WorldWideScience

Sample records for cycle assessment environmental

  1. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  2. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  3. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantitative assessment of the environmental footprint of the French nuclear fuel cycle by life cycle assessment

    International Nuclear Information System (INIS)

    Poinssot, Christophe; Bourg, Stephane; Ouvrier, Noel; Serp, Jerome

    2015-07-01

    Full text of publication follows: Nuclear energy contributes to most than 75% of the French electricity thanks to the operation of 58 generation 2 reactors located on 19 sites built from the 70's to the end of the 90's. France also developed for a long time a fully integrated nuclear industry covering the whole nuclear fuel cycle, from the ore mining to the fabrication of the fuel for the front-end, from the reprocessing up to the MOX fuel fabrication and storage facility and in the near-future geological repository for the back-end. This investment allows France to produce a low-carbon electricity with the second lowest GHG emissions intensity, in the range of 90 g CO 2 /KWh. Such a very beneficial figure is directly related to the high contribution of nuclear in the electricity mix combined with renewables energies, in particular hydro. Greenhouse gases emissions are very relevant to assess the respective influence on the global climate change, but they do not address the whole potential environmental impact of any activity. However, such a question is crucial for assessing the respective sustainability of such an activity, in particular nuclear energy which is thought to be very detrimental by a large part of the public opinion. In order to address this question, we developed a dedicated life cycle assessment (LCA) tools referred to as NELCAS, the specificity of which is to focus on the first order parameters and avoiding any 'black-box' effect which can exist in commercial LCA tool. Thanks to the recent transparency and nuclear safety law (2006), in- and out- fluxes of matter and energy for any of the fuel cycle facilities are now publicly available. We hence used this significant set of measured data to feed our model and assess the most usual environmental indicators such as land use, different types of atmospheric emissions (GHG, SOx, NOx, particles...) and aqueous release (chemical effluents, eutrophication potential,...)... We also

  5. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  6. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  7. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  8. Comparative environmental life cycle assessment of composite materials

    International Nuclear Information System (INIS)

    De Vegt, O.M.; Haije, W.G.

    1997-12-01

    The aim of the present study is to compare and quantify the environmental impact of three rotorblades made of different materials and to establish which stage in the life cycle contributes most. The life cycle of a product can be represented by the production phase, including depletion of raw materials (mining) and production (machining) of products, the utilisation phase, including use of energy, maintenance and cleaning, and the disposal phase, including landfill, incineration, recycling, etc. The environmental impact of a product is not only determined by the materials selected but also by the function of the product itself. E.g. when natural fibres are applied in vehicles as a substitution for metals the environmental impact in the use phase will be reduced due to a lower energy consumption caused by a lower car weight. The influence on the environmental impact of the production phase must also be taken into account. The material relation between the production phase and the use phase and the disposal phase is complicated. In general the lifetime of a product use phase can be extended (positive aspect), e.g. by application of a coating onto the surface. Due to the coating the product can not easily be recycled, which is a negative aspect. The three types of composites used in the rotorblade of the wind energy converter considered in this study are: flaxfibre reinforced epoxy, carbon fibre reinforced epoxy and glassfibre reinforced polyester. The assessment is performed using the computer program Simapro 3, which is based on the Dutch CML method for the environmental life-cycle assessment of products using the Eco-Indicator 95 evaluation method. The CML method defines five phases for an LCA: goal definition and scoping; inventory; classification; impact assessment; and improvement analysis. The improvement analysis is not part of this work. Performing an LCA is a time-consuming process due to the detailed information that is required. In chapter five some

  9. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  11. Environmental Performance of Kettle Production: Product Life Cycle Assessment

    Science.gov (United States)

    Marcinkowski, Andrzej; Zych, Krzysztof

    2017-12-01

    The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  12. ENVIRONMENTAL PERFORMANCE OF KETTLE PRODUCTION: PRODUCT LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Andrzej MARCINKOWSKI

    2017-10-01

    Full Text Available The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach where the main function is boiling 3360 l of water during 4- year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g. The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste sce-nario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix which determined final comparison results. Basing on LCA results, some im-provements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  13. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  14. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  15. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  16. Beginning LCA. A guide into environmental life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.W. [ed.; Huppes, G. [Centre of Environmental Science CLM, Leiden University, Leiden (Netherlands); Dutilh, C.E. [Unilever, Van den Bergh Netherlands, Rotterdam (Netherlands)

    1995-02-01

    The main goal of this document is to provide practical guidance for those who want to start with Life Cycle Assessment (LCA). The document has been set up in the form of modules. Module 1 provides arguments to decide whether or not LCA is the right tool to use in a particular case. In this module other ways to study interactions with the environment will be mentioned as well. Module 2 explains the process of formulating the purpose and scope of the study. The results will give a general picture of the characteristics of the LCA. The next step, which is called the inventory analysis, represents the largest amount of work and is split up into four parts, i.e. Modules 3,4,5, and 6. Module 3 gives guidelines and detailed examples on how to construct a flowchart of the study. Module 5 describes how to collect the required data and Module 4 how to define the system boundaries. Finally, the processing of data is described in Module 6. The result of the inventory is a list of emissions and extractions for all processes involved in manufacturing and required for the functioning of a product, service or activity during the entire life cycle. Sometimes results are so clear that you may decide to stop after the inventory stage. Usually however, it is useful to carry out the impact assessment, which is split up into two parts (Modules 7 and 8). Instructions are given on how to translate the list of environmental interventions of the entire life cycle of the product into a table with scores on environmental themes: the classification/characterization. A basic substance list that might be used is added (Module 7). Also a description showing how to evaluate the results of the classification/characterization is given, so that conclusions may be drawn on the information that has been generated (Module 8). Module 9, the last module, describes how to complete the LCA. It provides suggestions on how to present the results and indications about the improvement analysis.

  17. ENVIRONMENTAL ASSESSMENT METHODOLOGY FOR THE NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D. L.; Soldat, J. K.; McNeese, J. A.; Watson, E. C.

    1977-07-01

    This report describes the methodology for determining where environmental control technology is required for the nuclear fuel cycle. The methodology addresses routine emission of chemical and radioactive effluents, and applies to mining, milling, conversion, enrichment, fuel fabrication, reactors (LWR and BWR) and fuel reprocessing. Chemical and radioactive effluents are evaluated independently. Radioactive effluents are evaluated on the basis of maximum exposed individual dose and population dose calculations for a 1-year emission period and a 50-year commitment. Sources of radionuclides for each facility are then listed according to their relative contribution to the total calculated dose. Effluent, ambient and toxicology standards are used to evaluate the effect of chemical effluents. First, each chemical and source configuration is determined. Sources are tagged if they exceed existirrg standards. The combined effect of all chemicals is assessed for each facility. If the additive effects are unacceptable, then additional control technology is recommended. Finally, sources and their chemicals at each facility are ranked according to their relative contribution to the ambient pollution level. This ranking identifies those sources most in need of environmental control.

  18. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  19. Environmental life cycle assessment of water supply in South Africa ...

    African Journals Online (AJOL)

    The life cycle impact assessment (LCIA) phase of LCAs evaluates the ... considered where water is used in the manufacturing sector of South Africa, and to identify ... The boosting requirements attribute most to the electricity dependency of the ...

  20. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  1. Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment

    OpenAIRE

    Petit, Anna

    2014-01-01

    In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. Th...

  2. Environmental profile evaluations of piezoelectric polymers using life cycle assessment

    Science.gov (United States)

    Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace

    2018-05-01

    Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.

  3. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana

    NARCIS (Netherlands)

    Agyekum, Eric Ofori; Fortuin, K.P.J.; Harst-Wintraecken, van der E.J.M.

    2017-01-01

    This case study assessed the environmental and social impact of bicycle frames made from wild Ghanaian bamboo. The environmental life cycle assessment (LCA) of the bamboo frame was compared to the LCA results of an aluminium frame and a steel frame. The results show that the overall environmental

  4. assessment of environmental impacts in comfortable furniture production process using life cycle assessment (LCA technique

    Directory of Open Access Journals (Sweden)

    hejhar abbasi

    2016-12-01

    Full Text Available Furniture industry releases annually a large amount of volatile organic compound to the environment due to the use of adhesives, textiles, paints and coating materials. There are some different methods to measure the load of pollutions and the environmental impacts. Life cycle assessment (LCA is one of the best techniques. LCA is a technique in which all environmental impacts related to a product assessed all over its life cycle, from cradle to grave, and ultimately can be used to improve the production process and to prevent unsuitable environmental impacts. In summary, it can be concluded that the use of this technique is the basis for sustainable development and improving social, economic, and environmental indices. This study focused on the collecting of a comprehensive life cycle inventory data for comfortable furniture in two different production processes (B1 and B2 located in Tehran province, and analyzed the environmental impacts during the production process as gate to gate investigation. The results revealed that emissions in production process B1 were higher than that of production process B2. The reason for this is that basic operations such as sawing and frame assembling along with final operation have been done in the same unit for case B1. Textile production and usage, and polyurethane foam were identified as the main hotspots, respectively. Moreover, the results showed that comfortable furniture production process has the highest effects on ecosystem quality, human health, and resources (fossil fuels and mines, respectively.

  5. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  6. Global guidance on environmental life cycle impact assessment indicators: Progress and case study

    DEFF Research Database (Denmark)

    Frischknecht, Rolf; Fantke, Peter; Tschümperlin, Laura

    2016-01-01

    Purpose The life cycle impact assessment (LCIA) guidance flagship project of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative aims at providing global guidance and building scientific consensus on environmental LCIA in...

  7. Risk Assessment and Life Cycle Assessment, Environmental Strategies, Nordic Workshop, Vedbæk 1999

    DEFF Research Database (Denmark)

    Poll, Christian

    At a Nordic workshop on Product-oriented Environmental Strategies the roles of risk and hazard assessment and life cycle assessment of products in the future regulation of chemicals were discussed by participants representing administration, academia and industry from the Nordic countries....... This report compiles the papers and presentations given at the workshop. The papers present and discuss the different assessment tools and procedures - for individual chemicals through hazard and risk assessments and for products, materials and services through life-cycle assessment. The report also contains......, consultants and private enterprises to consider these well-established tools as individually necessary for the future regulation of the chemical pressure on the environment and to accept them as complementary to each other. Together with other process- or chain oriented tools like Substance or Material Flow...

  8. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  9. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  10. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  11. Potential of life cycle assessment to support environmental decision making at commercial dairy farms

    NARCIS (Netherlands)

    Meul, M.; Middelaar, van C.E.; Boer, de I.J.M.; Passel, van S.; Fremaut, D.; Haesaert, G.

    2014-01-01

    In this paper, we evaluate the potential of life cycle assessment (LCA) to support environmental decision making at commercial dairy farms. To achieve this, we follow a four-step method that allows converting environmental assessment results using LCA into case-specific advice for farmers. This is

  12. Life Cycle Environmental Impact Assessment of Local Wine Production and Consumption in Texas: Using LCA to Inspire Environmental Improvements

    OpenAIRE

    Poupart, Ashley

    2017-01-01

    The future viability of wine production is directly linked to its environmental impacts and conditions in which it is required to operate. The environmental impacts related to the production of a food product are directly influenced by the amount of materials, energy, waste and the emissions the product releases throughout the products life cycle. A life cycle assessment (LCA) provides a framework that can identify a food products relative environmental impacts and provides insights into the ...

  13. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  14. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  15. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  16. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  17. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  18. Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective is Not So Easy

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Lemming, Gitte; Hauschild, Michael Zwicky

    2013-01-01

    Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site reme...... about the environmental sustainability of remediation technologies.......Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site...

  19. Environmental assessment of nuclear installations using accumulated litterfall cycling

    International Nuclear Information System (INIS)

    Coelho, Joaquim M.S.; Scapin, Marcos A.; Pires, Maria A.F.

    2011-01-01

    For 25 years the Nuclear and Energy Research Institute - IPEN/SP processed uranium oxide to produce the fuel element. Even with major care in the handling of uranium hexafluoride and uranium compounds, there is the probability of small fractions are dispersed into the atmosphere. Due to this fact, it was proposed a study of these compounds in the environment, aiming at the bio monitoring of toxic substances originating from the fabrications process of fuel element, as well toxic metals. The litterfall it's consisted of fragments of organic vegetable, including leaves, flowers, fruits, branches, twigs and animal waste. The objective of this study was to determine the production and seasonality of litterfall in the gardens of IPEN, establish a correlation between the compartment leaves, wood and reproductive parts and evaluate the chemical composition of leaves originated of litterfall through chemical analysis. Was installed 10 litterfall collectors to determinate the production . The determination of chemical elements was realized by X-ray fluorescence for dispersion of wavelength (WDXRF). The production of dry litterfall during the period was 5.86 Kg m 2 -1. The elements analyzed were Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Br, Rb, Sr, Zr, Th and U. The major constituents of the composition of leaf Ca, Si, and K (1.8%, 0.5% and 0.6% respectively). The results allowed to conclude that the installations used in the nuclear fuel cycle earlier, as well as the installations in operation, actually didn't affect the biogeochemical cycle of plants. (author)

  20. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    Science.gov (United States)

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  2. ENVIRONMENTAL ASSESSMENT OF ROAD TRANSPORT IN A PASSENGER CAR USING THE LIFE CYCLE APPROACH

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2017-06-01

    Full Text Available Environmental issues are an increasingly important aspect of management in the transport sector; new methods have been developed for assessment of the environment in the transport sector using the life cycle approach. The paper presents the application of Well to Wheel (WTW and Life Cycle Assessment (LCA in the transport sector. The WTW method focuses on energy analysis and greenhouse gas emissions during the life cycle of fuels. WTW is used to support decision-making on the environmental aspects of transport, particularly with regard to fuel life cycle management, but this method omits important stages in the life cycle, particularly the ones regarding important circular economy guidelines such as reduction of natural resource consumption, impact on human health, etc. The LCA method provides a much broader approach to environmental assessment than WTW. LCA takes into consideration environmental impact in the whole life cycle of the vehicle, from the stage of production, through the period of exploitation, and finally its disposal.

  3. Preliminary assessment of the environmental and health impacts of nuclear and coal fuel cycles

    International Nuclear Information System (INIS)

    Yang Yin; Chen Zhuzhou; Pan Ziqiang

    1992-01-01

    The paper reports on the environmental impacts and health effects of coal and nuclear fuel cycles in China. Data of interest for China are presented in a comparative manner; epidemiological investigations in Shanxi province indicate that the incidences of chronic pulmonary diseases and infant cogenital malformation were apparently increased over the fall-out areas of coal-fired power stations and coal mines. The authors outline the framework of a research project on environmental assessment of nuclear energy and other energy systems. The main features of the project are: environmental and health impacts of coal and nuclear fuel cycles, environmental impact assessment of coal transportation, cost accounting of nuclear and other energy sources, health risk assessment. (author). 24 refs, 4 tabs

  4. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  5. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  6. Life cycle assessment of sisal fibre – Exploring how local practices can influence environmental performance

    NARCIS (Netherlands)

    Broeren, M.L.M.; Dellaert, S.N.C.; Cok, B.; Patel, M.K.; Worrell, E.; Shen, L.

    2017-01-01

    Sisal fibre can potentially replace glass fibre in natural fibre composites. This study focuses on the environmental performance of sisal fibre production by quantifying the greenhouse gas (GHG) emissions and energy use of producing sisal fibre in Tanzania and Brazil using life cycle assessment

  7. Environmental sustainability assessments of pharmaceuticals: an emerging need for simplification in life cycle assessments.

    Science.gov (United States)

    De Soete, Wouter; Debaveye, Sam; De Meester, Steven; Van der Vorst, Geert; Aelterman, Wim; Heirman, Bert; Cappuyns, Philippe; Dewulf, Jo

    2014-10-21

    The pharmaceutical and fine chemical industries are eager to strive toward innovative products and technologies. This study first derives hotspots in resource consumption of 2839 Basic Operations in 40 Active Pharmaceutical Ingredient synthesis steps through Exergetic Life Cycle Assessment (ELCA). Second, since companies are increasingly obliged to quantify the environmental sustainability of their products, two alternative ways of simplifying (E)LCA are discussed. The usage of averaged product group values (R(2) = 3.40 × 10(-30)) is compared with multiple linear regression models (R(2) = 8.66 × 10(-01)) in order to estimate resource consumption of synthesis steps. An optimal set of predictor variables is postulated to balance model complexity and embedded information with usability and capability of merging models with existing Enterprise Resource Planning (ERP) data systems. The amount of organic solvents used, molar efficiency, and duration of a synthesis step were shown to be the most significant predictor variables. Including additional predictor variables did not contribute to the predictive power and eventually weakens the model interpretation. Ideally, an organization should be able to derive its environmental impact from readily available ERP data, linking supply chains back to the cradle of resource extraction, excluding the need for an approximation with product group averages.

  8. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  9. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  10. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  11. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Science.gov (United States)

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  12. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    Science.gov (United States)

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  13. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  14. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input......A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator....

  15. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  17. Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations

    Science.gov (United States)

    Richard Bergman; Elaine Oneil; Maureen Puettmann; Ivan Eastin; Indroneil Ganguly

    2014-01-01

    The marketplace has an increasing desire for credible and transparent product eco-labels based on life-cycle assessment (LCA) data, especially involving international trade. Over the past several years, stakeholders in the U.S. wood products industry have developed many such “eco-labels” under the ISO standard of LCA-based environmental product declarations (EPDs). The...

  18. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  19. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  20. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  1. Combined nutritional and environmental life cycle assessment of fruits and vegetables

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Fantke, Peter; Jolliet, Olivier

    2016-01-01

    -LCA) framework that compares environmental and nutritional effects of foods in a common end -point metric, Disability Adjusted Life Years (DALY). In the assessment, environmental health impact categories include green house gases, particulate matter (PM), and pesticide residues on fruits and vegetables, while......; 35 μDALY/serving fruit benefit compared to a factor 10 lower impact. Replacing detrimental foods, such as trans-fat and red meat, with fruits or vegetables further enhances health benefit. This study illustrates the importance of considering nutritional effects in food-LCA.......Nutritional health effects from the ‘use stage’ of the life cycle of food products can be substantial, especially for fruits and vegetables. To assess potential one-serving increases in fruit and vegetable consumption in Europe, we employ the Combined Nutritional and Environmental LCA (CONE...

  2. Printed and tablet e-paper newspaper from an environmental perspective - A screening life cycle assessment

    International Nuclear Information System (INIS)

    Moberg, Asa; Johansson, Martin; Finnveden, Goeran; Jonsson, Alex

    2010-01-01

    Viable alternatives to conventional newspapers, such as electronic papers, e-papers or e-readers, are intended to have many of the qualities of paper, such as reading using reflective light, high resolution, 180 deg. viewing angle. It has been suggested that the environmental impact of e-paper can be lower than for printed and internet-based newspapers. However, in order to find the facts of the matter, a thorough life cycle perspective covering raw material acquisition, production, use and disposal should preferably be used to study the environmental performance of the different products. A screening life cycle assessment was performed to describe the potential environmental impacts of two product systems; printed on paper and tablet e-paper newspapers. Results show that the most significant phase of the life cycle for both product systems was the production of substrate or platform. Accordingly, key aspects that may affect the resulting environmental performance of newspaper product systems were for the printed newspaper number of readers per copy and number of pages per issue and for the tablet e-paper newspaper lifetime and multi-use of the device. The printed newspaper in general had a higher energy use, higher emissions of gases contributing to climate change and several other impact categories than the tablet e-paper newspaper. It was concluded that tablet e-paper has the potential to decrease the environmental impact of newspaper consumption. However, further studies regarding the environmental impact of production and waste management of electronic devices and internet use, as well as more comprehensive assessment of toxicological impacts are needed. As the data on the electronic devices becomes more comprehensive this may prove to be a major limitation of electronic newspaper systems. Developers are suggested to strive towards minimisation of toxic and rare substances in production.

  3. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier [MINES ParisTech, Sophia Antipolis (France). Observation, Impacts, Energy Center

    2013-07-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  4. Challenges of electricity production scenarios modelling for life cycle assessment of environmental impacts

    International Nuclear Information System (INIS)

    Blanc, Isabelle; Beloin-Saint-Pierre, Didier

    2013-01-01

    This communication presents a first attempt at making a life cycle assessment of prospective electricity production scenarios which were designed in the EnerGEO project. We start by a basic review of system (in this case, scenario) modelling expectations in today's LCA study. We then review some of the challenges of implementation due to the lack of detailed description of present and future electricity production systems. The importance of a detailed description is then shown with an evaluation of uncertainty of life cycle impact assessment results for three scenarios of German electricity production in 2030. The significant uncertainties we found, prevent us from detecting a relevant trend or making any comparison between the three chosen scenarios. We finally come to the conclusion that the LCA methodology will become relevant for the environmental assessment of electricity production scenarios when many more detailed information are accounted to describe future technologies, structures and sources of energy. (orig.)

  5. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    International Nuclear Information System (INIS)

    Welz, Tobias; Hischier, Roland; Hilty, Lorenz M.

    2011-01-01

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  6. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    Science.gov (United States)

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  7. Environmental assessment of contaminated site remediation in a life cycle perspective

    DEFF Research Database (Denmark)

    Lemming, Gitte

    is an environmental assessment tool that compiles a very wide array of environmental exchanges (emissions to air, water, and soil, and resource consumption) associated with the life cycle of a product or service .and translates them to impacts (global warming, acidification, human toxicity, ecotoxicity, etc...... fate and transport models. This made it possible to account for important processes, such as the formation of chlorinated degradation products and to include the site-specific exposure of humans via ingestion of groundwater used for drinking water. The inclusion of primary impacts in the environmental......-cleaning and industries. Chloroethenes are dense non-aqueous phase liquids (DNAPLs) with high density and viscosity and low solubility in water. These characteristics allow a spill to migrate deep into the subsurface, where it can act as long-term source of dissolved-phase groundwater contamination. Due to the longevity...

  8. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  9. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  10. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  11. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    Science.gov (United States)

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  12. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    OpenAIRE

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  13. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  14. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.

    2010-01-01

    for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO......The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...

  15. Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ahmad Faiz Abd Rashid

    2017-02-01

    Full Text Available The building industry has a significant impact on the environment due to massive natural resources and energy it uses throughout its life cycle. This study presents a life cycle assessment of a semi-detached residential building in Malaysia as a case study and assesses the environmental impact under cradle-to-grave which consists of pre-use, construction, use, and end-of-life phases by using Centre of Environmental Science of Leiden University (CML 2001. Four impact categories were evaluated, namely, acidification, eutrophication, global warming potential (GWP, and ozone layer depletion (ODP. The building operation under use phase contributed the highest global warming potential and acidification with 2.41 × 103 kg CO2 eq and 1.10 × 101 kg SO2 eq, respectively. In the pre-use phase, concrete in the substructure has the most significant overall impact with cement as the primary raw material. The results showed that the residential building in Malaysia has a fairly high impact in GWP but lower in acidification and ODP compared to other studies.

  16. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA

    Directory of Open Access Journals (Sweden)

    S. Khoramdel

    2017-02-01

    Full Text Available In order to evaluate life cycle assessment (LCA for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic and tresstrial ecosystems and global warming. The results showed that the highest paddy yield was obtained 5.35 t.ha-1 in 190-200 kg N ha. The maximum aquatic eutrophication potential was computed for more than 220 kg N ha-1 with 0.79 PO4 equiv./t paddy. EcoX per one tone paddy and maximum environmental impacts was belonged to aquatic eutrophication (0.13 Eco-index per one tone paddy. It seems that system management including green manure, nitrogen fixing species and reduced tillage could be regarded to reduce problematic environmental impacts in rice production systems.

  17. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  18. Life Cycle Assessment to support the quantification of the environmental impacts of an event

    International Nuclear Information System (INIS)

    Toniolo, Sara; Mazzi, Anna; Fedele, Andrea; Aguiari, Filippo; Scipioni, Antonio

    2017-01-01

    In recent years, several tools have been used to define and quantify the environmental impacts associated with an event; however, a lack of uniform approaches for conducting environmental evaluations has been revealed. The aim of this paper is to evaluate whether the Life Cycle Assessment methodology, which is rarely applied to an event, can be an appropriate tool for calculating the environmental impacts associated with the assembly, disassembly, and use phase of an event analysing in particular the components and the displays used to establish the exhibits. The aim is also to include the issues reported by ISO 20121:2012 involving the interested parties that can be monitored but also affected by the event owner, namely the event organiser, the workforce and the supply chain. A small event held in Northern Italy was selected as the subject of the research. The results obtained show that the main contributors are energy consumption for lighting and heating and the use of aluminium materials, such as bars for supporting the spotlights, carpet and the electronic equipment. A sensitivity analysis for estimating the effects of the impact assessment method chosen has also been conducted and an uncertainty analysis has been performed using the Monte Carlo technique. This study highlighted the importance of the energy consumed by heating and lighting on the environmental implications, and indicated that the preparation and assembly should always be considered when quantifying the environmental profile of an event. - Highlights: • LCA methodology, developed for products and services, is applied to an event. • A small event held in Northern Italy is analysed. • The main contributors are energy consumption and the use of aluminium and carpet. • Exhibition site preparation can have important environmental implications. • This study demonstrates the importance of the assembly, disassembly and use phase.

  19. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    Science.gov (United States)

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018

  20. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings

    International Nuclear Information System (INIS)

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-01-01

    Highlights: • A lifecycle optimization model for distributed energy systems is developed. • Model estimates costs and environmental impacts of meeting the building energy demand. • Design and operating strategies to reduce costs and environmental impacts are discussed. • Pareto frontiers of costs vis-à-vis environmental impacts are presented. • Distributed generation can reduce the environmental impacts of the building sector. - Abstract: Distributed generation, namely cogeneration and solar technologies, is expected to play an important role in the future energy supply mix in buildings. This calls for a methodological framework to assess the economic and environmental performance of the building sector when such technologies are employed. A life-cycle model has been developed, combining distributed generation and conventional sources to calculate the cost and environmental impacts of meeting the building energy demand over a defined planning period. Three type of cogeneration technologies, solar photovoltaic and thermal, as well as conventional boilers along with the Portuguese electricity generation mix comprise the energy systems modeled. Pareto optimal frontiers are derived, showing the trade-offs between different types of impacts (non-renewable cumulative energy demand, greenhouse gas emissions, acidification, eutrophication) and cost to meet the energy demand of a commercial building. Our analysis shows that according to the objective to employ distributed generation (reducing cost or environmental impacts), a specific design and operational strategy for the energy systems shall be adopted. The strategies to minimize each type of impact and the associated cost trade-offs by exploring the solutions located on the Pareto optimal frontiers are discussed

  1. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    Science.gov (United States)

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item. © 2015 SETAC.

  2. Application of a life cycle assessment to compare environmental performance in coal mine tailings management.

    Science.gov (United States)

    Adiansyah, Joni Safaat; Haque, Nawshad; Rosano, Michele; Biswas, Wahidul

    2017-09-01

    This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and variations of OPT 1 using combinations of technology improvement and renewable energy sources (OPT 1A-D). Electrical energy was found to contribute more than 90% of the environmental impacts. The magnitude of land-use impacts associated with OPT 3 (thickened tailings) were 2.3 and 1.55 times higher than OPT 1 (tailings cake) and OPT 2 (tailings paste) respectively, while OPT 1B (tailings belt filter press with technology improvement and solar energy) and 1D (tailings belt press filter with technology improvement and wind energy) had the lowest ratio of environmental impact to land-use. Further analysis of an economic cost model and reuse opportunities is required to aid decision making on sustainable tailings management and industrial symbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Environmental analysis of the proton exchange membrane fuel cell on the subject of life cycle assessment

    International Nuclear Information System (INIS)

    Fukurozaki, Sandra Harumi

    2006-01-01

    The energy is the fuel of growth and an essential requirement for the socioeconomic development. However, the current production model is based on fossil fuels, considered as threat to man and nature. As for, the relating to the human activities and their effects on the environment, they are handled by the implementation of a more rigid model of environmental control and the mobilization of the society in favor of technologies with less energy impact. In view of this scenario, the Proton Exchange Membrane Fuel Cell - PEMFC has been recognized as a key for the vital need of a clean and efficient energy. Considering the conventional power generation system, their advantages during usage configure its application as an ideal option for several utilities, especially in the mobile sector. Even though, the focus on several environmental evaluations in energy systems is referred back to the initial stage of it use, the employment relating to production of the system and to final destination should be considered, since these also present impacts. In the case of PEMFC, their previous and subsequent phases of use are issues related to the platinum catalysts, which indicates an environmental importance that cannot be overlooked. In this sense, the Life Cycle Assessment has been used to understand and to question the risks and opportunities that are associated to certain product, starting from a systemic concept of their relationships with the environment. It is precisely in this context that the present research intends to present its major contribution, starting from an exploratory study towards the its objectives to provide an environmental analysis of such technology linked to post stage of powder-use of the membrane electrode assembly - MEA, concerning the platinum catalysts, on the subject of Life Cycle Assessment - LCA. To attain such aim, the relationships between energy, environment and development are presented and discussed, as well as, the Fuel Cell technology and

  4. Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate

    International Nuclear Information System (INIS)

    Wang, Zhiwei; Li, Zaifeng; Lei, Tingzhou; Yang, Miao; Qi, Tian; Lin, Lu; Xin, Xiaofei; Ajayebi, Atta; Yang, Yantao; He, Xiaofeng; Yan, Xiaoyu

    2016-01-01

    Highlights: • The first LCA of cornstalk-based ethyl levulinate. • Life cycle energy consumption and environmental emissions were evaluated. • Detailed foreground data from a demonstration project in China was used. • Criteria emissions in the combustion stage were based on engine tests. • Sensitivity analysis was performed based on different cornstalk prices. - Abstract: This study analysed the sustainability of fuel-ethyl levulinate (EL) production along with furfural, as a by-product, from cornstalk in China. A life cycle assessment (LCA) was conducted using the SimaPro software to evaluate the energy consumption (EC), greenhouse gas (GHG) and criteria emissions, from cornstalk growth to EL utilisation. The total life cycle EC was found to be 4.54 MJ/MJ EL, of which 94.7% was biomass energy. EC in the EL production stage was the highest, accounting for 96.8% of total EC. Fossil EC in this stage was estimated to be 0.095 MJ/MJ, which also represents the highest fossil EC throughout the life cycle (39.5% of the total). The ratio of biomass to fossil EC over the life cycle was 17.9, indicating good utilisation of renewable energy in cornstalk-based EL production. The net life cycle GHG emissions were 96.6 g CO_2-eq/MJ. The EL production stage demonstrated the highest GHG emissions, representing 53.4% of the total positive amount. Criteria emissions of carbon monoxide (CO) and particulates ⩽10 μm (PM10) showed negative values, of −3.15 and −0.72 g/MJ, respectively. Nitrogen oxides (NO_x) and sulphur dioxide (SO_2) emissions showed positive values of 0.33 and 0.28 g/MJ, respectively, mainly arising from the EL production stage. According to the sensitivity analysis, increasing or removing the cornstalk revenue in the LCA leads to an increase or decrease in the EC and environmental emissions while burning cornstalk directly in the field results in large increases in emissions of NMVOC, CO, NO_x and PM10 but decreases in fossil EC, and SO_2 and GHG

  5. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  6. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey

    Directory of Open Access Journals (Sweden)

    Zerrin Günkaya

    2016-10-01

    Full Text Available The aim of this paper was to determine how to change the environmental performance of electricity generation depending on the resources and their shares, in order to support decision-makers. Additionally, this paper presents an application of life cycle assessment (LCA methodology to determine the environmental burdens of electricity generation in Turkey. Electricity generation data in Turkey for the years 2012 and 2023 were used as a case study. The functional unit for electricity generation was 1 kWh. The LCA calculations were carried out using CML-IA (v3.00 data and the results were interpreted with respect to Monte Carlo simulation analysis (with the Monte Carlo function built in SimaPro 8.0.1 software. The results demonstrated that the fossil fuel consumption not only contributes to global warming, but it also has effects on the elemental basis of abiotic depletion due to raw material consumption for plant infrastructure. Additionally, it was observed that the increasing proportion of wind power in the electricity mix would also increase certain life cycle impacts (such as the elemental basis of abiotic depletion, human ecotoxicity, and terrestrial ecotoxicity in Turkey’s geography compared to increasing the share of other renewable energy sources, such as hydropower, geothermal, as well as solar.

  7. Environmental sustainability assessment of urban systems applying coupled urban metabolism and life cycle assessment

    DEFF Research Database (Denmark)

    Birkved, Morten; Goldstein, Benjamin Paul

    2013-01-01

    environmental sustainability of large urban systems by relating the environmental sustainability performance of urban systems with global environmental burden boundaries quantifying pollution thresholds beyond which performance of global ecosystems services may be detrimentally affected....

  8. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Heller, Martin C.; Fulgoni III, Victor L.

    2016-01-01

    of less healthy foods (sugar-sweetened beverages). Further studies are needed to test whether this conclusion holds within a more comprehensive assessment of environmental and nutritional health impacts. Conclusions This case study provides the first quantitative epidemiology-based estimate......Purpose While there has been considerable effort to understand the environmental impact of a food or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). Methods We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE......-LCA) framework that evaluates and compares in parallel the environmental and nutritional effects of foods or diets. We applied this framework to assess human health impacts, expressed in Disability Adjusted Life Years (DALYs), in a proof-of conceptcase study that investigated the environmental and nutritional...

  9. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  10. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment

    International Nuclear Information System (INIS)

    Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de

    2016-01-01

    Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy

  11. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    Science.gov (United States)

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  12. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    Science.gov (United States)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  13. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  15. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    Science.gov (United States)

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N 2 /CO 2 : 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SOFIAS – Software for life-cycle assessment and environmental rating of buildings

    Directory of Open Access Journals (Sweden)

    Oregi Isasi, X.

    2016-06-01

    Full Text Available This paper describes the development process of a new software tool, called SOFIAS (Software for a Sustainable Architecture, funded by the Spanish Ministry of Economy and Competitivenes. Following CEN/TC 350 standard on environmental assessment of buildings, the tool aims at assisting building professionals on reducing the life-cycle environmental impact through the design of new buildings and the refurbishment of existing ones. In addition, SOFIAS provides a rating system based on the Life Cycle Assessment (LCA methodology. This paper explains the innovative aspects of this software, the working methodology and the different type of results that can be obtained using SOFIAS.Este artículo describe el proceso de desarrollo de la nueva herramienta informática SOFIAS (Software de Funciones Integradas para una Arquitectura Sostenible, financiado por el Ministerio de Economía y Competitividad del Gobierno de España. En base al estandar de la evaluación ambiental de los edificios definido por el CEN/TC 350, esta nueva herramienta tiene como objetivo ayudar a los técnicos de la construcción en reducir el impacto ambiental durante el ciclo de vida a través del diseño optimizado de nuevos edificios o edificios rehabilitados. De forma paralela, SOFIAS proporciona un nuevo sistema de calificación basado en la metodología del Análisis de Ciclo de Vida (ACV. Este artículo expone los aspectos innovadores de esta herramienta informática, la metodología de trabajo y los diferentes tipos de resultados que se pueden obtener tras su aplicación.

  19. Application of life cycle assessment to production processes of environmentally sustainable concrete, prepared with artificial aggregates

    International Nuclear Information System (INIS)

    Vaccaro, R.; Colangelo, F.; Palumbo, M.; Cioffi, R.

    2005-01-01

    This paper is about the application of Life Cycle Assessment (L.C.A.) on environmentally sustainable concrete production processes. The goal of this experimentations is to assess environmental impact and energy demand related to concrete production, by using, in different admixtures, natural and artificial aggregates, belonging from treatments of different kind of industrial wastes characterized by very small particle sizes. Particular attention was concentrated on the utilization of fine fraction since it is difficult to recover in usual fields of recycling (i.e. aggers, crowl spaces, etc.). This study follows the approach from cradle to cradle. This experimentation was conducted in relation to four concrete admixtures produced, one of them containing only natural aggregate, and the other ones obtained by substituting the 10% of aggregate respectively with inert wastes as construction and demolition waste (CeD waste). cement kiln dust (CKD) and marble sludge. For all admixtures six different end-life scenarios have been proposed, one of them considers all materials transported in landfill while the other ones consider a partial transportation on landfill (15%) and a recycle of the 85% of wastes obtained after demolition of structures [it

  20. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  1. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  2. Assessment of nuclear fuel cycles with respect to assurance of energy supply; economic aspects; environmental aspects; non-proliferation

    International Nuclear Information System (INIS)

    1979-01-01

    This paper, which was presented to all INFCE Working Groups gives a broad qualitative assessment in tabular form of the following five fuel cycles: LWR once-through, LWR with thermal recycle, HWR once-through, HTR with uranium recycle, fast breeder reactor. The assessment is given of the assurance of supply aspects, the macro- and micro-economic aspects, the environmental aspects, and the non-proliferation, including safeguards, aspects of each fuel cycle

  3. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  4. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes.

    Science.gov (United States)

    Bovea, M D; Powell, J C

    2016-04-01

    This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  6. French environmental communication on sunflower and rapeseed oils based on life cycle assessment

    Directory of Open Access Journals (Sweden)

    Badey Laureen

    2013-07-01

    Full Text Available The French “Grenelle” laws sparked a French national experiment trialling the environmental labelling of fast-moving consumer goods. The data required for this labelling scheme are generated by carrying out a life cycle assessment (LCA. The aim of this study is to provide all necessary information to fit the national experiment for two standard oils: sunflower oil and rapeseed oil. The complete oil life cycle was studied, from oilseed farming through to the end-of-life of the packaging. We focused heavily on the impacts of crushing and refining. The seed processing data was collected from different plants that are representative of the French crushing/refining industry and packaging site practice. The data inventory was used to calculate the identified environmental labelling indicators, i.e. greenhouse gas (GHG emissions and water consumption. The production of 100g of refined bulk sunflower and rapeseed emits 89 and 127 g equivalent CO2 and consumes 1.7 L and 0.8 L of water, respectively. Most impacts on the studied indicators stem from the farming phase. Energy and water consumptions during crushing and refining also weigh on the studied indicators. The results of this study provide a relevant overview of all sunflower and rapeseed oils produced in France, and are usable as standard values for vegetable oil producers and users. Oil supply chain operators can use these values to compare to their own process values and gauge the improvements brought about by their ecodesign strategies. For example, using a biomass boiler, using less packaging, and making different choices on seed suppliers can lead to a lower set of impact values.

  7. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-11-01

    Full Text Available This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  8. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.

    Science.gov (United States)

    Alston, Sue M; Arnold, J Cris

    2011-11-01

    Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.

  9. Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2011-01-01

    and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise...... quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable...... with composting (for “organics”) and incineration (for “recyclable paper”). This however requires high degree of control over gas and leachate emissions, high gas collection efficiency and extensive gas utilization at the landfill. For the other waste fractions, recycling and incineration are favourable, although...

  10. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chiara A. Penati

    2013-12-01

    Full Text Available The aim of the study was to analyze environmental impact of cow milk production in an alpine area through a cradle-to-farm-gate Life Cycle Assessment and to identify farming strategies that can improve environmental sustainability without negatively affecting profitability. Data were collected from farmers in 28 dairy farms in an Italian alpine valley. The production of 1 kg of fat protein corrected milk (FPCM needed 3.18 m2 of land; land use on-farm was high because a large part of farm land consisted of pastures in the highland, used extensively during summer. Also the use of energy from non-renewable sources was high, 5.14 MJ kg FPCM-1 on average. Diesel for production and transportation of feed purchased off-farm was mainly used, especially concentrates which were entirely purchased. The average emission of greenhouse and acidification causing gases was 1.14 kg CO2-eq and 0.021 kg SO2-eq kg FPCM-1. Eutrophication was on average 0.077 kg of nitrate-eq kg FPCM-1. Farms with low producing cows had higher environmental impact per kg of milk and lower gross margin per cow compared to the others. Low stocking rate farms had the best results regarding acidification and eutrophication per kg FPCM. Farms with high feed self-sufficiency had significantly lower acidification potential than the others. Increasing milk yield per cow, by selection and feeding, and enhancing feed self-sufficiency, by higher forage production and quality and more exploitation of highland pastures, seem to be the best strategies to improve ecological performances of dairy farms in the Alps while maintaining their profitability.

  11. Environmental hot spot analysis in agricultural life-cycle assessments – three case studies

    Directory of Open Access Journals (Sweden)

    Gerhard Piringer

    2016-06-01

    Full Text Available Present-day agricultural technology is facing the challenge of limiting the environmental impacts of agricultural production – such as greenhouse gas emissions and demand for additional land – while meeting growing demands for agricultural products. Using the well-established method of life-cycle assessment (LCA, potential environmental impacts of agricultural production chains can be quantified and analyzed. This study presents three case studies of how the method can pinpoint environmental hot spots at different levels of agricultural production systems. The first case study centers on the tractor as the key source of transportation and traction in modern agriculture. A common Austrian tractor model was investigated over its life-cycle, using primary data from a manufacturer and measured load profiles for field work. In all but one of the impact categories studied, potential impacts were dominated by the operation phase of the tractor’s life-cycle (mainly due to diesel fuel consumption, with 84.4-99.6% of total impacts. The production phase (raw materials and final assembly caused between 0.4% and 12.1% of impacts, while disposal of the tractor was below 1.9% in all impact categories. The second case study shifts the focus to an entire production chain for a common biogas feedstock, maize silage. System boundaries incorporate the effect of auxiliary materials such as fertilizer and pesticides manufacturing and application. The operation of machinery in the silage production chain was found to be critical to its environmental impact. For the climate change indicator GWP100 (global warming potential, 100-year reference period, emissions from tractor operation accounted for 15 g CO2-eq per kg silage (64% of total GWP100, followed by field emissions during fertilizer (biogas digestate application with 6 g CO2-eq per kg silage (24% of total GWP100. At a larger system scale that includes a silage-fed biogas plant with electricity generated by

  12. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA)

    OpenAIRE

    S. Khoramdel; J. Shabahang; A. Amin Ghafouri

    2017-01-01

    In order to evaluate life cycle assessment (LCA) for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha) during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic a...

  13. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  14. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    International Nuclear Information System (INIS)

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-01-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO_2e excluding ILUC, or 238–755 Gg CO_2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO_4e and 8.1–14.6 Gg SO_2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could

  15. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    Science.gov (United States)

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate

  16. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Styles, David, E-mail: d.styles@bangor.ac.uk; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO{sub 2}e excluding ILUC, or 238–755 Gg CO{sub 2}e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO{sub 4}e and 8.1–14.6 Gg SO{sub 2}e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering

  17. Comparative study on life cycle environmental impact assessment of copper and aluminium cables

    Science.gov (United States)

    Bao, Wei; Lin, Ling; Song, Dan; Guo, Huiting; Chen, Liang; Sun, Liang; Liu, Mei; Chen, Jianhua

    2017-11-01

    With the rapid development of industrialization and urbanization in China, domestic demands for copper and aluminium resources increase continuously and the output of copper and aluminium minerals rises steadily. The output of copper in China increased from 0.6 million tons (metal quantity) in 2003 to 1.74 million tons (metal quantity) in 2014, and the output of bauxite increased from 21 million tons in 2006 to 59.21 million tons in 2014. In the meantime, the import of copper and aluminium minerals of China is also on a rise. The import of copper concentrate and bauxite increased from 4.94 million tons and 9.68 million tons in 2006 to 10.08 million tons and 70.75 million tons in 2013 respectively. Copper and aluminium resources are widely applied in fields such as construction, electrical and electronics, machinery manufacturing, and transportation, and serve as important material basis for the national economic and social development of China. Cable industry is a typical industry where copper and aluminium resources are widely used. In this paper, a product assessment model is built from the perspective of product life cycle. Based on CNLCD database, differences in environmental impacts of copper and aluminium cables are analyzed from aspects such as resource acquisition, product production, transportation, utilization, and resource recycling. Furthermore, the advantages and disadvantages of products at different stages with different types of environmental impact are analyzed, so as to provide data support for cable industry in terms of product design and production, etc.

  18. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    Directory of Open Access Journals (Sweden)

    Burcin Atilgan

    2016-01-01

    Full Text Available Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natural gas, hydro, onshore wind and geothermal. The results show that the annual impacts from electricity have been going up steadily over the period, increasing by 2–9 times, with the global warming potential being higher by a factor of five. This is due to a four-fold increase in electricity demand and a growing share of fossil fuels. The impact trends per unit of electricity generated differ from those for the annual impacts, with only four impacts being higher today than in 1990, including the global warming potential. Most other impacts are lower from 35% to two times. These findings demonstrate the need for diversifying the electricity mix by increasing the share of domestically-abundant renewable resources, such as geothermal, wind, and solar energy.

  19. Environmental life cycle assessment of different domestic wastewater streams: policy effectiveness in a tropical urban environment.

    Science.gov (United States)

    Ng, Bernard J H; Zhou, Jin; Giannis, Apostolos; Chang, Victor W-C; Wang, Jing-Yuan

    2014-07-01

    To enhance local water security, the Singapore government promotes two water conservation policies: the use of eco-friendly toilets to reduce yellow water (YW) disposal and the installation of water efficient devices to minimize gray water (GW) discharge. The proposed water conservation policies have different impacts on the environmental performance of local wastewater management. The main purpose of this study is to examine and compare the impacts of different domestic wastewater streams and the effectiveness of two water conservation policies by means of life cycle assessment (LCA). LCA is used to compare three scenarios, including a baseline scenario (BL), YW-reduced scenario (YWR) and GW-reduced scenario (GWR). The BL is designed based on the current wastewater management system, whereas the latter two scenarios are constructed according to the two water conservation policies that are proposed by the Singapore government. The software SIMPARO 7.3 with local data and an eco-invent database is used to build up the model, and the functional unit is defined as the daily wastewater disposal of a Singapore resident. Due to local water supply characteristics, the system boundary is extended to include the sewage sludge management and tap water production processes. The characterization results indicate that the GWR has a significant impact reduction (22-25%) while the YWR has only a 2-4% impact reduction compared with the BL. The contribution analysis reveals that the GW dominates many impact categories except eutrophication potential. The tap water production is identified as the most influential process due to its high embodied energy demand in a local context. Life cycle costing analysis shows that both YWR and GWR are financially favorable. It is also revealed that the current water conservation policies could only achieve Singapore's short-term targets. Therefore, two additional strategies are recommended for achieving long-term goals. This study provides a

  20. A study on the environmental impact analysis with life cycle assessment of O and M in NPP

    International Nuclear Information System (INIS)

    Jeong, H. S.; Kim, S. S.; Yoon, S. W.; Yang, M. H.; Kim, H. Z.

    2002-01-01

    In the modern times, characterized by mass-consumption, technologies have to evaluated not only in terms of usefulness but also in the aspects of resources exhaustion and environmental destruction. This study quantified environmental burdens from the stage of operation and maintenance in selected nuclear power plants. Four factors are evaluated, such as green house gas, hydrosphere, atmosphere and resources exhaustion for the selected PWR and PHWR with life cycle assessment(LCA)

  1. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    Science.gov (United States)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  2. Environmental Life Cycle Assessment of long-term organic rice production in a Subtropical area of China

    DEFF Research Database (Denmark)

    Xueqing, He; Qiao, Yuhui; Liang, Long

    2018-01-01

    a considerable environmental impact and changing from conventional to organic rice cultivation might therefore have a potentially great impact. Meanwhile, it takes time for the organic farming systems to reach a new steady state after conversion to organic. Thus, the environmental profile of the organic products...... will change over time and it is therefore important to examine whether the difference to conventional will be reduced (and disappear) or be increased over time. The aim of the present study was therefore to assess the environmental impact of organic rice production 5 (OR5), 10 (OR10) and 15 (OR15) years since...... conversion and compare it to conventional rice (CR) in subtropical China. The life cycle assessment (LCA) method was used to assess environmental impact of rice production systems with regard to nine environmental impact categories: Non-renewable Energy Depletion (NED), Water Depletion (WD), Land Occupation...

  3. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend...

  4. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment.

    Science.gov (United States)

    Dourmad, J Y; Ryschawy, J; Trousson, T; Bonneau, M; Gonzàlez, J; Houwers, H W J; Hviid, M; Zimmer, C; Nguyen, T L T; Morgensen, L

    2014-12-01

    Environmental impacts of 15 European pig farming systems were evaluated in the European Union Q-PorkChains project using life cycle assessment. One conventional and two non-conventional systems were evaluated from each of the five countries: Denmark, The Netherlands, Spain, France and Germany. The data needed for calculations were obtained from surveys of 5 to 10 farms from each system. The systems studied were categorised into conventional (C), adapted conventional (AC), traditional (T) and organic (O). Compared with C systems, AC systems differed little, with only minor changes to improve meat quality, animal welfare or environmental impacts, depending on the system. The difference was much larger for T systems, using very fat, slow-growing traditional breeds and generally outdoor raising of fattening pigs. Environmental impacts were calculated at the farm gate and expressed per kg of pig live weight and per ha of land used. For C systems, impacts per kg LW for climate change, acidification, eutrophication, energy use and land occupation were 2.3 kg CO2-eq, 44.0 g SO2-eq, 18.5 g PO4-eq, 16.2 MJ and 4.1 m2, respectively. Compared with C, differences in corresponding mean values were +13%, +5%, 0%, +2% and +16% higher for AC; +54%, +79%, +23%, +50% and +156% for T, and +4%, -16%, +29%, +11% and +121% for O. Conversely, when expressed per ha of land use, mean impacts were 10% to 60% lower for T and O systems, depending on the impact category. This was mainly because of higher land occupation per kg of pig produced, owing to feed production and the outdoor raising of sows and/or fattening pigs. The use of straw bedding tended to increase climate change impact per kg LW. The use of traditional local breeds, with reduced productivity and feed efficiency, resulted in higher impacts per kg LW for all impact categories. T systems with extensive outdoor raising of pigs resulted in markedly lower impact per ha of land used. Eutrophication potential per ha was substantially

  5. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  6. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  7. Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities.

    Science.gov (United States)

    Dalla Riva, A; Burek, J; Kim, D; Thoma, G; Cassandro, M; De Marchi, M

    2017-10-01

    The present study investigated a cradle-to-grave life cycle assessment to estimate the environmental impacts associated with Italian mozzarella cheese consumption. The differences between mozzarella produced from raw milk and mozzarella produced from curd were studied, and differences in manufacturing processes have been emphasized in order to provide guidance for targeted improvements at this phase. Specifically, the third-largest Italian mozzarella producer was surveyed to collect site-specific manufacturing data. The Ecoinvent v3.2 database was used for secondary data, whereas SimaPro 8.1 was the modeling software. The inventory included inputs from farm activities to end of life disposal of wasted mozzarella and packaging. Additionally, plant-specific information was used to assign major inputs, such as electricity, natural gas, packaging, and chemicals to specific products; however, where disaggregated information was not provided, milk solids allocation was applied. Notably, loss of milk solids was accounted during the manufacture, moreover mozzarella waste and transport were considered during distribution, retail, and consumption phases. Feed production and animal emissions were the main drivers of raw milk production. Electricity and natural gas usage, packaging (cardboard and plastic), transport, wastewater treatment, and refrigerant loss affected the emissions from a farm gate-to-dairy plant gate perspective. Post-dairy plant gate effects were mainly determined by electricity usage for storage of mozzarella, transport of mozzarella, and waste treatment. The average emissions were 6.66 kg of CO 2 equivalents and 45.1 MJ of cumulative energy demand/kg of consumed mozzarella produced directly from raw milk, whereas mozzarella from purchased curd had larger emissions than mozzarella from raw milk due to added transport of curd from specialty manufacturing plants, as well as electricity usage from additional processes at the mozzarella plant that are required

  8. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products

    OpenAIRE

    Cheung, Wai Ming; Leong, Jun; Vichare, Parag

    2017-01-01

    In the last decades, environmental footprint of the product manufacture has emerged as an important public concern, causing manufacturers to re-assess their product’s environmental impacts. Responding to global outcry on global warming, world leaders have agreed to limit global temperature rise to less than 2°C above the temperature in pre-industrial times. As a result, governments and industrial leaders around the world have proposed a roadmap for 80% emissions reduction by 2050. The aim of ...

  9. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  10. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  11. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  12. Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2015-05-01

    Full Text Available The combustion of peat for energy generation accounts for approximately 4.1% of Ireland’s overall greenhouse gas (GHG emissions, with current levels of combustion resulting in the emission of 2.8 Mt of CO2 per annum. The aim of this research is to evaluate the life cycle environmental impacts of peat use for energy generation in Ireland, from peatland drainage and industrial extraction, to transportation, combustion, and subsequent after-use of the cutaway area, utilising Irish-specific emission factors. The environmental impacts considered are global warming potential, acidification potential, and eutrophication potential. In addition, the cumulative energy demand of the system is evaluated. Previous studies on the environmental impact of peat for energy in Ireland relied on default Intergovernmental Panel on Climate Change (IPCC emission factors (EFs. This research utilises Irish-specific EFs and input data to reduce uncertainty associated with the use of default IPCC EFs, and finds that using default IPCC EFs overestimates the global warming potential when compared to Irish-specific EFs by approximately 2%. The greatest contribution to each of the environmental impacts considered arises from emissions generated during peat combustion, which accounts for approximately 95% of each of the environmental impact categories considered. Other stages of the life-cycle, such as impacts emanating from the peat extraction area, fossil fuel usage in harvesting and transportation machinery, and after-use of the cutaway area have much smaller effects on overall results. The transformation of cutaway peatlands to different after-use alternatives has the potential to mitigate some of the effects of peatland degradation and peat combustion.

  13. Life Cycle Assessment of age-related environmental impact of biogenic hydraulic fluids; Life Cycle Assessment der alterungsbedingten Umweltvertraeglichkeit biogener Hydraulik-Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bressling, Jana

    2012-07-01

    Biogenic hydraulic fluids, based on synthetic esters (category: HEES), have an excellent environmental profile in the unused state, so that they are typically classified into water hazard class 1 or as ''not hazardous to water''. During storage at room temperature and tribological application, occurring chemical and toxicological changes take no account in the classification of lubricants until now. However, the ageing and oxidation stability gets increasing importance, since it determines the service life of lubricants in tribological systems in addition to the storage time. Since it always comes to direct and uncontrolled entries into the environment in case of accidents or hydraulic leaks, it is essential to assess whether there is an environmental hazard by waste oils. With an increased use of biogenic hydraulic fluids in environmentally sensitive areas, thus the need for an appropriate monitoring and assessment approach as part of a Life Cycle Assessment (LCA). The aquatic and miniaturised test procedures applied in this work with the Water Soluble Fraction (WSF) concept, allows a simple and quick screening of age-related ecotoxic potential of lubricants by oxidative processes and tribological application. For detection of genotoxic potential the umu-test is a suitable indicator test to detect geno- and cytotoxic effects by oxidative reactions. The determination of biodegradability is essential for the assessment of the environmental impact of hydraulic fluids. The optimised biodegradability test system ''O2/CO2-Headspace Test'' has proved itself as a suitable procedure for the investigation of biogenic lubricants within the scope of a LCA and shows therefore a comparable method of the required test procedures for the assignment of ecolabels. In addition, the combination of biological test procedures and chemical analysis allows a comprehensive investigation of effects and causes of age-related changes of hydraulic

  14. Life cycle assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects

    International Nuclear Information System (INIS)

    Kloepffer, W.; Renner, I.; Schmidt, E.; Tappeser, B.; Gensch, C.O.; Gaugitsch, H.

    2001-01-01

    In the preceding project 'Life Cycle Assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects' for the first time the risks of deliberate release of genetically modified organisms (GMOs) into the environment have been taken into account in a Life Cycle Assessment (LCA). This was performed by a risk assessment in addition to a quantitative impact assessment. As from a methodological perspective this was not satisfactory, the Federal Environment Agency commissioned the C.A.U. GmbH and the Institute of Applied Ecology Freiburg to further develop the impact assessment methodology for the risks of GMOs. Any further development of the methodology of impact assessment in LCAs has to be performed on the basis of the standard EN/ISO 14042. There are 2 options for taking into account risks of deliberate release of GMOs: 1. allocation of the potential effects resulting from the genetic modification on human beings and the environment to existing categories of the impact assessment and attempt to quantify within those existing methods of characterization; 2. development of a new category, e.g. 'effects of genetically modified crop plants'. In order to asses the possibilities under option 1 various models of characterization within the categories human toxicity, ecotoxicity and land use (appropriation of environmental space) have been analyzed. The risks of GMOs identified and dealt with in the preceding study were allocated to these categories. It seemed to be impossible to integrate the risks in existing models of characterization for human toxicity and ecotoxicity, as these are based on exposure and impact factors. The development of a factor for exposure seems possible for GMOs, however a suitable impact factor is not possible to generate. In addition it was analyzed if in other impact categories which are difficult to quantify any solutions for operationalization exist. This does not seem to be the case. As a

  15. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    Science.gov (United States)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences

  16. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  17. Life cycle assessment(Lca) of the power generation system for the establishment of environmental management system in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.

    2005-01-01

    The development of electricity technology from the environmental aspect has become the key factor for competitiveness, i.e., environmental friendliness is one of the most important considerations for technology development. Under the monopolised electric industry of the past, there was little motivation for individual companies to actually manage their company. However, because of the increasing demand for energy and the concerns for the environment, energy policies are shifting towards a sustainable development, which considers both the economics and environmental protection. According to the paradigm shift of the energy policy, it is necessary to compare two major electricity sources from the view of environmental management issues. It is effective with the common dimensionless unit concerning the various environmental categories including the radiological and non-radiological points of view, which can be realized by the new environmental impact assessment methodology such as the life cycle assessment (LCA). This study aims at a comparison of the environmental impacts of the nuclear and coal power generation systems using the LCA methodology. These results are very preliminary ones, however, this study will be helpful in making a decision on a long term electricity plan and the energy mix optimization when considering the environmental aspect in Korea and also the power generation companies could enhance their images by showing off their willingness to improve the environmental quality. (orig.)

  18. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People

    Directory of Open Access Journals (Sweden)

    Anna Lewandowska

    2017-07-01

    Full Text Available Sustainable production and consumption patterns require a change in approach at the early conceptual stages, i.e., when planning and designing products and services. This article presents an example of sustainable kitchen design aimed at the needs of seniors and people with physical disabilities, which takes into account social, economic, and environmental aspects. The interdisciplinary project team used a variety of traditional design methods such as the identification of requirements using QFD (Quality Function Deployment and FMEA (Failure Mode Effects Analysis, the development and verification of the technical concepts of the designed objects and their use, the development of construction and technological documentation, assembly drawings of the product architecture and its parts, function cost analysis, virtual and real prototyping, and tools based on the concept of a life cycle such as environmental life cycle assessment (LCA and life cycle costing (LCC. The analysis of the design solutions from the point of view of several criteria and several life cycle stages shows the complexity of the decision-making process and the difficulties in selecting a clearly favourable solution. Environmentally preferred materials may be difficult for users to accept due to their costs. On the other hand, materials that have a high environmental impact at the production stage may show great potential for final disposal.

  20. Guidelines for evaluating the environmental performance of Product/Service-Systems through life cycle assessment

    DEFF Research Database (Denmark)

    Kjær, Louise Laumann; Pigosso, Daniela C. A.; McAloone, Tim C.

    2018-01-01

    Product/Service-Systems (PSS) such as integrated solutions, performance-based contracts or sharing systems are often proposed as means to enable improved environmental sustainability. However, PSS are not necessarily environmentally benign compared to conventional systems. Quantitative environmen......Product/Service-Systems (PSS) such as integrated solutions, performance-based contracts or sharing systems are often proposed as means to enable improved environmental sustainability. However, PSS are not necessarily environmentally benign compared to conventional systems. Quantitative....... In this article, we propose a set of guidelines consisting of six steps, which elaborates the LCA process with respect to the specific consideration for PSS assessment. The guidelines were developed based on identified challenges for the application of LCA on PSS, a review of existing LCAs on PSS case studies...

  1. Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom county, Zanjan province

    Directory of Open Access Journals (Sweden)

    ehsan khodarezaie

    2017-10-01

    Full Text Available Introduction Horticulture industry consumes a significant part of the energy and materials and release pollutants into the environment. Olive (Olea europaea L. is one of the most cultivated plants in Iran, so the environmental impact assessment of these production systems is important. However, the consequences and environmental impacts of olive production systems have not been studied in Iran. Tarom County is one of the most important olive production centers in Iran. So, this study is performed to evaluate environmental impacts of olive production in Tarom region. Materials and Methods In this study, the LCA approach is used to assessment of environmental impacts of olive production. This study is conducted in Tarom County in 2012-2013. The aim of this study was to determine hot spots of olive life cycle and offering appropriate Solutions to reduce the related environmental impact in Tarom region. In this research, one ton of Olives was considered as functional unit. System boundary is defined as “from cradle to farm gate”. Primary data were collected through observation, sampling and questionnaires completing method. The climate and soil data were collected from the "Olive Research Center" located in the Tarom County. Data for the production of used inputs (Secondary data were taken from the EcoInvent®2.0 database, and SimaPro software was employed to analyze primary data. Impact categories were analyzed based on CML 2 baseline 2000 V2.04/ world, 1995/ characterization and SimaPro 7.2 software. CML 2 baseline 2000. Results and Discussion The obtained data from inventory are presented in the table 1. These data includes Inputs and outputs of olive production system in Tarom olive systems. Table 1- Inputs and outputs of olive production system (per 1 ton olive. Amount\tUnit\tInputs 48.04\tkg\tDiesel fuel Chemical fertilizer 62.8\tkg\tUrea 53.9\tkg\tTriple Super Phosphate 46.4\tkg\tPotassium sulphate 5.6\tkg\tPesticides 1222\tkg

  2. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  3. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  4. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  5. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - a life cycle assessment

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used...... on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry...... separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house...

  6. Environmental and life cycle assessment of the Finnish Forest Research Institute's (Metla) research centre in Joensuu

    International Nuclear Information System (INIS)

    Haekkinen, T.; Wirtanen, L.

    2006-05-01

    The publication presents the results from the environmental assessment of Metla office building. The assessment was done according to the principles introduced in the so called EKA-methodology. The publication analyses the influence of the use of wood on the environmental impacts on building level paying attention to the use of resources and release of carbon dioxide emissions. Wooden structures were compared to corresponding concrete structures. The alternative structures were comparable in terms of structural capacity and thermal performance (U-values). The study covered the structural parts of the building while other building parts were excluded. The exclusion was justified because the choice of structural components did not essentially affect the quality and quantity of other products. The study focused on the production and procurement of building products and the building. The study did not consider the effects of assembling, in-situ construction, care and maintenance and demolition on the material flows and relative environmental impacts. The study only dealt with the physical building and did not consider the environmental impacts from the use of the building. On the basis of the results the environmental impacts caused by the wooden structures of the Metla office building are significantly smaller than those of the corresponding concrete structures. For example the assessed total release of CO 2 emissions for the wooden building is 320 000 kg, while the corresponding value for the concrete building is 800 000 kg CO 2 . The result can be explained on the basis of the low weight of the wooden structures compared to the weight of corresponding concrete structures. The total weight of the structural parts (building skeleton and envelope) of the Metla building is roughly 2000 tons while the total weight of the corresponding concrete structures is nearly 5000 tons. (orig.)

  7. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  8. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  9. Life cycle assessment of supercharger for automotive use. Small displacement, high charging pressure engine and environmental load; Jidosha tosaiyo supercharger no life cycle assessment (LCA hyoka). Shohaikiryo kokakyu engine no kankyo eno yasashisa

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, S; Sonoya, T; Hara, M [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-10-01

    In resent years environmental conservation requires low fuel consumption and low emission engine. And environmental load of every car life stage (production, using, abolition) is considered. Life Cycle Assessment of supercharging small displacement engine is reported, compared with natural aspirated engine as same maximum torque and maximum power as supercharging engine. 6 refs., 8 figs., 3 tabs.

  10. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    International Nuclear Information System (INIS)

    Kim, Kyong Ju; Yun, Won Gun; Cho, Namho; Ha, Jikwang

    2017-01-01

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  11. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr; Ha, Jikwang, E-mail: wlrhkd29@gmail.com

    2017-05-15

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  12. Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Menikpura, S.N.M.; Bonnet, Sebastien; Gheewala, Shabbir H. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Joint Graduate School of Energy and Environment; Ministry of Education (Thailand). Center for Energy Technology and Environment

    2010-07-01

    At present, many Asian developing countries are practicing poor Municipal Solid Waste (MSW) management methods such as open dumping and non-engineered landfilling. This creates severe burdens on the environment and threat to human health. The quantification of the environmental impacts resulting from such poor MSW management practices is necessary to serve as a baseline against which alternative treatment technology options can be assessed for implementation of more environmentally sustainable MSW management systems that are adapted to local situation. In this study, existing MSW management systems in Ski Lanka and India were evaluated in order to assess the severity of their environmental impacts with focus on global warming potential and abiotic resource depletion. Life Cycle Assessment methodology was followed to perform this investigation. Results from this study reveal that the existing MSW management methods used in both countries cause severe environmental damages. However, the situation in India is slightly better as compared to Sri Lanka since 24% of its MSW is being composted. The implementation of landfill with landfill gas recovery for energy was identified as an important initial step to overcome the existing environmental impacts assessed. The results obtained revealed that implementation of such systems would help substantially to reduce global warming potential and abiotic resources depletion. (orig.)

  13. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives.

    Science.gov (United States)

    Vozzola, Eric; Overcash, Michael; Griffing, Evan

    2018-04-11

    Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  15. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-02-15

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  16. Comparative Environmental Life Cycle Assessment of Alternative Uses of Wastewater Carbon Content

    DEFF Research Database (Denmark)

    Kroghsbo, Nena; Nicolaisen, Janna; Wenzel, Henrik

    Alternative scenarios for the wastewater and sludge treatment configurations in urban wastewater treatment were studied with the aim of comparing their environmental aspects. As the reference, a conventional activated sludge treatment was chosen including a primary settling and biogas made from...... the mixed primary and secondary sludge. This reference was then compared to an alternative use of the mixed sludge for the fermentative generation of polyhydroxyalkanoates, PHA and subsequent use of the PHA to substitute polypropylene on the polymer markets. This comparison allows for assessing...... the environmental priorities between biogas and PHA formation from the carbon content of the sludge. Further, the elimination of the primary settling with the aim of using the carbon content of the wastewater for enhanced nitrogen removal in the activated sludge process was studied. This comparison allows...

  17. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  18. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  19. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam

    2017-02-22

    As the world economy grows and industrialization of the developing countries increases, the demand for energy continues to rise. Triboelectric nanogenerators (TENGs) have been touted as having great potential for low-carbon, non-fossil fuel energy generation. Mechanical energies from, amongst others, body motion, vibration, wind and waves are captured and converted by TENGs to harvest electricity, thereby minimizing global fossil fuel consumption. However, only by ascertaining performance efficiency along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle assessment of two representative examples of TENG modules, one with a high performance efficiency (Module A) and the other with a lower efficiency (Module B) both fabricated using low-cost materials. The results are discussed across a number of sustainability metrics in the context of other energy harvesting technologies, notably photovoltaics. Module A possesses a better environmental profile, lower cost of production, lower CO2 emissions and shorter energy payback period (EPBP) compared to Module B. However, the environmental profile of Module B is slightly degraded due to the higher content of acrylic in its architecture and higher electrical energy consumption during fabrication. The end of life scenario of acrylic is environmentally viable given its recyclability and reuse potential and it does not generate toxic gases that are harmful to humans and the environment during combustion processes due to its stability during exposure to ultraviolet radiation. Despite the adoption of a less optimum laboratory manufacturing route, TENG modules generally have a better environmental profile than commercialized Si based and organic solar cells, but Module B has a slightly higher energy payback period than PV technology based

  20. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework

    International Nuclear Information System (INIS)

    Bauer, Christian; Hofer, Johannes; Althaus, Hans-Jörg; Del Duce, Andrea; Simons, Andrew

    2015-01-01

    Highlights: • We perform Life Cycle Assessment (LCA) of current and future passenger vehicles. • We include gasoline, diesel and natural gas as well as battery and fuel cell cars. • An integrated vehicle simulation framework guarantees consistency. • Only electric cars with “clean” electricity and H_2 allow for pollution mitigation. • Complete LCA is mandatory for environmental evaluation of vehicle technologies. - Abstract: This paper contains an evaluation of the environmental performance of a comprehensive set of current and future mid-size passenger vehicles. We present a comparative Life Cycle Assessment (LCA) based on a novel integrated vehicle simulation framework, which allows for consistency in vehicle parameter settings and consideration of future technological progress. Conventional and hybrid gasoline, diesel and natural gas cars as well as battery and fuel cell electric vehicles (BEV and FCV) are analyzed, taking into account electricity and hydrogen production chains from fossil, nuclear and renewable energy resources. Our results show that a substantial mitigation of climate change can be obtained with electric passenger vehicles, provided that non-fossil energy resources are used for electricity and hydrogen production. However, in terms of other environmental burdens such as acidification, particulate matter formation, and toxicity, BEV may in some cases and FCV are likely to perform worse than modern fossil fueled cars as a consequence of emissions along vehicle and fuel production chains. Therefore, the electrification of road transportation should be accompanied by an integration of life cycle management in vehicle manufacturing chains as well as energy and transport policies in order to counter potential environmental drawbacks.

  1. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  2. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  3. Assessment of the environmental impact of three types of fertilizers on the cultivation of coffee at the Las Delicias indigenous reservation (Cauca) starting from the life cycle assessment

    OpenAIRE

    Vera-Acevedo, Luz Dinora; Vélez-Henao, Johan Andrés; Marulanda-Grisales, Natalia

    2016-01-01

    ABSTRACT This paper aims to assess and to compare the environmental performance of three different types of fertilizers in the production of coffee using the methodology of Life Cycle Assessment (LCA) in the Las Delicias indigenous reservation (located in the northern area of the State of Cauca) in order to standardize the process. In this sense, some coffee producers used chemical fertilizers; others used poultry manure, and most coffee producers, used compost. They also applied artisanal te...

  4. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    International Nuclear Information System (INIS)

    Björklund, Anna

    2012-01-01

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: ► LCA was explored as analytical tool in an SEA process of municipal energy planning. ► The process also integrated LCA with scenario planning and public participation. ► Benefits of using LCA were a systematic framework and wider systems perspective. ► Integration of tools required some methodological challenges to be solved. ► This proved an innovative approach to define alternatives and scope of assessment.

  5. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  6. A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Applying exergy, environment and sustainability analyses to the three (novel M-Cycle based) air coolers. ► Assessing energy and exergy efficiencies, environmental impact and sustainability. ► Proposing System II (using PV-based electricity) as the most environmentally friendly air cooler. ► Proposing System III (using coal-based electricity) as the most efficient air cooler. - Abstract: In this study, three various novel air coolers based on M-Cycle are evaluated using energy and exergy analyses based efficiency assessments along with environmental impact and sustainability parameters. The M-Cycle systems are considered to cool a building room air while their inlet air parameters are same, but outlet cooled air parameters are different. Systems I and III draw electricity directly taken from an electric grid in the building while System II, which is stand alone system, produces and draws electricity from its solar PV panels. In the energy analysis, wet bulb effectiveness, cooling capacity, Coefficient of Performance (energetic COP) and Primary Energy Ratio (PER) are found. In the exergy analysis, exergy input and output rates, exergy loss rate, exergy destruction rate, Exergetic Coefficient of Performance (COP ex ), Primary Exergy Ratio (PE x R) and exergy efficiency are obtained for six different dead state temperatures changing between 10 °C and 35 °C. Also, sustainability assessments of the systems are obtained using sustainability index (SI) tool for these various dead state temperatures. Finally, environmental assessments of the systems are calculated from their greenhouse gas (GHG) emissions (gCO 2 /kW h) due to their electricity consumptions. Maximum exergy efficiencies and sustainability assessments are found to be 35.13% and 1.5415 for System III and 34.94% and 1.5372 for System II, respectively. GHG emissions of the systems are calculated to be 2119.68 gCO 2 /day, 153.6 gCO 2 /day and 3840 gCO 2 /day for Systems I, II and III

  7. Delving into the environmental aspect of a Sardinian white wine: from partial to total life cycle assessment.

    Science.gov (United States)

    Fusi, Alessandra; Guidetti, Riccardo; Benedetto, Graziella

    2014-02-15

    The aim of this study was to deepen the assessment of the environmental impacts of a white wine produced in Sardinia (FU 750 ml), performing an attributional LCA. The system boundaries were extended, from 'cradle to gate' (partial LCA) of a previous study, to 'cradle to grave' (total LCA), in order to identify the environmental impacts occurring along the wine life cycle stages (vine planting, grape production, wine production, bottling and packaging, distribution, final disposal of the glass bottle). Some assumptions were made in order to quantify the environmental impact of the transportation phase, regarding the few data which were available. Inventory data were mainly collected through direct communication with the Company involved in the study. Results showed that the environmental performance of wine was mostly determined by the glass bottle production (for all impact categories except ozone layer depletion). The second contributor was the agricultural phase, which included two sub-phases: vine planting and grape production. Results showed that the vine planting sub-phase was not negligible given its contribution to the agricultural phase, mainly due to diesel fuel consumption. Transportation impact was found to be relevant for long distance distribution (USA); the impact categories more affected by transport were acidification, eutrophication, photochemical oxidation and global warming potential. Suggested opportunities to reduce the overall environmental impact were the introduction of a lighter glass bottle or the substitution of the glass bottle with a polylaminate container. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Houshyar, E.

    2017-07-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  9. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.

    Science.gov (United States)

    Mak, Mark S H; Lo, Irene M C

    2011-12-01

    The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.

  10. Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA)

    International Nuclear Information System (INIS)

    Houshyar, E.

    2017-01-01

    Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.

  11. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Djomo, Sylvestre Njakou

    2017-01-01

    The current study aimed at evaluating potential environmental impacts for the production of willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. A method of Life Cycle Assessment was used to evaluate based on the following impact categories: Global...... and land occupation. Environmental impacts for straw were economically allocated from the impacts obtained for spring barley. The results obtained per ton dry matter showed a lower carbon footprint for willow and alfalfa compared to straw. It was due to higher soil carbon sequestration and lower N2O...... emissions. Likewise, willow and alfalfa had lower EP than straw. Straw had lowest NRE use compared to other biomasses. PFWTox was lower in willow and alfalfa compared to straw. A critical negative effect on soil quality was found with the spring barley production and hence for straw. Based on the energy...

  12. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Environmental assessment of Smart City Solutions using a coupled urban metabolism—life cycle impact assessment approach

    DEFF Research Database (Denmark)

    Lambrecht Ipsen, Kikki; Zimmermann, Regitze Kjær; Sieverts Nielsen, Per

    2018-01-01

    Purpose The purpose of the study is to quantify the environmental performance of Smart City Solutions at urban system level and thus evaluate their contribution to develop environmentally sustainable urban systems. Further, the study illustrates how this quantification is conducted. Methods...... The case city chosen in our modeling is Copenhagen, where seven Smart City Solutions are introduced: Green Roofs, Smart Windows, Pneumatic Waste Collection, Sensorized Waste Collection, Smart Water Meters, Greywater Recycling, and Smart Energy Grid. The assessment is conducted using a fused urban...... by introducing SmartWindows. Furthermore, the GWP indicator shows an environmental improvement of 10% for a Smart Energy Grid solution. Introduction of Pneumatic Waste Collection or Greywater Recycling reveals a minor negative performance effect of 0.76 and 0.70%, respectively, for GWP. The performance changes...

  14. Environmental Assessment

    OpenAIRE

    The Inspection Panel

    2017-01-01

    The Inspection Panel, the World Bank’s independent accountability mechanism, has released the third report in its Emerging Lessons Series. The latest report identifies lessons from Panel cases related to environmental assessment (EA) issues. The Panel is an impartial fact-finding body, independent from the World Bank management and staff, reporting directly to the Board. In response to com...

  15. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  16. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.

    Science.gov (United States)

    Nabavi-Pelesaraei, Ashkan; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinzadeh-Bandbafha, Homa; Chau, Kwok-Wing

    2018-08-01

    Prediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS). The amounts of energy input and output are 51,585.61MJkg -1 and 66,112.94MJkg -1 , respectively, in paddy production. Life Cycle Assessment (LCA) is used to evaluate environmental impacts of paddy production. Results show that, in paddy production, in-farm emission is a hotspot in global warming, acidification and eutrophication impact categories. ANN model with 12-6-8-1 structure is selected as the best one for predicting energy output. The correlation coefficient (R) varies from 0.524 to 0.999 in training for energy input and environmental impacts in ANN models. ANFIS model is developed based on a hybrid learning algorithm, with R for predicting output energy being 0.860 and, for environmental impacts, varying from 0.944 to 0.997. Results indicate that the multi-level ANFIS is a useful tool to managers for large-scale planning in forecasting energy output and environmental indices of agricultural production systems owing to its higher speed of computation processes compared to ANN model, despite ANN's higher accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  18. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  19. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    Science.gov (United States)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both

  20. Assessing Environmental Impacts of Biofuels using Life-Cycle-Based Approaches

    Science.gov (United States)

    There is no simple answer to the question “are materials and products that are made from biofeedstocks environmentally sustainable?” However, thinking holistically allows decision-makers to view the potential ‘cradle-to-grave’ environmental impacts of the engineered systems that ...

  1. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    Science.gov (United States)

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  2. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment.

    Science.gov (United States)

    Cancino-Espinoza, Eduardo; Vázquez-Rowe, Ian; Quispe, Isabel

    2018-05-08

    Quinoa is a plant that is cultivated in the Andean highlands across Peru and Bolivia. It is increasingly popular due to its high nutritive value and protein content. In particular, the cultivation of organic quinoa has grown substantially in recent years since it is the most demanded type of quinoa in the foreign market. Nevertheless, despite the interest that quinoa has generated in terms of its nutritional properties, little is known regarding the environmental profile of its production and processing. Therefore, the main objective of this study was to analyze the environmental impacts that are linked to the production and distribution of organic quinoa to the main export destinations through the application of the Life Cycle Assessment (LCA) methodology. An attributional LCA perspective was conducted including data from approximately 55 ha of land used for quinoa production in the regions of Huancavelica and Ayacucho, in southern-central Peru. IPCC, 2013 and ReCiPe 2008 were the two assessment methods selected to estimate the environmental impact results using the SimaPro 8.3 software. Results, which were calculated for one 500 g package of organic quinoa, showed that GHG emissions are in the upper range of other organic agricultural products. However, when compared to other high protein content food products, especially those from animal origin, considerably low environmental impacts are obtained. For instance, if 20% of the average annual beef consumption in Peru is substituted by organic quinoa, each Peruvian would mitigate 31 kg CO 2 eq/year in their diet. Moreover, when the edible protein energy return on investment (i.e., ep-EROI) is computed, a ratio of 0.38 is obtained, in the higher range of protein rich food products. However, future research should delve into the environmental and food policy implications of agricultural land expansion to produce an increasing amount of quinoa for a growing global demand. Copyright © 2018 Elsevier B.V. All

  3. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Ibn-Mohammed, Taofeeq; Mostafa, Hassan; Reaney, Ian M.; Koh, Lenny S. C.; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle

  4. Environmental impact of Funerals. Life cycle assessments of activities after life.

    NARCIS (Netherlands)

    Keijzer, Elisabeth

    2011-01-01

    SUMMARY This research investigates the environmental impact of funerals in the Netherlands. There are multiple reasons for this research. First of all, there is interest from civilians, the funeral sector and governmental authorities. Furthermore, there

  5. Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda

    NARCIS (Netherlands)

    Bosma, R.H.; Pham Thi Ahn,; Potting, J.

    2011-01-01

    Purpose Intensive striped catfish production in the Mekong Delta has, in recent years, raised environmental concerns. We conducted a stakeholder-based screening life cycle assessment (LCA) of the intensive farming system to determine the critical environmental impact and their causative processes in

  6. Tackling the Relevance of Packaging in Life Cycle Assessment of Virgin Olive Oil and the Environmental Consequences of Regulation.

    Science.gov (United States)

    Navarro, Alejandra; Puig, Rita; Martí, Elena; Bala, Alba; Fullana-I-Palmer, Pere

    2018-04-12

    Production and consumption of olive oil is very important in Europe, being this product a basic element in the Mediterranean diet since long ago. The project objective is two-fold: a study of the contribution of virgin olive oils (VOOs) usual packaging to the whole life cycle of the product and a study of the environmental consequences of the Spanish Government regulation on VOO packaging. A life cycle assessment (LCA) according to ISO 14044 has been performed using the CML methodology for the impact assessment. The results show that the packaging influence varies from 2 to 300%, depending on the impact category and type of packaging (glass, tin or polyethylene terephtalate). Glass, which is related to higher quality perception by consumers, was found to be the most influencing material (due to its weight); however, this impact may be fairly reduced by applying ecodesign strategies (such as weight reduction and recycled-glass percentage increase). A new Spanish regulation on the mandatory use of non-refillable oilers in HORECA establishments (hotels, restaurants and caterings) aims to provide more quality assurance and better information to consumers; however, it was also found to mean a 74% increase in greenhouse gases emissions. This regulation was deeply discussed at European level and its application was withdraw due to consumers rejection, except for Spain. The findings of the present case study show that LCA and ecodesign should be important tools to be promoted and applied in policy making to reduce non-desirable consequences of regulation.

  7. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    OpenAIRE

    Lin Gao; Zach C. Winfield

    2012-01-01

    Many advanced vehicle technologies, including electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs), are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG) emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles:...

  8. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    Science.gov (United States)

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  9. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  10. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.

    Science.gov (United States)

    Weinberg, Jana; Kaltschmitt, Martin

    2013-12-01

    An environmental assessment and a cost analysis were conducted for mobility options using electricity, hydrogen, ethanol, Fischer-Tropsch diesel and methane derived from wood. Therefore, the overall life cycle with regard to greenhouse gas emissions, acidifying emissions and fossil energy demand as well as costs is analysed. The investigation is carried out for mobility options in 2010 and gives an outlook to the year 2030. Results show that methane utilization in the car is beneficial with regard to environmental impacts (e.g. 58.5 g CO2-eq./km) and costs (23.1 €-ct./km) in 2010, especially in comparison to hydrogen usage (132.4 g CO2-eq./km and 63.9 €-ct./km). The electric vehicle construction has high environmental impacts and costs compared to conventional vehicles today, but with technical improvements and further market penetration, battery electric vehicles can reach the level of concepts with combustion engines in future applications (e.g. cost decrease from 38.7 to 23.4 €-ct./km). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment.

    Science.gov (United States)

    Wang, Xiaoqin; Ledgard, Stewart; Luo, Jiafa; Guo, Yongqin; Zhao, Zhanqin; Guo, Liang; Liu, Song; Zhang, Nannan; Duan, Xueqin; Ma, Lin

    2018-06-01

    Life cycle assessment methodology was used to quantify the environmental impacts and resource use of milk production on the North China Plain, the largest milk production area in China. Variation in environmental burden caused by cow productivity was evaluated, as well as scenario analysis of the effects of improvement practices. The results indicated that the average environmental impact potential and resource use for producing 1kg of fat and protein corrected milk was 1.34kgCO 2 eq., 9.27gPO 4 3- eq., 19.5gSO 2 eq., 4.91MJ, 1.83m 2 and 266L for global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), non-renewable energy use (NREU), land use (LU) and blue water use (BWU; i.e. water withdrawal), respectively. Feed production was a significant determinant of GWP, NREU, LU and BWU, while AP and EP were mainly affected by manure management. Scenario analysis showed that reducing use of concentrates and substituting with alfalfa hay decreased GWP, EP, AP, NREU and LU (by 1.0%-5.5%), but caused a significant increase of BWU (by 17.2%). Using imported soybean instead of locally-grown soybean decreased LU by 2.6%, but significantly increased GWP and NREU by 20% and 6.9%, respectively. There was no single perfect manure management system, with variable effects from different management practices. The environmental burden shifting observed in this study illustrates the importance of assessing a wide range of impact categories instead of single or limited indicators for formulating environmental policies, and the necessity of combining multiple measures to decrease the environmental burden. For the North China Plain, improving milking cow productivity and herd structure (i.e. increased proportion of milking cows), combining various manure management systems, and encouraging dairy farmers to return manure to nearby crop lands are promising measures to decrease multiple environmental impacts. Copyright © 2017 Elsevier B.V. All rights

  12. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit.

    Science.gov (United States)

    Vanwolleghem, Griet; Van Dyck, Delfien; Ducheyne, Fabian; De Bourdeaudhuij, Ilse; Cardon, Greet

    2014-06-10

    Google Street View provides a valuable and efficient alternative to observe the physical environment compared to on-site fieldwork. However, studies on the use, reliability and validity of Google Street View in a cycling-to-school context are lacking. We aimed to study the intra-, inter-rater reliability and criterion validity of EGA-Cycling (Environmental Google Street View Based Audit - Cycling to school), a newly developed audit using Google Street View to assess the physical environment along cycling routes to school. Parents (n = 52) of 11-to-12-year old Flemish children, who mostly cycled to school, completed a questionnaire and identified their child's cycling route to school on a street map. Fifty cycling routes of 11-to-12-year olds were identified and physical environmental characteristics along the identified routes were rated with EGA-Cycling (5 subscales; 37 items), based on Google Street View. To assess reliability, two researchers performed the audit. Criterion validity of the audit was examined by comparing the ratings based on Google Street View with ratings through on-site assessments. Intra-rater reliability was high (kappa range 0.47-1.00). Large variations in the inter-rater reliability (kappa range -0.03-1.00) and criterion validity scores (kappa range -0.06-1.00) were reported, with acceptable inter-rater reliability values for 43% of all items and acceptable criterion validity for 54% of all items. EGA-Cycling can be used to assess physical environmental characteristics along cycling routes to school. However, to assess the micro-environment specifically related to cycling, on-site assessments have to be added.

  13. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    International Nuclear Information System (INIS)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.; Simonsen, Christian G.; Astrup, Thomas

    2014-01-01

    Highlights: • Environmental impact of a power system with a high share of wind power assessed. • LCI data for electricity supply in Denmark in 2010 and 2030 (low carbon) provided. • Focus on GHG reduction may lead to increase in other impact categories. • Imported biomass might cause high GHG emissions form Land Use Change. • Need for guidelines for LCA of electricity supply (cogeneration and power import). - Abstract: The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed. The results showed that consumption of fossil resources and global warming impacts from the Danish electricity sector could be reduced significantly compared with 2010. Nevertheless, a reduction in GHG may be at the expense of other environmental impacts, such as the increased depletion of abiotic resources. Moreover, the results were very dependent upon biomass origin: when agricultural land was affected by biomass import, and land use changes and transportation were included, GHG emissions from imported biomass were comparable to those from fossil fuels. The results were significantly influenced by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants in 2010 and 2030 (including corresponding

  14. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  15. Life cycle assessment of railways and rail transports - Application in environmental product declarations (EPDs) for the Bothnia Line

    Energy Technology Data Exchange (ETDEWEB)

    Stripple, Haakan; Uppenberg, Stefan

    2010-09-15

    Environmental aspects are today highly important issues in the transport sector especially from a society perspective. Most likely, our society is facing considerable changes in the transport sector due to changes in the energy/environmental situation in the future. Strategic decisions concerning the development of the transport sector must be based on solid facts concerning both the transport infrastructure and the transport traffic on the infrastructure. The transport infrastructure is often complex and difficult to analyse but of great interest in a society perspective. In this project, we have performed a comprehensive view of a modern railway infrastructure system including the traffic on the infrastructure. A Life Cycle Assessment (LCA) methodology has been used for the study and several LCA models of the railway system have been designed. Due to the complexity of the models, several general railway component models have been developed. The component models can then be integrated to form a large model of an entire railway system. The component models (sub-models) are: 'Railway track foundation model', 'Railway track model', 'Railway electric power and control system model', 'Railway tunnel model', 'Railway bridge model', 'Railway passenger station and freight terminal model', 'Passenger and freight train model including train operation'. The LCA models have then been used to analyse the environmental performance of the Bothnia Line and to develop Environmental Product Declarations (EPDs) for the Bothnia Line

  16. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  17. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  18. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I

    2012-01-01

    The aim of this study was to apply the life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of expected edible carcass weight in the 3 main broiler production systems in the United Kingdom: 1) standard indoor, 2) free range, and 3) organic, and to identify the main components of these burdens. The LCA method evaluates production systems logically to account for all inputs and outputs that cross a specified system boundary, and it relates these to the useful outputs. The analysis was based on an approach that applied a structural model for the UK broiler industry and mechanistic submodels for animal performance, crop production, and major nutrient flows. Simplified baseline feeds representative of those used by the UK broiler industry were used. Typical UK figures for performance and mortality of birds and farm energy and material use were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs. The length of the production cycle was longer for free-range and organic systems compared with that of the standard indoor system, and as a result, the feed consumption and manure production per bird were higher in the free-range and organic systems. These differences had a major effect on the differences in environmental burdens between the systems. Feed production, processing, and transport resulted in greater overall environmental impacts than any other components of broiler production; for example, 65 to 81% of the primary energy use and 71 to 72% of the global warming potential of the system were due to these burdens. Farm gas and oil use had the second highest impact in primary energy use (12-25%) followed by farm electricity use. The direct use of gas, oil, and electricity were generally lower in free-range and organic systems compared with their use in the standard indoor system. Manure was the main component of acidification potential and also had a relatively high eutrophication

  19. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  20. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  1. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  2. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  3. Life cycle assessment of energy products: environmental impact assessment of biofuels; Ecobilan d'agents energetiques. Evaluation ecologique de biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  4. Environmental Assessment of Micro/Nano Production in a Life Cycle Perspective

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Jørgensen, Michael Søgaard

    2006-01-01

    demands, which balances or overcompensates the savings. In the Micro/Nano Production area a range of new possibilities arise both within applications, production technology and materials. The Department of Manufacturing Engineering and Management at The Technical University of Denmark has staked...... to a number of knowledge gaps. It may not be known exactly what is the function (or functional unit) or what the technology may substitute and production may still be at an experimental level, raising questions about technology or materials choice. For prospective LCA studies methodologies like “consequential...... understanding of the environment, precaution as a principle and finally, prevention as preferred strategy. When assessing emerging technologies three levels should be considered. First order effects are connected directly to production, use and disposal. Second order are effects from interaction with other...

  5. Scenario Development and Delphi Application in Life Cycle Assessment for Assessing Environmental Impact of New Technology Case Study: Removal of Wind Turbines Project

    Directory of Open Access Journals (Sweden)

    Devina Fitrika Dewi

    2016-05-01

    Full Text Available Certain technology is intended to create eco-efficient products or process or is developed as answer to the recent challenge. This kind of technology consequently can also create another impact therefore it shall be assessed and analyzed.The focus of the study is on assessment method namely Life Cycle Analysis (LCA, Scenario development and Delphi application. The objective is to understand benefits and drawbacks of the combined methodology and observe practicality of its implementation for assessing new technology. The distinctive feature comes from the combination of social and technological foresight (as Delphi application and future studies (as Scenario development which are applied in the environmental assessment of a product (by Life Cycle Analysis.The utilization of LCA-Scenario-Delphi case study as an explanatory example is presented in the Removal Wind Turbines Project by the Danish Energy Agency. The wind turbine is considered new technology with some of it phases are yet to occur, for example: removal of turbines after phase out stage. Technology Assessment by LCA-Scenario-Delphi is complicated procedure, but necessary to validate the results. The drawbacks of this procedure are extensive time it consumes and the dependency on public participation and/or expert willingness to participate. Nonetheless, its advantages are due to its interactive feature; integration of knowledge from different areas of expertise and its assessment’s characteristic which focuses on process.

  6. EXTENSION OF COMPUTER-AIDED PROCESS ENGINEERING APPLICATIONS TO ENVIRONMENTAL LIFE CYCLE ASSESSMENT AND SUPPLY CHAIN MANAGEMENT

    Science.gov (United States)

    The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...

  7. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    Science.gov (United States)

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  8. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    Science.gov (United States)

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.

  9. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    International Nuclear Information System (INIS)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C.

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg −1 wet waste (ww) for the non-toxic categories and −0.9 to 28 mPE Mg −1 ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

  10. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  11. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-01-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption

  12. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    Science.gov (United States)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  13. Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment

    International Nuclear Information System (INIS)

    Arvesen, Anders; Hertwich, Edgar G

    2011-01-01

    We investigate the potential environmental impacts of a large-scale adoption of wind power to meet up to 22% of the world’s growing electricity demand. The analysis builds on life cycle assessments of generic onshore and offshore wind farms, meant to represent average conditions for global deployment of wind power. We scale unit-based findings to estimate aggregated emissions of building, operating and decommissioning wind farms toward 2050, taking into account changes in the electricity mix in manufacturing. The energy scenarios investigated are the International Energy Agency’s BLUE scenarios. We estimate 1.7–2.6 Gt CO 2 -eq climate change, 2.1–3.2 Mt N-eq marine eutrophication, 9.2–14 Mt NMVOC photochemical oxidant formation, and 9.5–15 Mt SO 2 -eq terrestrial acidification impact category indicators due to global wind power in 2007–50. Assuming lifetimes 5 yr longer than reference, the total climate change indicator values are reduced by 8%. In the BLUE Map scenario, construction of new capacity contributes 64%, and repowering of existing capacity 38%, to total cumulative greenhouse gas emissions. The total emissions of wind electricity range between 4% and 14% of the direct emissions of the replaced fossil-fueled power plants. For all impact categories, the indirect emissions of displaced fossil power are larger than the total emissions caused by wind power.

  14. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John

    2012-01-01

    ), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic...

  15. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    Science.gov (United States)

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  16. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: egg production systems.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I

    2012-01-01

    The aim of this study was to apply a life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of eggs produced in the 4 major hen-egg production systems in the United Kingdom: 1) cage, 2) barn, 3) free range, and 4) organic. The analysis was based on an approach that applied a structural model for the industry and mechanistic submodels for animal performance, crop production, and nutrient flows. Baseline feeds representative of those used by the UK egg production industry were used. Typical figures from the UK egg production industry, feed intake, mortality of birds, farm energy, and material use in different systems were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs and allow for comparisons between the systems. The number of birds required to produce 1,000 kg of eggs was highest in the organic and lowest in the cage system; similarly, the amount of feed consumed per bird was highest in the organic and lowest in the cage system. These general differences in productivity largely affected the differences in the environmental impacts between the systems. Feed production, processing, and transport caused greater impacts compared with those from any other component of production; that is, 54 to 75% of the primary energy use and 64 to 72% of the global warming potential of the systems. Electricity (used mainly for ventilation, automatic feeding, and lighting) had the second greatest impact in primary energy use (16-38%). Gas and oil (used mainly for heating in pullet rearing and incineration of dead layer birds) used 7 to 14% of the total primary energy. Manure had the greatest impact on the acidification and eutrophication potentials of the systems because of ammonia emissions that contributed to both of these potentials and nitrate leaching that only affected eutrophication potential. The LCA method allows for comparisons between systems and for the identification of hotspots

  17. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

    Science.gov (United States)

    Heller, Martin C; Keoleian, Gregory A; Willett, Walter C

    2013-11-19

    Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.

  18. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  19. Effect of feeding strategy on environmental impacts of pig fattening in different contexts of production: evaluation through life cycle assessment.

    Science.gov (United States)

    Monteiro, A N T R; Garcia-Launay, F; Brossard, L; Wilfart, A; Dourmad, J-Y

    2016-11-01

    Life cycle assessment (LCA) has been used in many studies to evaluate the effect of feeding strategy on the environmental impact of pig production. However, because most studies have been conducted in European conditions, the question of possible interactions with the context of production is still under debate. The objective of this study was to evaluate these effects in 2 contrasted geographic contexts of production, South America (Brazil) and Europe (France). The LCA considered the process of pig fattening, including production and transport of feed ingredients and feed, raising of fattening pigs, and manure storage, transport, and spreading. Impacts were calculated at the farm gate, and the functional unit considered was 1 kg of BW gain over the fattening period. The performances of pigs were simulated for each scenario using the InraPorc population model (2,000 pigs per scenario considering between-animal variability). The LCA calculations were performed for each pig according to its own performance and excretion, and the results were subjected to variance analysis. The results indicate that for some impacts there are clear interactions between the effects of the feeding program, the origin of soybean, and the location of production. For climate change, interest in phase feeding and incorporation of crystalline AA (CAA) is limited and even counterproductive in Brazil with soybeans from the South (without deforestation), whereas they appear to be efficient strategies with soybeans from the Center West (with deforestation), especially in France. Rather similar effects, as those for climate change, were observed for cumulative energy demand. Conversely, potential eutrophication and acidification impacts were reduced by phase feeding and CAA addition in a rather similar way in all situations. Individual daily feeding, the only strategy that took into account between-animal variability, was the most effective approach for reducing the life cycle impact of pig

  20. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. System and scenario choices in the life cycle assessment of a building – changing impacts of the environmental profile

    DEFF Research Database (Denmark)

    Rasmussen, Freja; Birgisdóttir, Harpa; Birkved, Morten

    2013-01-01

    This paper presents a life cycle assessment (LCA) case study of an office building. The case study investigates how the setting of free parameters (adopted from the CEN/TC 350 standards) influences the results of the building’s LCA in the DGNB certification scheme for sustainable buildings...

  2. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  3. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage.

    Science.gov (United States)

    Corona, Andrea; Ambye-Jensen, Morten; Vega, Giovanna Croxatto; Hauschild, Michael Zwicky; Birkved, Morten

    2018-09-01

    The Green biorefinery (GBR) is a biorefinery concept that converts fresh biomass into value-added products. The present study combines a Process Flowsheet Simulation (PFS) and Life Cycle Assessment (LCA) to evaluate the technical and environmental performance of different GBR configurations and the cascading utilization of the GBR output. The GBR configurations considered in this study, test alternatives in the three main steps of green-biorefining: fractionation, precipitation, and protein separation. The different cascade utilization alternatives analyse different options for press-pulp utilization, and the LCA results show that the environmental profile of the GBR is highly affected by the utilization of the press-pulp and thus by the choice of conventional product replaced by the press-pulp. Furthermore, scenario analysis of different GBR configurations shows that higher benefits can be achieved by increasing product yields rather than lowering energy consumption. Green biorefining is shown to be an interesting biorefining concept, especially in a Danish context. Biorefining of green biomass is technically feasible and can bring environmental savings, when compared to conventional production methods. However, the savings will be determined by the processing involved in each conversion stage and on the cascade utilization of the different platform products. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  5. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  6. Environmental Impact of the Production of Mealworms as a Protein Source for Humans ? A Life Cycle Assessment

    OpenAIRE

    Oonincx, Dennis G. A. B.; de Boer, Imke J. M.

    2012-01-01

    The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified...

  7. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  8. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  9. Evaluating Environmental Governance along Cross-Border Electricity Supply Chains with Policy-Informed Life Cycle Assessment: The California-Mexico Energy Exchange.

    Science.gov (United States)

    Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B

    2018-05-01

    This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.

  10. Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries.

    Science.gov (United States)

    Rivela, B; Moreira, M T; Bornhardt, C; Méndez, R; Feijoo, G

    2004-03-15

    A representative leather tannery industry in a Latin American developing country has been studied from an environmental point of view, including both technical and economic analysis. Life Cycle Analysis (LCA) methodology has been used for the quantification and evaluation of the impacts of the chromium tanning process as a basis to propose further improvement actions. Four main subsystems were considered: beamhouse, tanyard, retanning, and wood furnace. Damages to human health, ecosystem quality, and resources are mainly produced by the tanyard subsystem. The control and reduction of chromium and ammonia emissions are the critical points to be considered to improve the environmental performance of the process. Technologies available for improved management of chromium tanning were profoundly studied, and improvement actions related to optimized operational conditions and a high exhaustion chrome-tanning process were selected. These actions related to the implementation of internal procedures affected the economy of the process with savings ranging from US dollars 8.63 to US dollars 22.5 for the processing of 1 ton of wet salt hides, meanwhile the global environmental impact was reduced to 44-50%. Moreover, the treatment of wastewaters was considered in two scenarios. Primary treatment presented the largest reduction of the environmental impact of the tanning process, while no significant improvement for the evaluated impact categories was achieved when combining primary and secondary treatments.

  11. Using Life Cycle Assessment to identify potential environmental impacts of an agrifood sector: Application to the PDO Beaujolais and Burgundia wine sector

    Directory of Open Access Journals (Sweden)

    Penavayre Sophie

    2016-01-01

    Full Text Available The environmental impacts of the production system of emblematic French product under official quality marks was investigated using the Life Cycle Assessment (LCA methodology. The study looks at the PDO Beaujolais and Burgundy sector from a broad perspective, i.e. encompassing all steps linked with the products themselves but also complementary activities that belong to this wine sector. To build the Life Cycle Inventory (LCI, a methodology deriving from both product and organizational LCA was developed and applied. The LCI was built using a bottom-up approach. Inventories were first built for a sample of 17 representative companies. Then, these inventories were scaled-up to complete the global LCI at the agrifood sector level. Potential environmental impacts were assessed for 8 indicators. The LCA results show potential environmental impacts for each life cycle step: grape production, wine making and aging, packaging, distribution and activity of stakeholders belonging to the “close environment”. It provided two main outcomes: (i a methodology for the construction of an LCI adapted to the perimeter of an agrifood sector and composed by high quality data; and (ii the identification of potential environmental impacts of the studied agrifood sector, providing assistance for the definition of their strategic orientations for the future.

  12. Choosing co-substrates to supplement biogas production from animal slurry - A life cycle assessment of the environmental consequences

    DEFF Research Database (Denmark)

    Croxatto Vega, Giovanna Catalina; Ten Hoeve, Marieke; Birkved, Morten

    2014-01-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co......-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low...

  13. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead

    Directory of Open Access Journals (Sweden)

    Sha Chen

    2017-11-01

    Full Text Available Lead-acid batteries (LABs, a widely used energy storage equipment in cars and electric vehicles, are becoming serious problems due to their high environmental impact. In this study, an integrated method, combining material flow analysis with life cycle assessment, was developed to analyze the environmental emissions and burdens of lead in LABs. The environmental burdens from other materials in LABs were not included. The results indicated that the amount of primary lead used in LABs accounted for 77% of the total lead production in 2014 in China. The amount of discharged lead into the environment was 8.54 × 105 tonnes, which was mainly from raw material extraction (57.2%. The largest environmental burden was from the raw materials extraction and processing, which accounted for 81.7% of the total environmental burdens. The environmental burdens of the environmental toxicity potential, human toxicity potential-cancer, human toxicity potential-non-cancer, water footprint and land use accounted for more than 90% at this stage. Moreover, the environmental burdens from primary lead was much more serious than regenerated lead. On the basis of the results, main practical measures and policies were proposed to reduce the lead emissions and environmental burdens of LABs in China, namely establishing an effective LABs recycling system, enlarging the market share of the legal regenerated lead, regulating the production of regenerated lead, and avoiding the long-distance transportation of the waste LABs.

  14. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  15. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  16. Environmental macroeconomics : Environmental policy, business cycles, and directed technical change

    NARCIS (Netherlands)

    Fischer, Carolyn; Heutel, Garth

    Environmental economics has traditionally fallen in the domain of microeconomics, but approaches from macroeconomics have recently been applied to studying environmental policy. We focus on two macroeconomic tools and their application to environmental economics. First, real-business-cycle models

  17. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    Science.gov (United States)

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  18. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  19. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  20. Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment

    Science.gov (United States)

    Oonincx, Dennis G. A. B.; de Boer, Imke J. M.

    2012-01-01

    The demand for animal protein is expected to rise by 70–80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein. PMID:23284661

  1. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment.

    Science.gov (United States)

    Oonincx, Dennis G A B; de Boer, Imke J M

    2012-01-01

    The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein.

  2. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein.

  3. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Oscar O. Ortíz-Rodríguez

    2017-12-01

    Full Text Available Life Cycle Assessment methodology has been applied to estimate diverse environmental impacts of different usage alternatives for worn-out tires at the end of their useful life in a case study at the Department of Valle del Cauca, Colombia. Different real scenarios were compared, which allowed for the assessment of the best environmental option for the management of worn-out tires. A method developed in the Institute of Environmental Sciences at University of Leiden, better known as CML-2001, was used to calculate the environmental impact indicators. The results show that the incineration of whole tires in cement plants, and the activities of grinding and floor manufacturing from granulated rubber, exhibited the best indicators, especially in terms of environmental load avoidance through the recovery of materials. Finally, the categories of depletion of the ozone layer, acidification, global warming potential, depletion of abiotic resources, and photochemical ozone formation revealed that the strongest environmental impacts are associated with retreading and the production of multipart asphalt. This is due to the use of synthetic rubber in the former alternative, and of liquid asphalt, gravel, and diesel consumption in the latter.

  4. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  5. Environmental life cycle assessment of a large-scale grid-connected PV power plant. Case study Moura 62 MW PV power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suomalainen, Kiti

    2006-01-15

    An environmental life cycle assessment has been conducted for a 62 MW grid-connected photovoltaic installation to study the role of BOS components in the total environmental load. Also the influence of the current electricity supply has been investigated. For an alternative approach a net output approach has been used, where all electricity requirements are supplied by the photovoltaic installation itself. The components taken into account are monocrystalline silicon cells in frameless modules, steel support structures in concrete foundations, inverters, transformers, cables, transports and construction of roads and buildings. For stationary inert products without intrinsic energy requirements, such as cables, inverters, support structures etc., only raw material acquisition and processing are taken into account, since they are considered the most dominant stages in the life cycle. The results confirm a minor environmental load from BOS components compared to the module life cycle, showing approximately ten to twenty percent impact of the total. Uncertainties lie in the approximations for electronic devices as well as in the emissions from silicon processing. Concerning the electricity supply, the results differ considerably depending on which system perspective is used. In the net output approach the impacts decrease with approximately ninety percent from the traditional approach. Some increases are also shown in toxicity categories due to the increased module production needed for the enlargement of the installation.

  6. Environmental and human health assessment of life cycle of nanoTiO2 functionalized porcelain stoneware tile.

    Science.gov (United States)

    Pini, Martina; Bondioli, Federica; Montecchi, Rita; Neri, Paolo; Ferrari, Anna Maria

    2017-01-15

    Recently, there has been a rise in the interest in nanotechnology due to its enormous potential for the development of new products and applications with higher performance and new functionalities. However, while nanotechnology might revolutionize a number of industrial and consumer sectors, there are uncertainties and knowledge gaps regarding toxicological effects of this emerging science. The goal of this research concerns the implementation into Life Cycle Assessment (LCA) of preliminary frameworks developed to evaluate human toxicity and exposure factors related to the potential nanoparticle releases that could occur during the life cycle steps of a functionalized building material. The present LCA case study examines the ecodesign of nanoTiO 2 functionalized porcelain stoneware tile production. The aim of this investigation is to manufacture new eco-friendly products in order to protect human health and ecosystem quality and to offer the market, materials with higher technological properties obtained by the addition of specific nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. FRG paper on assessment of fuel cycles

    International Nuclear Information System (INIS)

    1979-01-01

    The paper deals with the assessment of the nuclear fuel cycle under different aspects: Assured energy supply, economy, environmental aspects, and non-proliferation philosophy. The results of an assessment of nuclear fuel variants along these lines for several types of commercial reactors (light-water reactors, heavy-water reactors, high-temperature reactors, and fast breeders) are presented in tables

  8. Environmental life cycle assessment of wood-based building materials and building product. Oekobilanzen von Baustoffen und Bauprodukten aus Holz; Zusammenfassung erster Erkenntnisse

    Energy Technology Data Exchange (ETDEWEB)

    Richter, K; Sell, J [Eidgenoessische Materialpruefungs- und Versuchsanstalt fuer Industrie, Bauwesen und Gewerbe, Duebendorf (Switzerland)

    1992-08-01

    This report presents a summary of the main studies on the topic carried out at EMPA wood department in the last 4 years.In its first part, the concept of an environmental life cycle analysis (LCA), whose purpose is to quantify the known environmental impacts of a product by means of a systematic input/output analysis, is described. Such evaluation must include all phases of a product's life cycle, from the extraction of resources to the final disposal. Raw material and energy supply are input values, whereas main products, by-products, and emissions to the environment are outputs. It is essential for a meaningful data collection as well as for the final interpretation of the results to define exact system boundaries and explain the models used for data aggregation which are, therefore, described in detail. The report's second part summarizes the results of an environmental assessment of wood as a raw material and construction component, and of some important wood-based products. First, some product-independent ecological values of wood are shown, which today cannot be quantified sufficiently in LCA (e.g. relations between forest management and multi-functional values of forests, sustainable reproduction of wood, careful and benign harvesting practices, CO[sub 2] cycling with wood, and the complete utilization of the resource for industrial productions). Although all these basic characteristics contribute to the out-standing ecologic value of wood, an environmental analysis has to concentrate on material- and product-related aspects. In our study, this is realized by assessing energy consumption and air pollution. In a case study the data compiled are used to compare a timber frame wall with several wall types of different materials, but with identical heat transmission and acoustic performance: as expected, the timber frame wall shows very good ratings. (author) figs., tabs., 21 refs.

  9. Life Cycle Assessment of Polymers in Qatar

    OpenAIRE

    ÖZERKAN, Nesibe Gözde; ADEED, Mariam AIMa’; KAHRAMAN, Ramazan

    2011-01-01

    Life Cycle Assessment (LCA) is gaining wider acceptance as a method that evaluates the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and assesses the impact of those energy and material used and released to the environment. It is also considered as one of the best environmental management tools that can be used to compare alternative eco-performances of recycling or disposal...

  10. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  11. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant

    International Nuclear Information System (INIS)

    Jin, Yiying; Chen, Ting; Chen, Xin; Yu, Zhixin

    2015-01-01

    Highlights: • 47.76% of the energy consumption is from the primary treatment process. • The dominant environmental impact comes from GWP100 emission (96.97 kgCO 2 -eq/t). • Increasing recycling rate of product can effectively reduce consumption and impact. - Abstract: Recycling food waste to produce biogas by anaerobic digestion (AD) is a promising process that can both provide renewable energy and dispose solid waste safely. However, this process affects the environment due to greenhouse gas emissions. By lifecycle assessment (LCA), we assessed the energy consumption (EC) and environmental impact (EI) of an integrated food waste-based biogas system and its subsystems. Data were collected from an actual plant in China that adopted a combination of wet-heat treatment and wet AD process at thermophilic condition. The EC of the system for processing 1 ton of waste was 663.89 MJ, among which 47.76% was from the primary treatment process (including pretreatment and AD). The GWP 100 (100-year global warming potential) emission of the system reached 96.97 kgCO 2 -eq/t, and the AP (acidification potential), EP (eutrophication potential), HTP inf (human toxicity potential) and FAETP inf (fresh water ecotoxicity) emissions were low. The EI was mainly generated by two subsystems, namely, the primary treatment and the secondary pollution control. Sensitivity analysis showed that a 40% increase of the feed fat content resulted in 38% increase in the net energy value output and 48% decrease in EP effect. The increase in oil content and biogas production rate could significantly reduce the EC and EI of the system. It has been shown that improving the technology of the process and increasing the recycling rate of products will result in the reduction of EC and EI of the biogas system. In addition, a quantitative assessment model of EC and EI in integrated food waste-based biogas technology is established

  12. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    Science.gov (United States)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include

  13. Application of life cycle assessment to production processes of environmentally sustainable concrete, prepared with artificial aggregates; Applicazione della metodologia life cycle assessment alla produzione di conclomerati cementizi di qualita' contenenti aggregati artificiali

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, R. [Italrecuperi, Pozzuoli (Italy); Colangelo, F. [Basilicata Univ., Poteza (Italy). Dip. di Ungegneria e Fisica dell' Ambiente; Palumbo, M. [Federico II Univ., Napoli (Italy). Dipartimento di Ingegneria e Fisica dell' Ambiente; Cioffi, R. [Parthenope Univ., Napoli (Italy). Dipartimento per le Tecnologie

    2005-08-01

    This paper is about the application of Life Cycle Assessment (L.C.A.) on environmentally sustainable concrete production processes. The goal of this experimentations is to assess environmental impact and energy demand related to concrete production, by using, in different admixtures, natural and artificial aggregates, belonging from treatments of different kind of industrial wastes characterized by very small particle sizes. Particular attention was concentrated on the utilization of fine fraction since it is difficult to recover in usual fields of recycling (i.e. aggers, crowl spaces, etc.). This study follows the approach from cradle to cradle. This experimentation was conducted in relation to four concrete admixtures produced, one of them containing only natural aggregate, and the other ones obtained by substituting the 10% of aggregate respectively with inert wastes as construction and demolition waste (CeD waste). cement kiln dust (CKD) and marble sludge. For all admixtures six different end-life scenarios have been proposed, one of them considers all materials transported in landfill while the other ones consider a partial transportation on landfill (15%) and a recycle of the 85% of wastes obtained after demolition of structures. [Italian] Il presente lavoro ha come oggetto l'applicazione della metodologia Life Cycle Assessment (L.C.A.) ai processi produttivi di calcestruzzi eco-compatibili. L'obiettivo dello studio e' quello di valutare il carico ambientale ed il consumo energetico associato alla produzione di calcestruzzo impiegando, in differenti miscele, aggregati artificiali provenienti dal trattamento di differenti tipologie di scarti industriali di pezzatura molto piccola. E' stata posta particolare attenzione all'utilizzo della frazione fine in quanto quest'ultima risulta piu' difficilmente recuperabile nei consueti campi d'impiego (es. rienpimento per sottofondi stradali, vespai, etc.). L

  14. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  15. Comparative assessment and management of the health and environmental impacts of energy systems. General framework and preliminary results for the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rostron, W; Schneider, T; Thieme, M; Dreicer, M

    1992-06-01

    The comparison of the effects of electricity producing systems is of growing importance in decision-making processes for energy planning. This report documents the preliminary results of a project for the CEC-DG XII Radiation Protection Programme on the comparative assessment and management of the health and environmental impacts of energy systems. The work reported in this document has also been supported by EDF - Mission Environnement. In order to profit from the comparative studies already existing, some of the most important ones were surveyed. The aim of these past energy comparison studies was mainly to obtain a global measure of the risks associated with an energy cycle, with a view to ranking the various electricity production systems; but this is now recognised as merely an academic exercise, with a limited impact in decision-making. For energy planning the development of a multi-dimensional approach seems more suitable, as this allows the different types of indicators and measures needed to assess the risks of different energy cycles to be compared. From the past studies it has been seen that health indicators are generally well established, but a weakness is noted with respect to indicators of environmental impacts. This remains a difficult subject, and until such indicators are established, surrogates like concentrations in the environment will have to be used, or qualitative comparisons must suffice. This report presents a general framework allowing for consistent comparisons between different energy systems. The key issues discussed are: assessment by fuel cycle, consideration of the dimensions of time and space, the impact pathway approach for assessing risk, and coherent indicators that can be used to measure the impacts. First results are presented for four activities of the nuclear fuel cycle according to the approach developed: (1) the construction and dismantling of a 900 MWe pressurized water reactor, (2) the transportation of materials between

  16. Environmentally important radionuclides in nonproliferative fuel cycles

    International Nuclear Information System (INIS)

    Kaye, S.V.; Till, J.E.

    1978-01-01

    Our analyses indicate that more in-depth research should be done on 3 H, 14 C, 99 Tc, and 232 U, especially because of their presence in nonproliferative fuel cycles. For increased 3 H production by fast reactors, we can only speculate that such research could show that environmental releases might be significantly greater than for LWRs. Carbon-14 will likely not be a problem if a suitable decontamination factor can be agreed upon for reprocessing facilities and if a satisfactory regulatory limit can be established for global populations. Additional experimental research is urgently needed to determine the uptake of low levels of 99 Tc by plants. These data are essential before an accurate assessment of 99 Tc releases can be made. Finally, we recommend that investigators take a closer look at the potential problems associated with 232 U and daughters. This radionuclide could contribute a significant portion of the dose in both environmental and occupational exposures from the nonproliferative fuels

  17. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  18. Life cycle assessment (LCA) as a decision-suppport tool for the evaluation of environmental impacts of site remediation on the global, regional and local scale

    DEFF Research Database (Denmark)

    Lemming, Gitte; Bulle, C.; Margni, Manuele

    2010-01-01

    Life cycle assessment (LCA) was used to compare the environment al impacts of three alternatives for remediating a TCE-contaminated site: (i) enhanced reductive dechlorination (ERD); (ii) in situ thermal desorption (ISTD) and (iii) excavation with off-site soil treatment. In addition......, the remediation alternatives were compared to a no action scenario, where only monitoring and natural attenuation takes place. A numerical reactive fracture model was used to predict the timeframes for the ERD and the no action scenarios. Moreover, the model was used to estimate the mass discharge of TCE...... of the LCA showed that of the three remediation methods compared, the ERD had the lowest total environmental impacts, even though it had significant primary impacts due to its long timeframe. The environmental impacts of ERD were comparable or only slightly higher than those of the no action scenario. ISTD...

  19. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  20. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  1. Evaluation and Comparison of Environmental Indicators of Hybrid Corn (Zea mays L. Production by Three Different Harvesting Methods in Alborz Province using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Majid Khanali

    2018-02-01

    Full Text Available Introduction Agriculture itself serves a dual role as an energy user and also energy supplier in the form of bio-energy. Recently, the energy use in agriculture has been intensified in response to the rising population, the increasing of standards of living and the limitation sources of energy. Efficient use of energy is a possible pathway for reducing the environmental impacts of energy inputs in agriculture, and providing sustainable agricultural production, since it brings financial savings, fossil resources preservation and air pollution reduction. Life cycle assessment (LCA is defined as the compilation and evaluation of the inputs, outputs and potential environmental impacts of a product system throughout its life cycle. Hybrid seed in agriculture is produced by cross-pollinated plants. Hybrid seed production is one of the main contributors to the dramatic rise in agricultural output during the last half of the 20th century. The alternatives to hybridization are open pollination and cloonal propagation. All of the hybrid seeds planted by the farmer will produce similar plants while the seeds of the next generation from those hybrids will not consistently have the desired characteristics. Controlled hybrids provide very uniform characteristics because they are produced by crossing two inbred strains. Materials and Methods The purpose of this study was to compare the energy consumption pattern and environmental consequences caused by the use of agricultural inputs in the production of seed corn harvested by hand, combine and picker husker. Information required was prepared by the questionnaire method in Alborz Province using census the total producers of hybrid corn in the Province. The investigated inputs were labor, agricultural machinery, diesel fuel, chemical pesticides, fertilizers, gas, electricity, water and seed. The energy of each input was calculated by multiplying the amount of that input with its energy equivalent. The ten

  2. Developing IAM for Life Cycle Safety Assessment

    NARCIS (Netherlands)

    Toxopeus, Marten E.; Lutters, Diederick; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This publication discusses aspects of the development of an impact assessment method (IAM) for safety. Compared to the many existing IAM’s for environmentally oriented LCA, this method should translate the impact of a product life cycle on the subject of safety. Moreover, the method should be

  3. Energy and environmental assessment

    DEFF Research Database (Denmark)

    Lund, Henrik; Sukkumnoed, Decharut

    2004-01-01

    The paper introduce and discuss strategic environmental assessment (SEA) and economic assessment for energy innovation and suggests approach to influence support for sustainable energy development in Thailand.......The paper introduce and discuss strategic environmental assessment (SEA) and economic assessment for energy innovation and suggests approach to influence support for sustainable energy development in Thailand....

  4. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  5. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  6. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  7. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  8. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  9. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  10. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  11. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison...... will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  12. Development of a Real-Time Environmental Monitoring System, Life Cycle Assessment Systems, and Pollution Prevention Programs

    Science.gov (United States)

    Kocher, Walter M.

    2003-01-01

    Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.

  13. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation

    International Nuclear Information System (INIS)

    Renouf, M.A.; Wegener, M.K.; Nielsen, L.K.

    2008-01-01

    Sugarcane is a highly suitable substrate for the production of bio-products. As well as producing high yields of sugar, much of the plant's fibre is also recovered and used as a source of renewable energy. A life cycle assessment (LCA) of sugarcane production and processing in Australia was performed to develop an environmental profile of sugarcane as a source of bio-products. The application examined was fermentation products from sugar. The sugarcane results were compared with results for other sugar producing crops-US corn and UK sugar beet-to gauge its relative environmental performance. The results show sugarcane to have an advantage in respect of energy input, greenhouse gas emissions and possibly acidification potential due to its high saccharide yield and the displacement of fossil fuels with surplus renewable energy from cane fibre (bagasse). However Australian sugarcane can exhibit high nitrous oxide emissions, which would reduce greenhouse gas advantages in some regions. For eutrophication, sugar beet provides advantages due to the avoided production of other agricultural crops displaced by the use of beet pulp as an animal feed. The three factors found to have the most influence on the environmental impacts of these agro-industrial systems were the commodities displaced by by-products, agricultural yields, and nitrogen use efficiency

  14. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Renouf, M.A. [School of Geography, Planning and Architecture, The University of Queensland, Brisbane, QLD 4072 (Australia); CRC for Sugar Industry Innovation through Biotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Wegener, M.K. [School of Natural and Rural Systems Management, The University of Queensland, QLD 4072 (Australia); CRC for Sugar Industry Innovation through Biotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Nielsen, L.K. [Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); CRC for Sugar Industry Innovation through Biotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2008-12-15

    Sugarcane is a highly suitable substrate for the production of bio-products. As well as producing high yields of sugar, much of the plant's fibre is also recovered and used as a source of renewable energy. A life cycle assessment (LCA) of sugarcane production and processing in Australia was performed to develop an environmental profile of sugarcane as a source of bio-products. The application examined was fermentation products from sugar. The sugarcane results were compared with results for other sugar producing crops - US corn and UK sugar beet - to gauge its relative environmental performance. The results show sugarcane to have an advantage in respect of energy input, greenhouse gas emissions and possibly acidification potential due to its high saccharide yield and the displacement of fossil fuels with surplus renewable energy from cane fibre (bagasse). However Australian sugarcane can exhibit high nitrous oxide emissions, which would reduce greenhouse gas advantages in some regions. For eutrophication, sugar beet provides advantages due to the avoided production of other agricultural crops displaced by the use of beet pulp as an animal feed. The three factors found to have the most influence on the environmental impacts of these agro-industrial systems were the commodities displaced by by-products, agricultural yields, and nitrogen use efficiency. (author)

  15. A Review of Life-Cycle Based Tools Used to Assess the Environmental Sustainability of Biofuels in the United States

    Science.gov (United States)

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally preferable?” Bioenergy, as an alternative energy source, might be effective in reducing fossil fuel use and dependence, slowing or reducing global warming effects, and providing inc...

  16. Environmental Impact of the Production of Mealworms as a Protein Source for Humans - A Life Cycle Assessment

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Boer, de I.J.M.

    2012-01-01

    The demand for animal protein is expected to rise by 70–80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding

  17. Analyzing the Environmental Impacts of Laptop Enclosures Using Screening-Level Life Cycle Assessment to Support Sustainable Consumer Electronics

    Science.gov (United States)

    With the ever-increasing amount of consumer electronics in service, it is essential industries and policy-makers work together to develop ways to manufacture more environmentally sustainable IT products which meet the needs of society. The objective of this study was to better un...

  18. Evaluation of the environmental impacts of wood products for bio-energy through Life Cycle Assessment (LCA)

    OpenAIRE

    Pierobon, Francesca

    2015-01-01

    The use of wood for energy has grown in the last years as an alternative to fossil fuels. National and international laws promote the use of wood in the policies for the mitigation of climate change, based on the assumption that wood has a neutral carbon balance because the combustion emissions are offset by the absorption in forest (assumption of carbon neutrality). However, this assumption does not take into account the emissions associated with the life cycle of the product, e.g. related t...

  19. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    Science.gov (United States)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  20. An Environmental Impact Analysis of Semi-Mechanical Extraction Process of Sago Starch: Life Cycle Assessment (LCA) Perspective

    Science.gov (United States)

    Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.

    2018-05-01

    Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.

  1. Environmental impact assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.; Kim, E. H.; Choi, K. S

    2000-10-01

    This report is the revised Environmental Impact Assessment Report which was made and submitted as one of the license documents for TRIGA Research Reactor D and D Project. The Environmental Impact Assessment Report includes introduction of decommissioning plan, status of reactors and environmental impact of surroundings. Also it was assessed and analyzed on radioactivity for environment, and the plan was established to minimize radioactive material release. Finally environmental monitoring plan was established to confirm whether contaminated or not from radioactivity during decommissioning period. According to the assessment results, the risk of excess exposure will be not on environment and public. The first Environmental Impact Assessment Report was submitted to the government for the license and reviewed by Korea Institute of Nuclear Safety. The first Report was revised including answers for the questions arising from review process.

  2. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  3. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    Science.gov (United States)

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  4. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  6. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  7. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  8. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  9. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  10. Environmental Workplace Assessment.

    Science.gov (United States)

    Bernier, Jacques; And Others

    1994-01-01

    Describes environmental workplace assessments as tools in developing customized training, highlighting the group process and individual interview techniques. Suggests that, by assessing the cultural climate of an organization, education providers can gather essential baseline information on an organization and thereby provide a guide for further…

  11. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  12. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  13. Transportation Life Cycle Assessment (LCA) Synthesis, Phase II

    Science.gov (United States)

    2018-04-24

    The Transportation Life Cycle Assessment (LCA) Synthesis includes an LCA Learning Module Series, case studies, and analytics on the use of the modules. The module series is a set of narrated slideshows on topics related to environmental LCA. Phase I ...

  14. Wave Engine Topping Cycle Assessment

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  15. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    1996-01-01

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  16. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Antón, Assumpció; Boulay, Anne-Marie

    2018-01-01

    of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use......Purpose: Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA...... are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle...

  17. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  18. Strategic environmental assessment

    DEFF Research Database (Denmark)

    Kørnøv, Lone

    1997-01-01

    The integration of environmental considerations into strategic decision making is recognized as a key to achieving sustainability. In the European Union a draft directive on Strategic Environmental Assessment (SEA) is currently being reviewed by the member states. The nature of the proposed SEA...... that the SEA directive will influence the decision-making process positively and will help to promote improved environmental decisions. However, the guidelines for public participation are not sufficient and the democratic element is strongly limited. On the basis of these findings, recommendations relating...

  19. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  20. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  1. Comparative Environmental Life Cycle Assessment of Oxyfuel and Post-combustion Capture with MEA and AMP/PZ - Case Studies from the EDDiCCUT Project

    NARCIS (Netherlands)

    Oreggioni, Gabriel D.; Singh, Bhawna; Hung, Christine Roxanne; Van Der Spek, Mijndert W.; Skagestad, Ragnhild; Eldrup, Nils Henrik; Ramirez, Andrea; Strømman, Anders Hammer

    2017-01-01

    This work presents the results of a comparative life cycle assessment study for three CCS technologies applied to a coal-fired power plant: post-combustion capture with MEA, post combustion capture with AMP/PZ and cryogenic oxy-fuel. This study has been performed in the context of the EDDiCCUT

  2. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  3. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    Aumonier, S.

    1998-01-01

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  4. Power and environmental assessment

    DEFF Research Database (Denmark)

    Cashmore, Matthew Asa; Richardson, Tim

    2013-01-01

    The significance of politics and power dynamics has long been recognised in environmental assessment (EA) research, but there has not been sustained attention to power, either theoretically or empirically. The aim of this special issue is to encourage the EA community to engage more consistently...

  5. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DEFF Research Database (Denmark)

    Andersen, J.K.; Boldrin, Alessio; Christensen, Thomas Højlund

    2012-01-01

    ) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many...

  6. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    Science.gov (United States)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity

  7. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  8. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  9. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  10. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage

    DEFF Research Database (Denmark)

    Corona, Andrea; Ambye-Jensen, Morten; Vega, Giovanna Croxatto

    2018-01-01

    and the cascading utilization of the GBR output. The GBR configurations considered in this study, test alternatives in the three main steps of green-biorefining: fractionation, precipitation, and protein separation. The different cascade utilization alternatives analyse different options for press-pulp utilization......, and the LCA results show that the environmental profile of the GBR is highly affected by the utilization of the press-pulp and thus by the choice of conventional product replaced by the press-pulp. Furthermore, scenario analysis of different GBR configurations shows that higher benefits can be achieved...

  11. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  12. Life Cycle Assessment of fresh dairy packaging at ELOPAK

    OpenAIRE

    Ruttenborg, Vegard

    2017-01-01

    Nearly all food and drink products require some packaging, and the impact from production and consumption is causing a strain on the environment. To counteract the bad effects, business is emphasizing the environmental performance of products and therefore utilising Life Cycle Assessment as a tool to quantify the environmental impacts from a products life cycle. Elopak, which is an International supplier of paper-based packaging for liquid food, is a such company. This thesis i...

  13. Influence of service life on Life Cycle Assessments

    NARCIS (Netherlands)

    van Nunen, H.; Hendriks, N.A.; Erkelens, P.A.

    2003-01-01

    Environmental assessment is part of present decision making. But, because of difficulties the assessments are not as profound as could be. Life Cycle Assessment (LCA) is a cradle-to-grave approach and consequently a time factor is embedded. Until now this time factor is fixed and calculations are

  14. Environmental contaminants: assessment and control

    National Research Council Canada - National Science Library

    Vallero, Daniel A

    2004-01-01

    ... Understanding Policy by Understanding Science Connections and Interrelationships of Environmental Science Environmental Assessment and Intervention Engineering Technical Note: Cleaning up a Hazardous Waste Site Social Aspects of Environmental Science Introduction to Environmental Policy The National Environmental Policy Act Issues in Environmental Science: Co...

  15. Methods for global sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.

    2017-01-01

    Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to

  16. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  17. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  18. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  19. Environmental compliance assessment review

    International Nuclear Information System (INIS)

    Hilliday, G.H.

    1991-01-01

    During the period 1972-1991, The United States Congress passed stringent environmental statues which the Environment Protection Agency implemented via regulations. The statues and regulations contain severe civil and criminal penalties. Civil violations resulted in fines, typically payable by the company. The act of willfully and knowingly violating the permit conditions or regulations can result in criminal charges being imposed upon the responsible part, i.e., either the company or individual. Criminal charges can include fines, lawyer fees, court costs and incarceration. This paper describes steps necessary to form an effective Environmental Compliance Assessment Review [CAR] program, train field and engineering personnel and perform a CAR audit. Additionally, the paper discusses the findings of a number of Exploration and Production [E and P] field audits

  20. Environmental Impact Assessment: A Procedure.

    Science.gov (United States)

    Stover, Lloyd V.

    Prepared by a firm of consulting engineers, this booklet outlines the procedural "whys and hows" of assessing environmental impact, particularly for the construction industry. Section I explores the need for environmental assessment and evaluation to determine environmental impact. It utilizes a review of the National Environmental Policy Act and…

  1. Criticism on Environmental Assessment Tools

    NARCIS (Netherlands)

    Abdalla, G.; Maas, G.J.; Huyghe, J.; Oostra, M.; Saji Baby, xx; Bogdan Zygmunt, xx

    2011-01-01

    Using environmental assessment tools to assess the sustainability of buildings, homes and mixed- use area is increasing. Environmental tools assign scores to projects using some sustainability (sub) aspects according to design and realization documents and evidences. Six European sustainable urban

  2. ENVIRONMENTAL IMPACT ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    protect the environment, it is imperative to conduct environmental impact assessment ... Ethiopia enacted the Environmental Impact Assessment Proclamation in 2002 ... flora, fauna, soil, air, water, climate, natural or cultural heritage, other.

  3. Comparative life cycle assessment of industrial multi-product processes

    OpenAIRE

    Jung, Johannes

    2014-01-01

    The demand for environmentally safe industrial processes is increasing. Therefore, environmental impacts of new processes have to be examined at an early stage. A method for analyzing environmental impacts is life cycle assessment (LCA). A major trouble of LCA are multi-functionality problems. Multi-functionality problems can be fixed using alternative methods such as system expansion, avoided burden and allocation. Each of the three methods requires choices by the LCA-practitioner. The choic...

  4. Environmental assessment: Industry perspective

    International Nuclear Information System (INIS)

    Meadley, T.

    1994-01-01

    The Canadian mining industry supports the concept of environmental assessment, but the current process at the time of the conference had a number of problems that the industry felt should be addressed. The author makes the following suggestions: that the process for individual projects should be separated from policy issues; that panel members should be drawn from a full-time staff; that there should be better referral criteria to determine which projects require full scale assessment including public hearings; that either the government or project opponents should participate but not both; that the financial burden on proponents should be reduced; that funding of intervenors should be controlled; that there should be a definite time frame

  5. Environmental impact assessment of conventional and organic milk production

    NARCIS (Netherlands)

    Boer, de I.J.M.

    2003-01-01

    Organic agriculture addresses the public demand to diminish environmental pollution of agricultural production. Until now, however, only few studies tried to determine the integrated environmental impact of conventional versus organic production using life cycle assessment (LCA). The aim of this

  6. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  7. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  8. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  9. Some Environmental and Economic Aspects of Energy Saving Measures in Houses. An estimation model for total energy consumption and emissions to air from the Norwegian dwelling stock, and a life cycle assessment method for energy saving measures in houses

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, L

    1995-12-01

    Motivated by the need to reduce the total energy consumption and the environmental load from society, this doctoral thesis discusses energy conservation measures on existing houses. Alternative additional thermal insulation measures are assessed using an interdisciplinary life cycle approach. The first task is to develop an interdisciplinary assessment method for building improvement measures, taking account of energy consumption, resource consumption, emissions to air of environmentally harmful gases, and economic costs during the entire life cycle of the building. The second task is to develop an estimation model for the total energy consumption and emissions to air of environmentally harmful gases from the dwelling stock of Norway. Finally, the third task is to assess the total energy saving potential and the total environmental benefits of energy saving measures in houses on a national level, including only life cycle analyses of additional thermal insulation measures on single houses. Chap 2 describes the dwelling stock in Norway. Chaps 3 and 4 present an estimation model for total energy consumption and emissions to air from the dwelling stock, and calculations using the model. Chaps 5 and 6 propose and use a calculation method for the assessment of additional thermal insulation measures, using a ``cradle-to-grave`` approach. Since hydroelectric power is the main energy source in this sector in Norway, estimated payback periods for emissions to air are long. But hydroelectric power saved in this sector may be used to obtain reduction in fossil fuel use in other sectors as discussed in Chap 7. Some of the topics discussed are further elaborated on in appendices. 107 refs., 39 figs, 88 tabs.

  10. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  11. Integrating environmental and socioeconomic assessment

    International Nuclear Information System (INIS)

    Branch, K.M.; Cluett, C.; Page, T.L.

    1987-01-01

    Since the passage of the National Environmental Policy Act (NEPA) in 1969, considerable scientific and regulatory attention has been given to the preparation of environmental impact assessments. Part of this attention has been directed to definition of the proper scope of an environmental assessment and to debate about how the ''human environment'' should be addressed. This debate continues, and is reflected in the ongoing evolution of the definition of and relationship between the ''environmental'' and ''socioeconomic'' components of an integrated environmental impact assessment. This paper discusses the need for close integration between the environmental and socioeconomic assessment efforts and examines some of the benefits and difficulties of achieving this integration

  12. Life cycle assessment. Specific indicators for Italy in impact evaluation

    International Nuclear Information System (INIS)

    Masoni, P.

    1999-01-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described [it

  13. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  14. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  15. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  16. Workshop on environmental assessment

    International Nuclear Information System (INIS)

    Watson, E.C.

    1982-07-01

    Objectives of the workshop were: to review and evaluate the state-of-the-art of environmental impact assessments as applied to the regulation of applications of nuclear energy and related ancillary systems; to identify areas where existing technology allows establishing acceptable methods or standard practices that will meet the requirements of the NRC regulations, standards and guides for both normal operations and off-standard conditions including accident considerations; to illuminate topics where existing models or analytical methods are deficient because of unverified assumptions, a paucity of empirical data, conflicting results reported in the literature or a need for observation of operation systems; to compile, analyze and synthesize a prioritized set of research needs to advance the state-of-the-art to the level which will meet all of the requirements of the Commission's regulations, standards and guides; and to develop bases for maintaining the core of regulatory guidance at the optimum level balancing technical capabilities with practical considerations of cost and value to the regulatory process. The discussion held in small group sessions on aquatic, atmospheric, and terrestrial pathways are presented. The following research needs were identified as common to all three groups: validation of models; characterization of source terms; development of screening techniques; basis for de minimis levels of contamination; and updating of objectives for environmental monitoring programs

  17. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Renzulli, Pietro A.; Bacenetti, Jacopo; Benedetto, Graziella

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...... their widespread use and from their particular nature. It is thus important for tools such as life cycle assessment (LCA) to be tailored to such cereal systems in order to be used as a means of identifying the negative environmental effects of cereal products and highlighting possible pathways to overall...

  18. Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland

    International Nuclear Information System (INIS)

    Styles, David; Jones, Michael B.

    2008-01-01

    This paper combines life-cycle analyses and economic analyses for Miscanthus and willow heat and electricity fuel-chains in Ireland. Displaced agricultural land-uses and conventional fuels were considered in fuel-chain permutations. Avoided greenhouse gas (GHG) emissions ranged from 7.7 to 35.2 t CO 2 eq. ha -1 a -1 . Most fuel-chain permutations exhibited positive discounted financial returns, despite losses for particular entities at a farm-gate processed-biomass price of Euro 100 t -1 dry-matter. Attributing a value of Euro 10 t -1 CO 2 eq. to avoided GHG emissions, but subtracting financial returns associated with displaced fuel supplies, resulted in discounted annual national economic benefits (DANEBs) ranging from -457 to 1887 Euro ha -1 a -1 . Extrapolating a plausible combination of fuel-chains up to a national indicative scenario resulted in GHG emission avoidance of 3.56 Mt CO 2 eq. a -1 (5.2% of national emissions), a DANEB of 167 M Euro , and required 4.6% of national agricultural land area. As cost-effective national GHG avoidance options, Miscanthus and willow fuel-chains are robust to variation in yields and CO 2 price, and appear to represent an efficient land-use option (e.g. compared with liquid biofuel production). Policies promoting utilisation of these energy-crops could avoid unnecessary, and environmentally questionable, future purchase of carbon credits, as currently required for national Kyoto compliance

  19. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  20. Methodologies of environmental impact assessment

    International Nuclear Information System (INIS)

    Schroll, H.

    1994-01-01

    This article gives a brief introduction covering the objectives of environmental impact assessment (EIA) and sustainable development, before going on to describe the screening procedure to define the environmental and socio-economic impacts of projects. The EIA procedure outlined encompasses a description of the project, examination of all environmental effects (scoping), identification of existing and predicted environmental conditions and impacts, alternative measures and mitigating measures, co-ordination, with environmental regulations, public participation, and monitoring and approval of the EIA. (UK)

  1. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  2. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  3. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  4. Environmental stress and assessment program

    International Nuclear Information System (INIS)

    Adriano, D.C.; Brisbin, I.L.; Gibbons, J.W.

    1981-01-01

    Research progress is reported in sections entitled: Savannah River Plant (SRP) studies provide general models for thermal research; in vivo studies of thermal stabilities of cattail isozymes reveal interspecific differences; thermal regimes in Par Pond have little effect on micronutrient uptake by cattails; continued tree kill in the SRP swamp may have an adverse impact on the swamp's cooling capabilities; Par Pond provides understanding of complexity of lake ecosystems affected by thermal effluents; temperature affects size, species distribution, and emergence date of dragonfly larvae; the midge subcommunity in Par Pond maintains relative integrity across a multi-faceted environmental gradient; temperature does not alter contribution of predators to community stability; habitat affects enzyme activity levels in natural populations of Gambusia affinis; studies of large-mouth bass in Par Pond system reveal lipid cycles; long-term turtle research provides information on survivorship and longevity; data on SRP watersnakes contribute to understanding of sexual dimorphism in animals; terrestrial drift fences and pitfall traps prove to be an effective technique for quantitative sampling of animal populations; and, Steel Creek targeted for environmental assessment

  5. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  6. Life cycle assessment of regional brick manufacture

    Directory of Open Access Journals (Sweden)

    López-Aguilar, H. A.

    2016-06-01

    Full Text Available This document presents a Life Cycle Assessment (LCA study to quantify the environmental cradle-to-gate impact of the manufacture of brick for the construction industry, produced with material of igneous source. Its mineral composition and thermal isolation properties were characterized for use in real estate construction. The LCA results for brick manufacture using this material identified the greatest environmental impact to be associated with material extraction and its proportional cement content. Additionally, this document presents an evaluation of the environmental impact of the manufacturing process by comparing traditional fired clay brick and brick of the material under study. In conclusion, the studied material shows thermal insulation qualities and suitability for the manufacture of bricks with low incorporated energy.Este trabajo presenta un estudio de Análisis de Ciclo de Vida (ACV para cuantificar los impactos ambientales de la cuna a la puerta de la manufactura de ladrillos para la industria de la construcción, fabricados de un material de origen ígneo. Se caracterizó su composición mineralógica y propiedades de aislamiento térmico para ser usado en la construcción de inmuebles. Los resultados ACV de la fabricación de ladrillos de este material, identificaron la mayor contribución a los impactos ambientales asociados a la extracción del material y la cantidad proporcional de cemento. Adicionalmente, se presenta una evaluación comparativa del impacto ambiental entre la manufactura de un ladrillo tradicional de arcilla cocido y de un ladrillo del material en estudio. En conclusión el material estudiado muestra cualidades de aislamiento térmico y es adecuado para la fabricación de ladrillos con baja energía incorporada.

  7. Life Cycle Assessment in Management of Socially Responsible Enterprise

    Directory of Open Access Journals (Sweden)

    Tkaczyk Stanisław

    2014-12-01

    Full Text Available The following paper presents dangerous and evident phenomenon of communicational chaos in the field of environment protection and sustainable development in a turbulent external environment. It is pointed that this phenomenon gives organizations an opportunity to take pretended pro-environmental actions, such as socially critical greenwashing. As a counterbalance to those practices, a concept of Corporate Social Responsibility (CSR is presented, underlining the possibility of developing honest environmental marketing basing on methods such as Life Cycle Assessment.

  8. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  9. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  10. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  11. Life cycle assessment of asphalt pavement maintenance.

    Science.gov (United States)

    2014-01-01

    This study aims at developing a life cycle assessment (LCA) model to quantify the impact of pavement preservation on energy consumption and greenhouse gas (GHG) emissions. The construction stage contains material, manufacture, transportation and plac...

  12. Life-cycle assessment of Nebraska bridges.

    Science.gov (United States)

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  13. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    Jekel, L.; Tam, E.K.L.

    2002-01-01

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  14. Environmental Tools and Radiological Assessment

    Science.gov (United States)

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  15. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  16. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  17. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  18. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  19. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  20. Environmentally important radionuclides in non-proliferative fuel cycles

    International Nuclear Information System (INIS)

    Kaye, S.V.; Till, J.E.

    1978-01-01

    Increased emphasis in energy research is being given to the development of nonproliferative nuclear fuel cycles and to the assessment of potential release of radionuclides to the environment from these new cycles. Four radionuclides, 14 C, 3 H, 99 Tc, and 232 U, due to lack of adequate knowledge or anticipated increased production in nonproliferative fuel cycles, may require renewed consideration. Our projections indicate that releases of 14 C by the global nuclear industry could exceed the natural production rate of 3.8 x 10 4 Ci/y by the year 2000 and could eventually stabilize at 2.3 times that rate. Tritium may become increasingly important, because recent data from fast reactors (of the nonproliferative type) have confirmed production rates up to 13 times greater than previous estimates. Present radwaste systems do not remove tritium. Recent experiments on the uptake of 99 Tc reveal that soil-to-plant concentration factors for technetium appear to be two to three orders of magnitude greater than the value of 0.25 which has been adopted routinely in radiological assessments. Research is needed to determine reliable 99 Tc soil-to-plant concentration factors because this radionuclide could be released at reprocessing and enrichment facilities. New calculations for certain reactors indicate that 232 U may be formed in concentrations up to 4000 ppm. If accurate, such data will require careful analysis of possible releases of 232 U because of external and food chain exposures. The environmental health aspects of these four radionuclides are discussed, as well as the potential for their release to the environment from nonproliferative fuel cycles. (author)

  1. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  2. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  3. Element Cycles: An Environmental Chemistry Board Game

    Science.gov (United States)

    Pippins, Tracy; Anderson, Cody M.; Poindexter, Eric F.; Sultemeier, S. Whitney; Schultz, Linda D.

    2011-01-01

    "Element Cycles" is an activity designed to reinforce correlation of essential elements and their different forms in the ecosystem. Students are assigned essential elements to research as homework, then share results, and construct game boards with four ecosphere sections: geosphere (earth), hydrosphere (water), atmosphere (air), and biosphere…

  4. Environmental impact assessment screening tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    An environmental assessment and impact planning software, SCREENER, was tested at a pilot project at the Cameco site (Port Hope). SCREENER was used to screen the impacts of a new construction project in accordance with the process and reporting requirements laid out in the Canadian Environmental Assessment Act. The software test concentrated on the activities that are directly involved with the structure construction and site preparation activities. In addition, a two and one half day training course was given to three AECB staff using the test case as a hands on example. The conclusion of this project is that an automated tool such as SCREENER (or Calyx, the new generation of environmental assessment tools from ESSA Software Ltd.), will help the AECB to standardize the approach to environmental assessment, assist in project planning, and save resources in the screening process. The new approach could allow to allocate AECB limited resources to the detailed assessments required for maximum impact activities. 2 figs. 7 refs.

  5. Environmental impact assessment screening tool

    International Nuclear Information System (INIS)

    1995-05-01

    An environmental assessment and impact planning software, SCREENER, was tested at a pilot project at the Cameco site (Port Hope). SCREENER was used to screen the impacts of a new construction project in accordance with the process and reporting requirements laid out in the Canadian Environmental Assessment Act. The software test concentrated on the activities that are directly involved with the structure construction and site preparation activities. In addition, a two and one half day training course was given to three AECB staff using the test case as a hands on example. The conclusion of this project is that an automated tool such as SCREENER (or Calyx, the new generation of environmental assessment tools from ESSA Software Ltd.), will help the AECB to standardize the approach to environmental assessment, assist in project planning, and save resources in the screening process. The new approach could allow to allocate AECB limited resources to the detailed assessments required for maximum impact activities

  6. Environmental analysis of the proton exchange membrane fuel cell on the subject of life cycle assessment; Analise ambiental da celula a combustivel de membrana trocadora de protons sob o enfoque da avaliacao do ciclo de vida

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, Sandra Harumi

    2006-07-01

    The energy is the fuel of growth and an essential requirement for the socioeconomic development. However, the current production model is based on fossil fuels, considered as threat to man and nature. As for, the relating to the human activities and their effects on the environment, they are handled by the implementation of a more rigid model of environmental control and the mobilization of the society in favor of technologies with less energy impact. In view of this scenario, the Proton Exchange Membrane Fuel Cell - PEMFC has been recognized as a key for the vital need of a clean and efficient energy. Considering the conventional power generation system, their advantages during usage configure its application as an ideal option for several utilities, especially in the mobile sector. Even though, the focus on several environmental evaluations in energy systems is referred back to the initial stage of it use, the employment relating to production of the system and to final destination should be considered, since these also present impacts. In the case of PEMFC, their previous and subsequent phases of use are issues related to the platinum catalysts, which indicates an environmental importance that cannot be overlooked. In this sense, the Life Cycle Assessment has been used to understand and to question the risks and opportunities that are associated to certain product, starting from a systemic concept of their relationships with the environment. It is precisely in this context that the present research intends to present its major contribution, starting from an exploratory study towards the its objectives to provide an environmental analysis of such technology linked to post stage of powder-use of the membrane electrode assembly - MEA, concerning the platinum catalysts, on the subject of Life Cycle Assessment - LCA. To attain such aim, the relationships between energy, environment and development are presented and discussed, as well as, the Fuel Cell technology and

  7. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  8. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  9. Life cycle assessment of shredder residue management

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Damgaard, Anders; Brogaard, Line Kai-Sørensen

    wood waste, wood waste for recycling and district heating pipes. The LCA was conducted using the EASETECH LCA model developed by DTU Environment for the environmental assessment of waste management systems and environmental technologies. The LCA was conducted in accordance with the LCA principles...

  10. A methodology for assessing the environmental and health impact of options for the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ouzounian, G.H.; Devezeaux de Lavergne, J.G.; Devin, P.; Lioure, A.; Mouney, H.; Le Boulch, D.

    2001-01-01

    Research programs conducted in France in the framework of the 1991 act offer various options for management of the back- end of the fuel cycle. Proposals to be debated in 2006 will rely not only on broad scientific and technical knowledge, but also on the compilation and integration of results, with syntheses and analyses intended to highlight the advantages and the limitations of each of the waste management paths. This presentation introduces a methodology derived from the life cycle analysis as well as some preliminary results. (author)

  11. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  12. Life-cycle assessment of typical Portuguese cork oak woodlands.

    Science.gov (United States)

    González-García, Sara; Dias, Ana Cláudia; Arroja, Luis

    2013-05-01

    Cork forest systems are responsible for making an important economic contribution to the Mediterranean region, especially Portugal where the cork oak woodlands or montados contain about 32% of the world's area. The environmental profile derived from reproduction cork production and extraction in two Portuguese regions (Tagus valley and Alentejo) representative of the Portuguese sector were assessed in detail using the Life-Cycle Assessment (LCA) methodology from a cradle-to-gate perspective. The production line was divided into four stages considering all the processes involved: stand establishment, stand management, cork stripping and field recovery. According to the environmental results, there were remarkable differences between the two production scenarios mainly due to the intensity and repetition of forest activities even though the cork yield was reported to be the same. The management system in the Alentejo region presented the worse environmental profile in almost all the impact categories under assessment, mainly due to the shorter cycle duration of the mechanical cleaning and pruning processes. Cork stripping was identified in both scenarios as the production stage with the highest contribution to the environmental profile due to the cleaning and pruning processes. A sensitivity assessment concerning the cork yield was performed since the average production yields in the Portuguese montados are lower than the ones used in this study. Thus, if the cork yield is reduced, the environmental profile in both scenarios gets worse since almost all the forest activities involved are the same. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Environmental Impact Assessment in Antarctica

    NARCIS (Netherlands)

    Bastmeijer, C.J.; Roura, R.; Bastmeijer, K.; Koivurova, T.

    2008-01-01

    This publication focuses on the instrument of Environmental Impact Assessment (EIA) that has been developed within the Antarctic Treaty System (ATS) as one of the tools to promote environmental protection. The states involved in the ATS already recognized the importance of this instrument in 1975

  14. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  15. Impact assessment modelling of matter-less stressors in the context of Life Cycle Assessment

    NARCIS (Netherlands)

    Cucurachi, Stefano

    2014-01-01

    In the last three decades, the Life Cycle Assessment (LCA) framework has grown to establish itself as the leading tool for the assessment of the environmental impacts of product systems.LCA studies are now conducted globally both in and outside the academia and also used as a basis for policy

  16. STATE INSPECTION METHODOLOGY OF ENVIRONMENTAL REGULATORY ACTIVITY FOCUSED ON THE LIFE CYCLE PROCESSESES

    Directory of Open Access Journals (Sweden)

    Yuniey Quiala Armenteros

    2016-10-01

    Full Text Available The Cuban Environmental Regulatory Activity has on the Environmental State Inspection an instrument for control and monitoring of compliance of current legal standards regarding environmental protection and rational use of natural resources. In this research, a design methodology for effective implementation of environmental regulatory activity in Cuba directed to processes is proposed; based on the life cycle assessment and the applicable environmental management standards, including new performance indicators, which form a new tool based on scientific criterions for the Center of Environmental Inspection and Control.

  17. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  18. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hamard, J.

    1975-01-01

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU) [de

  19. Fuels and chemicals from equine-waste-derived tail gas reactive pyrolysis oil: technoeconomic analysis, environmental and exergetic life cycle assessment

    Science.gov (United States)

    Horse manure, whose improper disposal imposes considerable environmental costs, constitutes an apt feedstock for conversion to renewable fuels and chemicals when tail gas reactive pyrolysis (TGRP) is employed. TGRP is a modification of fast pyrolysis that recycles its non-condensable gases and produ...

  20. Analyzing the environmental impacts of laptop enclosures using screening-level life cycle assessment to support sustainable consumer electronics (j/a)

    Science.gov (United States)

    The market growth of consumer electronics makes it essential for industries and policy-makers to work together to develop sustainable products. The objective of this study is to better understand how to promote environmentally sustainable consumer electronics by examining the use...

  1. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  2. Semantic catalogs for life cycle assessment data

    NARCIS (Netherlands)

    Kuczenski, Brandon; Davis, Christopher B.; Rivela, Beatriz; Janowicz, Krzysztof

    2016-01-01

    Life cycle assessment (LCA) is a highly interdisciplinary field that requires knowledge from different domains to be gathered and interpreted together. Although there are relatively few major data sources for LCA, the data themselves are presented with highly heterogeneous formats, interfaces, and

  3. Sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, E.A.; Heijungs, R.; Bokkers, E.A.M.; Boer, de I.J.M.

    2014-01-01

    Life cycle assessments require many input parameters and many of these parameters are uncertain; therefore, a sensitivity analysis is an essential part of the final interpretation. The aim of this study is to compare seven sensitivity methods applied to three types of case stud-ies. Two

  4. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  5. Life cycle assessment of the Danish electricity distribution network

    DEFF Research Database (Denmark)

    Turconi, Roberto; Simonsen, Christian G.; Byriel, Inger P.

    2014-01-01

    Purpose This article provides life cycle inventory data for electricity distribution networks and a life cycle assessment (LCA) of the Danish transmission and distribution networks. The aim of the study was to evaluate the potential importance of environmental impacts associated with distribution...... complexity and material consumption. Infrastructure provided important contributions to metal depletion and freshwater eutrophication (copper and aluminum for manufacturing of the cables and associated recycling being the most important). Underground 50-kV lines had larger impacts than overhead lines, and 0...

  6. Impact on environmental qualification from a longer fuel cycle

    International Nuclear Information System (INIS)

    Sanwarwalla, M.H.; Akhtar, S.; Drankhan, D.A.

    1996-01-01

    There is a general trend in the nuclear industry towards longer fuel cycles because of the economic benefits. The economic benefits for increasing the fuel cycle from eighteen to twenty four months is estimated by the industry to be about $5.05 million per unit year based on a two week mid-cycle maintenance outage. Equipment with a unique characteristic may require maintenance and/or inspection more frequently than can be accommodated in a longer cycle. The maintenance and surveillance (M ampersand S) requirements for these equipment need to be reviewed to accommodate a longer cycle and avoid any unplanned outage. ComEd's LaSalle Station is considering a move to a longer fuel cycle. A study was done to determine the impact of a longer fuel cycle on their current environmental qualification (EQ) program, and the feasibility of implementing changes to their program to accommodate a longer fuel cycle. This paper discusses (1) the impact, if any, the longer fuel cycle will have on the maintenance and surveillance requirements of the 50.49 or environmentally qualified equipment at LaSalle Station, (2) the various techniques, i.e., partial testing, performance based monitoring etc., employed to extend the existing maintenance and surveillance requirements, and (3) the estimated economic savings, if any, from the extended M ampersand S interval

  7. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  8. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  9. Environmental factors affecting rates of nitrogen cycling

    International Nuclear Information System (INIS)

    Lipschultz, F.

    1984-01-01

    The nitrogen cycle in the eutrophic Delaware river was studied in late summer, 1983 using 15 N tracer additions of NHG 4 + , NO 2 - , and NO 3 - . Rates for nine different transformations were calculated simultaneously with a least-squares minimization analysis. Light was found to stimulate ammonium uptake and to inhibit ammonium oxidation. Rates for nitrification, ammonium uptake by phytoplankton, and photosynthesis were integrated over 24 hours and river depth. High turbidity lifted the effect of light inhibition on nitrification and restricted phytoplankton uptake. Uptake of ammonium contributed over 95% of the inorganic nitrogen ration for phytoplankton, with dark uptake accounting for more than 50%. A mass-conservation, box model of river was used to calculate rate constants required to reproduce observed nutrient concentration changes. The calculated constants correlated well with the measured 15 N and oxygen integrated rates. Water-column nitrification was the major loss term for NH 4 + , while water column regeneration was the primary source. Loss of oxidized nitrogen was insignificant. Oxygen consumption and air-water exchange far exceeded net photosynthetic oxygen production. Nitrification contributed less than 1% to the oxygen demand near Philadelphia but up to 25% further downstream. Production of NO and N 2 O was measured under varying oxygen concentrations in batch cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceanus. Production of both gases increased relative to nitrite production as oxygen levels decreased

  10. Life cycle assessment Part 2 : Current impact assessment practice

    NARCIS (Netherlands)

    Pennington, D.W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T.; Rebitzer, G.

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse,

  11. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  12. Life cycle assessment of offshore and onshore sited wind farms

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report makes up the final reporting for the project 'Life cycle assessment (LCA) of turbines Analysis of possibilities of product directed environmental optimisation'. The purpose of the project is to carry through a life cycle assessment of an offshore wind farm and an onshore wind farm, respectively, as a basis for assessment of environmental improvement possibilities for wind farms through their life cycles. Likewise, the results are used to elaborate an environmental declaration of contents for power delivered to the grid from both types of wind farms. The project states the environmental impact for electricity produced at Horns Reef offshore wind farm and Tjaereborg onshore wind farm, respectively, as representatives for contemporary Danish offshore wind farms and onshore wind farms, respectively. Tjaereborg onshore wind farm is placed at an utmost favourably location with regard to wind, which means that the production at this wind farm is high compared with other onshore wind farms in Denmark. The high production rate is a factor that is taken into account when assessing the impact on the environment emanating from this wind farm. The results of the environmental life cycle assessments that have been carried out for the two wind farms do not show significant variance. If it is taken into account that Tjaereborg onshore wind farm is placed utmost favourably, the comparison shows that power from an average located onshore wind farm would have a more adverse or corresponding environmental impact as an unfavourably located offshore wind farm. The results show that it is the turbines that causes the largest environmental impact and not to a very high extent the transmission grid. For the turbines, the all-important environmental contribution comes from manufacturing and removal of the turbines, as it is the materials that cause the large environmental strain. The operation of the wind farms gives practically no contribution to the total

  13. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  14. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  15. Study of the environmental cycling of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frades, J P; Hildebrand, S G; Huckabee, J W; Murias, B; Diaz, F S; Wilson, R H

    1977-01-01

    A study of mercury in the environment is under way near the mercury mine at Almaden, Spain. The main aspects of the project are: ecology; atmospheric monitoring; and human studies. The mercury deposit at Almaden is described. The liquid effluent from the mine and smelter contains high concentrations of mercury that pollute nearby rivers. Sample collection and analytical methods used in the ecological survey are reviewed. Ecological experiments are considered. Air monitoring studies and human studies currently being performed are assessed. (1 map)

  16. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  17. A proposal to measure absolute environmental sustainability in lifecycle assessment

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier

    2016-01-01

    sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA...... in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  18. Environmental assessment: challenges and opportunities

    International Nuclear Information System (INIS)

    Hilbig, J.; Moffett, D.; Beri, K.

    2007-01-01

    As part of a $4.5 billion investment,Bruce Power is refurbishing Bruce A Units 1 and 2, having successfully completed an environmental assessment to return these units to service after a lay-up of almost 10 years. The project includes implementing a series of refurbishments and upgrades which will enhance safety, increase electricity generation capacity and improve reliability for the 30-year extended life of the units. This paper describes four challenges that were successfully managed during the extensive environmental assessment: (i) defining the scope of the Project; (ii) understanding the EA trigger under the Canadian Environmental Assessment Act; (iii) maintaining an effective relationship with the regulatory agencies; and (iv) managing stakeholder communications. (author)

  19. Environmental assessment: challenges and opportunities

    International Nuclear Information System (INIS)

    Hilbig, J.; Moffett, D.; Beri, K.

    2007-01-01

    As part of a $4.5 billion investment, Bruce Power is refurbishing Bruce A Units 1 and 2, having successfully completed an environmental assessment to return these units to service after a lay-up of almost 10 years. The project includes implementing a series of refurbishments and upgrades which will enhance safety, increase electricity generation capacity and improve reliability for the 30-year extended life of the units. This paper describes four challenges that were successfully managed during the extensive environmental assessment: (i) defining the scope of the Project; (ii) understanding the EA trigger under the Canadian Environmental Assessment Act; (iii) maintaining an effective relationship with the regulatory agencies; and (iv) managing stakeholder communications. (author)

  20. Life cycle assessment of construction and demolition waste management

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2015-01-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed...... of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most...... of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing...

  1. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  2. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  3. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  4. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  5. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  6. Modern biogeochemistry environmental risk assessment

    CERN Document Server

    Bashkin, Vladimir N

    2006-01-01

    Most books deal mainly with various technical aspects of ERA description and calculationsAims at generalizing the modern ideas of both biogeochemical and environmental risk assessment during recent yearsAims at supplementing the existing books by providing a modern understanding of mechanisms that are responsible for the ecological risk for human beings and ecosystem

  7. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Schöpp, Wolfgang; Verkuijlen, Evert; Heijungs, Reinout; Reijnders, Lucas

    2001-01-01

    Simple models are often used to assess the potential impact of acidifying and eutrophying substances released during the life cycle of products. As fate, background depositions, and ecosystem sensitivity are not included in these models, environmental life-cycle assessment of products (LCA) may

  8. Critical environmental factors for transportation cycling in children: a qualitative study using bike-along interviews.

    Science.gov (United States)

    Ghekiere, Ariane; Van Cauwenberg, Jelle; de Geus, Bas; Clarys, Peter; Cardon, Greet; Salmon, Jo; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2014-01-01

    Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10-12 yr old children. The current qualitative study used 'bike-along interviews' with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood. Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi-) urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library) within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach. The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (in)directly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities. Road safety is of major concern in this 10-12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport.

  9. Critical environmental factors for transportation cycling in children: a qualitative study using bike-along interviews.

    Directory of Open Access Journals (Sweden)

    Ariane Ghekiere

    Full Text Available Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10-12 yr old children. The current qualitative study used 'bike-along interviews' with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood.Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi- urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach.The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (indirectly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities.Road safety is of major concern in this 10-12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport.

  10. PRINCIPLES OF ENVIRONMENTAL ASSESSMENT IN THE LIFECYCLE OF PRODUCTS

    Directory of Open Access Journals (Sweden)

    Joanna Kulczycka

    2017-02-01

    Full Text Available One of the aims of the European Commission (EC activities is to introduce uniform rules for the environmental performance assessment based on the life cycle assessment method (LCA, which can be widely used e.g. in eco-labeling, assessment of goods, services, technology, etc. Therefore, from 1 November 2013 the European Commission implemented a pilot phase of the project on developing common methods for measuring the environmental performance of the product and organisation, aims to develop guidance documents in this field. The pilot phase includes development of the Category Rules relating to the calculation, verification and communication for environmental footprint of the 25 categories of products and two organizations. Therefore, the article presents the principle of environmental performance based on life cycle assessment in relation to the objectives of the proposed methodology of environmental footprint.

  11. Environmental assessment of wood domestic heating. Synthetic report

    International Nuclear Information System (INIS)

    2005-12-01

    This report proposes a synthesis of the results of an environmental assessment of wood domestic heating. This study is based on a life cycle analysis which quantifies the impacts on the environment of all the related activities: fuel extraction, retailing, final use, and so on. Environmental impacts are assessed by means of different indicators: energetic assessment, greenhouse effect assessment, air pollution (acidification), water pollution (eutrophication), toxic material emissions in air and into the soils. Wood is compared to other heating sources (gas, fuel, electricity). Ways to improve this environmental assessment are discussed for the different types of wood (logs, pellets)

  12. The environmental accounting in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako; Aquino, Afonso Rodrigues de

    2006-01-01

    This paper illustrates how accountancy can contribute to conservation, protection and the recovery of the environment. Firstly, the appearance of accountancy, its performance fields, its terminologies and even the Environmental Accounting Definition is approached, bringing the social balance as a tool for making decisions in the social field. Environmental Accounting is a very useful tool to apply to any entity including the nuclear area by calculating the use in order for the environmental passive to be zero, especially in the activity of the nuclear fuel cycle. (author)

  13. Life cycle assessment study of a Chinese desktop personal computer.

    Science.gov (United States)

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  14. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Duan Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li Jinhui

    2009-01-01

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  15. Area of Concern: a new paradigm in life cycle assessment for the development of footprint metrics

    Science.gov (United States)

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplac...

  16. The methodology of environmental impacts assessment of environmentally hazardous facilities

    OpenAIRE

    Adamenko, Yaroslav

    2017-01-01

    The article deals with the methodology of environmental impacts assessment of environmentally hazardous facilities and activities. The stages of evaluation of environmental impacts are proved. The algorithm and technology of decision-making in the system of environmental impact assessments based on a multi-criteria utility theory are proposed.

  17. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  18. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  19. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  20. Life Cycle Assessment in Spatial Planning

    DEFF Research Database (Denmark)

    Bidstrup, Morten; Pizzol, Massimo; Schmidt, Jannick Højrup

    2015-01-01

    Spatial planning establishes conditions for societal patterns of production and consumption. However, the assigned Strategic Environmental Assessments (SEA) tend to have a too narrow focus. In particular, there is a need for applying a system perspective in SEA, extending assessment beyond...... towards operationalising LCA in SEA by adjusting LCA methodology to focus on the ways planners and planning processes can influence the environmental impacts of interconnected activities. The proposed procedure was tested on a case study of Danish extraction planning, and it was found to generate new...... knowledge for decision support. The procedure enabled identification of key systemic impacts, as well as it enabled formulation of recommendations for how to address these impacts in planning processes. On a more general level, this article demonstrates an application of LCA which until now has received...

  1. Life Cycle assessment of basic chemicals

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    , the most important application are in research and development to improve the environmental performance of processes and products, and as support for strategic decision making. However, the coherence between LCA and decision making needs to be addressed more specifically because most companies...... in the survey did not think LCA is sufficiently fit to support strategic decision making. Because, the chemical industry is a major supplier to other product systems the major incentive to perform LCAs has been to comply with customer requirements. An LCA may not always need to be very detailed to fulfil...... and output data (together interventions) from all unit processes in the system and assessing the potential environmental impact of these interventions. The LCA framework comprise four phases which are iteratively interlinked: · Goal and scope definition · Inventory · Impact assessment · Interpretation...

  2. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  3. Life cycle assessment applied to nanomaterials in solid waste management

    DEFF Research Database (Denmark)

    Laurent, Alexis

    While the generation of solid waste is globally increasing, much effort is concentrated to minimise the environmental impacts related to their management. With respect to nanoproducts (products containing nanomaterials), a growing amount of ‘nanowaste’ can be expected to enter the waste streams...... on specific waste types and waste management systems, all primarily reflecting situations in economicallydeveloped countries. At the same time, methodological practice was found in many studies not to be compliant with current reference guidance, such as the ISO standards and the ILCD Handbook. Likewise......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...

  4. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  5. Life cycle environmental implications of residential swimming pools.

    Science.gov (United States)

    Forrest, Nigel; Williams, Eric

    2010-07-15

    Ownership of private swimming pools in the U.S. grew 2 to 4% per annum from 1997 to 2007. The environmental implications of pool ownership are analyzed by hybrid life cycle assessment (LCA) for nine U.S. cities. An operational model is constructed estimating consumption of chemicals, water, and energy for a typical residential pool. The model incorporates geographical climatic variations and upstream water and energy use from electricity and water supply networks. Results vary considerably by city: a factor of 5-6 for both water and energy use. Water use is driven by aridness and length of the swimming season, while energy use is mainly driven by length of the swimming season. Water and energy impacts of pools are significant, particularly in arid climates. In Phoenix for example pools account for 22% and 13% of a household's electricity and water use, respectively. Measures to reduce water and energy use in pools such as optimizing the pump schedule and covering the pool in winter can realize greater savings than many common household efficiency improvements. Private versus community pools are also compared. Community pools in Phoenix use 60% less swimming pool water and energy per household than subdivisions without community pools.

  6. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  7. Building Better Environmental Risk Assessments

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines. PMID:26301217

  8. Building Better Environmental Risk Assessments.

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems - examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines.

  9. Building better environmental risk assessments

    Directory of Open Access Journals (Sweden)

    Raymond eLayton

    2015-08-01

    Full Text Available Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERA for genetically modified (GM crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data, and adapting advances in risk analysis from other relevant disciplines.

  10. Monetary valuation in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Weidema, Bo Pedersen; Brandão, Miguel

    2015-01-01

    different impacts and/or with other economic costs and benefits. For this reason, monetary valuation has a great potential to be applied also in Life Cycle Assessment (LCA), especially in the weighting phase. However, several challenges limit its diffusion in the field, which resulted in only a few......Monetary valuation is the practice of converting measures of social and biophysical impacts into monetary units and is used to determine the economic value of non-market goods, i.e. goods for which no market exists. It is applied in cost benefit analysis to enable the cross-comparison between...

  11. Life Cycle Assessment - Theory and Practice

    DEFF Research Database (Denmark)

    This book is a uniquely pedagogical while still comprehensive state-of-the-art description of LCA-methodology and its broad range of applications. The five parts of the book conveniently provide: I) the history and context of Life Cycle Assessment (LCA) with its central role as quantitative and s...... needed to perform an LCA. V) An appendix with an LCA report template, a full example LCA report serving as inspiration for students who write their first LCA report, and a more detailed overview of existing LCIA methods and their similarities and differences....

  12. Regional and global environmental behaviour of radionuclides from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1983-02-01

    The operation of nuclear fuel cycle facilities entails the discharge of radioactive effluents to both the atmosphere and aquatic environment. These effluents may contain radionuclides which may be subject of concern for their long-range environmental consequences, in particular, in assessing the health detriment to populations in regions beyond the local environment. The present document reviews information on radionuclides, their environmental pathways and processes and related models and summarizes experiences and studies in this field

  13. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  14. Life Cycle Assessment of Completely Recyclable Concrete.

    Science.gov (United States)

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  15. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  16. Environmental impact assessment of fish farm hatcheries ...

    African Journals Online (AJOL)

    Environmental impact assessment of fish farm hatcheries management in lower ... Environmental impact assessments were taken to determine the causes of ... Of significance of impact assessment were activities like air, traffic, noise, had ...

  17. Integrated environmental and economic assessment of waste management systems

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica

    in the “Optimization approach” the scenarios are the results of an optimization process. • The cost approach describes cost principles and level of LCA integration. Conventional and Environmental LCCs are financial assessments, i.e. include marketed goods/services, but while Environmental LCCs include environmental...... assessment of SWM systems alongside environmental impacts assessment to take budget constrains into account. In light of the need for combined environmental and economic assessment of SWM, this PhD thesis developed a consistent and comprehensive method for integrated environmental and economic assessment...... of SWM technologies and systems. The method resulted from developing further the generic Life Cycle Costing (LCC) framework suggested by Hunkeler et al. (2008) and Swarr et al. (2011) to apply it on the field of SWM. The method developed includes: two modelling approaches (Accounting and Optimization...

  18. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2015-01-01

    In this paper, the life cycle environmental performance of miscanthus gasification for electricity production in Denmark is evaluated and compared with that of direct combustion and anaerobic digestion. Furthermore, the results obtained are compared to those of natural gas to assess the potential...

  19. Environmental assessment [of nuclear installations

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    The European Community has introduced a directive which instructs that for all projects likely to have a significant effect on the environment consent should only be given after a rigorous assessment of such effects has been carried out and presented as an environmental statement. Projects requiring environmental assessment include nuclear power stations, any thermal power station over 300MW, any radioactive waste storage or disposal facility, any installation which produces electricity, power lines, installations for fuel production, fuel reprocessing, radioactive waste processing and fuel enrichment. The statement must include a description of the likely effects, direct and indirect, on the environment of the development, with reference to human beings, flora, fauna, soil, water, air, climate, landscape, interactions of two or more of these, material assets and cultural heritage. Measures to avoid or remedy the impact must be included. (U.K.)

  20. Federal environmental assessment panel process

    International Nuclear Information System (INIS)

    Edwards, R.A.; King, J.M.

    1996-01-01

    The Government of Canada inaugurated an environmental assessment process in 1973. Since that time, the Department of Natural Resources, or its predecessor, the Department of Energy Mines and Resources, and industrial clients of the Department, have been major participants in the process. In 1995, the authors interviewed representatives of a number of client industries and selected individuals, to ask their opinion of the public hearing part of the environmental assessment process, with the objective of identifying shortcomings and proposing improvements. Respondents criticized the hearings as costly, time-wasting, bureaucratic, and uncertain in cost, time, and outcome. A number of observations on noted areas of shortcoming are presented in this paper, with suggestions for improvement

  1. Federal environmental assessment panel process

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R A; King, J M [Natural Resources Canada, Ottawa, ON (Canada)

    1997-12-31

    The Government of Canada inaugurated an environmental assessment process in 1973. Since that time, the Department of Natural Resources, or its predecessor, the Department of Energy Mines and Resources, and industrial clients of the Department, have been major participants in the process. In 1995, the authors interviewed representatives of a number of client industries and selected individuals, to ask their opinion of the public hearing part of the environmental assessment process, with the objective of identifying shortcomings and proposing improvements. Respondents criticized the hearings as costly, time-wasting, bureaucratic, and uncertain in cost, time, and outcome. A number of observations on noted areas of shortcoming are presented in this paper, with suggestions for improvement.

  2. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.E.; Lee, K.J. [Korea Advanced Institute of Science and Technology, Dept. of Nuclear Engineering, Taejon (Korea, Republic of)

    2001-07-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO{sub 2} emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  3. Comparison of environmental impacts between coal and nuclear fuel cycles in Korea

    International Nuclear Information System (INIS)

    Lee, Y.E.; Lee, K.J.

    2001-01-01

    Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide 62% of total electricity generation in Korea by 2015. Up to now, environmental impact assessments between two electricity sources have been focused on the CO 2 emission or economics. And future generation would require the environment friendliness energy policy for the environmentally sound and sustainable development of energy. So it is necessary to take into account an application of a broad environmental management tool to the comparative assessment of energy systems. Therefore, the environmental impacts of coal and nuclear fuel cycles are identified and quantified with the dimensionless unit concerning various environmental categories in this study. This result will be much helpful to make a decision for the long-term electricity planning and the energy mix optimization with respect to the environmental preservation in Korea. (author)

  4. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  5. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  6. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  7. Strategic Environmental Assessment: Integrated environmental management

    CSIR Research Space (South Africa)

    Department of Environmental Affairs and Tourism

    2004-01-01

    Full Text Available stream_source_info Department of Environmental Affairs and Tourism_2004.pdf.txt stream_content_type text/plain stream_size 70155 Content-Encoding ISO-8859-1 stream_name Department of Environmental Affairs and Tourism_2004.pdf... and Tourism Other topics in the series of overview information documents on the concepts of, and approaches to, integrated environmental management are listed below. Further titles in this series are being prepared and will be made available periodically...

  8. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  9. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  10. Environmental Assessments and Stakeholder Involvement

    International Nuclear Information System (INIS)

    Wesolowski, Cassandra

    2006-01-01

    Directives and legislation on EIA and SEA need to provide more guidance on how and when public participation should be used. There are now several examples of how well public participation can be performed and the methods are becoming more proactive and innovative. By increasing the role of public participation within the Environmental Assessment process, plans, programmes and projects will become more publicly acceptable. There does need to be a balance as to where public participation is performed in the system, as too much can be a stress on resources and time, as well as producing ineffective results. Key stages such as scoping, preparing the environmental statement or report and decision-making need to be highlighted for the benefits public participation can have. The Aarhus Convention is certainly making a difference in the UK; however it is difficult to judge exactly how much difference yet. It was only fully implemented in the UK in 2005 although some Authorities were applying the three pillars prior to implementation. It is not clear how aware the general public are of the Convention and their rights. Empowering communities in the UK. will communities for decision-making in Environmental Assessments? Providing the public with resources to enable them to fully engage in the process will improve the participation and increase their confidence, but how will this increase their influence within the decision-making process? Ultimately, should the stakeholders and public just influence the incremental decisions made in Environmental Assessments or have more responsibility within the major decisions taken? It will be interesting to see how these issues are addressed over the coming years

  11. Environmental Assessments and Stakeholder Involvement

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, Cassandra [Univ. of Manchester, School of Environment and Development (United Kingdom). Planning and Landscape

    2006-09-15

    Directives and legislation on EIA and SEA need to provide more guidance on how and when public participation should be used. There are now several examples of how well public participation can be performed and the methods are becoming more proactive and innovative. By increasing the role of public participation within the Environmental Assessment process, plans, programmes and projects will become more publicly acceptable. There does need to be a balance as to where public participation is performed in the system, as too much can be a stress on resources and time, as well as producing ineffective results. Key stages such as scoping, preparing the environmental statement or report and decision-making need to be highlighted for the benefits public participation can have. The Aarhus Convention is certainly making a difference in the UK; however it is difficult to judge exactly how much difference yet. It was only fully implemented in the UK in 2005 although some Authorities were applying the three pillars prior to implementation. It is not clear how aware the general public are of the Convention and their rights. Empowering communities in the UK. will communities for decision-making in Environmental Assessments? Providing the public with resources to enable them to fully engage in the process will improve the participation and increase their confidence, but how will this increase their influence within the decision-making process? Ultimately, should the stakeholders and public just influence the incremental decisions made in Environmental Assessments or have more responsibility within the major decisions taken? It will be interesting to see how these issues are addressed over the coming years.

  12. Strategic environmental assessment: Integrated environmental management

    CSIR Research Space (South Africa)

    Audouin, M

    2004-01-01

    Full Text Available This document has been written for a wide audience. Its objective is to serve as an initial reference text. The aim is to provide an introductory information source to government authorities, environmental practitioners, nongovernmental...

  13. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  14. Life Cycle Assessment Applied to Naphtha Catalytic Reforming Analyse de cycle de vie appliquée au reformage catalytique du naphta

    OpenAIRE

    Portha J.-F.; Jaubert J.-N.; Louret S.; Pons M.-N.

    2010-01-01

    Facing the increase of environmental concerns in the oil and gas industry, engineers and scientists need information to assess sustainability of chemical processes. Among the different methods available, Life Cycle Assessment (LCA) is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco- Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are fossil fuels consumption, climate change and respiratory effects du...

  15. Environmental impact assessment Geopressure Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    This environmental impact assessment (EIA) addresses the expected programmatic activities of the Geopressure Subprogram of the Division of Geothermal Energy. The goal of the Geopressure Subprogram is to stimulate development of geopressured resources as an economic, reliable, operationally safe, and environmentally acceptable energy source. The subprogram includes activities in the areas of engineering research and development; resource exploration, assessment, and development; resource utilization including pilot and demonstration facilities; and environmental research and control technology development. It should be recognized that most of the subprogram activities extend over several years and are in their early stages of implementation at this time. The zones of potential geopressure development are in the region located along the Texas and Louisiana Gulf Coasts extending up to 200 miles (300 km) inland. Geopressured zones are sedimentary basins where water is trapped at high pressures within or below thick, nearly impermeable shale sequences. The confined water supports most or all of the weight of the overburden. This inhibits sediment compaction and causes formation pore pressure to exceed hydrostatic pressure. in sedimentary basins that are underlain by thin oceanic crust, upward thermal conduction from the mantle heats geopressured fluids and sediments to abnormally high temperatures, often in excess of 260 C (500 F).

  16. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  17. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  18. Radiation environmental impact assessment of copper exploitation

    International Nuclear Information System (INIS)

    Fan Guang; Wen Zhijian

    2010-01-01

    The radiation environmental impact of mineral exploitation on the surrounding environment has become a public concern. This paper presents the radiation environmental impact assessment of copper exploitation. Based on the project description and detailed investigations of surrounding environment, systematic radiation environmental impacts have been identified. The environmental impacts are assessed during both construction and operation phase. The environmental protection measures have also been proposed. The related conclusion and measures can play an active role in copper exploitation and environmental protection. (authors)

  19. Environmental Assessment of Packaging: The Consumer Point of View

    Science.gov (United States)

    Van Dam YK

    1996-09-01

    When marketing environmentally responsible packaged products, the producer is confronted with consumer beliefs concerning the environmental friendliness of packaging materials. When making environmentally conscious packaging decisions, these consumer beliefs should be taken into account alongside the technical guidelines. Dutch consumer perceptions of the environmental friendliness of packaged products are reported and compared with the results of a life-cycle analysis assessment. It is shown that consumers judge environmental friendliness mainly from material and returnability. Furthermore, the consumer perception of the environmental friendliness of packaging material is based on the postconsumption waste, whereas the environmental effects of production are ignored. From the consumer beliefs concerning environmental friendliness implications are deduced for packaging policy and for environmental policy.KEY WORDS: Consumer behavior; Environment; Food; Packaging; Perception; Waste

  20. Environmental and economic life cycle analysis of plastic waste management options. A review

    OpenAIRE

    Bernardo, C. A.; Simões, Carla L.; Pinto, Lígia

    2016-01-01

    In recent years, rising worldwide plastic consumption led to the generation of increasing amounts of plastic waste and to the awareness of the importance of its management. In that framework, the present work describes how Life Cycle Assessment (LCA) and economic assessment methodologies can be used for evaluating environmental and economic impacts of alternative plastic waste management systems. The literature on LCA of plastic waste management systems is vast and the results reported are ge...

  1. Accident risk-based life cycle assessment methodology for green and safe fuel selection

    NARCIS (Netherlands)

    Khakzad, Sina; Khan, Faisal; Abbassi, Rouzbeh; Khakzad Rostami, N.

    2017-01-01

    Using the emissions produced during the entire life-cycle of a fuel or a product, Life-cycle assessment (LCA) is an effective technique widely used to estimate environmental impacts. However, most of the conventional LCA methods consider the impacts of voluntary releases such as discharged toxic

  2. Detailed Life Cycle Assessment of Bounty Paper Towel ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and activities' impacts. Methods that build on LCA strengths and illuminate other connected but less understood facets, related to social and economic impacts, would provide greater value to decision-makers. This study is a LCA that calculates the potential impacts associated with Bounty® paper towels from two facilities with different production lines, an older one (Albany, Georgia) representing established technology and the other (Box Elder, Utah), a newer state-of-the-art platform. This is unique in that it includes use of Industrial Process Systems Assessment (IPSA), new electricity and pulp data, modeled in open source software, and is the basis for the development of new integrated sustainability metrics (published separately). The new metrics can guide supply chain and manufacturing enhancements, and product design related to environmental protection and resource sustainability. Results of the LCA indicate Box Elder had improvements on environmental impact scores related to air emission indicators, except for particulate matter. Albany had lower water use impacts. After normalization of the results, fossil fuel depletion is the most critical environmental indicator. Pulp production, e

  3. Developing Green GDP Accounting for Thai Agricultural Sector Using the Economic Input Output - Life Cycle Assessment to Assess Green Growth

    OpenAIRE

    Attavanich, Witsanu; Mungkung, Rattanawan; Mahathanaseth, Itthipong; Sanglestsawai, Santi; Jirajari, Athiwatr

    2016-01-01

    There is no indicator measuring Thailand’s green growth by valuing the resource degradation and environmental damage costs. This article aims to estimate Thailand’s green gross domestic (GDP) that takes into account environmental damage costs with the detailed analysis on the agricultural sector using the Economic Input Output - Life Cycle Assessment (EIO-LCA) approach. The representative product in each sector was selected based on the available life cycle inventory data, economic values and...

  4. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  5. Live Fire Range Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  6. Environmental assessment of Swedish agriculture

    International Nuclear Information System (INIS)

    Engstroem, Rebecka; Finnveden, Goeran; Wadeskog, Anders

    2007-01-01

    This article describes an environmental assessment of Swedish agriculture, including upstream and downstream effects. The analysis is based on environmentally extended input-output analysis, but it is also supplemented with data from other sources. The analysis shows that direct effects by the Swedish agriculture are the most important, while indirect effects from other sources including mobile and impacts abroad are also considerable. The most important impacts from Swedish agriculture according to the analysis are eutrophication, global warming and resource use. The agricultural sector produces a large share of the Swedish emissions causing both global warming and eutrophication. In addition, current agricultural practice causes problems with loss of biodiversity. The most important actors in the sector are agriculture itself, but also all actors using fossil fuels: primarily the transport sector and the energy sector. In addition, consumers are important since they can influence the composition of agricultural production. The analysis shows the importance of including upstream and downstream effects when analysing the environmental impacts from a sector. (author)

  7. Methodology for the Life Cycle Assessment of a Car-sharing Service

    OpenAIRE

    Guyon, Olivier

    2017-01-01

    Nowadays, circular economy is becoming more relevant in society. In the context of the automotive industry, we no longer simply work on emissions emitted during the vehicle use phase but rather on the environmental impacts induced during all phases of the vehicle's life cycle (manufacturing, logistics, use, maintenance and end of life). For this purpose, many automakers, including the Group PSA, use life cycle assessment (LCA) to determine these environmental impacts. Also, the economy of sha...

  8. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two...... scientific research efforts have taken into account some key lessons learned from past experiences with chemicals at the same time that many key challenges remain to applying these frameworks to ENM. In that setting, two main proposed approaches to use LCA and RA together for ENM are identified: i) LC......-based RA, similar to traditional RA applied in a life cycle perspective, and ii) RA-complemented LCA, similar to conventional LCA supplemented by RA in specific life cycle steps. This study finds that these two approaches for using LCA and RA together for ENM are similar to those made for chemicals...

  9. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  10. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  11. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming; TOPICAL

    International Nuclear Information System (INIS)

    Spath, P. L.; Mann, M. K.

    2000-01-01

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes

  12. Assessing Prinary School; Second Cycle Social Science Textbooks ...

    African Journals Online (AJOL)

    Assessing Prinary School; Second Cycle Social Science Textbooks in ... second cycle primary level social science textbooks vis-à-vis the principles of multiculturalism. ... Biases were disclosed in gender, economic and occupational roles.

  13. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  14. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  15. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  16. Environmental assessment in the uranium industry

    International Nuclear Information System (INIS)

    Frost, S.E.

    2000-01-01

    The paper examines the subject matter to be dealt with in environmental impact assessments for uranium production facilities, the development of environmental impact statements and the processes used for assessing projects. Different types of regulatory process used to assess projects are described, using Canadian and Australian examples. Some of the techniques used in developing environmental assessments are described. Public participation, including that of special interest groups, is discussed. Some examples of assessments are examined, particularly looking at recent assessments for uranium mining projects in Canada. Trends in environmental assessment are described, using examples from a number of different projects over the past 25 years. Some recommendations for the future are offered. (author)

  17. Environmental assessment in the uranium industry

    International Nuclear Information System (INIS)

    Frost, S.E.

    2002-01-01

    The paper examines the subject matter to be dealt with in environmental impact assessments for uranium production facilities, the development of environmental impact statements and the processes used for assessing projects. Different types of regulatory process used to assess projects are described, using Canadian and Australian examples. Some of the techniques used in developing environmental assessments are described. Public participation, including that of special interest groups, is discussed. Some examples of assessments are examined, particularly looking at recent assessments for uranium mining projects in Canada. Trends in environmental assessment are described, using examples from a number of different projects over the past 25 years. Some recommendations for the future are offered. (author)

  18. Environmental correlates of cycling: Evaluating urban form and location effects based on Danish micro-data

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl; Carstensen, Trine Agervig

    2013-01-01

    The paper analyses the environmental correlates of cycling based on Danish transportation and urban form micro-data. The results show that established walkability factors such as density, connectivity and diversity are related to cycling, but access to retail concentrations/centres, public...... and the distance cycled. A high probability of cycling generally implies short cycling distances leading to non-uniform, non-monotonous relationship between environmental indicators such as walkability and cycling....

  19. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  20. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE's Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES ampersand H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report

  1. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  2. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky; Sohn, Michael D.

    2014-01-01

    the decision maker (DM) in making the best possible choice for the environment. At present, some DMs do not trust the LCA to be a reliable decisionsupport tool—often because DMs consider the uncertainty of an LCA to be too large. The standard evaluation of uncertainty in LCAs is an ex-post approach that can...... regarding which type of LCA study to employ for the decision context at hand. This taxonomy enables the derivation of an LCA classification matrix to clearly identify and communicate the type of a given LCA. By relating the LCA classification matrix to statistical principles, we can also rank the different......The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support...

  3. Investigation on life cycle assessment of lead and zinc production

    Directory of Open Access Journals (Sweden)

    Sabere Nazari

    2015-12-01

    Full Text Available Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion of water resources were collected and discussed. It was concluded that depletion of water resources affected the environment and this was the main issue of the lead and zinc production of this plant. According to the results, in the global warming’s impact category, the proportion of carbon dioxide is more than that of methane. The results also showed that in the acidification’s impact category, the nitrogen oxide proportion is greater compared to that of the sulfur dioxide.

  4. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  5. Environmental assessment and social justice

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, B.M.; Sorensen, J.H. [Oak Ridge National Lab., TN (United States); Hardee, H. [Tennessee Univ., Knoxville, TN (United States)

    1995-03-01

    The purpose of this document is to describe an approach to assessing environmental justice issues at the start of proposed project. It is a structural approach to screening using readily available census data and commercial products that emphasizes the ability to replicate results and provide systematic data that can be used to identify spatial inequities. While our discussion of the methodology addresses only public health and safety issues related to certain minority and cohort sub-groups, systematic use of methodology could provide a valuable screening tool for identifying impacts particular to low-income groups. While the assumptions can be questioned as to applicability, they are based both on theory and practical knowledge.

  6. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compar