or ecotoxic inorganic substances such as inorganic salts, acids, bases and elements, however, no satisfying conclusions regarding the environmental sustainability of any......Life cycle assessment (LCA) is used to compare products and product systems in terms of their environmental sustainability and for that LCA needs to include all potential impacts on humans and the environment. Currently, quantifying the toxicity potential of several thousand organic substances...

  16. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.

    Science.gov (United States)

    Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier

    2006-07-01

    The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.

  17. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  18. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  19. Environmental and economic assessment methods for waste management decision-support: possibilities and limitations.

    Science.gov (United States)

    Finnveden, Göran; Björklund, Anna; Moberg, Asa; Ekvall, Tomas

    2007-06-01

    A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.

  20. Life-Cycle Assessment of Cookstove Fuels in India and China

    Science.gov (United States)

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...

  1. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  2. Development and application of basis database for materials life cycle assessment in china

    Science.gov (United States)

    Li, Xiaoqing; Gong, Xianzheng; Liu, Yu

    2017-03-01

    As the data intensive method, high quality environmental burden data is an important premise of carrying out materials life cycle assessment (MLCA), and the reliability of data directly influences the reliability of the assessment results and its application performance. Therefore, building Chinese MLCA database is the basic data needs and technical supports for carrying out and improving LCA practice. Firstly, some new progress on database which related to materials life cycle assessment research and development are introduced. Secondly, according to requirement of ISO 14040 series standards, the database framework and main datasets of the materials life cycle assessment are studied. Thirdly, MLCA data platform based on big data is developed. Finally, the future research works were proposed and discussed.

  3. Developing Green GDP Accounting for Thai Agricultural Sector Using the Economic Input Output - Life Cycle Assessment to Assess Green Growth

    OpenAIRE

    Attavanich, Witsanu; Mungkung, Rattanawan; Mahathanaseth, Itthipong; Sanglestsawai, Santi; Jirajari, Athiwatr

    2016-01-01

    There is no indicator measuring Thailand’s green growth by valuing the resource degradation and environmental damage costs. This article aims to estimate Thailand’s green gross domestic (GDP) that takes into account environmental damage costs with the detailed analysis on the agricultural sector using the Economic Input Output - Life Cycle Assessment (EIO-LCA) approach. The representative product in each sector was selected based on the available life cycle inventory data, economic values and...

  4. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  5. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2015-01-01

    In this paper, the life cycle environmental performance of miscanthus gasification for electricity production in Denmark is evaluated and compared with that of direct combustion and anaerobic digestion. Furthermore, the results obtained are compared to those of natural gas to assess the potential...

  6. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning; Yang, Yang; Cai, Hao; Liu, Jingru; Ren, Lantian; Yang, Jianxin; Xie, Guang Hui

    2017-09-01

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well to wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.

  7. Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes.

    Science.gov (United States)

    Luján-Ornelas, Cristina; Mancebo Del C Sternenfels, Uriel; Güereca, Leonor Patricia

    2018-02-23

    This study compares the environmental performance of Mexican banknotes printed on high-durability cotton paper (HD paper) and thermoplastic polymer (polymer) through a life cycle assessment to appraise the environmental impacts from the extraction of raw materials to the final disposal of the banknotes. The functional unit was defined considering the next parameters: 1) lifespan of the banknotes, stablished in 31.5 and 54months for HD paper and polymer, respectively; 2) denomination, selecting $200 pesos banknotes; 3) a 5year time frame and 4) a defined amount of money, in this case stablished as the monthly cash supply of an average Mexican household, equaling $12,708 pesos. Accordingly, 121 pieces for the HD paper and 71 pieces for the polymer banknotes were analyzed. The results favor the banknotes printed on polymer substrate primarily because of the longer lifespan of this type of material; however, there is a considerable environmental impact in the stages of distribution, followed by the extraction of the raw materials (crude oil) during manufacturing. Regarding the HD cotton paper, the major impact corresponds to extraction of the raw materials, followed by the distribution of the banknotes. The inclusion of the automatic teller machines (ATMs) in the life cycle assessment of banknotes shows that the electricity required by these devices became the largest contributor to the environmental impacts. Additionally, the sensitivity analysis that the average lifetime of the banknotes is a determining factor for the environmental impacts associated with the whole life cycle of this product. The life cycle stages that refer to the extraction of the raw materials, combined with the average lifetime of the banknotes and the electricity required during the usage stage, are determining factors in the total environmental impact associated with Mexican banknotes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  9. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  10. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Oscar O. Ortíz-Rodríguez

    2017-12-01

    Full Text Available Life Cycle Assessment methodology has been applied to estimate diverse environmental impacts of different usage alternatives for worn-out tires at the end of their useful life in a case study at the Department of Valle del Cauca, Colombia. Different real scenarios were compared, which allowed for the assessment of the best environmental option for the management of worn-out tires. A method developed in the Institute of Environmental Sciences at University of Leiden, better known as CML-2001, was used to calculate the environmental impact indicators. The results show that the incineration of whole tires in cement plants, and the activities of grinding and floor manufacturing from granulated rubber, exhibited the best indicators, especially in terms of environmental load avoidance through the recovery of materials. Finally, the categories of depletion of the ozone layer, acidification, global warming potential, depletion of abiotic resources, and photochemical ozone formation revealed that the strongest environmental impacts are associated with retreading and the production of multipart asphalt. This is due to the use of synthetic rubber in the former alternative, and of liquid asphalt, gravel, and diesel consumption in the latter.

  11. Delving into the environmental aspect of a Sardinian white wine: from partial to total life cycle assessment.

    Science.gov (United States)

    Fusi, Alessandra; Guidetti, Riccardo; Benedetto, Graziella

    2014-02-15

    The aim of this study was to deepen the assessment of the environmental impacts of a white wine produced in Sardinia (FU 750 ml), performing an attributional LCA. The system boundaries were extended, from 'cradle to gate' (partial LCA) of a previous study, to 'cradle to grave' (total LCA), in order to identify the environmental impacts occurring along the wine life cycle stages (vine planting, grape production, wine production, bottling and packaging, distribution, final disposal of the glass bottle). Some assumptions were made in order to quantify the environmental impact of the transportation phase, regarding the few data which were available. Inventory data were mainly collected through direct communication with the Company involved in the study. Results showed that the environmental performance of wine was mostly determined by the glass bottle production (for all impact categories except ozone layer depletion). The second contributor was the agricultural phase, which included two sub-phases: vine planting and grape production. Results showed that the vine planting sub-phase was not negligible given its contribution to the agricultural phase, mainly due to diesel fuel consumption. Transportation impact was found to be relevant for long distance distribution (USA); the impact categories more affected by transport were acidification, eutrophication, photochemical oxidation and global warming potential. Suggested opportunities to reduce the overall environmental impact were the introduction of a lighter glass bottle or the substitution of the glass bottle with a polylaminate container. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes.

    Science.gov (United States)

    Bovea, M D; Powell, J C

    2016-04-01

    This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Environmentally important radionuclides in nonproliferative fuel cycles

    International Nuclear Information System (INIS)

    Kaye, S.V.; Till, J.E.

    1978-01-01

    Our analyses indicate that more in-depth research should be done on 3 H, 14 C, 99 Tc, and 232 U, especially because of their presence in nonproliferative fuel cycles. For increased 3 H production by fast reactors, we can only speculate that such research could show that environmental releases might be significantly greater than for LWRs. Carbon-14 will likely not be a problem if a suitable decontamination factor can be agreed upon for reprocessing facilities and if a satisfactory regulatory limit can be established for global populations. Additional experimental research is urgently needed to determine the uptake of low levels of 99 Tc by plants. These data are essential before an accurate assessment of 99 Tc releases can be made. Finally, we recommend that investigators take a closer look at the potential problems associated with 232 U and daughters. This radionuclide could contribute a significant portion of the dose in both environmental and occupational exposures from the nonproliferative fuels

  14. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  15. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies

    Directory of Open Access Journals (Sweden)

    Andi Mehmeti

    2018-02-01

    Full Text Available A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2 economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented and endpoint (3 damage-oriented levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas, coal gasification, water electrolysis via proton exchange membrane fuel cell (PEM, solid oxide electrolyzer cell (SOEC, biomass gasification and reforming, and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope, Water scarcity footprint (WSF quantified using Available WAter REmaining (AWARE method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway, identify the drivers of environmental impact, quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.

  16. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    Science.gov (United States)

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  17. Environmental implications of thorium use in selected nuclear fuel cycles. Final

    International Nuclear Information System (INIS)

    Buckley, D.W.; Simmons, G.L.; Ziskind, R.A.

    1978-01-01

    The objective of this study was to assess the environmental implications of the nuclear fuel cycle associated with the highly enriched uranium concept of the High Temperature Gas Cooled Reactor. Model fuel cycles were constructed for the HTGR and a reference light water reactor (LWR) cycle. Mass flows were developed, control technology cases proposed and costed, effluents determined, and population doses calculated. Emphasis was given to the intercomparison of the fuel cycles to delineate areas which show pronounced departure. The dose commitment received by the population both within and outside a radius of 50 miles of each facility was determined. The 100 year population dose commitments due to a single year's plant operation was selected to facilitate intercomparison among fuel cycle components. No account was taken for long term waste sources associated with the fuel cycle such as mill tailing piles or terminal waste storage (study groundrule). The resource utilization and radionuclide activity of various fuel cycle options for using thorium in a Pressurized Water Reactor were studied. These data were contrasted with similar results obtained for a uranium fuel PWR

  18. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  19. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    Jekel, L.; Tam, E.K.L.

    2002-01-01

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  20. Comparative study on life cycle environmental impact assessment of copper and aluminium cables

    Science.gov (United States)

    Bao, Wei; Lin, Ling; Song, Dan; Guo, Huiting; Chen, Liang; Sun, Liang; Liu, Mei; Chen, Jianhua

    2017-11-01

    With the rapid development of industrialization and urbanization in China, domestic demands for copper and aluminium resources increase continuously and the output of copper and aluminium minerals rises steadily. The output of copper in China increased from 0.6 million tons (metal quantity) in 2003 to 1.74 million tons (metal quantity) in 2014, and the output of bauxite increased from 21 million tons in 2006 to 59.21 million tons in 2014. In the meantime, the import of copper and aluminium minerals of China is also on a rise. The import of copper concentrate and bauxite increased from 4.94 million tons and 9.68 million tons in 2006 to 10.08 million tons and 70.75 million tons in 2013 respectively. Copper and aluminium resources are widely applied in fields such as construction, electrical and electronics, machinery manufacturing, and transportation, and serve as important material basis for the national economic and social development of China. Cable industry is a typical industry where copper and aluminium resources are widely used. In this paper, a product assessment model is built from the perspective of product life cycle. Based on CNLCD database, differences in environmental impacts of copper and aluminium cables are analyzed from aspects such as resource acquisition, product production, transportation, utilization, and resource recycling. Furthermore, the advantages and disadvantages of products at different stages with different types of environmental impact are analyzed, so as to provide data support for cable industry in terms of product design and production, etc.

  1. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    Science.gov (United States)

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Environmental impact assessment and eco-friendly decision-making in civil structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Moon-Seock; Mha, Ho-Seong; Joung, Jung-Yeun

    2013-09-15

    This study develops two useful procedures in performing an environmental-impact assessment. One is the advanced life-cycle assessment (LCA) method, which effectively tracks the flow of materials and considers the recycling and demolition of a civil structure. The other is an eco-friendly decision-making procedure, which may effectively apply when determining the prototype of a civil structure. The advanced LCA method differs from traditional LCA procedure, as it classifies the input material prior to the impact assessment. Classification work is performed to establish independent life-cycle stages for each material. The processes of recycling and demolition are appropriately added to the life-cycle stages. The impact assessment is performed separately for the materials, and results are aggregated at the end of the analysis. The eco-friendly decision-making procedure enables designers to choose an economical, and environmentally friendly, alternative during the planning phase of the construction project. This procedure rationally amalgamates economical value and environmental effects into a single indicator. The life cycle cost (LCC) of a structure can be analysed by using conventional LCC tools, whereas the environmental impact is estimated by LCA. The results from LCC and LCA are then integrated by using either a CO2 conversion method or an analytical hierarchy process (AHP). The CO2 conversion method presents the result as a monetary value, whereas the AHP presents the result as a non-dimensional value. A practical example using a steel box girder bridge and a pre-stressed concrete (PSC) box-girder bridge is also given in order to aid the understanding of the presented procedure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  4. Environmental assessment of current and future Swiss electricity supply options

    International Nuclear Information System (INIS)

    Bauer, Christian; Heck, Thomas; Hirschberg, Stefan; Dones, Roberto

    2008-01-01

    Options for near future electricity supply are currently one of the main topics in the Swiss energy policy debate. Contrary to the total energy demand per capita the trend of rising electricity demand per capita is still visible. This paper presents a comparative environmental assessment of a broad portfolio of current and future electricity generation technologies including nuclear, fossil, and renewable power plants with their associated energy chains. The evaluation, based on Life Cycle Assessment (LCA), is carried out quantifying ten different environmental indicators, grouped in the categories greenhouse gas emissions, consumption of resources, waste, and impact on ecosystems. Hydropower shows minimal environmental impacts for all indicators; for other systems, the picture is diverse. The comparison of non-aggregated indicators allows preliminary conclusions about the environmental performance of the assessed systems. Establishing ranking of technologies calls for aggregating the indicators, which can be done by weighting of the indicators based on individual or stakeholder group preferences, either within a Multi-Criteria Decision Analysis (MCDA) framework or with Life Cycle Impact Assessment (LCIA) methods. Calculating total costs of electricity by adding external costs due to impacts on human health and ecosystems to the electricity production costs poses another option for ranking of technologies. (authors)

  5. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  6. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  7. Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment.

    Science.gov (United States)

    Wang, Xiaoqin; Ledgard, Stewart; Luo, Jiafa; Guo, Yongqin; Zhao, Zhanqin; Guo, Liang; Liu, Song; Zhang, Nannan; Duan, Xueqin; Ma, Lin

    2018-06-01

    Life cycle assessment methodology was used to quantify the environmental impacts and resource use of milk production on the North China Plain, the largest milk production area in China. Variation in environmental burden caused by cow productivity was evaluated, as well as scenario analysis of the effects of improvement practices. The results indicated that the average environmental impact potential and resource use for producing 1kg of fat and protein corrected milk was 1.34kgCO 2 eq., 9.27gPO 4 3- eq., 19.5gSO 2 eq., 4.91MJ, 1.83m 2 and 266L for global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), non-renewable energy use (NREU), land use (LU) and blue water use (BWU; i.e. water withdrawal), respectively. Feed production was a significant determinant of GWP, NREU, LU and BWU, while AP and EP were mainly affected by manure management. Scenario analysis showed that reducing use of concentrates and substituting with alfalfa hay decreased GWP, EP, AP, NREU and LU (by 1.0%-5.5%), but caused a significant increase of BWU (by 17.2%). Using imported soybean instead of locally-grown soybean decreased LU by 2.6%, but significantly increased GWP and NREU by 20% and 6.9%, respectively. There was no single perfect manure management system, with variable effects from different management practices. The environmental burden shifting observed in this study illustrates the importance of assessing a wide range of impact categories instead of single or limited indicators for formulating environmental policies, and the necessity of combining multiple measures to decrease the environmental burden. For the North China Plain, improving milking cow productivity and herd structure (i.e. increased proportion of milking cows), combining various manure management systems, and encouraging dairy farmers to return manure to nearby crop lands are promising measures to decrease multiple environmental impacts. Copyright © 2017 Elsevier B.V. All rights

  8. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  9. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    . To evaluate the environmental and energy performance of bioenergy and wasteto-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide...... a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was doneby integrating...... assessing the environmental performance of the waste refinery, a detailed knowledge of the waste composition is recommendable as this determines the energy outputs and thereby the assessment results. The benefits offered by the waste refinery compared with incinerators and MBT plants are primarily related...

  10. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Patricia M., E-mail: pmg24@drexel.edu [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States); Spatari, Sabrina; Cucura, Jeffrey [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States)

    2013-04-15

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  11. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    International Nuclear Information System (INIS)

    Gallagher, Patricia M.; Spatari, Sabrina; Cucura, Jeffrey

    2013-01-01

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  12. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    Science.gov (United States)

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  13. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  14. Area of Concern: a new paradigm in life cycle assessment for ...

    Science.gov (United States)

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res

  15. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment.

    Science.gov (United States)

    Dourmad, J Y; Ryschawy, J; Trousson, T; Bonneau, M; Gonzàlez, J; Houwers, H W J; Hviid, M; Zimmer, C; Nguyen, T L T; Morgensen, L

    2014-12-01

    Environmental impacts of 15 European pig farming systems were evaluated in the European Union Q-PorkChains project using life cycle assessment. One conventional and two non-conventional systems were evaluated from each of the five countries: Denmark, The Netherlands, Spain, France and Germany. The data needed for calculations were obtained from surveys of 5 to 10 farms from each system. The systems studied were categorised into conventional (C), adapted conventional (AC), traditional (T) and organic (O). Compared with C systems, AC systems differed little, with only minor changes to improve meat quality, animal welfare or environmental impacts, depending on the system. The difference was much larger for T systems, using very fat, slow-growing traditional breeds and generally outdoor raising of fattening pigs. Environmental impacts were calculated at the farm gate and expressed per kg of pig live weight and per ha of land used. For C systems, impacts per kg LW for climate change, acidification, eutrophication, energy use and land occupation were 2.3 kg CO2-eq, 44.0 g SO2-eq, 18.5 g PO4-eq, 16.2 MJ and 4.1 m2, respectively. Compared with C, differences in corresponding mean values were +13%, +5%, 0%, +2% and +16% higher for AC; +54%, +79%, +23%, +50% and +156% for T, and +4%, -16%, +29%, +11% and +121% for O. Conversely, when expressed per ha of land use, mean impacts were 10% to 60% lower for T and O systems, depending on the impact category. This was mainly because of higher land occupation per kg of pig produced, owing to feed production and the outdoor raising of sows and/or fattening pigs. The use of straw bedding tended to increase climate change impact per kg LW. The use of traditional local breeds, with reduced productivity and feed efficiency, resulted in higher impacts per kg LW for all impact categories. T systems with extensive outdoor raising of pigs resulted in markedly lower impact per ha of land used. Eutrophication potential per ha was substantially

  16. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  17. Environmentally important radionuclides in non-proliferative fuel cycles

    International Nuclear Information System (INIS)

    Kaye, S.V.; Till, J.E.

    1978-01-01

    Increased emphasis in energy research is being given to the development of nonproliferative nuclear fuel cycles and to the assessment of potential release of radionuclides to the environment from these new cycles. Four radionuclides, 14 C, 3 H, 99 Tc, and 232 U, due to lack of adequate knowledge or anticipated increased production in nonproliferative fuel cycles, may require renewed consideration. Our projections indicate that releases of 14 C by the global nuclear industry could exceed the natural production rate of 3.8 x 10 4 Ci/y by the year 2000 and could eventually stabilize at 2.3 times that rate. Tritium may become increasingly important, because recent data from fast reactors (of the nonproliferative type) have confirmed production rates up to 13 times greater than previous estimates. Present radwaste systems do not remove tritium. Recent experiments on the uptake of 99 Tc reveal that soil-to-plant concentration factors for technetium appear to be two to three orders of magnitude greater than the value of 0.25 which has been adopted routinely in radiological assessments. Research is needed to determine reliable 99 Tc soil-to-plant concentration factors because this radionuclide could be released at reprocessing and enrichment facilities. New calculations for certain reactors indicate that 232 U may be formed in concentrations up to 4000 ppm. If accurate, such data will require careful analysis of possible releases of 232 U because of external and food chain exposures. The environmental health aspects of these four radionuclides are discussed, as well as the potential for their release to the environment from nonproliferative fuel cycles. (author)

  18. Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2015-05-01

    Full Text Available The combustion of peat for energy generation accounts for approximately 4.1% of Ireland’s overall greenhouse gas (GHG emissions, with current levels of combustion resulting in the emission of 2.8 Mt of CO2 per annum. The aim of this research is to evaluate the life cycle environmental impacts of peat use for energy generation in Ireland, from peatland drainage and industrial extraction, to transportation, combustion, and subsequent after-use of the cutaway area, utilising Irish-specific emission factors. The environmental impacts considered are global warming potential, acidification potential, and eutrophication potential. In addition, the cumulative energy demand of the system is evaluated. Previous studies on the environmental impact of peat for energy in Ireland relied on default Intergovernmental Panel on Climate Change (IPCC emission factors (EFs. This research utilises Irish-specific EFs and input data to reduce uncertainty associated with the use of default IPCC EFs, and finds that using default IPCC EFs overestimates the global warming potential when compared to Irish-specific EFs by approximately 2%. The greatest contribution to each of the environmental impacts considered arises from emissions generated during peat combustion, which accounts for approximately 95% of each of the environmental impact categories considered. Other stages of the life-cycle, such as impacts emanating from the peat extraction area, fossil fuel usage in harvesting and transportation machinery, and after-use of the cutaway area have much smaller effects on overall results. The transformation of cutaway peatlands to different after-use alternatives has the potential to mitigate some of the effects of peatland degradation and peat combustion.

  19. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    Science.gov (United States)

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  20. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    Science.gov (United States)

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate

  1. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Maelkki, H.

    1997-01-01

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  2. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    Science.gov (United States)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  3. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  4. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  5. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  6. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?

    Science.gov (United States)

    Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J

    2016-04-05

    Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.

  7. A proposal to measure absolute environmental sustainability in lifecycle assessment

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier

    2016-01-01

    sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA...... in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  8. Environmental and economic life cycle analysis of plastic waste management options. A review

    OpenAIRE

    Bernardo, C. A.; Simões, Carla L.; Pinto, Lígia

    2016-01-01

    In recent years, rising worldwide plastic consumption led to the generation of increasing amounts of plastic waste and to the awareness of the importance of its management. In that framework, the present work describes how Life Cycle Assessment (LCA) and economic assessment methodologies can be used for evaluating environmental and economic impacts of alternative plastic waste management systems. The literature on LCA of plastic waste management systems is vast and the results reported are ge...

  9. EXTENSION OF COMPUTER-AIDED PROCESS ENGINEERING APPLICATIONS TO ENVIRONMENTAL LIFE CYCLE ASSESSMENT AND SUPPLY CHAIN MANAGEMENT

    Science.gov (United States)

    The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...

  10. [Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].

    Science.gov (United States)

    Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe

    2003-05-01

    In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.

  11. THE LIFE CYCLE ASSESSMENT - A CASE STUDY OF TRANSPORTING VOLVO CARS

    Directory of Open Access Journals (Sweden)

    Gloria P. Gerilla

    2000-01-01

    Full Text Available The increase in the number of vehicles in our society is detrimental to the environment because of increased fuel usage and pollutant emissions. This paper analyze the environmental effects of transporting cars from its manufacturer to its end user. The method used is the life cycle assessment (LCA. Life cycle assessment is a method for analyzing and evaluating environmental performance of products, processes or services throughout its entire life cycle. The paper also shows the effect of changing the fuel type used in transporting the vehicles. It can be seen that from the pollutant emissions in the transport chain, carbon dioxide and nitrogen oxides are the leading pollutants, which affect the air quality in the environment. The truck is shown to be a heavy polluter in terms of its emission factors and there is not much difference between a European and an Asian country. With the use of the natural gas as an alternative fuel, emission levels can be reduced to as much as 19 % for CO2 and 16 % for NOx emissions while costs are higher in the first few years because of conversion costs, it can be said that it is worth the risk. The truck can be an environmentally adapted vehicle if its engine is converted to an alternative fuel engine like the compressed natural gas. The LCA methodology is holistic because it gives a systems analysis of the product

  12. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  13. Review on Suitability of Available LCIA Methodologies for Assessing Environmental Impact of the Food Sector

    Directory of Open Access Journals (Sweden)

    Pegah Amani

    2011-12-01

    Full Text Available Production, processing, distribution, and consumption of a wide variety of products in the food sector have different ranges of environmental impacts. Methodologies used in environmental impact assessment differ in which set of impact categories is covered and which models are used to assess them. In the food sector, life cycle assessment results are mostly presented without any clear distinction of the principles applied to selecting the relevant methodology. In this paper, the most relevant life cycle impact assessment methodologies are determined from the list of recommended methodologies published recently in the international reference life cycle data system (ILCD handbook. The range of the relevant impacts covered is considered as the main indicator decisive in selecting a methodology. The selection of the relevant set of impact categories is performed through an overview of more than 50 recent LCA case studies of different products in the sector. The result of the research is a short list of three LCIA methodologies recommended to be used for environmental impact assessment of products in the food sector.

  14. Environmental Assessment of Packaging: The Consumer Point of View

    Science.gov (United States)

    Van Dam YK

    1996-09-01

    When marketing environmentally responsible packaged products, the producer is confronted with consumer beliefs concerning the environmental friendliness of packaging materials. When making environmentally conscious packaging decisions, these consumer beliefs should be taken into account alongside the technical guidelines. Dutch consumer perceptions of the environmental friendliness of packaged products are reported and compared with the results of a life-cycle analysis assessment. It is shown that consumers judge environmental friendliness mainly from material and returnability. Furthermore, the consumer perception of the environmental friendliness of packaging material is based on the postconsumption waste, whereas the environmental effects of production are ignored. From the consumer beliefs concerning environmental friendliness implications are deduced for packaging policy and for environmental policy.KEY WORDS: Consumer behavior; Environment; Food; Packaging; Perception; Waste

  15. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chiara A. Penati

    2013-12-01

    Full Text Available The aim of the study was to analyze environmental impact of cow milk production in an alpine area through a cradle-to-farm-gate Life Cycle Assessment and to identify farming strategies that can improve environmental sustainability without negatively affecting profitability. Data were collected from farmers in 28 dairy farms in an Italian alpine valley. The production of 1 kg of fat protein corrected milk (FPCM needed 3.18 m2 of land; land use on-farm was high because a large part of farm land consisted of pastures in the highland, used extensively during summer. Also the use of energy from non-renewable sources was high, 5.14 MJ kg FPCM-1 on average. Diesel for production and transportation of feed purchased off-farm was mainly used, especially concentrates which were entirely purchased. The average emission of greenhouse and acidification causing gases was 1.14 kg CO2-eq and 0.021 kg SO2-eq kg FPCM-1. Eutrophication was on average 0.077 kg of nitrate-eq kg FPCM-1. Farms with low producing cows had higher environmental impact per kg of milk and lower gross margin per cow compared to the others. Low stocking rate farms had the best results regarding acidification and eutrophication per kg FPCM. Farms with high feed self-sufficiency had significantly lower acidification potential than the others. Increasing milk yield per cow, by selection and feeding, and enhancing feed self-sufficiency, by higher forage production and quality and more exploitation of highland pastures, seem to be the best strategies to improve ecological performances of dairy farms in the Alps while maintaining their profitability.

  16. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    International Nuclear Information System (INIS)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.; Simonsen, Christian G.; Astrup, Thomas

    2014-01-01

    Highlights: • Environmental impact of a power system with a high share of wind power assessed. • LCI data for electricity supply in Denmark in 2010 and 2030 (low carbon) provided. • Focus on GHG reduction may lead to increase in other impact categories. • Imported biomass might cause high GHG emissions form Land Use Change. • Need for guidelines for LCA of electricity supply (cogeneration and power import). - Abstract: The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed. The results showed that consumption of fossil resources and global warming impacts from the Danish electricity sector could be reduced significantly compared with 2010. Nevertheless, a reduction in GHG may be at the expense of other environmental impacts, such as the increased depletion of abiotic resources. Moreover, the results were very dependent upon biomass origin: when agricultural land was affected by biomass import, and land use changes and transportation were included, GHG emissions from imported biomass were comparable to those from fossil fuels. The results were significantly influenced by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants in 2010 and 2030 (including corresponding

  17. Integrated Environmental Assessment Part III: ExposureAssessment

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Small, Mitchell J.

    2006-06-01

    Human exposure assessment is a key step in estimating the environmental and public health burdens that result chemical emissions in the life cycle of an industrial product or service. This column presents the third in a series of overviews of the state of the art in integrated environmental assessment - earlier columns described emissions estimation (Frey and Small, 2003) and fate and transport modeling (Ramaswami, et al., 2004). When combined, these first two assessment elements provide estimates of ambient concentrations in the environment. Here we discuss how both models and measurements are used to translate ambient concentrations into metrics of human and ecological exposure, the necessary precursors to impact assessment. Exposure assessment is the process of measuring and/or modeling the magnitude, frequency and duration of contact between a potentially harmful agent and a target population, including the size and characteristics of that population (IPCS, 2001; Zartarian, et al., 2005). Ideally the exposure assessment process should characterize the sources, routes, pathways, and uncertainties in the assessment. Route of exposure refers to the way that an agent enters the receptor during an exposure event. Humans contact pollutants through three routes--inhalation, ingestion, and dermal uptake. Inhalation occurs in both outdoor environments and indoor environments where most people spend the majority of their time. Ingestion includes both water and food, as well as soil and dust uptake due to hand-to-mouth activity. Dermal uptake occurs through contacts with consumer products; indoor and outdoor surfaces; the water supply during washing or bathing; ambient surface waters during swimming or boating; soil during activities such as work, gardening, and play; and, to a lesser extent, from the air that surrounds us. An exposure pathway is the course that a pollutant takes from an ambient environmental medium (air, soil, water, biota, etc), to an exposure medium

  18. Detailed Life Cycle Assessment of Bounty Paper Towel ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and activities' impacts. Methods that build on LCA strengths and illuminate other connected but less understood facets, related to social and economic impacts, would provide greater value to decision-makers. This study is a LCA that calculates the potential impacts associated with Bounty® paper towels from two facilities with different production lines, an older one (Albany, Georgia) representing established technology and the other (Box Elder, Utah), a newer state-of-the-art platform. This is unique in that it includes use of Industrial Process Systems Assessment (IPSA), new electricity and pulp data, modeled in open source software, and is the basis for the development of new integrated sustainability metrics (published separately). The new metrics can guide supply chain and manufacturing enhancements, and product design related to environmental protection and resource sustainability. Results of the LCA indicate Box Elder had improvements on environmental impact scores related to air emission indicators, except for particulate matter. Albany had lower water use impacts. After normalization of the results, fossil fuel depletion is the most critical environmental indicator. Pulp production, e

  19. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for

  1. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    Science.gov (United States)

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Life Cycle Assessment on a 765 kV Venezuelan Transmission System

    International Nuclear Information System (INIS)

    Wang, Wenlu; Tremouille, Gilles; Beroual, Abderrahmane; Bessede, Jean-Luc

    2011-03-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in T and D industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, in this paper, an LCA using SimaPro (one kind of LCA software) is conducted on a whole Venezuelan 765 kV AC transmission system, which transmits 8000 MW hydro-electrical power through 760 km to this country's load centers, with total 7 substations, i.e. one sending end, 2 intermediate substations and 4 receiving ends. This LCA includes both transmission lines and substations, and then the environmental impacts of the whole transmission system are investigated. (authors)

  3. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  4. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  5. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment.

    Science.gov (United States)

    Cancino-Espinoza, Eduardo; Vázquez-Rowe, Ian; Quispe, Isabel

    2018-05-08

    Quinoa is a plant that is cultivated in the Andean highlands across Peru and Bolivia. It is increasingly popular due to its high nutritive value and protein content. In particular, the cultivation of organic quinoa has grown substantially in recent years since it is the most demanded type of quinoa in the foreign market. Nevertheless, despite the interest that quinoa has generated in terms of its nutritional properties, little is known regarding the environmental profile of its production and processing. Therefore, the main objective of this study was to analyze the environmental impacts that are linked to the production and distribution of organic quinoa to the main export destinations through the application of the Life Cycle Assessment (LCA) methodology. An attributional LCA perspective was conducted including data from approximately 55 ha of land used for quinoa production in the regions of Huancavelica and Ayacucho, in southern-central Peru. IPCC, 2013 and ReCiPe 2008 were the two assessment methods selected to estimate the environmental impact results using the SimaPro 8.3 software. Results, which were calculated for one 500 g package of organic quinoa, showed that GHG emissions are in the upper range of other organic agricultural products. However, when compared to other high protein content food products, especially those from animal origin, considerably low environmental impacts are obtained. For instance, if 20% of the average annual beef consumption in Peru is substituted by organic quinoa, each Peruvian would mitigate 31 kg CO 2 eq/year in their diet. Moreover, when the edible protein energy return on investment (i.e., ep-EROI) is computed, a ratio of 0.38 is obtained, in the higher range of protein rich food products. However, future research should delve into the environmental and food policy implications of agricultural land expansion to produce an increasing amount of quinoa for a growing global demand. Copyright © 2018 Elsevier B.V. All

  6. Life cycle assessment of Portland cement concrete interstate highway rehabilitation and replacement.

    Science.gov (United States)

    2010-02-01

    Life Cycle Assessment (LCA) is a tool that can be used to identify ways to decrease the environmental impact of a product or process and to inform decision makers of the consequences of changes to the product or process. LCA encompasses all aspects o...

  7. Life cycle assessment of façade coating systems containing manufactured nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hischier, Roland, E-mail: roland.hischier@empa.ch; Nowack, Bernd [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland); Gottschalk, Fadri [ETSS (Switzerland); Hincapie, Ingrid [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland); Steinfeldt, Michael [University of Bremen FB 4/FG 10 Technological Design and Development (Germany); Som, Claudia [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland)

    2015-02-15

    Nanotechnologies are expected to hold considerable potential for the development of new materials in the construction sector. Up to now the environmental benefits and risks of products containing manufactured nanomaterials (MNM) have been quantified only to a limited extent. This study aims to assess the potential environmental, health and safety impacts of coatings containing MNM using Life-cycle assessment: Do paints containing MNM result in a better environmental performance than paints not containing MNM? The study shows that the results depend on a number of factors: (i) The MNM have to substitute an (active) ingredient of the initial paint composition and not simply be an additional ingredient. (ii) The new composition has to extend the lifetime of the paint for such a time period that the consumption of paint along the life cycle of a building is reduced. (iii) Releases of MNM have to be reduced to the lowest level possible (in particular by dumping unused paint together with the packaging). Only when all these boundary conditions are fulfilled, which is the case only for one of the three paint systems examined, is an improved environmental performance of the MNM-containing paint possible for the paint compositions examined in this study.

  8. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  9. A Regional Analysis of the Life Cycle Environmental and Economic Tradeoffs of Different Economic Growth Paths

    Directory of Open Access Journals (Sweden)

    Weiwei Mo

    2018-02-01

    Full Text Available Different economic development strategies may result in varied socioeconomic and environmental synergies or tradeoffs, suggesting an opportunity for environmentally conscious planning. To understand such synergies or tradeoffs, a dynamic environmental life cycle assessment was conducted for eleven groups of New Hampshire industries. Historical state level Gross Domestic Product (GDP-by-industry data was combined with economic input-output analysis to calculate the direct and life cycle energy use, freshwater use, greenhouse gas emissions, and eutrophication potential of each industry on a yearly basis for the period of 1997–2012. The future development of agriculture, traditional manufacturing, high tech, and tourism industries were investigated based on government projections. Total life cycle impacts of the 11 industries were found to represent around three to seven times those of direct impacts, indicating the significance of the supply chain impacts. Traditional manufacturing has the highest life cycle impacts even though it contributes to less than 10% of the state GDP. Future development of high tech was found to be the best strategy to increase GDP while imposing the least additional environmental impacts. Tourism presents relatively high impacts in terms of freshwater use and eutrophication potential, and a change in recreational style might be able to reduce its impacts.

  10. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Djomo, Sylvestre Njakou

    2017-01-01

    The current study aimed at evaluating potential environmental impacts for the production of willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. A method of Life Cycle Assessment was used to evaluate based on the following impact categories: Global...... and land occupation. Environmental impacts for straw were economically allocated from the impacts obtained for spring barley. The results obtained per ton dry matter showed a lower carbon footprint for willow and alfalfa compared to straw. It was due to higher soil carbon sequestration and lower N2O...... emissions. Likewise, willow and alfalfa had lower EP than straw. Straw had lowest NRE use compared to other biomasses. PFWTox was lower in willow and alfalfa compared to straw. A critical negative effect on soil quality was found with the spring barley production and hence for straw. Based on the energy...

  11. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two...... scientific research efforts have taken into account some key lessons learned from past experiences with chemicals at the same time that many key challenges remain to applying these frameworks to ENM. In that setting, two main proposed approaches to use LCA and RA together for ENM are identified: i) LC......-based RA, similar to traditional RA applied in a life cycle perspective, and ii) RA-complemented LCA, similar to conventional LCA supplemented by RA in specific life cycle steps. This study finds that these two approaches for using LCA and RA together for ENM are similar to those made for chemicals...

  12. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  13. Life cycle assessment of railways and rail transports - Application in environmental product declarations (EPDs) for the Bothnia Line

    Energy Technology Data Exchange (ETDEWEB)

    Stripple, Haakan; Uppenberg, Stefan

    2010-09-15

    Environmental aspects are today highly important issues in the transport sector especially from a society perspective. Most likely, our society is facing considerable changes in the transport sector due to changes in the energy/environmental situation in the future. Strategic decisions concerning the development of the transport sector must be based on solid facts concerning both the transport infrastructure and the transport traffic on the infrastructure. The transport infrastructure is often complex and difficult to analyse but of great interest in a society perspective. In this project, we have performed a comprehensive view of a modern railway infrastructure system including the traffic on the infrastructure. A Life Cycle Assessment (LCA) methodology has been used for the study and several LCA models of the railway system have been designed. Due to the complexity of the models, several general railway component models have been developed. The component models can then be integrated to form a large model of an entire railway system. The component models (sub-models) are: 'Railway track foundation model', 'Railway track model', 'Railway electric power and control system model', 'Railway tunnel model', 'Railway bridge model', 'Railway passenger station and freight terminal model', 'Passenger and freight train model including train operation'. The LCA models have then been used to analyse the environmental performance of the Bothnia Line and to develop Environmental Product Declarations (EPDs) for the Bothnia Line

  14. Radiological and environmental safety in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Puranik, V.D.

    2011-01-01

    The front end nuclear fuel cycle comprises of mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad. The Health Physics Units (HPUs)/Environmental Survey Laboratories (ESLs) set up at each site from inception of operation to carry out regular in-plant, personnel monitoring and environmental surveillance to ensure safe working conditions, evaluate radiation exposure of workers, ensure compliance with statutory norms, help in keeping the environmental releases well within the limits and advise appropriate control measures. This paper describes the occupational and environmental radiological safety measures associated with the operations of front end of nuclear fuel cycle. Radiological monitoring in these facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised in this paper

  15. Impact on environmental qualification from a longer fuel cycle

    International Nuclear Information System (INIS)

    Sanwarwalla, M.H.; Akhtar, S.; Drankhan, D.A.

    1996-01-01

    There is a general trend in the nuclear industry towards longer fuel cycles because of the economic benefits. The economic benefits for increasing the fuel cycle from eighteen to twenty four months is estimated by the industry to be about $5.05 million per unit year based on a two week mid-cycle maintenance outage. Equipment with a unique characteristic may require maintenance and/or inspection more frequently than can be accommodated in a longer cycle. The maintenance and surveillance (M ampersand S) requirements for these equipment need to be reviewed to accommodate a longer cycle and avoid any unplanned outage. ComEd's LaSalle Station is considering a move to a longer fuel cycle. A study was done to determine the impact of a longer fuel cycle on their current environmental qualification (EQ) program, and the feasibility of implementing changes to their program to accommodate a longer fuel cycle. This paper discusses (1) the impact, if any, the longer fuel cycle will have on the maintenance and surveillance requirements of the 50.49 or environmentally qualified equipment at LaSalle Station, (2) the various techniques, i.e., partial testing, performance based monitoring etc., employed to extend the existing maintenance and surveillance requirements, and (3) the estimated economic savings, if any, from the extended M ampersand S interval

  16. Comparison of the Overall Environmental Footprint between Current and Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.

    2015-01-01

    Full text of publication follows: Nuclear energy is anticipated to be one of the possible energy sources which can allow the production of energy at high load with a high level of reliability without significant impact on the environment. Nowadays, most of the countries have chosen an open fuel cycle which basically considers spent nuclear fuel as a waste, whereas others like France, the United Kingdom, Japan and soon China reprocess their spent fuel to recover the plutonium (and partially U) to produce mixed oxide fuel to be irradiated in a second cycle. In a second step, considering the possibility of fertilising 238 U to 239 Pu in fast reactors, recycling major actinides is thought to be a major improvement towards the global sustainability of the nuclear energy: It will indeed allow the natural resource efficiency to be increased by orders of magnitude by consuming quantitatively the natural uranium resource involved. Driven by the Fukushima accident, nuclear energy is currently questioned about its overall environmental impact and footprint. However, very little information is available on the actual footprint of current and future nuclear systems. In order to bring insights on this issue, a life cycle assessment simulation tool NELCAS was developed based on the French nuclear closed fuel cycle. It allows the calculation of representative key environmental indicators and potential impact indicators for the whole nuclear systems. The very good consistency of the results with the literature data confirms the relevance and robustness of NELCAS. It was subsequently used to derive representative indicators for open and future potential fuel cycles, i.e. mixed GEN3 and GEN4 reactors fleet and full GEN4 reactors fleet. The results demonstrate the very significant improvement brought by the actinides recycling and the future fuel cycle. Most of the indicators are very significantly decreased with the implementation of long-term recycling strategies. This paper will

  17. Life-cycle assessment of computational logic produced from 1995 through 2010

    International Nuclear Information System (INIS)

    Boyd, S B; Horvath, A; Dornfeld, D A

    2010-01-01

    Determination of the life-cycle environmental and human health impacts of semiconductor logic is essential to a better understanding of the role information technology can play in achieving energy efficiency or global warming potential reduction goals. This study provides a life-cycle assessment for digital logic chips over seven technology generations, spanning from 1995 through 2010. Environmental indicators include global warming potential, acidification, eutrophication, ground-level ozone (smog) formation, potential human cancer and non-cancer health effects, ecotoxicity and water use. While impacts per device area related to fabrication infrastructure and use-phase electricity have increased steadily, those due to transportation and fabrication direct emissions have fallen as a result of changes in process technology, device and wafer sizes and yields over the generations. Electricity, particularly in the use phase, and direct emissions from fabrication are the most important contributors to life-cycle impacts. Despite the large quantities of water used in fabrication, across the life cycle, the largest fraction of water is consumed in generation of electricity for use-phase power. Reducing power consumption in the use phase is the most effective way to limit impacts, particularly for the more recent generations of logic.

  18. Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures

    Directory of Open Access Journals (Sweden)

    Umberto Vitiello

    2016-12-01

    Full Text Available In the last few years, the renovation and refurbishment of existing buildings have become the main activities of the construction industry. In particular, many studies have recently focused on the mechanical and energy performances of existing retrofitted/refurbished facilities, while some research has addressed the environmental effects of such operations. The present study aims to assess the environmental impact of some retrofit interventions on an existing reinforced concrete (RC building. Once the structural requirements have been satisfied and the environmental effects of these retrofit solutions defined, the final purpose of this study is to identify the most environmentally sustainable retrofit strategy. The environmental impact of the structural retrofit options is assessed using a life-cycle assessment (LCA. This paper sets out a systematic approach that can be adopted when choosing the best structural retrofit option in terms of sustainability performance. The final aim of the study is to also provide a tool for researchers and practitioners that reflects a deep understanding of the sustainability aspects of retrofit operations and can be used for future researches or practical activities.

  19. Differences in environmental preferences towards cycling for transport among adults: a latent class analysis.

    Science.gov (United States)

    Mertens, Lieze; Van Cauwenberg, Jelle; Ghekiere, Ariane; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Van de Weghe, Nico; Van Dyck, Delfien

    2016-08-12

    Increasing cycling for transport can contribute to improve public health among adults. Micro-environmental factors (i.e. small-scaled street-setting features) may play an important role in affecting the street's appeal to cycle for transport. Understanding about the interplay between individuals and their physical environment is important to establish tailored environmental interventions. Therefore, the current study aimed to examine whether specific subgroups exist based on similarities in micro-environmental preferences to cycle for transport. Responses of 1950 middle-aged adults (45-65 years) on a series of choice tasks depicting potential cycling routes with manipulated photographs yielded three subgroups with different micro-environmental preferences using latent class analysis. Although latent class analysis revealed three different subgroups in the middle-aged adult population based on their environmental preferences, results indicated that cycle path type (i.e. a good separated cycle path) is the most important environmental factor for all participants and certainly for individuals who did not cycle for transport. Furthermore, only negligible differences were found between the importances of the other micro-environmental factors (i.e. traffic density, evenness of the cycle path, maintenance, vegetation and speed limits) regarding the two at risk subgroups and that providing a speed bump obviously has the least impact on the street's appeal to cycle for transport. Results from the current study indicate that only negligible differences were found between the three subgroups. Therefore, it might be suggested that tailored environmental interventions are not required in this research context.

  20. Detailed Life Cycle Assessment of Bounty Paper Towel Operations in the United States

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and ac...

  1. Economic Input-Output Life Cycle Assessment of Water Reuse Strategies in Residential Buildings

    Science.gov (United States)

    This paper evaluates the environmental sustainability and economic feasibility of four water reuse designs through economic input-output life cycle assessments (EIO-LCA) and benefit/cost analyses. The water reuse designs include: 1. Simple Greywater Reuse System for Landscape Ir...

  2. Environmental assessment of wood industrial and collective (with heat network) heating. Synthetic report

    International Nuclear Information System (INIS)

    2005-12-01

    This report proposes a synthesis of the results of an environmental assessment of wood industrial and collective heating. This study is based on a life cycle analysis which quantifies the impacts on the environment of all the related activities: fuel extraction, retailing, final use, and so on. Environmental impacts are assessed by means of different indicators: energetic assessment, greenhouse effect assessment, air pollution (acidification), water pollution (eutrophication), toxic material emissions in air and into the soils. Wood is compared to other heating sources (gas, fuel, electricity). Ways to improve this environmental assessment are discussed with respect to wood supply, boiler auxiliary equipment, boiler and combustion

  3. Environmental Engineering Curricula assessment in the global world

    Science.gov (United States)

    Caporali, Enrica; Catelani, Marcantonio; Manfrida, Giampaolo; Valdiserri, Juna

    2014-05-01

    Environmental engineers are technicians with specific expertise on the sustainability of human presence in the environment. Among other global dilemmas, to the environmental engineers it is often demanded to be able in developing systematic, innovative solutions in order to simultaneously meet water and energy needs, to build resilience to natural and technological disasters, to more accurately gauge and manage countries' greenhouse gas emissions. The general objectives of the Environmental Engineers are to establish actions of environmental sustainability as well as to verify progress toward global goals or international commitments. The globalization of challenges and problems to be faced, leads, in general, to the globalization of the engineering profession. In particular, since the environmental issues are without boundaries, and many and different are the involved professions and the competences, the environmental engineer must have a multidisciplinary and interdisciplinary approach to adequately answer to the demand of technical innovative knowledge at global scale. The environmental engineers, more and more, are involved in international projects were the effective collaboration requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. The Europe-based EUR ACE system, currently operated by ENAEE - European Network for Accreditation of Engineering Education, can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. In the global frame of the knowledge triangle: education-innovation-research, the accreditation and quality assurance of engineering curricula in Europe is discussed with reference to the Environmental engineering curricula, of the 1st and 2nd cycle, based on the European Credit Transfer System and in

  4. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption: Key learning points from pilot studies on tea and margarine

    NARCIS (Netherlands)

    Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Martinez-Aldaya, Maite; Ercin, Ertug; Milá i Canals, L.; Hoekstra, Arjen Ysbert

    2012-01-01

    Water accounting and environmental impact assessment across the product's life cycle is gaining prominence. This paper presents two case studies of applying the Life Cycle Assessment (LCA) and Water Footprint (WF) approaches to tea and margarine. The WF, excluding grey water, of a carton of 50 g tea

  5. An approach to incorporate risks into a product's life-cycle assessment

    International Nuclear Information System (INIS)

    Pirhonen, P.

    1995-01-01

    Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products' life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can be compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied

  6. Integrate life-cycle assessment and risk analysis results, not methods.

    Science.gov (United States)

    Linkov, Igor; Trump, Benjamin D; Wender, Ben A; Seager, Thomas P; Kennedy, Alan J; Keisler, Jeffrey M

    2017-08-04

    Two analytic perspectives on environmental assessment dominate environmental policy and decision-making: risk analysis (RA) and life-cycle assessment (LCA). RA focuses on management of a toxicological hazard in a specific exposure scenario, while LCA seeks a holistic estimation of impacts of thousands of substances across multiple media, including non-toxicological and non-chemically deleterious effects. While recommendations to integrate the two approaches have remained a consistent feature of environmental scholarship for at least 15 years, the current perception is that progress is slow largely because of practical obstacles, such as a lack of data, rather than insurmountable theoretical difficulties. Nonetheless, the emergence of nanotechnology presents a serious challenge to both perspectives. Because the pace of nanomaterial innovation far outstrips acquisition of environmentally relevant data, it is now clear that a further integration of RA and LCA based on dataset completion will remain futile. In fact, the two approaches are suited for different purposes and answer different questions. A more pragmatic approach to providing better guidance to decision-makers is to apply the two methods in parallel, integrating only after obtaining separate results.

  7. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    Science.gov (United States)

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparative life cycle assessment of ghana-made bamboo-frame bicycle and conventional bicycles assembled and used in the Netherlands

    NARCIS (Netherlands)

    Agyekum, E.O.; Fortuin, K.P.J.; Harst, van der E.J.M.

    2014-01-01

    In order to assess the sustainability of bamboo-framed bicycles produced in Ghana, an environmental and social life cycle assessments (LCA) were performed. For the environmental LCA, a bamboo-frame bicycle was compared with aluminium- and steel-frame bicycles, focussing on processes related to the

  9. A Comparative Assessment of Life-Cycle Greenhouse Gas Emissions from Hypothetical Electric Airport Transportation Services in Thailand

    Science.gov (United States)

    Koiwanit, J.

    2018-05-01

    Global warming is an increase of average temperature in the atmosphere, which causes adverse effects on the environment. Carbon dioxide (CO2) from transportation sector is one of the main contributors of the overall greenhouse gases (GHG). To cope with this issue, electric car services are increasingly seen as popular alternative modes of green transportation especially for urban cities as it is more flexible, more environmentally-friendly, and less expensive than the use of conventional vehicles. The study analyses and compare the hypothetical electric car systems from airport transportation services. Center of Environmental Science of Leiden University (CML) 2001, the Life Cycle Impact Assessment (LCIA) method, is applied to convert life cycle inventory data into environmental impacts. The observed results showed that the electric shuttle bus had the highest impact in global warming potential (GWP) compared to other transportation types. Alternatively, this Life Cycle Assessment (LCA) study that evaluated different transportations provided important information for decision makers on quantifying the differences between each scenario.

  10. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Yu-Hui, Qiao; Van, Luo

    2010-01-01

    Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach....... Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional...

  11. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  12. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  13. Area of Concern: A new paradigm in life cycle assessment for the development of footprint metrics

    DEFF Research Database (Denmark)

    Ridoutt, Bradley G.; Pfister, Stephan; Manzardo, Alessandro

    2016-01-01

    As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force...... operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related...... terminology as well as to discuss modelling implications. The task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA...

  14. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  15. Evaluating European imports of Asian aquaculture products using statistically supported life cycle assessments

    NARCIS (Netherlands)

    Henriksson, Patrik John Gustav

    2015-01-01

    This thesis aims to evaluate the environmental sustainability of European imports of farmed aquatic food products from Asia, using life cycle assessment (LCA). Farming of Asian tiger prawn, whiteleg shrimp, freshwater prawn, tilapia and pangasius catfish in Bangladesh, China, Thailand and Vietnam

  16. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  17. Differences in environmental preferences towards cycling for transport among adults: a latent class analysis

    Directory of Open Access Journals (Sweden)

    Lieze Mertens

    2016-08-01

    Full Text Available Abstract Background Increasing cycling for transport can contribute to improve public health among adults. Micro-environmental factors (i.e. small-scaled street-setting features may play an important role in affecting the street’s appeal to cycle for transport. Understanding about the interplay between individuals and their physical environment is important to establish tailored environmental interventions. Therefore, the current study aimed to examine whether specific subgroups exist based on similarities in micro-environmental preferences to cycle for transport. Methods Responses of 1950 middle-aged adults (45–65 years on a series of choice tasks depicting potential cycling routes with manipulated photographs yielded three subgroups with different micro-environmental preferences using latent class analysis. Results Although latent class analysis revealed three different subgroups in the middle-aged adult population based on their environmental preferences, results indicated that cycle path type (i.e. a good separated cycle path is the most important environmental factor for all participants and certainly for individuals who did not cycle for transport. Furthermore, only negligible differences were found between the importances of the other micro-environmental factors (i.e. traffic density, evenness of the cycle path, maintenance, vegetation and speed limits regarding the two at risk subgroups and that providing a speed bump obviously has the least impact on the street’s appeal to cycle for transport. Conclusions Results from the current study indicate that only negligible differences were found between the three subgroups. Therefore, it might be suggested that tailored environmental interventions are not required in this research context.

  18. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  19. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  20. Simplified life cycle assessment models: methodological framework and applications to energy pathways

    International Nuclear Information System (INIS)

    Padey, Pierryves

    2013-01-01

    The energy transition debate is a key issue for today and the coming years. One of the challenges is to limit the environmental impacts of electricity production. Decision support tools, sufficiently accurate, simple to use, accounting for environmental aspects and favoring future energetic choices, must be implemented. However, the environmental assessment of the energy pathways is complex, and it means considering a two levels characterization. The 'energy pathway' is the first level and corresponds to its environmental distribution, to compare overall pathways. The 'system pathway' is the 2. level and compares environmental impacts of systems within each pathway. We have devised a generic methodology covering both necessary characterization levels by estimating the energy pathways environmental profiles while allowing a simple comparison of its systems environmental impacts. This methodology is based on the definition of a parameterized Life Cycle Assessment model and considers, through a Global Sensitivity Analysis, the environmental impacts of a large sample of systems representative of an energy pathway. As a second step, this methodology defines simplified models based on few key parameters identified as inducing the largest variability in the energy pathway environmental impacts. These models assess in a simple way the systems environmental impacts, avoiding any complex LCAs. This reduction methodology has been applied to the onshore wind power energy pathway in Europe and the photovoltaic energy pathway in France. (author)

  1. Environmental impact assessment for energy pathways: an integrated methodology

    International Nuclear Information System (INIS)

    Sommereux-Blanc, Isabelle

    2010-01-01

    This document presents the synthesis of my research work contributing to the development of an integrated methodology of environmental impact assessment for energy pathways. In the context of world globalization, environmental impact assessments issues are highly linked with the following questioning: Which environmental impacts? for which demand? at which location? at which temporal scale? My work is built upon the definition of a conceptual framework able to handle these issues and upon its progressive implementation. The integration of the spatial and temporal issues within the methodology are key elements. Fundamental cornerstones of this framework are presented along the DPSIR concept (Driving forces, Pressures, State, Impacts, Responses). They cover a comprehensive analysis of the limits and the relevance of life cycle analysis and the development of a geo-spatialized environmental performance approach for an electrical production pathway. Perspectives linked with the development of this integrated methodology are detailed for energy pathways. (author)

  2. An integrated factor analysis model for product eco-design based on full life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Xiao, T.; Li, D.

    2016-07-01

    Among the methods of comprehensive analysis for a product or an enterprise, there exist defects and deficiencies in traditional standard cost analyses and life cycle assessment methods. For example, some methods only emphasize one dimension (such as economic or environmental factors) while neglecting other relevant dimensions. This paper builds a factor analysis model of resource value flow, based on full life cycle assessment and eco-design theory, in order to expose the relevant internal logic between these two factors. The model considers the efficient multiplication of resources, economic efficiency, and environmental efficiency as its core objectives. The model studies the status of resource value flow during the entire life cycle of a product, and gives an in-depth analysis on the mutual logical relationship of product performance, value, resource consumption, and environmental load to reveal the symptoms and potentials in different dimensions. This provides comprehensive, accurate and timely decision-making information for enterprise managers regarding product eco-design, as well as production and management activities. To conclude, it verifies the availability of this evaluation and analysis model using a Chinese SUV manufacturer as an example. (Author)

  3. Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas

    Directory of Open Access Journals (Sweden)

    Jesuina Chipindula

    2018-06-01

    Full Text Available The last decade witnessed a quantum increase in wind energy contribution to the U.S. renewable electricity mix. Although the overall environmental impact of wind energy is miniscule in comparison to fossil-fuel energy, the early stages of the wind energy life cycle have potential for a higher environmental impact. This study attempts to quantify the relative contribution of individual stages toward life cycle impacts by conducting a life cycle assessment with SimaPro® and the Impact 2002+ impact assessment method. A comparative analysis of individual stages at three locations, onshore, shallow-water, and deep-water, in Texas and the gulf coast indicates that material extraction/processing would be the dominant stage with an average impact contribution of 72% for onshore, 58% for shallow-water, and 82% for deep-water across the 15 midpoint impact categories. The payback times for CO2 and energy consumption range from 6 to 14 and 6 to 17 months, respectively, with onshore farms having shorter payback times. The greenhouse gas emissions (GHG were in the range of 5–7 gCO2eq/kWh for the onshore location, 6–9 CO2eq/kWh for the shallow-water location, and 6–8 CO2eq/kWh for the deep-water location. A sensitivity analysis of the material extraction/processing stage to the electricity sourcing stage indicates that replacement of lignite coal with natural gas or wind would lead to marginal improvements in midpoint impact categories.

  4. Life cycle assessment of the application of nanoclays in wire coating

    International Nuclear Information System (INIS)

    Tellaetxe, A; Blázquez, M; Unzueta, I; Arteche, A; Egizabal, A; Ermini, V; Rose, J; Chaurand, P

    2012-01-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life

  5. Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors.

    Science.gov (United States)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui; Zeng, Xianlai

    2012-10-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    International Nuclear Information System (INIS)

    Song Qingbin; Wang Zhishi; Li Jinhui; Zeng Xianlai

    2012-01-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator’ 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step—the end-of-life stage—can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  7. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  8. Life cycle assessment of construction and demolition waste management.

    Science.gov (United States)

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2015-10-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60-95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing that end-of-life impacts and leaching should not be disregarded when assessing environmental impacts from construction products and materials. CO2 uptake in the C

  9. Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis

    Science.gov (United States)

    Chatterjee, R.; Sharma, V.; Mukherjee, S.; Kumar, S.

    2014-04-01

    This work deals with the comparative analysis of environmental impacts of bio-diesel produced from Jatropha curcas, Rapeseed and Palm oil by applying the life cycle assessment and eco-efficiency concepts. The environmental impact indicators considered in the present paper include global warming potential (GWP, CO2 equivalent), acidification potential (AP, SO2 equivalent) and eutrophication potential (EP, NO3 equivalent). Different weighting techniques have been used to present and evaluate the environmental characteristics of bio-diesel. With the assistance of normalization values, the eco-efficiency was demonstrated in this work. The results indicate that the energy consumption of bio-diesel production is lowest in Jatropha while AP and EP are more in case of Jatropha than that of Rapeseed and Palm oil.

  10. Life cycle assessment applied to nanomaterials in solid waste management

    DEFF Research Database (Denmark)

    Laurent, Alexis

    While the generation of solid waste is globally increasing, much effort is concentrated to minimise the environmental impacts related to their management. With respect to nanoproducts (products containing nanomaterials), a growing amount of ‘nanowaste’ can be expected to enter the waste streams...... on specific waste types and waste management systems, all primarily reflecting situations in economicallydeveloped countries. At the same time, methodological practice was found in many studies not to be compliant with current reference guidance, such as the ISO standards and the ILCD Handbook. Likewise......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...

  11. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Radiological and environmental surveillance in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Khan, A.H.; Sahoo, S.K.; Tripathi, R.M.

    2004-01-01

    This paper describes the occupational and environmental radiological safety measures associated with the operations of front end nuclear fuel cycle. Radiological monitoring in the facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised

  13. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    Directory of Open Access Journals (Sweden)

    Burcin Atilgan

    2016-01-01

    Full Text Available Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natural gas, hydro, onshore wind and geothermal. The results show that the annual impacts from electricity have been going up steadily over the period, increasing by 2–9 times, with the global warming potential being higher by a factor of five. This is due to a four-fold increase in electricity demand and a growing share of fossil fuels. The impact trends per unit of electricity generated differ from those for the annual impacts, with only four impacts being higher today than in 1990, including the global warming potential. Most other impacts are lower from 35% to two times. These findings demonstrate the need for diversifying the electricity mix by increasing the share of domestically-abundant renewable resources, such as geothermal, wind, and solar energy.

  14. Environmental Assessment of a Waste Incineration Tax. Case Study and Evaluation of a Framework for Strategic Environmental Assessment

    International Nuclear Information System (INIS)

    Bjoerklund, Anna; Johansson, Jessica; Nilsson, Maans; Eldh, Peter; Finnveden, Goeran

    2003-12-01

    A framework for Strategic Environmental Assessment (SEA) is tested in a case study on a proposed waste incineration tax. Also included is testing of developed methods for valuation and site-dependent life cycle impact assessment. The results indicate that although a suggested waste incineration tax of 400 SEK/ton is likely to lead to environmental improvements, these are small compared to the potential improvements as shown in more visionary scenarios. In order to go in this direction a waste incineration tax based on the content of fossil carbon in the waste would be useful. The framework for SEA includes several different pathways. These have different advantages and disadvantages and provide different types of information. It is therefore suggested that they largely complement each other and that the choice of methods should be done in relation to the function of the SEA and the questions asked.

  15. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    Aumonier, S.

    1998-01-01

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  16. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    Directory of Open Access Journals (Sweden)

    Portha J.-F.

    2010-10-01

    Full Text Available Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects due to inorganics compounds. The influence of different process parameters (feed composition, reaction temperature is determined with respect to environmental impacts. Two allocation methods are analysed (mass and exergetic allocation and two different process versions are compared in order to determine the effect of some improvements on environmental impact. Les considérations liées à l’environnement doivent de plus en plus être prises en compte par les ingénieurs et les scientifiques afin de juger de la durabilité des procédés chimiques dans l’industrie pétrolière et gazière. Parmi les différentes méthodes d’analyse environnementale, l’Analyse de Cycle de Vie (ACV est très utilisée. Dans cette étude, l’ACV est appliquée au procédé de reformage catalytique du naphta en utilisant la méthode Eco-Indicateur 99 comme méthode d’analyse des impacts du cycle de vie. Les principaux impacts environnementaux du procédé sont la consommation de combustibles fossiles, le changement climatique et les effets sur la respiration liés aux composés organiques. L’influence de différents paramètres (composition de l’alimentation, température de réaction sur les impacts environnementaux est testée. Deux méthodes d’allocation sont analysées (allocation massique et énergétique et deux versions du procédé de reformage catalytique sont comparées afin de déterminer les améliorations possibles permettant de minimiser les impacts.

  17. Life cycle assessment of a national policy proposal - The case of a Swedish waste incineration tax

    International Nuclear Information System (INIS)

    Bjoerklund, Anna E.; Finnveden, Goeran

    2007-01-01

    At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste

  18. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.

    Science.gov (United States)

    Nabavi-Pelesaraei, Ashkan; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinzadeh-Bandbafha, Homa; Chau, Kwok-Wing

    2018-08-01

    Prediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS). The amounts of energy input and output are 51,585.61MJkg -1 and 66,112.94MJkg -1 , respectively, in paddy production. Life Cycle Assessment (LCA) is used to evaluate environmental impacts of paddy production. Results show that, in paddy production, in-farm emission is a hotspot in global warming, acidification and eutrophication impact categories. ANN model with 12-6-8-1 structure is selected as the best one for predicting energy output. The correlation coefficient (R) varies from 0.524 to 0.999 in training for energy input and environmental impacts in ANN models. ANFIS model is developed based on a hybrid learning algorithm, with R for predicting output energy being 0.860 and, for environmental impacts, varying from 0.944 to 0.997. Results indicate that the multi-level ANFIS is a useful tool to managers for large-scale planning in forecasting energy output and environmental indices of agricultural production systems owing to its higher speed of computation processes compared to ANN model, despite ANN's higher accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  20. Environmental assessment of Smart City Solutions using a coupled urban metabolism—life cycle impact assessment approach

    DEFF Research Database (Denmark)

    Lambrecht Ipsen, Kikki; Zimmermann, Regitze Kjær; Sieverts Nielsen, Per

    2018-01-01

    Purpose The purpose of the study is to quantify the environmental performance of Smart City Solutions at urban system level and thus evaluate their contribution to develop environmentally sustainable urban systems. Further, the study illustrates how this quantification is conducted. Methods...... The case city chosen in our modeling is Copenhagen, where seven Smart City Solutions are introduced: Green Roofs, Smart Windows, Pneumatic Waste Collection, Sensorized Waste Collection, Smart Water Meters, Greywater Recycling, and Smart Energy Grid. The assessment is conducted using a fused urban...... by introducing SmartWindows. Furthermore, the GWP indicator shows an environmental improvement of 10% for a Smart Energy Grid solution. Introduction of Pneumatic Waste Collection or Greywater Recycling reveals a minor negative performance effect of 0.76 and 0.70%, respectively, for GWP. The performance changes...

  1. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Styles, David, E-mail: d.styles@bangor.ac.uk; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO{sub 2}e excluding ILUC, or 238–755 Gg CO{sub 2}e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO{sub 4}e and 8.1–14.6 Gg SO{sub 2}e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering

  2. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    International Nuclear Information System (INIS)

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-01-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO_2e excluding ILUC, or 238–755 Gg CO_2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO_4e and 8.1–14.6 Gg SO_2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could

  3. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead

    Directory of Open Access Journals (Sweden)

    Sha Chen

    2017-11-01

    Full Text Available Lead-acid batteries (LABs, a widely used energy storage equipment in cars and electric vehicles, are becoming serious problems due to their high environmental impact. In this study, an integrated method, combining material flow analysis with life cycle assessment, was developed to analyze the environmental emissions and burdens of lead in LABs. The environmental burdens from other materials in LABs were not included. The results indicated that the amount of primary lead used in LABs accounted for 77% of the total lead production in 2014 in China. The amount of discharged lead into the environment was 8.54 × 105 tonnes, which was mainly from raw material extraction (57.2%. The largest environmental burden was from the raw materials extraction and processing, which accounted for 81.7% of the total environmental burdens. The environmental burdens of the environmental toxicity potential, human toxicity potential-cancer, human toxicity potential-non-cancer, water footprint and land use accounted for more than 90% at this stage. Moreover, the environmental burdens from primary lead was much more serious than regenerated lead. On the basis of the results, main practical measures and policies were proposed to reduce the lead emissions and environmental burdens of LABs in China, namely establishing an effective LABs recycling system, enlarging the market share of the legal regenerated lead, regulating the production of regenerated lead, and avoiding the long-distance transportation of the waste LABs.

  4. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD Recommendations for Life Cycle Impact Assessment

    Directory of Open Access Journals (Sweden)

    Serenella Sala

    2012-06-01

    Full Text Available Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from “cradle to grave” have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA of products, in recent years, several methodologies have been developed for Life Cycle Impact Assessment (LCIA. The Joint Research Center of the European Commission (EC-JRC led a “science to decision support” process which resulted in the International Reference Life Cycle Data System (ILCD Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook is the result of a comprehensive process of evaluation and selection of existing methods based on a set of scientific and stakeholder acceptance criteria and involving review and consultation by experts, advisory groups and the public. In this study, we report the main features of the ILCD LCIA recommendation development highlighting relevant issues emerged from this “from science to decision support” process in terms of research needs and challenges for LCIA. Comprehensiveness of the assessment, as well as acceptability and applicability of the scientific developments by the stakeholders, are key elements for the design of new methods and to guarantee the mainstreaming of the sustainability concept.

  5. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    because of the large energy use forrunning the demineralization process. Local and regional environmental impacts were shown to improve from demineralization for low ranking coals or lignite where the ash content is above ≈25 % and the carboncontent is less than ≈50 %. Overall, it can be concluded...... in alkaline and acidic solution to dissolve and remove the ash. This process is well-studied on lab scale but has only to a small extent been tried on a full scale. This assessment is conducted as an aid for further developing thetechnology, allowing for early identification of environmental impacts...... cycle perspective, to assessthe environmental impacts from removing ash in coal, and assess how this affects the combustion in terms of higher thermal efficiency. We assess 260 different data points applying alkali-acid leaching or acidleaching and assess how the treatment and subsequent energy...

  6. Life Cycle Assessment of two Electrolux electric cookers: ELK8200AL and EKV5600

    DEFF Research Database (Denmark)

    Hansen, Morten Søes; Wenzel, Henrik; Frees, Niels

    A life cycle assessment of two electrical cookers was made for the company Electrolux A/S. A number of valid conclusions can be drawn from the study. The conclusions are supported by a sensitivity analysis covering essential parameter variations and showing that quite robust conclusions can...... issue for the resource consumption of the cookers over their life cycle • Transportation of the cookers over their life cycle is insignificant Environmentally, the main perspectives for improvements lie in the optimisation of the use stage, including better efficiency in transformation of the energy...

  7. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi......-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is “landfilling of 1 ton of wet household waste in a 10 m deep landfill...... that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater...

  8. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  9. The environmental accounting in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako; Aquino, Afonso Rodrigues de

    2006-01-01

    This paper illustrates how accountancy can contribute to conservation, protection and the recovery of the environment. Firstly, the appearance of accountancy, its performance fields, its terminologies and even the Environmental Accounting Definition is approached, bringing the social balance as a tool for making decisions in the social field. Environmental Accounting is a very useful tool to apply to any entity including the nuclear area by calculating the use in order for the environmental passive to be zero, especially in the activity of the nuclear fuel cycle. (author)

  10. Environmental performance of straw-based pulp making: A life cycle perspective.

    Science.gov (United States)

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  12. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  13. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  14. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  15. Life cycle assessment in support of sustainable transportation

    Science.gov (United States)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  16. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I

    2012-01-01

    The aim of this study was to apply the life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of expected edible carcass weight in the 3 main broiler production systems in the United Kingdom: 1) standard indoor, 2) free range, and 3) organic, and to identify the main components of these burdens. The LCA method evaluates production systems logically to account for all inputs and outputs that cross a specified system boundary, and it relates these to the useful outputs. The analysis was based on an approach that applied a structural model for the UK broiler industry and mechanistic submodels for animal performance, crop production, and major nutrient flows. Simplified baseline feeds representative of those used by the UK broiler industry were used. Typical UK figures for performance and mortality of birds and farm energy and material use were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs. The length of the production cycle was longer for free-range and organic systems compared with that of the standard indoor system, and as a result, the feed consumption and manure production per bird were higher in the free-range and organic systems. These differences had a major effect on the differences in environmental burdens between the systems. Feed production, processing, and transport resulted in greater overall environmental impacts than any other components of broiler production; for example, 65 to 81% of the primary energy use and 71 to 72% of the global warming potential of the system were due to these burdens. Farm gas and oil use had the second highest impact in primary energy use (12-25%) followed by farm electricity use. The direct use of gas, oil, and electricity were generally lower in free-range and organic systems compared with their use in the standard indoor system. Manure was the main component of acidification potential and also had a relatively high eutrophication

  18. Life-cycle assessment of eucalyptus short-rotation coppices for bioenergy production in Southern France

    OpenAIRE

    Gabrielle , Benoit; Nguyen The , Nicolas; Maupu , Pauline; Vial , Estelle

    2011-01-01

    Short rotation coppices (SRCs) are considered prime candidates for biomass production, yielding good-quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to take into account when developing SRCs. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem ...

  19. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978

  20. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978.

  1. Biofuel or excavation? - Life cycle assessment (LCA) of soil remediation options

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal; Andersson-Skoeld, Yvonne [Swedish Geotechnical Institute, 58193 Linkoeping (Sweden)

    2011-02-15

    The environmental consequences of soil remediation through biofuel or through dig-and-dump were compared using life cycle assessment (LCA). Willow (Salix viminalis) was actually grown in-situ on a discontinued oil depot, as a phytoremediation treatment. These data were used for the biofuel remediation, while excavation-and-refill data were estimated from experience. The biofuel remediation had great environmental advantages compared to the ex situ excavation remediation. With the ReCiPe impact assessment method, which included biodiversity, the net environmental effect was even positive, in spite of the fact that the wood harvest was not utilised for biofuel production, but left on the contaminated site. Impact from the Salix viminalis cultivation was mainly through land use for the short rotation coppice, and through journeys of control personnel. The latter may be reduced when familiarity with biofuel as a soil treatment method increases. The excavation-and-refill remediation was dominated by the landfill and the transport of contaminated soil and backfill. (author)

  2. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  3. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  4. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  5. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    Science.gov (United States)

    Kittipongvises, Suthirat

    2017-11-01

    Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, `resources' and `climate change' categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  6. Environmental sustainability assessment of palm biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2012-01-01

    The study assesses the environmental sustainability of palm biodiesel production systems in Thailand by focusing on their energy efficiency and environmental impact potentials. The Net Energy Balance (NEB) and Renewability indicate energy gain for palm biodiesel and its co-products as compared to fossil energy inputs. In addition, life cycle assessment also reveals lower values of environmental impact potentials of biodiesel as compared to conventional diesel. For example, palm biodiesel can provide greenhouse gas (GHG) reduction of around 46–73% as compared to diesel. Nitrogen-fertilizer production and application in the plantation and the air emissions from the ponds treating palm oil mill effluent (POME) are found to be the major environmental aspects. However, the energy and environmental performances depend on various factors such as the management efficiency of empty fruit bunches (EFB) and POME and the possible land-use change in the future. Recommendations are made for improving environmental performance of palm biodiesel and for securing the long-term availability of crude palm oil supply with a view towards sustainable palm biodiesel production. -- Highlights: ► Environmental sustainability of palm biodiesel production in Thailand is assessed. ► Palm biodiesel can provide GHG reduction of around 46–73% as compared to diesel. ► Net energy ratio and renewability of palm biodiesel both range between 2 and 4. ► Efficient use of by-products in the value chain enhances environmental benefits.

  7. Analysis of the most widely used Building Environmental Assessment methods

    International Nuclear Information System (INIS)

    Gu, Zhenhong; Wennersten, R.; Assefa, G.

    2006-01-01

    Building Environmental Assessment (BEA) is a term used for several methods for environmental assessment of the building environment. Generally, Life Cycle Assessment (LCA) is an important foundation and part of the BEA method, but current BEA methods form more comprehensive tools than LCA. Indicators and weight assignments are the two most important factors characterizing BEA. From the comparison of the three most widely used BEA methods, EcoHomes (BREEAM for residential buildings), LEED-NC and GBTool, it can be seen that BEA methods are shifting from ecological, indicator-based scientific systems to more integrated systems covering ecological, social and economic categories. Being relatively new methods, current BEA systems are far from perfect and are under continuous development. The further development of BEA methods will focus more on non-ecological indicators and how to promote implementation. Most BEA methods are developed based on regional regulations and LCA methods, but they do not attempt to replace these regulations. On the contrary, they try to extend implementation by incentive programmes. There are several ways to enhance BEA in the future: expand the studied scope from design levels to whole life-cycle levels of constructions, enhance international cooperation, accelerate legislation and standardize and develop user-oriented assessment systems

  8. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes.

    Science.gov (United States)

    Sherman, Jodi D; Raibley, Lewis A; Eckelman, Matthew J

    2018-01-09

    Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased

  9. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  10. ESTIMATING INJURIOUS IMPACT IN CONSTRUCTION LIFE CYCLE ASSESSMENTS: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    McDevitt, James E.

    2012-04-01

    Full Text Available This paper is the result of a desire to include social factors alongside environmental and economic considerations in Life Cycle Assessment studies for the construction sector. We describe a specific search for a method to include injurious impact for construction Life Cycle Assessment studies, by evaluating a range of methods and data sources. A simple case study using selected Accident Compensation Corporation information illustrates that data relating to injury could provide a compelling evidence to cause changes in construction supply chains, and could provide an economic motive to pursue further research in this area. The paper concludes that limitations notwithstanding, the suggested approach could be useful as a fast and cheap high level tool that can accelerate the discussions and research agenda that will bring about the inclusion of social metrics in construction sector supply chain management and declarations.

  11. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.

    Science.gov (United States)

    Arvidsson, Rickard; Nguyen, Duong; Svanström, Magdalena

    2015-06-02

    Nanocellulose is a bionanomaterial with many promising applications, but high energy use in production has been described as a potential obstacle for future use. In fact, life cycle assessment studies have indicated high life cycle energy use for nanocellulose. In this study, we assess the cradle-to-gate environmental impacts of three production routes for a particular type of nanocellulose called cellulose nanofibrils (CNF) made from wood pulp. The three production routes are (1) the enzymatic production route, which includes an enzymatic pretreatment, (2) the carboxymethylation route, which includes a carboxymethylation pretreatment, and (3) one route without pretreatment, here called the no pretreatment route. The results show that CNF produced via the carboxymethylation route clearly has the highest environmental impacts due to large use of solvents made from crude oil. The enzymatic and no pretreatment routes both have lower environmental impacts, of similar magnitude. A sensitivity analysis showed that the no pretreatment route was sensitive to the electricity mix, and the carboxymethylation route to solvent recovery. When comparing the results to those of other carbon nanomaterials, it was shown that in particular CNF produced via the enzymatic and no pretreatment routes had comparatively low environmental impacts.

  12. A life cycle assessment of destruction of ammunition

    International Nuclear Information System (INIS)

    Alverbro, K.; Bjoerklund, A.; Finnveden, G.; Hochschorner, E.; Haegvall, J.

    2009-01-01

    The Swedish Armed Forces have large stocks of ammunition that were produced at a time when decommissioning was not considered. This ammunition will eventually become obsolete and must be destroyed, preferably with minimal impact on the environment and in a safe way for personnel. The aim of this paper is to make a comparison of the environmental impacts in a life cycle perspective of three different methods of decommissioning/destruction of ammunition, and to identify the environmental advantages and disadvantages of each of these destruction methods: open detonation; static kiln incineration with air pollution control combined with metal recycling, and a combination of incineration with air pollution control, open burning, recovery of some energetic material and metal recycling. Data used are for the specific processes and from established LCA databases. Recycling the materials in the ammunition and minimising the spread of airborne pollutants during incineration were found to be the most important factors affecting the life cycle environmental performance of the compared destruction methods. Open detonation with or without metal recycling proved to be the overall worst alternative from a life cycle perspective. The results for the static kiln and combination treatment indicate that the kind of ammunition and location of the destruction plant might determine the choice of method, since the environmental impacts from these methods are of little difference in the case of this specific grenade. Different methods for destruction of ammunition have previously been discussed from a risk and safety perspective. This is however to our knowledge the first study looking specifically on environmentally aspect in a life cycle perspective.

  13. Integrating nutritional benefits and impacts in a life cycle assessment framework: A US dairy consumption case study

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Fulgoni III, Victor; Heller, Martin

    2014-01-01

    Although essential to understand the overall health impact of a food or diet, nutrition is not usually considered in food-related life cycle assessments (LCAs). As a case study to demonstrate comparing environmental and nutritional health impacts we investigate United States dairy consumption....... Nutritional impacts, interpreted from disease burden epidemiology, are compared to health impacts from more tradi-tional impacts (e.g. due to exposure to particulate matter emissions across the life cycle) considered in LCAs. After accounting for the present consumption, data relating dairy intake to public...... to environmental impacts suggesting the need for investigat-ing the balance between dietary public health advantages and disadvantages in comparison to environmental impacts....

  14. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried out...

  15. Considering capital goods in life cycle assessments by input-output analysis. Offshore wind farm as an application example

    International Nuclear Information System (INIS)

    Eickelkamp, Timo

    2013-01-01

    Capital goods are not normally taken into consideration in assessing the sustainability of products on the basis of life cycle assessments. Capital goods are machines and buildings that are used for production purposes over the course of a product's life cycle. Using an offshore wind farm as an example the present study shows how capital goods can be taken into account via a methodologically expanded input-output analysis and thus factored into the life cycle assessment. Besides comparing different calculation methods the author performs a detailed analysis of those parameters with the greatest influence on the outcome. The results show that capital goods have a substantial impact on sustainability in both energy-related and environmental terms. Capital goods should therefore be taken into consideration in life cycle assessments.

  16. Life cycle assessment. Specific indicators for Italy in impact evaluation; Life cycle assessment: sviluppo di indicatori specific per l'Italia per la fase di valutazione d'impatto

    Energy Technology Data Exchange (ETDEWEB)

    Masoni, P [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia; Scimia, E [Bologna Univ., Bologna (Italy)

    1999-07-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described. [Italian] Il lavoro analizza la fase centrale della metodologia denominata valutazione d'impatto, resentando una rassegna dello stato dell'arte e un'individuazione critica dei possibili indicatori ambientali, di criteri di normalizzazione e di attribuzione di pesi ai diversi temi ambientali specific per l'Italia. Viene descritta l'applicazione ad un caso concreto relativo alla produzione del burro nel consorzio Granterre di Modena.

  17. Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature

    NARCIS (Netherlands)

    Corsten, M.A.M.; Ramirez, C.A.; Shen, L.; Koornneef, A.; Faaij, A.P.C.

    2013-01-01

    This study performs an assessment of existing LCA literature to obtain insights into potential environmental impacts over the complete life cycle of fossil fuel fired power plants with CCS. CCS results in a net reduction of the GWP of power plants through their life cycle in the order of 65–84%

  18. Life cycle assessment: Existing building retrofit versus replacement

    Science.gov (United States)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  19. Guidelines for evaluating the environmental performance of Product/Service-Systems through life cycle assessment

    DEFF Research Database (Denmark)

    Kjær, Louise Laumann; Pigosso, Daniela C. A.; McAloone, Tim C.

    2018-01-01

    Product/Service-Systems (PSS) such as integrated solutions, performance-based contracts or sharing systems are often proposed as means to enable improved environmental sustainability. However, PSS are not necessarily environmentally benign compared to conventional systems. Quantitative environmen......Product/Service-Systems (PSS) such as integrated solutions, performance-based contracts or sharing systems are often proposed as means to enable improved environmental sustainability. However, PSS are not necessarily environmentally benign compared to conventional systems. Quantitative....... In this article, we propose a set of guidelines consisting of six steps, which elaborates the LCA process with respect to the specific consideration for PSS assessment. The guidelines were developed based on identified challenges for the application of LCA on PSS, a review of existing LCAs on PSS case studies...

  20. Life Cycle Assessment of pig production systems of the Noir de Bigorre chain

    OpenAIRE

    Garcia-Launay, F; Rouillon, V; Faure, J; Fonseca, A

    2018-01-01

    Outdoor pig production systems relying on local pig breeds may cope with environmental and socio-economic challenges. They produce high quality products with added economic value and rely mainly on local feed resources. Within the European TREASURE project, we conducted the Life Cycle Assessment (LCA) of the Noir de Bigorre (NDB) pig production systems located in South West of France. The environmental impacts were calculated at farm gate and expressed per kg live pig and per ha land use. Fro...

  1. A comparative life cycle assessment of marine power systems

    International Nuclear Information System (INIS)

    Ling-Chin, Janie; Roskilly, Anthony P.

    2016-01-01

    Highlights: • Correlation among resources, emissions, key components and processes was attained. • Environmental benefits of innovative power systems were verified. • New-build system showed a great advantage over retrofit and conventional systems. • Relative contribution of significant components remained or became more profound. • Influence of fuel consumption quantity over the estimates varied with impact types. - Abstract: Despite growing interest in advanced marine power systems, knowledge gaps existed as it was uncertain which configuration would be more environmentally friendly. Using a conventional system as a reference, the comparative life cycle assessment (LCA) study aimed to compare and verify the environmental benefits of advanced marine power systems i.e. retrofit and new-build systems which incorporated emerging technologies. To estimate the environmental impact attributable to each system, a bottom-up integrated system approach was applied, i.e. LCA models were developed for individual components using GaBi, optimised operational profiles and input data standardised from various sources. The LCA models were assessed using CML2001, ILCD and Eco-Indicator99 methodologies. The estimates for the advanced systems were compared to those of the reference system. The inventory analysis results showed that both retrofit and new-build systems consumed less fuels (8.28% and 29.7% respectively) and released less emissions (5.2–16.6% and 29.7–55.5% respectively) during operation whilst more resources were consumed during manufacture, dismantling and the end of life. For 14 impact categories relevant to global warming, acidification, eutrophication, photochemical ozone creation and PM/respiratory inorganic health issues, reduction in LCIA results was achieved by retrofit (2.7–6.6%) and new-build systems (35.7–50.7%). The LCIA results of the retrofit system increased in ecotoxicity (1–8%), resource depletion (1–2%) and fossil fuel depletion

  2. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    Science.gov (United States)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include

  3. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Environmental life cycle assessment of different domestic wastewater streams: policy effectiveness in a tropical urban environment.

    Science.gov (United States)

    Ng, Bernard J H; Zhou, Jin; Giannis, Apostolos; Chang, Victor W-C; Wang, Jing-Yuan

    2014-07-01

    To enhance local water security, the Singapore government promotes two water conservation policies: the use of eco-friendly toilets to reduce yellow water (YW) disposal and the installation of water efficient devices to minimize gray water (GW) discharge. The proposed water conservation policies have different impacts on the environmental performance of local wastewater management. The main purpose of this study is to examine and compare the impacts of different domestic wastewater streams and the effectiveness of two water conservation policies by means of life cycle assessment (LCA). LCA is used to compare three scenarios, including a baseline scenario (BL), YW-reduced scenario (YWR) and GW-reduced scenario (GWR). The BL is designed based on the current wastewater management system, whereas the latter two scenarios are constructed according to the two water conservation policies that are proposed by the Singapore government. The software SIMPARO 7.3 with local data and an eco-invent database is used to build up the model, and the functional unit is defined as the daily wastewater disposal of a Singapore resident. Due to local water supply characteristics, the system boundary is extended to include the sewage sludge management and tap water production processes. The characterization results indicate that the GWR has a significant impact reduction (22-25%) while the YWR has only a 2-4% impact reduction compared with the BL. The contribution analysis reveals that the GW dominates many impact categories except eutrophication potential. The tap water production is identified as the most influential process due to its high embodied energy demand in a local context. Life cycle costing analysis shows that both YWR and GWR are financially favorable. It is also revealed that the current water conservation policies could only achieve Singapore's short-term targets. Therefore, two additional strategies are recommended for achieving long-term goals. This study provides a

  5. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  6. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective

    International Nuclear Information System (INIS)

    Morselli, Luciano; De Robertis, Claudia; Luzi, Joseph; Passarini, Fabrizio; Vassura, Ivano

    2008-01-01

    The advisability of using incineration, among the other technologies in Municipal Solid Waste Management, is still a debated issue. However, technological evolution in the field of waste incineration plants has strongly decreased their environmental impacts in the last years. A description of a regional situation in Northern Italy (Emilia Romagna Region) is here presented, to assess the impacts of incinerators by the application of Life Cycle Assessment (LCA) methodology and to stress the most impacting steps in incineration process. The management of solid residues and heavy metal emission resulted the most important environmental concerns. Furthermore, a tentative comparison with the environmental impact of landfill disposal, for the same amount of waste, pointed out that incineration process must be considered environmentally preferable

  7. Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities.

    Science.gov (United States)

    Dalla Riva, A; Burek, J; Kim, D; Thoma, G; Cassandro, M; De Marchi, M

    2017-10-01

    The present study investigated a cradle-to-grave life cycle assessment to estimate the environmental impacts associated with Italian mozzarella cheese consumption. The differences between mozzarella produced from raw milk and mozzarella produced from curd were studied, and differences in manufacturing processes have been emphasized in order to provide guidance for targeted improvements at this phase. Specifically, the third-largest Italian mozzarella producer was surveyed to collect site-specific manufacturing data. The Ecoinvent v3.2 database was used for secondary data, whereas SimaPro 8.1 was the modeling software. The inventory included inputs from farm activities to end of life disposal of wasted mozzarella and packaging. Additionally, plant-specific information was used to assign major inputs, such as electricity, natural gas, packaging, and chemicals to specific products; however, where disaggregated information was not provided, milk solids allocation was applied. Notably, loss of milk solids was accounted during the manufacture, moreover mozzarella waste and transport were considered during distribution, retail, and consumption phases. Feed production and animal emissions were the main drivers of raw milk production. Electricity and natural gas usage, packaging (cardboard and plastic), transport, wastewater treatment, and refrigerant loss affected the emissions from a farm gate-to-dairy plant gate perspective. Post-dairy plant gate effects were mainly determined by electricity usage for storage of mozzarella, transport of mozzarella, and waste treatment. The average emissions were 6.66 kg of CO 2 equivalents and 45.1 MJ of cumulative energy demand/kg of consumed mozzarella produced directly from raw milk, whereas mozzarella from purchased curd had larger emissions than mozzarella from raw milk due to added transport of curd from specialty manufacturing plants, as well as electricity usage from additional processes at the mozzarella plant that are required

  8. Environmental correlates of cycling: Evaluating urban form and location effects based on Danish micro-data

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl; Carstensen, Trine Agervig

    2013-01-01

    The paper analyses the environmental correlates of cycling based on Danish transportation and urban form micro-data. The results show that established walkability factors such as density, connectivity and diversity are related to cycling, but access to retail concentrations/centres, public...... and the distance cycled. A high probability of cycling generally implies short cycling distances leading to non-uniform, non-monotonous relationship between environmental indicators such as walkability and cycling....

  9. Differences in physical environmental characteristics between adolescents' actual and shortest cycling routes: a study using a Google Street View-based audit.

    Science.gov (United States)

    Verhoeven, Hannah; Van Hecke, Linde; Van Dyck, Delfien; Baert, Tim; Van de Weghe, Nico; Clarys, Peter; Deforche, Benedicte; Van Cauwenberg, Jelle

    2018-05-29

    The objective evaluation of the physical environmental characteristics (e.g. speed limit, cycling infrastructure) along adolescents' actual cycling routes remains understudied, although it may provide important insights into why adolescents prefer one cycling route over another. The present study aims to gain insight into the physical environmental characteristics determining the route choice of adolescent cyclists by comparing differences in physical environmental characteristics between their actual cycling routes and the shortest possible cycling routes. Adolescents (n = 204; 46.5% boys; 14.4 ± 1.2 years) recruited at secondary schools in and around Ghent (city in Flanders, northern part of Belgium) were instructed to wear a Global Positioning System device in order to identify cycling trips. For all identified cycling trips, the shortest possible route that could have been taken was calculated. Actual cycling routes that were not the shortest possible cycling routes were divided into street segments. Segments were audited with a Google Street View-based tool to assess physical environmental characteristics along actual and shortest cycling routes. Out of 160 actual cycling trips, 73.1% did not differ from the shortest possible cycling route. For actual cycling routes that were not the shortest cycling route, a speed limit of 30 km/h, roads having few buildings with windows on the street side and roads without cycle lane were more frequently present compared to the shortest possible cycling routes. A mixed land use, roads with commercial destinations, arterial roads, cycle lanes separated from traffic by white lines, small cycle lanes and cycle lanes covered by lighting were less frequently present along actual cycling routes compared to the shortest possible cycling routes. Results showed that distance mainly determines the route along which adolescents cycle. In addition, adolescents cycled more along residential streets (even if no cycle lane was

  10. Tackling the Relevance of Packaging in Life Cycle Assessment of Virgin Olive Oil and the Environmental Consequences of Regulation.

    Science.gov (United States)

    Navarro, Alejandra; Puig, Rita; Martí, Elena; Bala, Alba; Fullana-I-Palmer, Pere

    2018-04-12

    Production and consumption of olive oil is very important in Europe, being this product a basic element in the Mediterranean diet since long ago. The project objective is two-fold: a study of the contribution of virgin olive oils (VOOs) usual packaging to the whole life cycle of the product and a study of the environmental consequences of the Spanish Government regulation on VOO packaging. A life cycle assessment (LCA) according to ISO 14044 has been performed using the CML methodology for the impact assessment. The results show that the packaging influence varies from 2 to 300%, depending on the impact category and type of packaging (glass, tin or polyethylene terephtalate). Glass, which is related to higher quality perception by consumers, was found to be the most influencing material (due to its weight); however, this impact may be fairly reduced by applying ecodesign strategies (such as weight reduction and recycled-glass percentage increase). A new Spanish regulation on the mandatory use of non-refillable oilers in HORECA establishments (hotels, restaurants and caterings) aims to provide more quality assurance and better information to consumers; however, it was also found to mean a 74% increase in greenhouse gases emissions. This regulation was deeply discussed at European level and its application was withdraw due to consumers rejection, except for Spain. The findings of the present case study show that LCA and ecodesign should be important tools to be promoted and applied in policy making to reduce non-desirable consequences of regulation.

  11. A systematic review of bioenergy life cycle assessments

    International Nuclear Information System (INIS)

    Muench, Stefan; Guenther, Edeltraud

    2013-01-01

    Highlights: • We conducted a systematic literature review of bioenergy LCAs. • We provide a detailed overview of GWP, AP, and EP for biomass electricity and heat. • We discuss methodological choices that can lead to variations in results. • Relevant choices are functional unit, allocation method, system boundary, and carbon modelling. - Abstract: On a global scale, bioenergy is highly relevant to renewable energy options. Unlike fossil fuels, bioenergy can be carbon neutral and plays an important role in the reduction of greenhouse gas emissions. Biomass electricity and heat contribute 90% of total final biomass energy consumption, and many reviews of biofuel Life Cycle Assessments (LCAs) have been published. However, only a small number of these reviews are concerned with electricity and heat generation from biomass, and these reviews focus on only a few impact categories. No review of biomass electricity and heat LCAs included a detailed quantitative assessment. The failure to consider heat generation, the insufficient consideration of impact categories, and the missing quantitative overview in bioenergy LCA reviews constitute research gaps. The primary goal of the present review was to give an overview of the environmental impact of biomass electricity and heat. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of biomass electricity and heat LCAs. We conducted a quantitative analysis of the environmental impact of biomass electricity and heat. There is a significant variability in results of biomass electricity and heat LCAs. Assumptions regarding the bioenergy system and methodological choices are likely reasons for extreme values. The secondary goal of this review is to discuss influencing methodological choices. No general consensus has been reached regarding the optimal functional unit, the ideal allocation of environmental impact between co-products, the definition of the system boundary

  12. Life cycle assessment of village electrification based on straight jatropha oil in Chhattisgarh, India

    Energy Technology Data Exchange (ETDEWEB)

    Gmuender, Simon Michael; Zah, Rainer; Widmer, Rolf [Technology and Society Lab, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Bhatacharjee, Somnath [Winrock India International, New Delhi (India); Classen, Mischa [First Climate AG, Zuerich (Switzerland); Mukherjee, Prodyut [Sir Dorabji Tata Trust and Allied Trusts, New Delhi (India)

    2010-03-15

    A decentralized power generation plant fuelled by straight jatropha oil was implemented in 2006 in Ranidhera, Chhattisgarh, India. The goal of this study was to assess the environmental sustainability of that electrification project in order to provide a scientific basis for policy decisions on electrifying remote villages. A full Life Cycle Assessment (LCA) was conducted on jatropha-based rural electrification and then compared with other electrification approaches such as photovoltaic (PV), grid connection and a diesel-fuelled power generator. In summary, the jatropha-based electrification in Ranidhera reduces greenhouse gas emissions over the full life cycle by a factor of 7 compared to a diesel generator or grid connection. The environmental performance is only slightly improved, mainly due to the high air pollution from pre-heating the jatropha seeds. With additional measures oil extraction and overall efficiency could be further improved. However, environmental benefits can only be achieved if jatropha is cultivated on marginal land and land use competition can be excluded. Under these conditions, jatropha-based electricity generation might be a useful alternative to other renewable electrification options, as the technology is very sturdy and can be maintained even in remote and highly under-developed regions. (author)

  13. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  14. Life Cycle Assessment of concrete manufacturing in small isolated states: the case of Cyprus

    Science.gov (United States)

    Chrysostomou, Chrystalla; Kylili, Angeliki; Nicolaides, Demetris; Fokaides, Paris A.

    2017-10-01

    Life Cycle Assessment (LCA) is an effective and valuable methodology for identifying the holistic sustainable behaviour of materials and products. It is also useful in analysing the impact a structure has over the course of its life cycle. Currently, there is no sufficient knowhow regarding the life cycle performance of building materials used in the case of small isolated states. This study focuses on the LCA of the production of concrete for the investigation of its environmental impact in isolated island states, using the case of Cyprus as an example. Four different scenarios for the production of 1 tonne of concrete are examined: (i) manufacturing of concrete by transporting raw materials from different locations around the island, (ii) manufacturing of concrete using alternative energy resources, (iii) manufacturing of concrete with reduced transportation needs, and (iv) on-site manufacturing of concrete. The results, in terms of environmental impacts of concrete produced, indicated that the use of renewable electricity instead of fossil-fuelled electricity in isolated states can drastically improve the environmental performance of the end product. Also, the minimisation of transportation distances and the use of locally available resources can also affect, to a degree, the environmental impact of concrete production.

  15. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  16. Environmental Assessment for the General Plan and Maintenance of Patrick Air Force Base, Florida

    Science.gov (United States)

    2005-05-01

    considered viable. P A F B G e n e r a l P l a n E A 2 Environmental Effects The General Plan EA evaluated the environmental impacts of...year cycle. The potential environmental effects were assessed for the following environmental resource areas: air quality, water quality, geology...ADP Area Development Plan AF Air Force AFB Air Force Base AFETR Air Force Eastern Test Range AFI Air Force Instruction AFMAN Air Force Manual

  17. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  18. Environmental analysis of natural gas life cycle; Analisi ambientale del ciclo di vita del gas naturale

    Energy Technology Data Exchange (ETDEWEB)

    Riva, A.; D' Angelosante, S.; Trebeschi, C. [Snam SpA, Rome (Italy)

    2000-12-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account. [Italian] L'analisi del ciclo di vita e' una metodologia che consente di identificare gli effetti ambientali associati ad un prodotto, processo o attivita' lungo il loro ciclo di vita. La valutazione di studi pubblicati e l'applicazione della metodologia alla produzione di energia elettrica da combustibili fossili, utilizzando dati provenienti da banche dati di letteratura e raccolti dall'industria del gas, dimostrano l'importanza e la difficolta' di avere a disposizione dati affidabili ed aggiornati, necessari per un'analisi significativa del ciclo di vita. I risultati mostrano che i vantaggi ambientali del gas naturale rispetto agli altri combustibili fossili nella fase di utilizzo finale, aumentano ulteriormente se si considera l'intero ciclo di vita dei diversi combustibili, dalla produzione al consumo finale.

  19. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    International Nuclear Information System (INIS)

    Josa, Alejandro; Aguado, Antonio; Cardim, Arnaldo; Byars, Ewan

    2007-01-01

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content

  20. Life Cycle Assessment Application to the Wine Sector: A Critical Review

    Directory of Open Access Journals (Sweden)

    Carmen Ferrara

    2018-02-01

    Full Text Available Life Cycle Assessment (LCA is a powerful tool that allows evaluation of the environmental performances of a product, service or process considering the whole life cycle or a part of it. In the wine sector, the application of LCA has grown significantly in recent years and several studies have been carried out about this topic that are similar to other research fields. Nowadays, LCA is an important and acknowledged environmental assessment tool but its application to the wine sector is still in a developing phase. For this reason, the present study proposes a critical review of papers dealing with both the wine sector and LCA. The critical review points out that the main wine hotspots are the viticulture phase (mainly due to fuel, fertilizer and pesticides consumption and the wine primary packaging production (due to glass bottles. Furthermore, the papers taken into consideration have a wide variability in the system boundaries definition as well as a shortage of availability of original and site-specific inventory data. Such key factors are sensitive aspects that have a huge influence on the results of a study and they are also affected by a wide variability: these issues need further scientific contribution through future studies.