WorldWideScience

Sample records for cycle analysis system

  1. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  2. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  3. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  4. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  5. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  6. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  7. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  8. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  9. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  10. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  11. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  12. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  13. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  14. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  15. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  16. Reliability and availability requirements analysis for DEMO: fuel cycle system

    International Nuclear Information System (INIS)

    Pinna, T.; Borgognoni, F.

    2015-01-01

    The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)

  17. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  18. Dynamic analysis of Korean nuclear fuel cycle with fast reactor systems

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-12-01

    The Korean nuclear fuel cycle scenario was analyzed by the dynamic analysis method, including Pressurized Water Reactor (PWR), Canadian Deuterium Uranium (CANDU) and fast reactor systems. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 1%. After setting up the once-through fuel cycle model, the Korea Advanced Liquid Metal Reactor (KALIMER) scenario was modeled to investigate the fuel cycle parameters. For the analysis of the fast reactor fuel cycle, both KAILMER-150 and KALIMER-600 reactors were considered. In this analysis, the spent fuel inventory as well as the amount of plutonium, Minor Actinides (MA) and Fission Products (FP) of the recycling fuel cycle was estimated and compared to that of the once-through fuel cycle. Results of the once-through fuel cycle calculation showed that the demand grows up to 64 GWe and total amount of spent fuel would be ∼102 kt in 2100. If the KALIMER scenario is implemented, the total spent fuel inventory can be reduced by ∼80%. However it was found that the KALIMER scenario does not contribute to reduce the amount of MA and FP, which is important when designing a repository. For the further destruction of MA, an actinide burner can be considered in the future nuclear fuel cycle

  19. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  20. A strategy analysis of the fast breeder reactor introduction and nuclear fuel cycle systems deployment

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Kawashima, Katsuyuki; Yamashita, Takashi

    1996-01-01

    A study is made on a strategy analysis of the long term nuclear fuel cycle systems deployment in accordance with the nuclear power growth projection and fast breeder reactor (FBR) introduction. In the analysis, the reprocessed plutonium (Pu) is charged into the reactor in such a way that the reprocessed Pu is not stored outside the reactor, i.e., there is no excess Pu outside the reactor. The analysis characterized the fuel cycle systems, and showed the usefulness of the present method to determine future directions for the FBR introduction and nuclear fuel cycle systems deployment. Concerning an intermediate-term strategy, the time of introduction and required capacities of a second commercial LWR reprocessing plant, Pu-thermal, and the first FBR reprocessing plant deployment are evaluated. A long term strategy analysis shows that the two or three large plants are run in parallel for each fuel cycle facility and that FBR related facilities deal with a markedly large amount of Pu. It is concluded that the early stage introduction of FBRs of significant capacities seems necessary to materialize a consistent total FBR/fuel cycle system where Pu balance becomes feasible through its flexible operation of, for instance, adjusting breeding ratio, in order to keep the transparency of the Pu utilization. (author)

  1. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  2. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  3. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  4. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  5. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  6. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  7. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  8. Analysis of Korean Nuclear Fuel Cycle System by Using DANESS Code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2009-08-01

    Korean fast reactor scenarios have been analyzed for various kinds of conversion ratio (CR) by the DANESS system dynamic analysis code. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. The fast reactor scenario analysis has been performed for three kinds of conversion ratios such as 0.3, 0.61 and 1.0. Through the calculations, the nuclear reactor deployment scenario, front-end cycle, back-end cycle, and long-term heat load have been investigated. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. The fast reactor (FR) scenario analysis results show that the spent fuel inventory and out-pile transuranic element (TRU) can be reduced by increasing the fast reactor conversion ratio. Furthermore, the long-term heat load of spent fuel decreases with increasing the conversion ratio. However, it is known that the deployment of a fast reactor of low conversion ratio does not much reduce the spent fuel and out-pile TRU inventory due to the fast reactor deployment limitation which is related to the availability of TRU

  9. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  10. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  11. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  12. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  13. Analysis of changes in water cycle across Northern Eurasia with Rapid Integrated Mapping and Analysis System (RIMS)

    Science.gov (United States)

    Shiklomanov, A.; Prusevich, A.

    2012-04-01

    Historical and contemporary changes in various components of the hydrological cycle across the Northern Eurasia have been investigated using multiple observational and modeled data compiled in Rapid Integrated Mapping and Analysis System (RIMS) for North Eurasian Earth Science Partnership Initiative (NEESPI). To evaluate potential future patterns of change in the Northern Eurasian water cycle we have used climate change projections simulated by several coupled Atmosphere-Ocean General Circulation Models (AO GCMs). Future changes in hydrological regime were assessed using the UNH Water Balance and Water Transport Models (WBM/WTM) which take into account water management including irrigation and reservoir regulation. We found significant shifts in the regional hydrology and quantified potential natural and anthropogenic causes of these changes. The results of our historical and future analysis have demonstrated an intensification of hydrological cycle in many regions of the Northern Eurasia observed over 50-60 year period with accelerated rate during the last decade. Based on climate projections we can expect that the current rate of changes to continue over the course of XXI century. A significant part of the analysis and quantitative estimates of water cycle trends in Northern Eurasia has been done using RIMS online and offline data analysis tools. RIMS has been developed by the Water Systems Analysis Group at the University of New Hampshire, USA for the NEESPI program. Presently, the RIMS data pool is composed of a variety of themes including climate, hydrology, land cover, human dimension, and others. It comprises over five thousand single layer (e.g. soil type) and time series (e.g. daily runoff) raster GIS coverages, and a number of climate and hydrology station/point network datasets. The system streamlines data mining, management and model feeds in the computational environment of large and diverse data holdings. In this presentation we want to demonstrate

  14. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  15. Reliability and life-cycle analysis of deteriorating systems

    CERN Document Server

    Sánchez-Silva, Mauricio

    2016-01-01

    This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA).  It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system’s condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text ...

  16. Parametric-based thermodynamic analysis of organic Rankine cycle as bottoming cycle for combined-cycle power plant

    International Nuclear Information System (INIS)

    Qureshi, S.; Memon, A.G.; Abbasi, A.F.

    2017-01-01

    In Pakistan, the thermal efficiency of the power plants is low because of a huge share of fuel energy is dumped into the atmosphere as waste heat. The ORC (Organic Rankine Cycle) has been revealed as one of the promising technologies to recover waste heat to enhance the thermal efficiency of the power plant. In current work, ORC is proposed as a second bottoming cycle for existing CCPP (Combined Cycle Power Plant). In order to assess the efficiency of the plant, a thermodynamic model is developed in the ESS (Engineering Equation Solver) software. The developed model is used for parametric analysis to assess the effects of various operating parameters on the system performance. The analysis of results shows that the integration of ORC system with existing CCPP system enhances the overall power output in the range of 150.5-154.58 MW with 0.24-5% enhancement in the efficiency depending on the operating conditions. During the parametric analysis of ORC, it is observed that inlet pressure of the turbine shows a significant effect on the performance of the system as compared to other operating parameters. (author)

  17. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH_3–H_2O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  18. Exergetic Analysis of a Novel Solar Cooling System for Combined Cycle Power Plants

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-09-01

    Full Text Available This paper presents a detailed exergetic analysis of a novel high-temperature Solar Assisted Combined Cycle (SACC power plant. The system includes a solar field consisting of innovative high-temperature flat plate evacuated solar thermal collectors, a double stage LiBr-H2O absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a simple single-pressure Combined Cycle (CC power plant. Here, a high temperature solar cooling system is coupled with a conventional combined cycle, in order to pre-cool gas turbine inlet air in order to enhance system efficiency and electrical capacity. In this paper, the system is analyzed from an exergetic point of view, on the basis of an energy-economic model presented in a recent work, where the obtained main results show that SACC exhibits a higher electrical production and efficiency with respect to the conventional CC. The system performance is evaluated by a dynamic simulation, where detailed simulation models are implemented for all the components included in the system. In addition, for all the components and for the system as whole, energy and exergy balances are implemented in order to calculate the magnitude of the irreversibilities within the system. In fact, exergy analysis is used in order to assess: exergy destructions and exergetic efficiencies. Such parameters are used in order to evaluate the magnitude of the irreversibilities in the system and to identify the sources of such irreversibilities. Exergetic efficiencies and exergy destructions are dynamically calculated for the 1-year operation of the system. Similarly, exergetic results are also integrated on weekly and yearly bases in order to evaluate the corresponding irreversibilities. The results showed that the components of the Joule cycle (combustor, turbine and compressor are the major sources of irreversibilities. System overall exergetic efficiency was around 48%. Average weekly solar collector

  19. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system

    International Nuclear Information System (INIS)

    Mohammadi, Amin; Kasaeian, Alibakhsh; Pourfayaz, Fathollah; Ahmadi, Mohammad Hossein

    2017-01-01

    Highlights: • Thermodynamic analysis of a hybrid CCHP system. • Sensitivity analysis is performed on the most important parameters of the system. • Pressure ratio and gas turbine inlet temperature are the most effective parameters. - Abstract: Hybrid power systems are gained more attention due to their better performance and higher efficiency. Widespread use of these systems improves environmental situation as they reduce the amount of fossil fuel consumption. In this paper a hybrid system composed of a gas turbine, an ORC cycle and an absorption refrigeration cycle is proposed as a combined cooling, heating and power system for residential usage. Thermodynamic analysis is applied on the system. Also a parametric analysis is carried out to investigate the effect of different parameters on the system performance and output cooling, heating and power. The results show that under design conditions, the proposed plant can produce 30 kW power, 8 kW cooling and almost 7.2 ton hot water with an efficiency of 67.6%. Moreover, parametric analysis shows that pressure ratio and gas turbine inlet temperature are the most important and influential parameters. After these two, ORC turbine inlet temperature is the most effective parameter as it can change both net output power and energy efficiency of the system.

  20. The Coffee Commodity Chain in the World-Economy: Arrighi's Systemic Cycles and Braudel's Layers of Analysis

    Directory of Open Access Journals (Sweden)

    John M. Talbot

    2015-08-01

    Full Text Available This article presents a history of coffee in the modern world-economy, w;ing an analyticalframework synthesized from Arrighi's concept of systemic cycles of accumulation and Braudel'snotion of three levels of economic analysis: material life, the market economy, and capitalism. Ittakes the commodity chain as the unit of analysis, and argues that this choice helps to illuminatethe caw;al connections between Braudel 's three layers. The method of incorporated comparisonis w;ed to compare restructurings of the coffee commodity chain with the restructurings of thelarger world-economy during each of Arrighi 's systemic cycles.

  1. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Stefanatos, Iason C.; Kakalis, Nikolaos M.P.

    2016-01-01

    Highlights: • Process modelling and optimisation of an integrated marine MCFC system. • Component-level and spatially distributed exergy analysis and balances. • Optimal simple cycle MCFC system with 45.5% overall exergy efficiency. • Optimal combined cycle MCFC system with 60% overall exergy efficiency. • Combined cycle MCFC system yields 30% CO_2 relative emissions reduction. - Abstract: In this paper we present the exergy analysis and design optimisation of an integrated molten carbonate fuel cell (MCFC) system for marine applications, considering waste heat recovery options for additional power production. High temperature fuel cells are attractive solutions for marine energy systems, as they can significantly reduce gaseous emissions, increase efficiency and facilitate the introduction of more environmentally-friendly fuels, like LNG and biofuels. We consider an already installed MCFC system onboard a sea-going vessel, which has many tightly integrated sub-systems and components: fuel delivery and pre-reforming, internal reforming sections, electrochemical conversion, catalytic burner, air supply and high temperature exhaust gas. The high temperature exhaust gasses offer significant potential for heat recovery that can be directed into both covering the system’s auxiliary heat requirements and power production. Therefore, an integrated systems approach is employed to accurately identify the true sources of losses in the various components and to optimise the overall system with respect to its energy efficiency, taking into account the various trade-offs and subject to several constraints. Here, we present a four-step approach: a. dynamic process models development of simple and combined-cycle MCFC system; b. MCFC components and system models calibration via onboard MCFC measurements; c. exergy analysis, and d. optimisation of the simple and combined-cycle systems with respect to their exergetic performance. Our methodology is based on the

  2. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  3. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  4. Analysis on the fuel cycle requirements of the FR systems

    International Nuclear Information System (INIS)

    Maki, Takashi; Horiuchi, Nobutake

    2003-01-01

    The functions of the nuclear fuel cycle amount analysis code, developed in 2002 were extended. This code calculates the change in characteristics with time of mass balance (for example, the amount of natural uranium demand, plutonium mass balance, environmental load reduction, etc.) in nuclear fuel cycles, to examine the state of future reactor types or recycling facilities. In 2003, as for this code, calculation functions of automatic adjustment of FR capacity, LWR's recovery minor actinide (MA) recycling, were added, and the I/O function was improved according to it. Moreover, benchmark calculation to the extended amount analysis code was performed using the other tool, and it was confirmed that mass balance was calculated appropriately. Furthermore, the mass balance of a few typical FR cycle concepts was calculated with this analysis code, and the further of each concept was clarified. (author)

  5. Analysis on the fuel cycle requirements of the FR systems

    International Nuclear Information System (INIS)

    Maki, Takashi; Horiuchi, Nobutake

    2002-01-01

    The functions of the nuclear fuel cycle amount analysis code, developed in 2001 were extended. This code is a program that calculates the change in characteristics with time of mass balance (for example, the amount of natural uranium demand, plutonium mass balance, environmental load reduction, etc.) in a nuclear fuel cycle, to examine the state of future reactor types or recycling facilities. In 2002, as for this code, calculation functions of reprocessing facilities on plutonium-thermal spent fuels, recovery uranium recycling, and multiple FR concepts were added, and the I/O function was improved according to it. Moreover, benchmark calculation to the extended amount analysis code was performed using the other tool, and it was confirmed that mass balance was calculated appropriately. Furthermore, the mass balance of a few typical FR cycle concepts was calculated in this analysis code, and the feature of each concept was clarified. (author)

  6. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.

  7. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  8. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  9. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  10. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  11. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Chungju National University, Chungju (Korea, Republic of); Ko, Won IL [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-12-15

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  12. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won IL

    2011-01-01

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  13. Performance analysis of Brayton cycle system for space power reactor

    International Nuclear Information System (INIS)

    Li Zhi; Yang Xiaoyong; Zhao Gang; Wang Jie; Zhang Zuoyi

    2017-01-01

    The closed Brayton cycle system now is the potential choice as the power conversion system for High Temperature Gas-cooled Reactors because of its high energy conversion efficiency and compact configuration. The helium is the best working fluid for the system for its chemical stability and small neutron absorption cross section. However, the Helium has small mole mass and big specific volume, which would lead to larger pipes and heat exchanger. What's more, the big compressor enthalpy rise of helium would also lead to an unacceptably large number of compressor's stage. For space use, it's more important to satisfy the limit of the system's volume and mass, instead of the requirement of the system's thermal capacity. So Noble-Gas binary mixture of helium and xenon is presented as the working fluid for space Brayton cycle. This paper makes a mathematical model for space Brayton cycle system by Fortran language, then analyzes the binary mixture of helium and xenon's properties and effects on power conversion units of the space power reactor, which would be helpful to understand and design the space power reactor. The results show that xenon would lead to a worse system's thermodynamic property, the cycle's efficiency and specific power decrease as xenon's mole fraction increasing. On the other hand, proper amount of xenon would decrease the enthalpy changes in turbomachines, which would be good for turbomachines' design. Another optimization method – the specific power optimization is also proposed to make a comparison. (author)

  14. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  15. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  16. Fuel Cycle System Analysis Handbook

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Gombert, Dirk; Hoffman, Edward A.; Matthern, Gretchen E.; Williams, Kent A.

    2009-01-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  17. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Science.gov (United States)

    Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani

    2017-03-01

    In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  18. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Abdellaoui Ezzaalouni Yathreb

    2017-03-01

    Full Text Available In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  19. Parametric design and off-design analysis of organic Rankine cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • A one-dimensional analysis method for ORC system is proposed. • The system performance under both design and off-design conditions are analyzed. • The working fluid selection is based on both design and off-design performance. • The system parameter determination are based on both design and off-design performance. - Abstract: A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC) system in this paper. The method contains two main parts: a one-dimensional aerodynamic analysis model of the radial-inflow turbine and a performance prediction model of the heat exchanger. Based on the present method, an ORC system for the industrial waste heat recovery is designed and analyzed. The net power output of the ORC system is 534 kW, and the thermal efficiency reaches 13.5%. System performance under off-design conditions is simulated and considered. The results show that the inlet temperatures of the heat source and the cooling water have a significant influence on the system. With the increment of the heat source inlet temperature, the mass flow rate of the working fluid, the net power output and the heat utilization ratio of the ORC system increase. While, the system thermal efficiency decreases with increasing cooling water inlet temperature. In order to maintain the condensation pressure at a moderate value, the heat source inlet temperature considered in this analysis should be kept within the range of 443.15–468.15 K, while the optimal temperature range of the cooling water is between 283.15 K and 303.15 K.

  20. Management system and organizational life cycle: A qualitative study

    OpenAIRE

    Selma Zone Fekih Ahmed

    2013-01-01

    This research deals with the importance of the components of the management system according to the phases of organizational life cycle. The goal of our research is to provide the theoretical reflection on the life cycle of the organization and to shed light on the components of the management system for each phase. The conceptual analysis shows that the management system is made up of its three components: ethics, mode of functioning and procedure of regulation. The organizational life cycle...

  1. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    Science.gov (United States)

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    , comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  3. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  4. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  5. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Lee, Ho Yong; Park, Sang Hee; Kim, Kyoung Hoon

    2016-01-01

    A comparative thermodynamic performance and optimization analysis of basic organic flash cycle (OFCB), organic flash cycle with two-phase expander (OFCT), and organic Rankine cycle (ORC) activated by low-temperature sensible energy is carried out in the subcritical pressure regions. The three substances of R245fa, R123, and o-xylene are considered as the working fluids. Effects of cycle type, working fluid, and evaporation and source temperatures are systemically investigated on the system performance such as net power production, thermal and exergy efficiencies, and exergy destruction ratios at each component of the systems. Results show that the cycle type or working fluid which shows optimum performance depends on the source temperature, and organic flash cycle shows a potential for efficient recovery of low grade energy source.

  6. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Science.gov (United States)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  7. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  8. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  9. The use of life-cycle analysis to address energy cycle externality problems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1996-01-01

    Life-cycle analysis is defined and the various impacts from energy systems to be included in such analysis are discussed. A preliminary version of a scenario for a future Danish energy systems based upon a bottom-up energy demand scenario and renewable energy sources. LCAs of wind turbine and Si solar roof-top modules are presented. The various impacts from Danish wind and building-integrated solar power generation are discussed and compared with the impacts from coal-fired power generation. The former electricity generating system looks more favorable. (author). 20 refs, 9 figs

  10. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  11. Analysis of limit cycling on a boiler feedwater control system

    International Nuclear Information System (INIS)

    Thomas, P.J.; Harrison, T.A.; Hollywell, P.D.

    1986-01-01

    During operation of the UKAEA Prototype Fast Reactor, it was found that oscillations sometimes occurred in the boiler feedwater systems. These were normally of relatively low amplitude, but led to the adoption of low controller gains so that control was rather slack. While control performance proved generally adequate for steady running, the lack of tight control of steam drum levels sometimes led to difficulties during periods when plant conditions were undergoing major change. The paper discusses the methods used to gain a full understanding of the phenomena occurring, and describes how that knowledge is being used to improve the control system so as to eliminate the limit cycling modes and ensure good control of steam drum levels. A noteworthy feature of the study was the use of two independent representations of plant behaviour: (i) a frequency response model, FWRFREQ, and (ii) a time-domain simulation model, PFRTDM. The simplified analysis of FWRFREQ proved to be of enormous value in identifying modes of system behaviour; PFRTDM was used as a detailed check on the accuracy and validity of the results obtained. (author)

  12. Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)

    Science.gov (United States)

    Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.

    2017-12-01

    We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis

  13. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  14. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.

    This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.

  15. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  16. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  17. Software Safety Life cycle and Method of POSAFE-Q System

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon

    2006-01-01

    This paper describes the relationship between the overall safety life cycle and the software safety life cycle during the development of the software based safety systems of Nuclear Power Plants. This includes the design and evaluation activities of components as well as the system. The paper also compares the safety life cycle and planning activities defined in IEC 61508 with those in IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the KNICS project as an example, software safety life cycle and safety analysis methods applied to the POSAFE-Q are demonstrated. KNICS software safety life cycle is described by comparing to the software development, testing, and safety analysis process with international standards. The safety assessment of the software for POSAFE-Q is a joint Korean German project. The assessment methods applied in the project and the experiences gained from this project are presented

  18. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  19. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  20. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO_2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO_2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  1. Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by {mu}-PIGE/PIXE system

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, H., E-mail: kom@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Yamamoto, H. [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Matsuda, Y.; Kijimura, T.; Kinugawa, M.; Okuyama, K. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Nomachi, M. [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043 (Japan); Yasuda, K. [Wakasa Wan Energy Research Center, 64-52-1 Hase, Tsuruga 914-0192 (Japan); Satoh, T. [Advanced Radiation Technology, TARRI, JAEA, 1233 Watanuki-Machi, Takasaki 370-1292 (Japan); Oikawa, S. [National Institute of Radiological Science, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-10-15

    The caries preventive effect of fluoride-containing materials (FCMs) might depend on the caries risk of the individuals. Two pairs of demineralizing and remineralizing solutions of pH-cycling were prepared for simulating low and high caries risk. The purpose of this study was to determine fluorine (F) uptake into human enamel around FCMs under different pH-cycling using the in-air {mu}-PIGE/PIXE system. Fluoride-containing glass ionomer cement (Fuji IX{sub GP} FAST CAPSULE (FN)), and composite resin (BEAUTIFIL II with FLUORO BOND SHAKE ONE (BS)) were used in this study. The pH-cycling (pH 6.8-4.5) was carried out for 5 weeks. After pH-cycling, the caries progression was analyzed using transverse micro-radiography (TMR). The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the PIGE/PIXE system. From TMR analysis, there was a difference in caries risk between the two kinds of pH-cycling. Although the caries preventive effect of BS and FN was confirmed at low risk, the effect at high risk was confirmed for FN only. From the analysis of the fluorine uptake in the outer 200 {mu}m of the lesion we concluded that there was no significant difference between the pH-cycling solutions. However, we found different fluorine concentrations in the enamel for the two FCMs. The decreased caries progression under high risk for FN indicated that an adequate amount of fluorine supplied from the material is required at higher caries risk. It was confirmed that the caries preventive effect of FCM depends on the caries risk. The fluorine analysis of teeth under various pH-cycling conditions gives information to evaluate the caries preventive effect of fluoride-containing materials according to the caries risk.

  2. Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by μ-PIGE/PIXE system

    International Nuclear Information System (INIS)

    Komatsu, H.; Yamamoto, H.; Matsuda, Y.; Kijimura, T.; Kinugawa, M.; Okuyama, K.; Nomachi, M.; Yasuda, K.; Satoh, T.; Oikawa, S.

    2011-01-01

    The caries preventive effect of fluoride-containing materials (FCMs) might depend on the caries risk of the individuals. Two pairs of demineralizing and remineralizing solutions of pH-cycling were prepared for simulating low and high caries risk. The purpose of this study was to determine fluorine (F) uptake into human enamel around FCMs under different pH-cycling using the in-air μ-PIGE/PIXE system. Fluoride-containing glass ionomer cement (Fuji IX GP FAST CAPSULE (FN)), and composite resin (BEAUTIFIL II with FLUORO BOND SHAKE ONE (BS)) were used in this study. The pH-cycling (pH 6.8-4.5) was carried out for 5 weeks. After pH-cycling, the caries progression was analyzed using transverse micro-radiography (TMR). The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the PIGE/PIXE system. From TMR analysis, there was a difference in caries risk between the two kinds of pH-cycling. Although the caries preventive effect of BS and FN was confirmed at low risk, the effect at high risk was confirmed for FN only. From the analysis of the fluorine uptake in the outer 200 μm of the lesion we concluded that there was no significant difference between the pH-cycling solutions. However, we found different fluorine concentrations in the enamel for the two FCMs. The decreased caries progression under high risk for FN indicated that an adequate amount of fluorine supplied from the material is required at higher caries risk. It was confirmed that the caries preventive effect of FCM depends on the caries risk. The fluorine analysis of teeth under various pH-cycling conditions gives information to evaluate the caries preventive effect of fluoride-containing materials according to the caries risk.

  3. Sensitivity analysis of system parameters on the performance of the Organic Rankine Cycle system for binary-cycle geothermal power plants

    International Nuclear Information System (INIS)

    Liu, Xiaomin; Wang, Xing; Zhang, Chuhua

    2014-01-01

    The main purpose of this paper is to analyze the sensitivity of system parameters to the performance of the Organic Rankine Cycle (ORC) system quantitatively. A thermodynamic model of the ORC system for binary-cycle geothermal power plants has been developed and verified. The system parameters, such as working fluid, superheat temperature, pinch temperature difference in evaporator and condenser, evaporating temperature, the isentropic efficiencies of the cycle pump and radial inflow turbine are selected as six factors for orthogonal design. The order of factors sensitivity on performance indices of the net power output of the ORC system, the thermal efficiency, the size parameter of radial inflow turbine, the power decrease factor of the pump and the total heat transfer capacity are determined by the range obtained from the orthogonal design. At different geothermal temperatures, the ranges of the six factors corresponding to performance indices are analyzed respectively. The results show that the geothermal temperature influences the range of the factors to the net power output, SP factor of radial inflow turbine, and the total heat transfer capacity, but it has no effect for the range of the factors for the thermal efficiency and the power decrease factor of the pump. The evaporating temperature is always the primary or secondary factor that influence the thermodynamic and economic performance of the ORC system. This study would provide useful references for determining the proper design variables in the performance optimization of the ORC system at different geothermal temperatures. - Highlights: • Evaporating temperature has significant effect on performance of ORC system. • Order of system parameters' sensitivity to the performance of ORC is revealed. • Effect of system parameters on performance indices vary with geothermal temperature. • Geothermal temperature has no effect on range of six factors to the size of turbine

  4. Analysis of possible fuel cycles

    International Nuclear Information System (INIS)

    Boehm, H.; Kessler, G.; Engelmann, P.; Maerkl, H.; Stoll, W.

    1978-01-01

    A brief survey is presented of the most important fuel cycles. A rough analysis of fuel cycles is attempted under the aspects of proliferation, status of technical feasibility, resource conservation and waste management and the most important criteria for such an analysis are discussed. Among the multitude of potential combinations of fuel cycles and types of reactors only a few have reached a level of technical feasibility which would make them eligible for commercial implementation within the next decade. However, if, for instance, the higher proliferation resistance of a specific fuel cycle is to be utilized to diminish the worldwide proliferation hazard, that cycle would first of all have to be introduced on an industrial scale as quickly as possible. The analysis shows that the reduction of the bazard of worldwide proliferation will continue to be the objective primarily of international agreements and measures taken in the political realm. (orig.) [de

  5. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  6. Equilibrium transuranic management scheme for diverse fuel cycle analysis

    International Nuclear Information System (INIS)

    Haas, Jason; Lee, John C.

    2008-01-01

    A key issue cited in the U.S. Department of Energy's report to Congress (2003) on the research path for the Advanced Fuel Cycle Initiative (AFCI) is an accurate estimation of life cycle costs for the construction, operation, decontamination and decommissioning of all fuel cycle facilities. In this report we discuss the methodology and validation of a fuel cycle model based on equilibrium operation. We apply our model to a diverse set of advanced reactors and fuel types in order to determine the most effective transmuting system while simultaneously minimizing fuel cycle costs. Our analysis shows that a nearly instant equilibrium modeling of fuel cycle scenarios can accurately approximate the detailed complex dynamic models developed by national laboratories. Our analysis also shows that the cost of transmuting Spent Nuclear Fuel (SNF) from a UO 2 fueled Pressurized Water Reactor (PWR) is minimized by utilizing the thorium cycle in sodium cooled fast reactors and is near the cost for long term repository storage of SNF at Yucca Mountain. (authors)

  7. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  8. Analysis of ship life cycles: the impact of economic cycles and ship inspection

    NARCIS (Netherlands)

    Bijwaard, G.E.; Knapp, S.

    2009-01-01

    Due to the shipping industry's international legal framework, there are loopholes in the system, which can increase the risk of incidents with high economic costs due to the substandard operation of vessels. This article uses duration analysis and through the creation of ship life cycles provides

  9. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  10. Feasibility study on commercialization of fast breeder reactor cycle system. Interim report of phase 2. Technical study report on synthetic evaluation for FBR cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ohtaki, Akira; Ono, Kiyoshi; Yasumatsu, Naoto; Kubota, Sadae; Heta, Masanori

    2004-09-01

    This report presents the outline of the development and the results of Synthetic evaluation on the candidate Fast Reactor (FR) cycle system concepts, scenario study on FR cycle deployment and cost-benefit analysis on the candidate FR cycle system concepts in the interim evaluation (FY2001 through FY2003) of the phase 2 of the Japanese 'Feasibility Study on Commercialization of Fast Reactor Cycle System (FS)'. The characteristic evaluation extended to evaluate a new view point of social acceptance besides the viewpoints of safety, economics, reduction of environmental burden, efficient utilization of uranium resource, proliferation resistance, and technical feasibility, which has been considered since the phase 1 of FS. As for the six view points, hierarchy structures and utility functions for quantitative evaluation have been developed and/or improved. Furthermore, the methodology for weighing the viewpoints, which was also developed, made it possible to examine the characteristics of the candidate concepts from all the seven viewpoints. Generally, the FR cycles with sodium-cooled FR were highly evaluated. The characteristic evaluation for alternative power supply systems was also tried in this report for the first time. FR cycle deployment scenarios clarified the necessity of FR cycle deployment and the desirable core features, etc. through the long-term mass flow analysis, which includes comparison among other nuclear fuel cycle schemes and analysis for evaluating the degree to meet future needs, on the typical FR cycle systems. Regarding cost-benefit analysis, both the amount of the cost estimated by the past R and D and the cost in the Road map of FS are used as the investment for FR cycle research and development (R and D), the results showed that the benefit derived from the commercialization of FR cycle will be more than the investment. (author)

  11. The System Cost Model: A tool for life cycle cost and risk analysis

    International Nuclear Information System (INIS)

    Hsu, K.; Lundeen, A.; Shropshire, D.; Sherick, M.

    1996-01-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors began development of the System Cost Model (SCM) application. The SCM estimates life cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, and transuranic waste. The SCM uses parametric cost functions to estimate life cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at DOE installations. In addition, SCM can model new TSD facilities based on capacity needs over the program life cycle. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction, operations and maintenance, and decommissioning these waste management facilities. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. A complement to the SCM is the System Cost Model-Risk (SCM-R) model, which provides relative Environmental, Safety, and Health (ES and H) risk information. A relative ES and H risk basis has been developed and applied by LITCO at the INEL. The risk basis is now being automated in the SCM-R to facilitate rapid risk analysis of system alternatives. The added risk functionality will allow combined cost and risk evaluation of EM alternatives

  12. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  13. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  14. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  15. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  16. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  17. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  18. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw; Chakraborty, A.; Saha, B.B.; Chun, Won Gee; Ng, K.C.

    2010-01-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel

  19. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  20. Limit cycles in quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Patrick

    2015-04-27

    In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.

  1. Introduction to nuclear supply chain management. In the context of fuel cycle strategy from LWR cycle system to FR cycle system

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ono, Kiyoshi; Namba, Takashi; Yasumatsu, Naoto; Heta, Masanori

    2011-01-01

    Supply chain management (SCM) is an important technique to maintain supply and demand balance and to achieve total optimization from upstream to downstream in manufacturers' management. One of the major reasons why SCM receives much attention recently is the trend in production and sales systems from 'Push type' to 'Pull type'. 'Push type' can be restated as 'Make to Stock' (MTS). MTS is a type of supply chain in which the production is not connected to actual demand. On the contrary, 'Pull type' can be restated as 'Make to Order' (MTO) in which the production is connected to actual demand. In this paper, the terminologies and ideas of SCM was introduced into the scenario study to give a fresh perspective for considering LWR cycle to FR cycle transition strategies in Japan. Then, an analytical tool (SCM tool) which has been developed by the authors is used to survey Japanese nuclear energy system in transition with the SCM terminologies and viewpoints. When some of the Japanese nuclear fuel cycle strategies and tools are thought back with the framework of SCM, they tend to treat nuclear fuel cycle system as 'Push type' supply chain in their simulations. For example, a reprocessing plant separates SFs (spent fuels) without considering the actual Pu demand. However, because future reprocessing plants and fuel fabrication plants will act as Pu suppliers (front-end facility) to FR as well as back-end facilities of LWRs, the reasonable plant operation principle can be 'Pull type'. The analysis was conducted by the SCM tool to simulate the behaviors of both MTS and MTO type facilities during the LWR to FR transition period. If there are large uncertainties in the Pu demand or the load factor, etc. of future reprocessing plants, SCM framework is beneficial. Furthermore, the realization of MTO type operation by SCM can reduce the recovered Pu stock in spite of the increase of the SF interim storage. As the result of the investigation on the boundary location of 'Push type

  2. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  3. Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Guimarães, Lamartine N.F.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differ strongly from usual ground-based power systems regarding the importance of overall size and mass. For propulsion power systems, size and mass are essential drivers that should be minimized during conception processes. Considering this aspect, this paper aims the development of a design-based model of a Closed Regenerative Brayton Cycle that applies the thermal conductance of the main components in order to predict the energy conversion performance, allowing its use as a preliminary tool for heat exchanger and radiator panel sizing. The centrifugal-flow turbine and compressor characterizations were achieved using algebraic equations from literature data. A binary mixture of Helium–Xenon with molecular weight of 40 g/mole is applied and the impact of the components sizing in the energy efficiency is evaluated in this paper, including the radiator panel area. Moreover, an optimization analysis based on the final mass of heat the exchangers is performed. - Highlights: • A design-based model of a Closed Brayton Cycle is proposed for nuclear space needs. • Turbomachinery efficiency presented a strong influence on the system efficiency. • Radiator area presented the highest potential to increase the system efficiency. • There is maximum system efficiency for each total mass of heat exchangers. • Size or efficiency optimization was performed by changing heat exchanger proportion.

  4. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  5. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  6. Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yu, Jianlin; Yan, Gang

    2016-01-01

    This paper presents a study on a modified ejector enhanced auto-cascade freezer cycle with conventional thermodynamic and advanced exergy analysis methods. The energetic analysis shows that the modified cycle exhibits better performance than the conventional auto-cascade freezer cycle, and the system COP and volumetric refrigeration capacity could be improved by 19.93% and 28.42%. Furthermore, advanced exergy analysis is adopted to better evaluate the performance of the proposed cycle. The exergy destruction within a system component is split into endogenous/exogenous and unavoidable/avoidable parts in the advanced exergy analysis. The results show that the compressor with the largest avoidable endogenous exergy destruction has highest improvement priority, followed by the condenser, evaporator and ejector, which is different from the conclusion obtained from the conventional exergy analysis. The evaporator/condenser greatly affects the exogenous exergy destruction within the system components, and the compressor has large impact on the exergy destruction within the condenser. Improving the efficiencies of the compressor efficiency and the ejector could effectively reduce the corresponding avoidable endogenous exergy destruction. The exergy destruction within the evaporator almost entirely belongs to the endogenous part, and reducing the temperature difference at the evaporator is the main approach of reducing its exergy destruction. - Highlights: • A modified ejector enhanced auto-cascade freezer cycle is proposed. • Conventional and advanced exergy analyses are performed in this study. • Compressor should be firstly improved first, followed by condenser and evaporator. • Interactions among the system components are assessed with advanced exergy analysis.

  7. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  8. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle

    International Nuclear Information System (INIS)

    Bao, Junjiang; Zhao, Li

    2012-01-01

    A novel auto-cascade Rankine cycle (ARC) is proposed to reduce thermodynamics irreversibility and improve energy utilization. Like the Kalina cycle, the working fluid for the ARC is zeotropic mixture, which can improve the system efficiency due to the temperature slip that zeotropic mixtures exhibit during phase change. Unlike the Kalina cycle, two expanders are included in the ARC rather than a expander and a throttling valve in the Kalina cycle, which means more work can be obtained. Using the exhaust gas as the heat source and water as the heat sink, a program is written by Matlab 2010a to carry out exergy analysis and parameter study on the ARC. Results show that the R245fa mass fraction in the primary circuit exists an optimum value with respect to the minimum total cycle irreversibility. The largest exergy loss occurs in evaporator, followed by the superheater, condenser, regenerator and IHE (Internal heat exchanger). As the R245fa mass fraction increases, the exergy losses of different components vary diversely. With the evaporation pressure rises, the total cycle irreversibility decreases and work output increases. Separator temperature has a greater influence on the system performance than superheating temperature. Compared with ORC (organic Rankine cycle) and Kalina cycle in the literature, the ARC has proven to be thermodynamically better. -- Highlights: ► We have proposed a novel auto-cascade Rankine cycle (ARC) system. ► The zeotropic mixture Isopentane/R245fa is employed in this system. ► Exergy analysis and parameter study on the ARC are presented. ► Compared with ORC and Kalina cycle in the literature, the ARC has proven to be thermodynamically better.

  9. Research of the cost-benefit analysis for FR cycle research and development. The annual report of the FY 2001

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Shinoda, Yoshihiko; Hirao, Kazunori

    2002-07-01

    This report is intended to explain the outline of the research and development (R and D) in the FY 2001 on cost-benefit analysis of FR (Fast Reactor) cycle system concepts. The work was conducted as a part of the JNC's Feasibility Study on Commercialized Fast Reactor Cycle Systems (the F/S)'. In the FY 2001, the work conducted in the JNC was summed up as the followings: Conceptual study on cost-benefit analysis for FR cycle R and D. Refinement on the evaluation procedure and improvement over operation efficiency. Cost-benefit analysis of the reference FR cycle and sensitivity analysis with the revised system. Cost-benefit analyses of R and Ds for various FR cycle candidate concepts including FR cycle concepts studied in the F/S phase 1. The work made it possible to evaluate the cost effectiveness of various FR cycle systems efficiently. The cost-benefit analysis, which is often used for the policy evaluation, is considered to be applicable to FR cycle system concepts in the F/S. (author)

  10. Analysis of transition to fuel cycle system with continuous recycling in fast and thermal reactors - 5060

    International Nuclear Information System (INIS)

    Passereini, S.; Feng, B.; Fei, T.; Kim, T.K.; Taiwo, T.A.; Brown, N.R.; Cuadra, A.

    2015-01-01

    A recent Evaluation and Screening study of nuclear fuel cycle options identified a few groups of options as most promising. One of these most promising Evaluation Groups (EGs) is characterized by the continuous recycling of uranium (U) and transuranics (TRU) with natural uranium feed in both fast and thermal critical reactors. This evaluation group, designated as EG30, is represented by an example fuel cycle option that employs a two-technology, two-stage fuel cycle system. The first stage involves the continuous recycling of co-extracted U/TRU in Sodium-cooled Fast Reactors (SFRs) with metallic fuel and breeding ratio greater than 1. The second stage involves the use of the surplus TRU in Mixed Oxide (MOX) fuel in Pressurized Water Reactors that are MOX-capable (MOX-PWRs). This paper presents and discusses preliminary fuel cycle analysis results from the fuel cycle codes VISION and DYMOND for the transition to this fuel cycle option from the current once-through cycle in the United States (U.S.) that consists of Light Water Reactors (LWRs) that only use conventional UO 2 fuel. The analyses in this paper are applicable for a constant 100 GWe capacity, roughly the size of the U.S. nuclear fleet. Two main strategies for the transition to EG30 were analyzed: 1) deploying both SFRs and MOX-PWRs in parallel or 2) deploying them in series with the SFR fleet first. With an estimated retirement schedule for the existing LWRs, an assumed reactor lifetime of 60 years, and no growth, the nuclear system fully transitions to the new fuel cycle within 100 years for both strategies without SFR fuel shortages. Compared to the once-through cycle, transition to the SFR/MOX-PWR fleet with continuous recycle was shown to offer significant reductions in uranium consumption and waste disposal requirements. In addition, these initial calculations revealed a few notable modeling and strategy questions regarding how recycled resources are allocated, reactors that can switch between

  11. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  12. Development of FBR cycle data base system (II)

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2003-05-01

    In the 'Feasibility Study on Commercialized FBR Cycle Systems (F/S)', scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show the significance of the FBR cycle system introduction concretely are performed while design studies for FBR plants, reprocessing systems and fabrication systems are conducted. In these evaluations, future society of various conditions and situation is assumed, and investigation and analysis about needs and social effects of FBR cycle are carried out. In this study, promising FBR cycle concepts are suggested by taking information such as domestic and foreign policies and bills, an economic prediction, a supply and demand prediction of resources, a project of technology development into consideration in addition to system design information. The development of the FBR Cycle Database which this report introduced started in 1999 fiscal year to enable managed unitarity and searched reference information to use for the above scenario evaluations, cost-benefit evaluations and system characteristic evaluations. In 2000 fiscal year, its prototype was made and used tentatively, and we extracted the problems in operation and functions from that, and, in 2001 fiscal year, the entry system and the search system using the Web page were made in order to solve problems of the prototype, and started use in our group. Moreover, in 2002 fiscal year, we expanded and improved the search system and promoted the efficiency of management work, and use in JNC through intranet of the database was started. In addition, as a result of having made the entry of about 350 data in 2002 fiscal year, the collected number of the database reaches about 7,250 by the end of March, 2003. We are to continue the entry of related information of various evaluations in F/S phase 2 from now on. In addition, we are to examine improvement of convenience of the search system and cooperation with the economy database. (author)

  13. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  14. Low temperature heat from natural gas. Life cycle analysis for efficient systems

    International Nuclear Information System (INIS)

    Zogg, M.

    2000-01-01

    A life cycle analysis drawn up on behalf of the Swiss Federal Office of Energy shows that the combined cycle power plant + heat pump (GuD-WP) combination produces less greenhouse effect and makes only about half the contribution to summer smog formation as the operation of heat pumps with the power mix habitually used in Western Europe today. In the co-generation unit + heat pump (BHKW-WP) combination, the environmental impact shows the same values as in current West European power generation

  15. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  16. Energy pathway analysis - a hydrogen fuel cycle framework for system studies

    International Nuclear Information System (INIS)

    Badin, J.S.; Tagore, S.

    1997-01-01

    An analytical framework has been developed that can be used to estimate a range of life-cycle costs and impacts that result from the incremental production, storage, transport, and use of different fuels or energy carriers, such as hydrogen, electricity, natural gas, and gasoline. This information is used in a comparative analysis of energy pathways. The pathways provide the U.S. Department of Energy (DOE) with an indication of near-, mid-, and long-term technologies that have the greatest potential for advancement and can meet the cost goals. The methodology and conceptual issues are discussed. Also presented are results for selected pathways from the E3 (Energy, Economics, Emissions) Pathway Analysis Model. This model will be expanded to consider networks of pathways and to be compatible with a linear programming optimization processor. Scenarios and sets of constraints (energy demands, sources, emissions) will be defined so the effects on energy transformation activities included in the solution and on the total optimized system cost can be investigated. This evaluation will be used as a guide to eliminate technically feasible pathways if they are not cost effective or do not meet the threshold requirements for the market acceptance. (Author)

  17. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  18. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  19. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  20. Multidimensional evaluation on FR cycle systems

    International Nuclear Information System (INIS)

    Nakai, Ryodai; Fujii, Sumio; Takakuma, Katsuyuki; Katoh, Atsushi; Ono, Kiyoshi; Ohtaki, Akira; Shiotani, Hiroki

    2004-01-01

    This report explains some results of the multidimensional evaluation on various fast reactor cycle system concepts from an interim report of the 2nd phase of ''Feasibility Study on Commercialized FR Cycle System''. This method is designed to give more objective and more quantitative evaluations to clarify commercialized system candidate concepts. Here we brief current evaluation method from the five viewpoints of safety, economy, environment, resource and non-proliferation, with some trial evaluation results for some cycles consist of promising technologies in reactor, core and fuel, reprocessing and fuel manufacture. Moreover, we describe FR cycle deployment scenarios which describe advantages and disadvantages of the cycles from the viewpoints of uranium resource and radioactive waste based on long-term nuclear material mass flow analyses and advantages of the deployment of FR cycle itself from the viewpoints of the comparison with alternative power supplies as well as cost and benefit. (author)

  1. Dynamical analysis of the global business-cycle synchronization.

    Science.gov (United States)

    Lopes, António M; Tenreiro Machado, J A; Huffstot, John S; Mata, Maria Eugénia

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies.

  2. Dynamical analysis of the global business-cycle synchronization

    Science.gov (United States)

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies. PMID:29408909

  3. Second law analysis of the transcritical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Fartaj, Amir; Ting, David S.-K.; Yang, Wendy W.

    2004-01-01

    Because of the global warming impact of HFCs, the use of natural refrigerants has received worldwide attention. Efficient use of refrigerants is of pressing concern to the present automotive and HVAC industries. The natural refrigerant, carbon dioxide (CO 2 ), exhibits promise for use in automotive air conditioning systems, in particular the transcritical CO 2 refrigeration cycle. The objective of this work is to identify the main factors that affect CO 2 system performance. A second law of thermodynamic analysis on the entire CO 2 refrigeration cycle is conducted so that the effectiveness of the components of the system can be deduced and ranked, allowing future efforts to focus on improving the components that have the highest potential for advancement. The analysis reveals that the compressor and the gas cooler exhibit the largest non-idealities within the system, and hence, efforts should be focused on improving these components

  4. Increasing thermal efficiency of Rankine cycles by using refrigeration cycles: A theoretical analysis

    International Nuclear Information System (INIS)

    Sarr, Joachim-André Raymond; Mathieu-Potvin, François

    2016-01-01

    Highlights: • A new stratagem is proposed to improve thermal efficiency of Rankine cycles. • Three new configurations are optimized by means of numerical simulations. • The Rankine-1SCR design is advantageous for 1338 different fluid combinations. • The Rankine-2SCR design is advantageous for 772 different fluid combinations. • The Rankine-3SCR design is advantageous for 768 different fluid combinations. - Abstract: In this paper, three different modifications of the basic Rankine thermodynamic cycle are proposed. The objective is to increase the thermal efficiency of power systems based on Rankine cycles. The three new systems are named “Rankine-1SCR”, “Rankine-2SCR”, and “Rankine-3SCR” cycles, and they consist of linking a refrigeration cycle to the basic Rankine cycle. The idea is to use the refrigeration cycle to create a low temperature heat sink for the Rankine cycle. These three new power plant configurations are modeled and optimized with numerical tools, and then they are compared with the basic Rankine cycle. The objective function is the thermal efficiency of the systems (i.e., net power output (kW) divided by heat rate (kW) entering the system), and the design variables are the operating temperatures within the systems. Among the 84 × 84 (i.e., 7056) possible combinations of working and cooling fluids investigated in this paper, it is shown that: (i) the Rankine-1SCR system is advantageous for 1338 different fluid combinations, (ii) the Rankine-2SCR system is advantageous for 772 different fluid combinations, and (iii) the Rankine-3SCR system is advantageous for 768 different fluid combinations.

  5. A sensitivity analysis and assessment on the reactivity, economics and resorce implications of reactor systems and cycles with respect to uncertainity in nuclear data and other reactor parameters

    International Nuclear Information System (INIS)

    Quan, B.L.

    1980-01-01

    A general sensitivity analysis system for analyzing the effects of uncertainity in nuclear data and reactor parameters on fuel cycle economics, resources and physics has been developed. The sensitivity analysis has been performed on various reactor systems and cycles such as the thorium cycles, plutonium cycles, CANDU reactor fuel cycles and alternate once-through LWR cycles such as the 18 month cycle. Sensitivity coefficients were generated for a variety of materials pertinent to the LWR fuel cycle using a series of fast running codes developed for this purpose and running on a local PDP-15 computer. Their relative order of importance were assessed and the reasons explaining this difference were examined. This work is a result of EPRI project in determining the data needs for the LWR industry and should be valuable in identifying areas in which data improvements are worthwhile

  6. Guidelines to perform Life Cycle Analysis of Buildings

    NARCIS (Netherlands)

    Blok, R.; Gervasio, H.; Braganca, L.; Koukkari, H.; Blok, R.

    2008-01-01

    This paper gives a short introduction and attempts to give guidelines on how to perform a life Cycle Analysis (LCA) of a Building. Because a building is a complex system with many subsystems with building elements out of different materials, each fulfilling different functions the LCA of a building

  7. Towards cycle-accurate performance predictions for real-time embedded systems

    NARCIS (Netherlands)

    Triantafyllidis, K.; Bondarev, E.; With, de P.H.N.; Arabnia, H.R.; Deligiannidis, L.; Jandieri, G.

    2013-01-01

    In this paper we present a model-based performance analysis method for component-based real-time systems, featuring cycle-accurate predictions of latencies and enhanced system robustness. The method incorporates the following phases: (a) instruction-level profiling of SW components, (b) modeling the

  8. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  9. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Tian, Hua; Liang, Xingyu; Wei, Haiqiao; Liu, Lina

    2013-01-01

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  10. Comparative performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs

    Directory of Open Access Journals (Sweden)

    Sudip Bhattrai

    2013-09-01

    Full Text Available Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems. In the present study, design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs is presented. Analysis is done with respect to Mach number at two consecutive modes of operation: (1 Combined-cycle PDTE using a pulse detonation afterburner mode (PDA-mode and (2 combined-cycle PDTE in pulse detonation ramjet engine mode (PDRE-mode. The performance of combined-cycle PDTEs is compared with baseline afterburning turbofan and ramjet engines. The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions, while that of pulse detonation ramjet engine (PDRE is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions. The analysis shows that the propulsive performance of a turbine engine can be greatly improved by replacing the conventional afterburner with a pulse detonation afterburner (PDA. The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein. The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.

  11. The fuel cycle scoping system

    International Nuclear Information System (INIS)

    Dooley, G.D.; Malone, J.P.

    1986-01-01

    The Fuel Cycle Scoping System (FCSS) was created to fill the need for a scoping tool which provides the utilities with the ability to quickly evaluate alternative fuel management strategies, tails assay choices, fuel fabrication quotes, fuel financing alternatives, fuel cycle schedules, and other fuel cycle perturbations. The FCSS was specifically designed for PC's that support dBASE-III(TM), a relational data base software system by Ashton-Tate. However, knowledge of dBASE-III is not necessary in order to utilize the FCSS. The FCSS is menu driven and can be utilized as a teaching tool as well as a scoping tool

  12. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  13. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  14. Proterozoic Milankovitch cycles and the history of the solar system.

    Science.gov (United States)

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  15. LIFE CYCLE OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Y. S. Sennik

    2015-01-01

    Full Text Available This work is a generalization of the theoretical propositions related to the life cycle of information systems. There was given the definition of the life cycle, specify which items you should include every step of the cycle. Describes the methodology division of the life cycle on the main stage, including methodology Rational Unified Process. The description of the fundamental standards in this area. Special attention was paid to the work of the basic life cycle models. It was carried out their comparative characteristics. On the basis of the theoretical propositions, it was concluded that the preferred model of the life cycle for the corporate network is a spiral model and the use of international standards in the life cycle saves a lot of effort, time and material resources.

  16. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  17. Application of S-CO_2 Cycle for Small Modular Reactor coupled with Desalination System

    International Nuclear Information System (INIS)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik

    2016-01-01

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO_2 power cycle technology. The S-CO_2 Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO_2 cycles for SMART with desalination system is conducted. The simple recuperated S-CO_2 cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%

  18. ITER fuel cycle systems layout

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-10-01

    The ITER fuel cycle building (FCB) will contain the following systems: fuel purification - permeator based; fuel purification - molecular sieves; impurity treatment; waste water storage and treatment; isotope separation; waste water tritium extraction; tritium extraction from solid breeder; tritium extraction from test modules; tritium storage, shipping and receiving; tritium laboratory; atmosphere detritiation systems; fuel cycle control centre; tritiated equipment maintenance space; control maintenance space; health physics laboratory; access, access control and facilities. The layout of the FCB and the requirements for these systems are described. (10 figs.)

  19. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  20. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  1. Nuclear material production cycle vulnerability analysis

    International Nuclear Information System (INIS)

    Bott, T.F.

    1996-01-01

    This paper discusses a method for rapidly and systematically identifying vulnerable equipment in a nuclear material or similar production process and ranking that equipment according to its attractiveness to a malevolent attacker. A multistep approach was used in the analysis. First, the entire production cycle was modeled as a flow diagram. This flow diagram was analyzed using graph theoretical methods to identify processes in the production cycle and their locations. Models of processes that were judged to be particularly vulnerable based on the cycle analysis then were developed in greater detail to identify equipment in that process that is vulnerable to intentional damage

  2. Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)

  3. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  4. Quasi-static Cycle Performance Analysis of Micro Modular Reactor for Heat Sink Temperature Variation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Kuk; Lee, Jekyoung; Ahn, Yoonhan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    A Supercritical CO{sub 2} (S-CO{sub 2}) cycle has potential for high thermal efficiency in the moderate turbine inlet temperature (450 - 750 .deg. C) and achieving compact system size because of small specific volume and simple cycle layouts. Owing to small specific volume of S-CO{sub 2} and the development of heat exchanger technology, it can accomplish complete modularization of the system. The previous works focused on the cycle performance analysis for the design point only. However, the heat sink temperature can be changed depending on the ambient atmosphere condition, i.e. weather, seasonal change. This can influence the compressor inlet temperature, which alters the cycle operating condition overall. To reflect the heat sink temperature variation, a quasi-static analysis code for a simple recuperated S-CO{sub 2} Brayton cycle has been developed by the KAIST research team. Thus, cycle performance analysis is carried out with a compressor inlet temperature variation in this research. In the case of dry air-cooling system, the ambient temperature of the local surrounding can affect the compressor inlet temperature. As the compressor inlet temperature increases, thermal efficiency and generated electricity decrease. As further works, the experiment of S-CO{sub 2} integral test loop will be performed to validate in-house codes, such as KAIST{sub T}MD and the quasi-static code.

  5. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  6. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  7. Features of cycles of Russian modernization in the context of the world-systems analysis

    Directory of Open Access Journals (Sweden)

    P. I. Pashkovsky

    2014-02-01

    Full Text Available The article describes the historical cycle of Russian modernization. It is shown that the first cycle lasted from the late XVII before the second decade of the XIX century. At this time modernization in the form of «westernization» contributed to the fact that in the XVIII century (in the period between the reigns of Peter I and Catherine II Russia integrated into the world capitalist system and she was positioned as semi­periphery. But Russia was an empire in her characteristics also she has been active in foreign policy. And her desire to overcome the peripheral processes and closer to the core of the world­system resulted in «catch­up» nature of modernization of Russian society. Russia’s victory in the Patriotic War of 1812 characterizes the overall positive outcome for her of this cycle of modernization. The second cycle dates from the late 50’s XIX – beginning of XX century. It was an example of the liberal model of modernization. As a result the lack of economic resources, «the nationalist conservatism» of the authorities, «bureaucratically directed industrialization» and accelerated modernization led to the tragedy of Russia in World War I and the revolutionary events of 1917. The choice in favor of self­sufficiency was made in the late 1920’s – early 1930’s, this marked the beginning of the third cycle of modernization of Russia in the form of industrialization, which has produced results. Economic growth continued after World War II as a result of implementation of five­year plans. The fourth cycle of Russian modernization characterized the events of «perestroika» the second half of the 1980’s and the period of post­Soviet Russia of the 1990’s. Consequently, Russian Federation is in a position semi­periphery, and most of the New Independent States – within the periphery of the world capitalist system. It is proved that the first and third cycles belonged to the imperial model of modernization, and the

  8. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  9. Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network

    International Nuclear Information System (INIS)

    Koronaki, I.P.; Rogdakis, E.; Kakatsiou, T.

    2012-01-01

    Highlights: ► A neural network model based on experimental data was developed. ► Description of the experimental setup. ► Prediction of the state conditions of air at the process and regeneration stream. ► Sensitivity Analysis performed on these predicted results. ► Predicted output values in line with correlation model based on data from industry. - Abstract: This paper examines the performance of an installed open cycle air-conditioning system with a silica gel desiccant wheel which uses a conventional heat pump and heat exchangers for the improvement of the outlet air of the system. A neural network model based on the training of a black box model with experimental data was developed as a method based on experimental results predicting the state conditions of air at the process and regeneration stream. The model development was followed by a Sensitivity Analysis performed on these predicted results. The key parameters were the thermodynamic condition of process and regeneration air streams, the sensible heat factor of the room, and the mass air flow ratio of the regeneration and process streams. The results of this analysis revealed that all investigated parameters influenced the performance of the desiccant unit. Predicted output values of the proposed Neural Network Model for Desiccant Systems are in line with results from other correlation models based on the interpolation of experimental data obtained from industrial air conditioning installations.

  10. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  11. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  12. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  13. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  14. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  15. Proliferation Resistance: Acquisition/Diversion Pathway Analysis for the DUPIC Fuel Cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Lee, Ho Hee; Kwon, Eun Ha; Jeong, Chang Joon; Kim, Ho Dong

    2009-07-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation - innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures. Since this requires an acquisition/diversion pathway analysis, this report describes a systematic approach developed for the identification and analysis of pathways for the acquisition of weapons-usable nuclear material using the DUPIC fuel cycle system. At the first step, the objectives of the proliferation were identified, including the quality and quantity of the material, the time required to acquire the material for the proliferation, thr capability of the potential proliferant country, etc. At the second step, the possible strategies, which the potential proliferant country could adopt, were identified: undeclared removal of nuclear material from the fuel cycle facilities; and further treatment of the diverted nuclear materials needed to acquire weapons-usable materials. At the final step, a systematic approach to select the plausible pathways for the acquisition/diversion of nuclear material during the whole fuel cycle has been developed. The coarse material diversion pathways for the DUPIC fuel cycle and the approach developed was reviewed and discussed at the experts meeting at the IAEA for its appropriateness and comprehensiveness

  16. Insight from a Critical Review on the Safety Analysis of Nuclear Fuel Cycle Facility for Domestic Regulatory System

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Chung, Young Wook; Jeong, Seung Young

    2010-01-01

    Korea has 20 nuclear power plants in operation, and 10,761 ton of spent fuel deposited in plant sites. The capacity of reservoir for spent fuel in plant sites is to begin to be full in 2016. The light water reactors of 16 units generate around 320 ton/year and the heavy water reactors of 4 units around 380 ton/year in Korea. And the electricity generated by nuclear power plants is planned to increase up to 59% share by 2030. Spent fuel classified as high level radioactive waste in law is characterized by high level radiation, high heat generation, and high radiological toxicity. In the contrary, it is also a very useful domestic energy source. Thus, the safe management of spent fuel is very important confronting job in nuclear industry. Advanced fuel cycle (AFC) using pyro-process is an innovative technology, by which environmental load is drastically relieved because the extracted long-lived fission products are burn in fast breeder reactors. Domestic nuclear industry also has a perspective road map for the construction of AFC facilities. However, there is not a sufficiently detailed licensing regulatory system yet. Moreover, there is no systematic frame for the safety evaluation. This paper reviews the safety analysis system of foreign fuel cycle facilities. Critical review leads to the insight for setting-up safety analysis system of domestic AFC facilities

  17. Analysis and performance assessment of a multigenerational system powered by Organic Rankine Cycle for a net zero energy house

    International Nuclear Information System (INIS)

    Hassoun, Anwar; Dincer, Ibrahim

    2015-01-01

    This paper develops a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building and assesses such a system for an application to a net zero energy house in Lebanon. Solar energy is the prime source for the integrated system to achieve multigeneration to supply electricity, fresh and hot water, seasonal heating and cooling. The study starts by optimizing the power system with and without grid connection. Then, a comprehensive thermodynamic analysis through energy and exergy, and a parametric study to assess the sensitivity and improvements of the overall system are conducted. Furthermore, exergoeconomic analysis and a follow-up optimization study for optimizing the total system cost to the overall system efficiency using genetic algorithm to obtain the optimal design or a set of optimal designs (Pareto Front), are carried out. The present results show that the optimum solar energy system for a total connected load to the house of 90 kWh/day using a combination of ORC, batteries, convertor has a total net present cost of US $52,505.00 (based on the prices in 2013) with a renewable energy fraction of 1. Moreover, the optimization for the same connected load with ORC, batteries and converter configuration with grid connection results in a total net present cost of $50,868.00 (2013) with a renewable energy fraction of 0.992 with 169 kg/yr of CO 2 emissions. In addition, exergoeconomic analysis of the overall system yields a cost of $117,700.00 (2013), and the multi-objective optimization provides the overall exergetic efficiency by 14% at a total system cost increase of $10,500.00 (2013). - Highlights: • To develop a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building. • To perform a comprehensive thermodynamic analysis through energy and exergy approaches. • To apply an exergoeconomic model for exergy-based cost accounting. • To undertake

  18. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  19. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  20. Energy, Exergy and Performance Analysis of Small-Scale Organic Rankine Cycle Systems for Electrical Power Generation Applicable in Rural Areas of Developing Countries

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-01-01

    Full Text Available This paper introduces the concept of installing a small-scale organic Rankine cycle system for the generation of electricity in remote areas of developing countries. The Organic Rankine Cycle Systems (ORC system uses a commercial magnetically-coupled scroll expander, plate type heat exchangers and plunger type working fluid feed pump. The heat source for the ORC system can be solar energy. A series of laboratory tests were conducted to confirm the cycle efficiency and expander power output of the system. Using the actual system data, the exergy destruction on the system components and exergy efficiency were assessed. Furthermore, the results of the variations of system energy and exergy efficiencies with different operating parameters, such as the evaporating and condensing pressures, degree of superheating, dead state temperature, expander inlet temperature and pressure ratio were illustrated. The system exhibited acceptable operational characteristics with good performance under a wide range of conditions. A heat source temperature of 121 °C is expected to deliver a power output of approximately 1.4 kW. In addition, the system cost analysis and financing mechanisms for the installation of the ORC system were discussed.

  1. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  2. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  3. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-01-01

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  4. Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Kyoung Hee Lee

    2017-11-01

    Full Text Available The purpose of this study was to evaluate the cost-benefit of on-site food waste recycling system using Life-Cycle Cost analysis, and to compare with large-scale treatment system. For accurate evaluation, the cost-benefit analysis was conducted with respect to local governments and residents, and qualitative environmental improvement effects were quantified. As for the local governments, analysis results showed that, when large-scale treatment system was replaced with on-site recycling system, there was significant cost reduction from the initial stage depending on reduction of investment, maintenance, and food wastewater treatment costs. As for the residents, it was found that the cost incurred from using the on-site recycling system was larger than the cost of using large-scale treatment system due to the cost of producing and installing the on-site treatment facilities at the initial stage. However, analysis showed that with continuous benefits such as greenhouse gas emission reduction, compost utilization, and food wastewater reduction, cost reduction would be obtained after 6 years of operating the on-site recycling system. Therefore, it was recommended for local governments and residents to consider introducing an on-site food waste recycling system if they are to replace an old treatment system or need to establish a new one.

  5. Airbreathing combined cycle engine systems

    Science.gov (United States)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  6. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Zhang Taiyong; Ma Shaolin

    2009-01-01

    A new combined power and ejector-absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector-absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.

  7. Life cycle analysis of electricity systems: Methods and results

    International Nuclear Information System (INIS)

    Friedrich, R.; Marheineke, T.

    1996-01-01

    The two methods for full energy chain analysis, process analysis and input/output analysis, are discussed. A combination of these two methods provides the most accurate results. Such a hybrid analysis of the full energy chains of six different power plants is presented and discussed. The results of such analyses depend on time, site and technique of each process step and, therefore have no general validity. For renewable energy systems the emissions form the generation of a back-up system should be added. (author). 7 figs, 1 fig

  8. Development of a computer code for a regenerative Rankine cycle analysis

    International Nuclear Information System (INIS)

    Wi, Myung Hwan; Kim, Seong O; Choi, Seok Ki; Kim, Jin Hwan

    2005-01-01

    A regenerative Rankine cycle can increase the thermal efficiency of a steam system without increasing the steam pressure and temperature. The regenerative process involves heating the feedwater on its return trip to the steam generator by extracting steam at various stages of the turbine and transferring the energy to the feedwater via a feedwater heater. Some real plants use more than five feedwater heaters to enhance the cycle efficiency. However, the optimum number of feedwater heaters required is determined by balancing the efficiency improvement against the capital investment for a given cycle. In the present study, the computer code, TAOPCS, for the thermodynamic analysis of a regenerative steam cycle was developed to optimally design and accurately analyze the behavior of the power conversion system of Korea Advance Liquid Metal Reactor (KALIMER). In order to understand the functions and the characteristics of the code, the main features of the TAPCS were described and the example results are presented in this paper

  9. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  10. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    International Nuclear Information System (INIS)

    Gurin, Andrey V.; Alekseev, P.N.

    2017-01-01

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  11. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, Andrey V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Alekseev, P.N.

    2017-09-15

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  12. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  13. Application of S-CO{sub 2} Cycle for Small Modular Reactor coupled with Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO{sub 2} power cycle technology. The S-CO{sub 2} Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO{sub 2} cycles for SMART with desalination system is conducted. The simple recuperated S-CO{sub 2} cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%.

  14. Analysis of Maisotsenko open gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Gadalla, Mohamed

    2015-01-01

    Maisotsenko gas turbine cycle (MGTC) is a recently proposed humid air turbine cycle. An air saturator is employed for air heating and humidification purposes in MGTC. In this paper, MGTC is integrated as the bottoming cycle to a topping simple gas turbine as Maisotsenko bottoming cycle (MBC). A thermodynamic optimization is performed to illustrate the advantages and disadvantages of MBC as compared with air bottoming cycle (ABC). Furthermore, detailed sensitivity analysis is reported to present the effect of different operating parameters on the proposed configurations' performance. Efficiency enhancement of 3.7% is reported which results in more than 2600 tonne of natural gas fuel savings per year. - Highlights: • Developed an accurate air saturator model. • Introduced Maisotsenko bottoming cycle (MBC) as a power generation cycle. • Performed Thermodynamic optimization for MBC and air bottoming cycle (ABC). • Performed detailed sensitivity analysis for MBC under different operating conditions. • MBC has higher efficiency and specific net work output as compared to ABC

  15. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  16. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  17. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program. Volume 1. The analysis and its results

    International Nuclear Information System (INIS)

    1986-04-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 is sufficient to cover the cost of the program. This report provides cost estimates for the fourth evaluation of the adequacy of the fee. The total-system cost for the reference authorized-system program is estimated to be 24 to 32 billion (1985) dollars. The total-system cost for the reference improved-performance system is estimated to be 26 to 34 billion dollars. A number of sensitivity cases were analyzed. For the authorized system, the costs for the sensitivity cases studied range from 21 to 39 billion dollars. For the improved-performance system, which includes a facility for monitored retrievable storage, the total-system cost in the sensitivity cases is estimated to be as high as 41 billion dollars. The factors that affect costs more than any other single factor for both the authorized and the improved-performance systems are delays in repository startup. A preliminary analysis of the impact of extending the burnup of nuclear fuel in the reactor was also performed; its results indicate that the impact is insignificant: the total-system cost is essentially unchanged from the comparable constant-burnup cases. The current estimate of the the total-system cost for the reference authorized system is zero to 3 billion dollars (9%) higher than the estimate for the reference system in the January 1985 TSLCC analysis

  18. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byungheung; Kwon, Eunha; Ko, Wonil

    2010-01-01

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FMC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. Sensitivity analysis has also been performed to obtain the breakeven uranium price for Pyro-SFR against PWR-O T. Economics of Pyro-SFR fuel cycle scenario has been calculated and compared by employing equilibrium model. The LFCC were obtained, Pyro-SFR 7.68 mills/kWh. The Uranium price is the dominant driver of LFCC. Pyro-techniques also weight considerably in Pyro-SFR scenario. On consideration of the current unavoidable uncertainties introduced by certain cost data, cost range and triangle techniques were used to perform the uncertainty study which indicates that the gap between Pyro-SFR and PWR-O T fuel cycle scenario is relatively small

  19. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  20. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  1. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  2. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  3. Transition Analysis of Promising U.S. Future Fuel Cycles Using ORION

    International Nuclear Information System (INIS)

    Sunny, Eva E.; Worrall, Andrew; Peterson, Joshua L.; Powers, Jeffrey J.; Gehin, Jess C.; Gregg, Robert

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E&S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E&S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups (EGs) and evaluating their performance according to a set of 22 standardized metrics. Following the E&S study, additional studies are being conducted to assess transitioning from the current US fuel cycle to future fuel cycle options identified by the E&S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle—the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs)—to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle.

  4. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Science.gov (United States)

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  5. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2008-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO 2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO 2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO 2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na-CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  6. Architecture and inherent robustness of a bacterial cell-cycle control system.

    Science.gov (United States)

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  7. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  8. Environment-oriented life cycle analysis of bulk materials, applied in solar cell systems

    International Nuclear Information System (INIS)

    Geelen, H.

    1994-04-01

    In the solar cell technology several bulk materials (glass, steel, aluminium, concrete, copper, zinc and synthetic materials) are applied intensively. By means of a life cycle analysis (LCA) the environmental effects and bottlenecks of the use of these materials is investigated in this report. Also attention is paid to the options to reduce the environmental effects of photovoltaic (PV) systems by changing processes and/or by redesign of the PV systems. Two systems are studied: solar cells, integrated in pitched roofs, and solar cells on the ground in solar cell arrays. The study is focused on the use of bulk materials in the solar module, the cables and the supporting construction. After brief introductions on the environment-oriented LCA method, the standard construction of PV modules and the principles of solar cells, an overview is given of the present and future material input for the above-mentioned PV-systems. Next, attention is paid to the energy consumption and the most important emissions of the production of the bulk materials. Based on these data three environmental effect scores of the PV systems are calculated and analyzed: the energy consumption, the greenhouse effect or global warming equivalent, and the acidifying effect or acidification equivalent. Also a fourth effect, for which the so-called environmental indicator human toxicity is defined, is described. By means of this indicator the hazardous effects for the public health can be indicated. The sum of the four indicators is a measure for the environmental profile of the roof PV-system and the ground PV-array system. Recommendations are given by which the systems and their environmental profiles can be improved. 29 figs., 50 tabs., 5 appendices, refs

  9. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    Science.gov (United States)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  10. Phosphorus cycling in Montreal's food and urban agriculture systems.

    Science.gov (United States)

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  11. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  12. Neutronics/Thermo-fluid Coupled Analysis of PMR-200 Equilibrium Cycle by CAPP/GAMMA+ Code System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Tak, Nam-il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The equilibrium core was obtained by performing CAPP stand-alone multi-cycle depletion calculation with critical rod position search. In this work, a code system for coupled neutronics and thermo-fluids simulation was developed using CAPP and GAMMA+ codes. A server program, INTCA, controls the two codes for coupled calculations and performs the mapping between the variables of the two codes based on the nodalization of the two codes. In order to extend the knowledge about the coupled behavior of a prismatic VHTR, the CAPP/GAMMA+ code system was applied to steady state performance analysis of PMR-200. The coupled calculation was carried out for the equilibrium core of PMR-200 from BOC to EOC. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle-average fuel temperature was calculated as 1230 .deg. C, which is slightly below the design target of 1250 .deg. C. In addition, significant impact of the bypass flow on the central reflector temperature was found. Without bypass flow, the temperature of the active core region was slightly decreased while the temperature of the central and side reflector region was increased much. The both changes in the temperature increase the multiplication factor and the total change of the multiplication factor was more than 300 pcm. On the other hand, the effect of the bypass flow on the power density profile was not significant.

  13. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  14. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    International Nuclear Information System (INIS)

    Bowman, S.M.; Suto, T.

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k eff of 1. 0040±0.0005

  15. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  16. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  17. Oil flooded compression cycle enhancement for two-stage heat pump in cold climate region: System design and theoretical analysis

    International Nuclear Information System (INIS)

    Luo, Baojun

    2016-01-01

    Highlights: • COP of proposed system improves up to 17.2% compared with vapor injection cycle. • Discharge temperature of proposed system is largely decreased. • Proposed system is beneficial for refrigerant with high compression heat. • Proposed system has potential for applications in cold climate heat pump. - Abstract: In order to improve the performance of air source heat pump in cold climate region, a combined oil flooded compression with regenerator and vapor injection cycle system is suggested in this paper, which integrates oil flooded compression with regenerator into a conventional vapor injection cycle. A mathematical model is developed and parametric studies on this cycle are conducted to evaluate the benefits of the novel system. The performances of the novel system using R410A and R32 are compared with those of vapor injection cycle system. The improvement of coefficient of performance (COP) can reach up to nearly 9% based on the same isentropic efficiency, while 17.2% based on assumption that there is a 10% rise in isentropic efficiency brought by oil flooded compression cycle. The heating capacity is reduced by 8–18% based on the same volumetric efficiency, while could be less than 10% in a practical system. The discharge temperature is largely decreased and can be below 100 °C at −40 °C T_e and 50 °C T_c condition for R32. The theoretical results demonstrate this novel heat pump has a high potential for improving the performance of air source heat pump in cold climate region.

  18. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  19. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu

    2017-01-01

    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are

  20. Enforcement of evaluation by achievement analysis system

    International Nuclear Information System (INIS)

    Konishi, Yasutoshi; Sonoyama, Minoru; Suzuki, Atsushi

    2004-02-01

    Japan Nuclear Cycle Development Institute (JNC) has developed FBR achievement analysis system by the last fiscal year and has enforced the investigation of its functional expansion. That system is based on the AHP (Analytic Hierarchy Process) to do comparative evaluation multilaterally between proposed concepts of FBR cycle or between FBR cycle and other power source systems. This fiscal year, we enforced achievement analysis for 22 cases of proposed concepts of FBR cycle and between FBR cycle and other power source systems (LWR, thermal power generation, hydraulic power generation, etc.). The evaluation items related with technical feasibility and social acceptability were included in addition to those of economy, resource utilization effectiveness, environmental burden reduction, nuclear proliferation resistance and safety. Also, we investigated social changes that could happen in our country in the future, and we drew 4 future scenarios combining likely changes, then we investigated classifications of weight that seem to be adequate under each scenario with its calculation logic. In establishing points of view or structure of evaluation, and in the process of drawing scenarios, we collected comments from experts in OR (Operations Research) field and energy field. (author)

  1. Survey on the life cycle system of a product with shared information; Joho kyoyugata product life cycle system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report provides and proposes new concept and optimization technology on the life cycle system of product for emission minimum. For the proposed life cycle system of product with shared information, the global emission minimum is realized by considering the final emission, the information is given to the product and shared in all the life cycle system, the information sending function is considered from the product, and the information necessary for material processing are actively used. For this life cycle system of product, development of the information model for the system, development of the technology of data saving, renewing, searching and sending, development of sensing and re-using technologies of the product for life cycle, development of the technology attaching information in the product for emission minimum, design of the guidelines of material composition, and research and development of materials for emission minimum are extracted and provided as tasks. 26 refs., 69 figs., 8 tabs.

  2. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  3. Transition analysis of promising U.S. future fuel cycles using ORION - 5114

    International Nuclear Information System (INIS)

    Sunny, E.; Worrall, A.; Peterson, J.; Powers, J.; Gehin, J.

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E/S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E/S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups and evaluating their performance according to a set of 22 standardized metrics. Following the E/S study, additional studies are being conducted to assess transition period from the current US fuel cycle to future fuel cycle options identified by the E/S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle - the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs) - to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle. (authors)

  4. Performance analysis of a novel heat pump type air conditioner coupled with a liquid dehumidification/humidification cycle

    International Nuclear Information System (INIS)

    Cai, Dehua; Qiu, Chengbo; Zhang, Jiazheng; Liu, Yue; Liang, Xiao; He, Guogeng

    2017-01-01

    Graphical abstract: Cycle performance of a small scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. The liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also decrease the electrical energy consumption of the traditional air conditioner. Parametric analysis on cycle performance of the present cycle based on both theoretical and experimental methods are carried out. - Highlights: • Hybrid cycle consists of refrigeration cycle and liquid desiccant cycle is proposed. • Liquid desiccant cycle is driven by the compressor exhaust heat. • Theoretical and experimental studies on cycle performance are provided. • Energy consumption decreases about 22.64% compared with the conventional one. - Abstract: In recent years, liquid desiccant air-conditioning system (LDAC) has shown a great potential alternative to the conventional vapor compression systems. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also deceases the electrical energy consumption of the conventional air conditioner. In this work, the liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. Cycle performance of a small-scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. Parametric analysis on cycle performance of the present cycle is carried out through both theoretical and experimental methods, and lithium chloride aqueous solution is used as the working fluid of the solution cycle. The thermodynamic analysis results show that while the evaporating temperature of the present cycle increases to 15 °C, the energy consumption

  5. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  6. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  7. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  8. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  9. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  10. Parametric optimization and range analysis of Organic Rankine Cycle for binary-cycle geothermal plant

    International Nuclear Information System (INIS)

    Wang, Xing; Liu, Xiaomin; Zhang, Chuhua

    2014-01-01

    Highlights: • Optimal level constitution of parameters for ORC system was obtained. • Order of system parameters’ sensitivity to the performance of ORC was revealed. • Evaporating temperature had significant effect on performance of ORC system. • Superheater had little effect on performance of ORC system. - Abstract: In this study, a thermodynamic model of Organic Rankine Cycle (ORC) system combined with orthogonal design is proposed. The comprehensive scoring method was adopted to obtain a comprehensive index to evaluate both of the thermodynamic performance and economic performance. The optimal level constitution of system parameters which improves the thermodynamic and economic performance of ORC system is provided by analyzing the result of orthogonal design. The range analysis based on orthogonal design is adopted to determine the sensitivity of system parameters to the net power output of ORC system, thermal efficiency, the SP factor of radial inflow turbine, the power decrease factor of the pump and the total heat transfer capacity. The results show that the optimal level constitution of system parameters is determined as the working fluid of R245fa, the super heating temperature of 10 °C, the pinch temperature difference in evaporator and condenser of 5 °C, the evaporating temperature of 65 °C, the isentropic efficiency for the pump of 0.75 and the isentropic efficiency of radial inflow turbine of 0.85. The order of system parameters’ sensitivity to the comprehensive index of orthogonal design is evaporating temperature > isentropic efficiency of radial inflow turbine > the working fluid > the pinch temperature difference of the evaporator and the condenser > isentropic efficiency of cycle pump > the super heating temperature. This study provides useful references for selecting main controlled parameters in the optimal design of ORC system

  11. Development of FBR cycle data base system

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2002-06-01

    In the 'Feasibility Study on Commercialized Fast Reactor Cycle System (F/S)'. scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show significance of the Fast Breeder Reactor (FBR) cycle system introduction concretely are performed in parallel with a design study for FBR plants, reprocessing systems and fabrication systems. In these evaluations, informations such as economic prospects, prospects for supply and demand of resources and a progress of engineering development are used in addition to design information. This report explains a FBR Cycle Database in order to carry out management and search of various design information and the relating information. The prototype system of the database was completed in the 2000 fiscal year, and the problem of the user number restriction of the prototype system has been improved by Web-ization in the 2001 fiscal year. About 7,000 data are stored in this data base (as of the end of March, 2002). The expansion of user etc., and the continuation of input work of various evaluation information will be carried out, in the phase 2 of F/S. (author)

  12. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption–compression hybrid refrigeration cycle

    International Nuclear Information System (INIS)

    Zheng Danxing; Meng Xuelin

    2012-01-01

    Highlights: ► Two novel fundamental concepts of the absorption refrigeration cycle were proposed. ► The interaction mechanism of compressor pressure increasing with other key-parameters was investigated. ► A set of optimal operating condition of hybrid refrigeration cycle was found. ► A simulation and investigation for R134a-DMF hybrid refrigeration cycle was performed. - Abstract: The absorption–compression hybrid refrigeration cycle has been considered as an effective approach to reduce the mechanical work consumption by using low-grade heat, such as solar energy. This work aims at studying the thermodynamic mechanism of the hybrid refrigeration cycle. Two fundamental concepts have been proposed, which are the ultimate refrigerating temperature (or the ultimate temperature lift) and the behavior turning. On the basis of that, the interaction mechanism of compressor pressure increasing with other key-parameters and the impact of compressor pressure increasing on the cycle performance have been investigated. The key-parameters include the concentration difference, the circulation ratio of working fluid, etc. The work points out that the hybrid refrigeration cycle performance varies with the change of compressor outlet pressure and depends on which one achieves dominance in the hybrid refrigeration cycle, the absorption sub-system or the compression sub-system. The behavior turning point during parameters changing corresponds to a maximum value of the heat powered coefficient of performance. In this case, the hybrid refrigeration cycle performance is optimal because the low-grade heat utilization is the most effective. In addition, to validate the theoretical analysis, a solar hybrid refrigeration cycle with R134a–DMF as working pair was simulated. The Peng–Robinson equation of state was adopted to calculate thermophysical properties when the reliability assessment of the prediction models on the available literature data of R134a–DMF system had been

  13. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: Volume 1, The analysis and its results

    International Nuclear Information System (INIS)

    1987-06-01

    This report provides cost estimates for the fifth evaluation of the adequacy of the fee and is consistent with the program strategy and plans. The total-system cost for the reference cases in the improved-performance system is estimated at $32.1 to $38.2 billion (expressed in constant 1986 dollars) over the entire life of the system...or $1.5 to $1.6 billion more than that of the authorized system (i.e., the system without an MRS facility). The current estimate of the total-system cost for the reference cases in the improved-performance system is $3.8 to $5.4 billion higher than the estimate for the same system in the 1986 TSLCC analysis. In the case with the maximum increase, nearly all of the higher cost is due to a $5.2-billion increase in the costs of development and evaluation (D and E); all other system costs are essentially unchanged. The cost difference between the improved-performance system and the authorized system is smaller than the difference estimated in last year's TSLCC analysis. Volume 2 presents the detailed results for the 1987 analysis of the total-system life cycle cost (TSLCC). It consists of four sections: Section A presents the yearly flows of waste between waste-management facilities for the 12 aggregate logistics cases that were studied; Section B presents the annual total-system costs for each of the 30 TSLCC cases by major cost category; Section C presents the annual costs for the disposal of 16,000 canisters of defense high-level waste (DHLW) by major cost category for each of the 30 TSLCC cases; and Section D presents a summary of the cost-allocation factors that were calculated to determine the defense waste share of the total-system costs

  14. Second Law Analysis of Super CritIcal Cycle

    OpenAIRE

    I.Satyanarayana, A.V.S.S.K.S. Gupta , K.Govinda Rajulu

    2010-01-01

    Coal is the key fuel for power generation in the Supercritical Rankine cycle. Exergy, auniversal measure has the work potential or quality of different forms of energy ofenergy in relation to a given environment. In this paper, an exergy analysis has carriedout to the supercritical power plant tells us how much useful work potential or exergy,supplied to the input to the system under consideration has been consumed by theprocess. A computer code has developed for exergy to analyses the superc...

  15. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  16. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  17. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  18. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  19. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  20. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  1. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  2. Life-cycle analysis of the total Danish energy system. An assessment of the present Danish energy system and selected furture scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, B; Soerensen, B

    1997-01-01

    The promise of life-cycle analysis (LCA) is to enable the incorporation of environmental and social impacts into decision-making processes. The challenge is to do it on the basis of the always incomplete and uncertain data available, in a way that is sufficiently transparent to avoid that the modeller introduces any particular bias into the decision process, by the way of selecting and treating the incomplete data. The life-cycle analysis of the currently existing system is to be seen as a reference, against which alternative solutions to the same problem is weighed. However, as it takes time to introduce new systems, the alternative scenarios are for a future situation, which is chosen as the middle of the 21st century. The reason for using a 30-50 year period is a reflection on the time needed for a smooth transition to an energy system based on sources different from the ones used today, with implied differences all the way through the conversion and end-use system. A scenario will only be selected if it has been identified and if there is social support for it, so construction of more exotic scenarios by the researcher would only be meaningful, if its advantages are so convincing that an interest can be created and the necessary social support be forthcoming. One may say that the energy scenarios based on renewable energy sources are in this category, as they were identified by a minority group (of scientists and other individuals) and successfully brought to the attention of the public debate during 1970ies. In any case it should be kept in mind, that no claim of having identified the optimum solution can be made after assessing a finite number of scenarios. (EG) 88 refs.

  3. Studying international fuel cycle robustness with the GENIUSv2 discrete facilities/materials fuel cycle systems analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.H. [Dept. of Engineering Physics, University of Wisconsin-Madison (United States)

    2009-06-15

    GENIUSv2 (Global Evaluation of Nuclear Infrastructure Utilization Scenarios, hereafter 'GENIUS') is a discrete-facilities/materials nuclear fuel cycle systems analysis tool currently under development at the University of Wisconsin-Madison. For a given scenario, it models nuclear fuel cycle facilities (reactors, fuel fabrication, enrichment, etc.), the institutions that own them (utilities and governments), and the regions in which those institutions operate (sub-national, national, and super-national entities). Facilities work together to provide each other with the materials they need. The results of each simulation include the electricity production in each region as well as operational histories of each facility and isotopic and facility histories of each material object. GENIUS users specify an initial condition and a facility deployment plan. The former describes each region and institution in the scenario as well as facilities that exist at the start. The latter specifies all the facilities that will be built over the course of the simulation (and by which institutions). Each region, institution, and facility can be assigned financial parameters such as tax and interest rates, and facilities also get assigned technical information about how they actually operate. Much of the power of the data model comes from the flexibility to model individual entities to a fine level of detail or to allow them to inherit region-, institution-, or facility-type-specific default parameters. Most importantly to the evaluation of regional, national, and international policies, users can also specify rules that define the affinity (or lack thereof) for trade of particular commodities between particular entities. For instance, these rules could dictate that a particular region or institution always buy a certain commodity (ore, enriched UF{sub 6}, fabricated fuel, etc.) from a particular region or institution, never buy from that region, or merely have a certain

  4. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  5. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  6. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  7. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  8. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: executive summary

    International Nuclear Information System (INIS)

    1985-04-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's Civilian Radioactive Waste Management Progrram is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 is sufficient to cover the cost of the program. This report is an input into the third evaluation of the adequacy of the fee. The total-system cost for the reference waste-management program in this analysis is estimated to be 24 to 30 billion (1984) dollars. For the sensitivity cases studied in this report, the costs could be as high as 35 billion dollars and as low as 21 billion dollars. Because factors like repository location, the quantity of waste generated, transportation-cask technology, and repository startup dates exert substantial impacts on total-system costs, there are several tradeoffs between these factors, and these tradeoffs can greatly influence the total cost of the program. The total-system cost for the reference program described in this report is higher by 3 to 5 billion dollars, or 15 to 20%, than the cost for the reference program of the TSLCC analysis of April 1984. More than two-thirds of this increase is in the cost of repository construction and operation. These repository costs have increased because of changing design concepts, different assumptions about the effort required to perform the necessary activities, and a change in the source data on which the earlier analysis was based. Development and evaluation costs have similarly increased because of a net addition to the work content. Transportation costs have increased because of different assumptions about repository locations and several characteristics of the transportation system. It is expected that the estimates of total-system costs will continue to change in response to both an evolving program strategy and better definition of the work required to achieve the program objectives

  9. User's guide for the REBUS-3 fuel cycle analysis capability

    International Nuclear Information System (INIS)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions

  10. Diagnostic system for combine cycle power plant

    International Nuclear Information System (INIS)

    Shimizu, Yujiro; Nomura, Masumi; Tanaka, Satoshi; Ito, Ryoji; Kita, Yoshiyuki

    2000-01-01

    We developed the Diagnostic System for Combined Cycle Power Plant which enables inexperienced operators as well as experienced operators to cope with abnormal conditions of Combined Cycle Power Plant. The features of this system are the Estimate of Emergency Level for Operation and the Prediction of Subsequent Abnormality, adding to the Diagnosis of Cause and the Operation Guidance. Moreover in this system, Diagnosis of Cause was improved by using our original method and support screens can be displayed for educational means in normal condition as well. (Authors)

  11. Spectral Analysis Of Business Cycles In The Visegrad Group Countries

    Directory of Open Access Journals (Sweden)

    Kijek Arkadiusz

    2017-06-01

    Full Text Available This paper examines the business cycle properties of Visegrad group countries. The main objective is to identify business cycles in these countries and to study the relationships between them. The author applies a modification of the Fourier analysis to estimate cycle amplitudes and frequencies. This allows for a more precise estimation of cycle characteristics than the traditional approach. The cross-spectral analysis of GDP cyclical components for the Czech Republic, Hungary, Poland and Slovakia makes it possible to assess the degree of business cycle synchronization between the countries.

  12. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  13. Technological study report on synthetic evaluation for FBR cycle. The report of the feasibility studies on commercialized FBR cycle system. Phase 1

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Ohtaki, Akira; Kofuji, Hirohide; Ono, Kiyoshi; Hirao, Kazunori

    2001-03-01

    This report is intended to explain the outline of the characteristic evaluation work on various FR cycle system concepts, following the design work, in the 1st phase of the JNC's 'Feasibility Study on Commercialized Fast Reactor Cycle System (the F/S)' (from 1999 to March 2001). The purpose of this characteristic evaluation is to reveal the performance of candidate FR cycle systems. For this synthetic estimation, six viewpoints, such as Economics, Effective utilization of uranium resource, Reduction of environmental impact, Safety, Proliferation resistance, and Technological feasibility, are selected. In addition, aiming at the practical use in phase 2, we examined an application to FBR research and development of cost benefit analysis method used for the policy evaluation. Furthermore, long-term nuclear material mass flow was analyzed and the scenario of 'FBR application for the hydrogen production' is proposed, considering how FBR would be utilized for the 21st century. And, a database including the various documents and data used for evaluation was constructed. (author)

  14. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  16. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  17. Monitored Retrievable Storage conceptual system studies: closed-cycle vault

    International Nuclear Information System (INIS)

    Washington, J.A.; Ganley, J.T.

    1984-02-01

    The Nuclear Waste Policy Act of 1982 requires the DOE to submit a proposal to Congress by June 1985 for the construction of one or more Monitored Retrieval Storage (MRS) facilities. In response, the DOE initiated studies to develop system descriptions and cost estimates for preconceptual designs of storage concepts suitable for use at MRS facilities. This report provides a system description and cost estimates for a Closed-Cycle Vault (CCV) MRS facility. The facility description is divided into four parts: (1) the R and H area, (2) the interface facility, (3) the on-site transport system, and (4) the storage system. The MRS facility has been designed to meet handling rates of 1800 and 3000 MTU/yr. The corresponding peak inventories are 15,000 and 72,000 MTU. Three types of cases were considered, based on the material to be stored: (1) Spent fuel only; (2) HLW and TRU waste; and (3) HLW only. For each of these three types, a cost estimate was done for a 15,000 and a 72,000 MTU facility, resulting in six different cost estimates. Section 4 presents the cost analysis of the CCV MRS system. Tables 4-2 through 4-7 give the construction or capital costs for the six cases. Tables 4-8 through 4-13 show the total discounted life-cycle costs for each of the six cases. These life-cycle costs include operating and decommissioning costs. These tables also show the time distribution of the capital costs. Table 2-1 summarizes the capital, operating, and discounted costs for the six cases studied. 2 references, 15 figures, 18 tables

  18. Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems

    Science.gov (United States)

    Metson, Geneviève S.; Bennett, Elena M.

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256

  19. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  20. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  1. The analysis phase in development of knowledge-based systems

    International Nuclear Information System (INIS)

    Brooking, A.G.

    1986-01-01

    Over the past twenty years computer scientists have realized that, in order to produce reliable software that is easily modifiable, a proven methodology is required. Unlike conventional systems there is little knowledge of the life cycle of these knowledge-based systems. However, if the life cycle of conventional systems, it is not unreasonable to assume that analysis will come first. With respect to the analysis task there is an enormous difference in types of analysis. Conventional systems analysis is predominately concerned with what happens within the system. Typically, procedures will be noted in the way they relate to each other, the way data moves and changes within the system. There is often an example, on paper or machine, that can be observed

  2. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  3. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  4. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  5. Exergy Analysis of a Subcritical Refrigeration Cycle with an Improved Impulse Turbo Expander

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The impulse turbo expander (ITE is employed to replace the throttling valve in the vapor compression refrigeration cycle to improve the system performance. An improved ITE and the corresponding cycle are presented. In the new cycle, the ITE not only acts as an expansion device with work extraction, but also serves as an economizer with vapor injection. An increase of 20% in the isentropic efficiency can be attained for the improved ITE compared with the conventional ITE owing to the reduction of the friction losses of the rotor. The performance of the novel cycle is investigated based on energy and exergy analysis. A correlation of the optimum intermediate pressure in terms of ITE efficiency is developed. The improved ITE cycle increases the exergy efficiency by 1.4%–6.1% over the conventional ITE cycle, 4.6%–8.3% over the economizer cycle and 7.2%–21.6% over the base cycle. Furthermore, the improved ITE cycle is also preferred due to its lower exergy loss.

  6. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  7. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures

    International Nuclear Information System (INIS)

    Zhang Fuzen; Jiang Peixe

    2012-01-01

    Enhanced Geothermal Systems show promise for meeting growing energy demands. The Organic Rankine Cycle (ORC) can be used to convert low and medium-temperature geothermal energy to electricity, but the working fluid must be carefully selected for the ORC system design. This paper compares the system performance using R134a, isobutane, R245fa and isopentane for four typical geofluid temperatures below 200 °C. Three type (subcritical, superheated and transcritical) power generation cycles and two heat transfer control models (total heat control model and vaporization control model) are used for different EGS source temperatures and working fluids. This paper presents a basic analysis method to select the most suitable working fluid and to optimize the operating and design parameters for a given EGS resource based on the thermodynamics. - Highlights: ► We present a method to selecting working fluids for EGS resources. ► Working fluids with critical temperatures near geofluid temperature is priority. ► Operating conditions requiring use of total heat control model give good behave. ► Transcritical cycle is good choice.

  8. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1989-05-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE's Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs

  9. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  10. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  11. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  12. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  13. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  14. Rankine cycle system and method

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  15. Entropy generation analysis of an adsorption cooling cycle

    KAUST Repository

    Thu, Kyaw

    2013-05-01

    This paper discusses the analysis of an adsorption (AD) chiller using system entropy generation as a thermodynamic framework for evaluating total dissipative losses that occurred in a batch-operated AD cycle. The study focuses on an adsorption cycle operating at heat source temperatures ranging from 60 to 85 °C, whilst the chilled water inlet temperature is fixed at 12.5 °C,-a temperature of chilled water deemed useful for dehumidification and cooling. The total entropy generation model examines the processes of key components of the AD chiller such as the heat and mass transfer, flushing and de-superheating of liquid refrigerant. The following key findings are observed: (i) The cycle entropy generation increases with the increase in the heat source temperature (10.8 to 46.2 W/K) and the largest share of entropy generation or rate of energy dissipation occurs at the adsorption process, (ii) the second highest energy rate dissipation is the desorption process, (iii) the remaining energy dissipation rates are the evaporation and condensation processes, respectively. Some of the noteworthy highlights from the study are the inevitable but significant dissipative losses found in switching processes of adsorption-desorption and vice versa, as well as the de-superheating of warm condensate that is refluxed at non-thermal equilibrium conditions from the condenser to the evaporator for the completion of the refrigeration cycle. © 2012 Elsevier Ltd. All rights reserved.

  16. Development of the System Dynamics Code using Homogeneous Equilibrium Model for S-CO{sub 2} Brayton cycle Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Oh, Bongseong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The features of the S-CO{sub 2} Brayton cycle come from a small compressing work by designing the compressor inlet close the critical point of CO{sub 2}. This means the system condition can be operating under two-phase or sub-critical phase during transient situations such as changes of cooling system performance, load variations, etc. Since there is no operating MW scale S-CO{sub 2} Brayton cycle system in the world yet, using an analytical code is the only way to predict the system behavior and develop operating strategies of the S-CO{sub 2} Brayton cycles. Therefore, the development of a credible system code is an important part for the practical S-CO{sub 2} system research. The current status of the developed system analysis code for S-CO{sub 2} Brayton cycle transient analyses in KAIST and verification results are presented in this paper. To avoid errors related with convergences of the code during the phase changing flow calculation in GAMMA+ code, the authors have developed a system analysis code using Homogeneous Equilibrium Model (HEM) for the S-CO{sub 2} Brayton cycle transient analysis. The backbone of the in-house code is the GAMMA+1.0 code, but treating the quality of fluid by tracking system enthalpy gradient every time step. Thus, the code adopts pressure and enthalpy as the independent scalar variables to track the system enthalpy for updating the quality of the system every time step. The heat conduction solving method, heat transfer correlation and frictional losses on the pipe are referred from the GAMMA+ code.

  17. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  18. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  19. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  20. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  1. Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids

    International Nuclear Information System (INIS)

    Aghahosseini, S.; Dincer, I.

    2013-01-01

    In this paper, a comprehensive thermodynamic analysis of the low-grade heat source Organic Rankine Cycle (ORC) is conducted and the cycle performance is analyzed and compared for different pure and zeotropic-mixture working fluids. The comparative performance evaluation of the cycle using a combined energy and exergy analysis is carried out by sensitivity assessment of the cycle certain operating parameters such as efficiency, flow rate, irreversibility, and heat input requirement at various temperatures and pressures. The environmental characteristics of the working fluids such as toxicity, flammability, ODP and GWP are studied and the cycle CO 2 emission is compared with different fuel combustion systems. R123, R245fa, R600a, R134a, R407c, and R404a are considered as the potential working fluids. Results from this analysis provide valuable insight into selection of the most suitable working fluids for power generating application at different operating conditions with a minimal environmental impact. -- Highlights: ► Combined energy and exergy analysis is conducted for Organic Rankine Cycle. ► Comparative assessment is performed for different pure and zeotropic working fluids. ► Exergy and energy efficiency, cycle irreversibility, and required external heat are analyzed. ► Toxicity, flammability, ODP and GWP of considered working fluids are studied. ► Environmental benefits of the renewable/waste heat-based ORC are investigated

  2. Sun-controlled spatial and time-dependent cycles in the climatic/weather system

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We show, on the basis of meteorological records, that certain spatial and time-dependent cycles exist in the earth-atmosphere system (EAS). These cycles seem to be associated with sunspot cycles and hence have been referred to in the text as ''data-derived solar cycles''. Our analysis establishes three important characteristics of the data-derived solar cycles (DSC's). Firstly the crests and troughs of these data-derived solar cycles are mostly latitudinally aligned and have (zonal) spatial wavelengths greater than about 7 degrees of longitude. Secondly the DSC's have periods mostly lying between 6 years and 12 years. In certain stations, some DSC's coincide quite well with corresponding sunspot cycles. Thirdly the crests and troughs of the DSC's drift eastwards at speeds exceeding about 1.5 longitude degrees per year. Furthermore, these DSC's display peak-to-peak amplitudes of about 2 deg. C along East Africa. On the basis of earlier work and bearing in mind the considerable temperature-dependence of the stratospheric ozone layer, we predict existence of latitudinally aligned enhancement and depletion structures (corresponding to the DSC's) in the stratospheric ozone layer within cloudless midnight-to-predawn sectors. (author). 9 refs, 5 figs

  3. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.

  4. Development of computer software for pavement life cycle cost analysis.

    Science.gov (United States)

    1988-01-01

    The life cycle cost analysis program (LCCA) is designed to automate and standardize life cycle costing in Virginia. It allows the user to input information necessary for the analysis, and it then completes the calculations and produces a printed copy...

  5. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    criteria involve sludge disposal strategies and electrical energy consumption. However, there is a need to develop a systematic methodology to quantify relevant environmental indicators; comprising information of the wastewater treatment system in a life cycle perspective. Also, to identify which...... are the parameters that have the greatest influence on the potential environmental impacts of the systems analyzed. In this study, we present a systematic methodology for the analysis of the operation of two modern wastewater treatment technologies: Biological removal of nitrogen and organic matter by activated...... sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...

  6. ALKASYS, Rankine-Cycle Space Nuclear Power System

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The program ALKASYS is used for the creation of design concepts of multimegawatt space power systems that employ potassium Rankine power conversion cycles. 2 - Method of solution: ALKASYS calculates performance and design characteristics and mass estimates for the major subsystems composing the total power system. Design and engineering performance characteristics are determined by detailed engineering procedures rather than by empirical algorithms. Mass estimates are developed using basic design principles augmented in some cases by empirical coefficients determined from the literature. The reactor design is based on a fast spectrum, metallic-clad rod fuel element containing UN pellets. 3 - Restrictions on the complexity of the problem: ALKASYS was developed primarily for the analysis of systems with electric power in the range from 1,000 to 25,000 kW(e) and full-power life from 1 to 10 years. The program should be used with caution in systems that are limited by heat flux (which might indicate need for extended surfaces on fuel elements) or criticality (which might indicate the need for other geometries or moderators)

  7. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  8. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    Science.gov (United States)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction

  9. Application of a personal computer relational data base management system to fuel cycle economic scoping

    International Nuclear Information System (INIS)

    Malone, J.P.; Dooley, G.D.

    1986-01-01

    A personal computer (PC) relational data base management system (RDBMS) permits large quantities of data to be maintained in a data base composed of structured data sets or files and provides data access through a software environment, procedure, or program language. The features of an RDBMS-based system create an environment on a PC that can provide significant benefits to any fuel cycle economics analysis. The ability to maintain a separate data set for each fuel cycle parameter group and the ability to manipulate the data through a series of independent calculation modules combine to provide the fuel cycle analyst with more time to examine and use the data, because less time is required to manipulate it

  10. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  11. Theoretical analysis of saturation and limit cycles in short pulse FEL oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Piovella, N.; Chaix, P.; Jaroszynski, D. [Commissariat a l`Energie Atomique, Bruyeres-le-Chatel (France)] [and others

    1995-12-31

    We derive a model for the non linear evolution of a short pulse oscillator from low signal up to saturation in the small gain regime. This system is controlled by only two independent parameters: cavity detuning and losses. Using a closure relation, this model reduces to a closed set of 5 non linear partial differential equations for the EM field and moments of the electron distribution. An analysis of the linearised system allows to define and calculate the eigenmodes characterising the small signal regime. An arbitrary solution of the complete nonlinear system can then be expanded in terms of these eigenmodes. This allows interpreting various observed nonlinear behaviours, including steady state saturation, limit cycles, and transition to chaos. The single mode approximation reduces to a Landau-Ginzburg equation. It allows to obtain gain, nonlinear frequency shift, and efficiency as functions of cavity detuning and cavity losses. A generalisation to two modes allows to obtain a simple description of the limit cycle behaviour, as a competition between these two modes. An analysis of the transitions to more complex dynamics is also given. Finally, the analytical results are compared to the experimental data from the FELIX experiment.

  12. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  13. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems.

  14. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems

  15. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  16. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  17. Economic analysis of fast reactor fuel cycle with different modes

    International Nuclear Information System (INIS)

    Ding Xiaoming

    2014-01-01

    Because of limitations on the access to technical and economic data and the lack of effective verification, the lack of in-depth study on the economy of fast reactor fuel cycle in China. This paper introduces the analysis and calculation results of the levelized cost of electricity (LCOE) under three different fuel cycle modes including fast reactor fuel cycle carried out by Massachusetts Institute of Technology (MIT). The author used the evaluation method and hypothesis parameters provided by the MIT to carry out the sensitivity analysis for the impact of the overnight cost, the discount rate and changes of uranium price on the LCOE under three fuel cycle modes. Finally, some suggestions are proposed on the study of economy in China's fast reactor fuel cycle. (authors)

  18. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: Volume 2, Supporting information

    International Nuclear Information System (INIS)

    1987-06-01

    This report provides cost estimates for the fifth evaluation of the adequacy of the fee and is consistent with the program strategy and plans. The total-system cost for the reference cases in the improved-performance system is estimated at $32.1 to $38.2 billion (expressed in constant 1986 collars) over the entire life of the system, or $1.5 to $1.6 billion more than that of the authorized system (i.e., the system without an MRS facility). The current estimate of the total-system cost for the reference cases in the improved-performance system is $3.8 to $5.4 billion higher than the estimate for the same system in the 1986 TSLCC analysis. In the case with the maximum increase, nearly all of the higher cost is due to a $5.2-billion increase in the costs of development and evaluation (D and E); all other system costs are essentially unchanged. The cost difference between the improved-performance system and the authorized system is smaller than the difference estimated in last year's TSLCC analysis. Volume 2 presents the detailed results for the 1987 analysis of the total-system life cycle cost (TSLCC). It consists of four sections: Section A presents the yearly flows of waste between waste-management facilities for the 12 aggregate logistics cases that were studied; Section B presents the annual total-system costs for each of the 30 TSLCC cases by major cost category; Section C presents the annual costs for the disposal of 16,000 canisters of defense high-level waste (DHLW) by major cost category for each of the 30 TSLCC cases; and Section D presents a summary of the cost-allocation factors that were calculated to determine the defense waste share of the total-system costs

  19. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    Science.gov (United States)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  20. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  1. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  2. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    Science.gov (United States)

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  3. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  4. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  5. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source

    International Nuclear Information System (INIS)

    Yari, M.; Mehr, A.S.; Zare, V.; Mahmoudi, S.M.S.; Rosen, M.A.

    2015-01-01

    Recently, the TLC (trilateral power cycle) has attracted significant interest as it provides better matching between the temperature profiles in the evaporator compared to conventional power cycles. This article investigates the performance of this cycle and compares it with those for the ORC (organic Rankine cycle) and the Kalina cycle, from the viewpoints of thermodynamics and thermoeconomics. A low-grade heat source with a temperature of 120 °C is considered for all the three systems. Parametric studies are performed for the systems for several working fluids in the ORC and TLC. The systems are then optimized for either maximum net output power or minimum product cost, using the EES (engineering equation solver) software. The results for the TLC indicate that an increase in the expander inlet temperature leads to an increase in net output power and a decrease in product cost for this power plant, whereas this is not the case for the ORC system. It is found that, although the TLC can achieve a higher net output power compared with the ORC and Kalina (KCS11 (Kalina cycle system 11)) systems, its product cost is greatly affected by the expander isentropic efficiency. It is also revealed that using n-butane as the working fluid can result in the lowest product cost in the ORC and the TLC. In addition, it is observed that, for both the ORC and Kalina systems, the optimum operating condition for maximum net output power differs from that for minimum product cost. - Highlights: • Exergoeconomic analysis of trilateral Rankine cycle is performed. • The system performance is compared with Organic Rankine and Kalina cycles. • Net power from trilateral Rankine cycle is higher than the other power systems. • Superiority of trilateral cycle depends on its expander isentropic efficiency

  6. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  7. Experimental and CFD Analysis of Printed Circuit Heat Exchanger for Supercritical CO{sub 2} Power Cycle Application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The supercritical carbon dioxide (S-CO{sub 2}) power cycle has been suggested as an alternative for the SFR power generation system. First of all, relatively mild sodium-CO{sub 2} interaction can reduce the accident probability. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency with SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce cycle footprint due to high density of the working fluid. Recently, various compact heat exchangers have been studied for developing an optimal heat exchanger. In this paper, the printed circuit heat exchanger was selected for S-CO{sub 2} power cycle applications and was closely investigated experimentally and analytically. Recently, design and performance prediction of PCHE received attention due to its importance in high pressure power systems such as S-CO{sub 2} cycle. To evaluate a PCHE performance with CO{sub 2} to water, KAIST research team designed and tested a lab-scale PCHE. From the experimental data and CFD analysis, pressure drop and heat transfer correlations are obtained. For the CFD analysis, Ansys-CFX commercial code was utilized with RGP table implementation. In near future, the turbulence model sensitivity study will be followed.

  8. Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Gaines, Linda; Wang, Michael [Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439 (United States)

    2009-05-15

    Forklift propulsion systems and distributed power generation are identified as potential fuel cell applications for near-term markets. This analysis examines fuel cell forklifts and distributed power generators, and addresses the potential energy and environmental implications of substituting fuel-cell systems for existing technologies based on fossil fuels and grid electricity. Performance data and the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources. The greenhouse gas (GHG) impacts of fuel-cell forklifts using hydrogen from steam reforming of natural gas are considerably lower than those using electricity from the average U.S. grid. Fuel cell generators produce lower GHG emissions than those associated with the U.S. grid electricity and alternative distributed combustion technologies. If fuel-cell generation technologies approach or exceed the target efficiency of 40%, they offer significant reduction in energy use and GHG emissions compared to alternative combustion technologies. (author)

  9. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system

    Directory of Open Access Journals (Sweden)

    Arash Nemati

    2017-03-01

    Full Text Available A thermodynamic modeling and optimization is carried out to compare the advantages and disadvantages of organic Rankine cycle (ORC and Kalina cycle (KC as a bottoming cycle for waste heat recovery from CGAM cogeneration system. Thermodynamic models for combined CGAM/ORC and CGAM/KC systems are performed and the effects of some decision variables on the energy and exergy efficiency and turbine size parameter of the combined systems are investigated. Solving simulation equations and optimization process have been done using direct search method by EES software. It is observed that at the optimum pressure ratio of air compressor, produced power of bottoming cycles has minimum values. Also, evaporator pressure optimizes the performance of cycle, but this optimum pressure level in ORC (11 bar is much lower than that of Kalina (46 bar. In addition, ORC's simpler configuration, higher net produced power and superheated turbine outlet flow, which leads to a reliable performance for turbine, are other advantages of ORC. Kalina turbine size parameter is lower than that of the ORC which is a positive aspect of Kalina cycle. However, by a comprehensive comparison between Kalina and ORC, it is concluded that the ORC has significant privileges for waste heat recovery in this case.

  10. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  11. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  12. Classical linear-control analysis applied to business-cycle dynamics and stability

    Science.gov (United States)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  13. Flow cytometric life cycle analysis in cellular radiation biology

    International Nuclear Information System (INIS)

    Wood, J.C.S.

    1982-01-01

    Three approaches to flow cytometric histogram analysis were developed: (1) differential histogram analysis, (2) DNA histogram analysis, and (3) multiparameter data analysis. These techniques were applied to an important unresolved problem in radiation biology. The initial responses to irradiation of a mammalian cell which occur during the first two cell cycles following the irradiation are of considerable interest to the radiation biologist. During the first two post-irradiation cell cycles, cells which ultimately will survive repair radiation-induced damage, while some cells begin to express some of the radiation-induced nuclear and chomatin damage. Caffeine- and thymidine-treated, and untreated gamma-irradiated cell populations were studied with respect to the radiation-induced G2 delay, deficient DNA synthesis, and the appearance of cells with abnormal DNA contents. It is hypothesized that the measured deficiency in DNA synthesis observed in the first post-irradiation cell cycle may be a result of daughter cells from abnormal first post-irradiation mitoses

  14. Analysis of temporal variation in human masticatory cycles during gum chewing.

    Science.gov (United States)

    Crane, Elizabeth A; Rothman, Edward D; Childers, David; Gerstner, Geoffrey E

    2013-10-01

    The study investigated modulation of fast and slow opening (FO, SO) and closing (FC, SC) chewing cycle phases using gum-chewing sequences in humans. Twenty-two healthy adult subjects participated by chewing gum for at least 20s on the right side and at least 20s on the left side while jaw movements were tracked with a 3D motion analysis system. Jaw movement data were digitized, and chewing cycle phases were identified and analysed for all chewing cycles in a complete sequence. All four chewing cycle phase durations were more variant than total cycle durations, a result found in other non-human primates. Significant negative correlations existed between the opening phases, SO and FO, and between the closing phases, SC and FC; however, there was less consistency in terms of which phases were negatively correlated both between subjects, and between chewing sides within subjects, compared with results reported in other species. The coordination of intra-cycle phases appears to be flexible and to follow complex rules during gum-chewing in humans. Alternatively, the observed intra-cycle phase relationships could simply reflect: (1) variation in jaw kinematics due to variation in how gum was handled by the tongue on a chew-by-chew basis in our experimental design or (2) by variation due to data sampling noise and/or how phases were defined and identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  16. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  17. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  18. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  19. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  20. Exergy analysis of a combined power and cooling cycle

    International Nuclear Information System (INIS)

    Fontalvo, Armando; Pinzon, Horacio; Duarte, Jorge; Bula, Antonio; Quiroga, Arturo Gonzalez; Padilla, Ricardo Vasquez

    2013-01-01

    This paper presents a comprehensive exergy analysis of a combined power and cooling cycle which combines a Rankine and absorption refrigeration cycle by using ammonia–water mixture as working fluid. A thermodynamic model was developed in Matlab ® to find out the effect of pressure ratio, ammonia mass fraction at the absorber and turbine efficiency on the total exergy destruction of the cycle. The contribution of each cycle component on the total exergy destruction was also determined. The results showed that total exergy destruction decreases when pressure ratio increases, and reaches a maximum at x ≈ 0.5, when ammonia mass fraction is varied at absorber. Also, it was found that the absorber, the boiler and the turbine had the major contribution to the total exergy destruction of the cycle, and the increase of the turbine efficiency reduces the total exergy destruction. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and the results showed that internal rectification cooling reduces the total exergy destruction of the cycle. Finally, the effect of the presence or absence of the superheater after the rectification process was determined and it was obtained that the superheated condition reduces the exergy destruction of the cycle at high turbine efficiency values. Highlights: • A parametric exergy analysis of a combined power and cooling cycle is performed. • Two scenarios for rectifier cooling (internal and external) were studied. • Internal cooling source is more exergetic efficient than external cooling source. • The absorber and boiler have the largest total exergy destruction. • Our results show that the superheater reduces the exergy destruction of the cycle

  1. Thermodynamic sensitivity analysis of a novel trigeneration thermodynamic cycle with two-phase expanders and two-phase compressors

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto

    2017-01-01

    A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.

  2. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  3. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  4. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adam David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cohn, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, Douglas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeMenno, Mercy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Maikael A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Ethan Rutledge [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Mancel Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeantete, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.

  5. Control system to a Rankine cycle with a Tesla turbine using arduino

    International Nuclear Information System (INIS)

    Medeiros, Josenei G.; Guimaraes, Lamartine F.; Placco, Guilherme M.

    2013-01-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation

  6. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  7. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  8. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    International Nuclear Information System (INIS)

    Goering, Markus; Fay, Alexander

    2013-01-01

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis

  9. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Markus [Vattenfall Europe Nuclear Energy GmbH, Hamburg, (Germany); Fay, Alexander [Helmut Schmidt Univ., Hamburg (Germany)

    2013-10-15

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  10. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  11. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    Energy Technology Data Exchange (ETDEWEB)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  12. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  13. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  14. Sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, E.A.; Heijungs, R.; Bokkers, E.A.M.; Boer, de I.J.M.

    2014-01-01

    Life cycle assessments require many input parameters and many of these parameters are uncertain; therefore, a sensitivity analysis is an essential part of the final interpretation. The aim of this study is to compare seven sensitivity methods applied to three types of case stud-ies. Two

  15. Cycle 1 as predictor of assisted reproductive technology treatment outcome over multiple cycles: an analysis of linked cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System online database.

    Science.gov (United States)

    Stern, Judy E; Brown, Morton B; Luke, Barbara; Wantman, Ethan; Lederman, Avi; Hornstein, Mark D

    2011-02-01

    To determine whether the first cycle of assisted reproductive technology (ART) predicts treatment course and outcome. Retrospective study of linked cycles. Society for Assisted Reproductive Technology Clinic Outcome Reporting System database. A total of 6,352 ART patients residing or treated in Massachusetts with first treatment cycle in 2004-2005 using fresh, autologous oocytes and no prior ART. Women were categorized by first cycle as follows: Group I, no retrieval; Group II, retrieval, no transfer; Group III, transfer, no embryo cryopreservation; Group IV, transfer plus cryopreservation; and Group V, all embryos cryopreserved. None. Cumulative live-birth delivery per woman, use of donor eggs, intracytoplasmic sperm injection (ICSI), or frozen embryo transfers (FET). Groups differed in age, baseline FSH level, prior gravidity, diagnosis, and failure to return for Cycle 2. Live-birth delivery per woman for groups I through V for women with no delivery in Cycle I were 32.1%, 35.9%, 40.1%, 53.4%, and 51.3%, respectively. Groups I and II were more likely to subsequently use donor eggs (14.5% and 10.9%). Group II had the highest use of ICSI (73.3%); Group III had the lowest use of FET (8.9%). Course of treatment in the first ART cycle is related to different cumulative live-birth delivery rates and eventual use of donor egg, ICSI, and FET. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  17. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...

  18. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  19. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration.

  20. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  1. User's guide for the REBUS-3 fuel cycle analysis capability

    Energy Technology Data Exchange (ETDEWEB)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions.

  2. Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data

    International Nuclear Information System (INIS)

    Tumen Ozdil, N. Filiz; Segmen, M. Rıdvan; Tantekin, Atakan

    2015-01-01

    In this study, thermodynamic analysis of an Organic Rankine Cycle (ORC) is presented in a local power plant that is located southern of Turkey. The system that is analyzed includes an evaporator, a turbine, a condenser, a pump and a generator as components. System components are analyzed separately using actual plant data and performance cycle. The relationship between pinch point and exergy efficiency is observed. As the pinch point temperature decreases, the exergy efficiency increases due to low exergy destruction rate. The energy and exergy efficiencies of the ORC are calculated as 9.96% and 47.22%, respectively for saturated liquid form which is the real condition. In order to show the effect of the water phase of the evaporator inlet, exergy destruction and exergy efficiencies of components and overall system are calculated for different water phases. The exergy efficiency of the ORC is calculated as 41.04% for water mixture form which has quality 0.3. On the other hand, it is found as 40.29% for water mixture form which has quality 0.7. Lastly, it is calculated as 39.95% for saturated vapor form. Moreover, exergy destruction rates of the system are 520.01 kW for saturated liquid form, 598.39 kW for water mixture form which has quality 0.3, 609.5 kW for water mixture form which has quality 0.7 and 614.63 kW for saturated vapor form. The analyses show that evaporator has important effect on the system efficiency in terms of exergy rate. The evaporator is investigated particularly in order to improve the performance of the overall system. - Highlights: • Energy and exergy analysis of an Organic Rankine Cycle (ORC). • The main reasons of the irreversibility in the ORC. • Determination of exergy efficiency for the different water phases in the evaporator inlet. • Determination of the effect of the ambient temperature on ORC efficiency.

  3. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  4. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    Science.gov (United States)

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene

  5. Problems Related to Use of Some Terms in System Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nadezda Hanusova

    2004-01-01

    Full Text Available The paper deals with problems of using dependability terms, defined in actual standard STN IEC 50 (191: International electrotechnical dictionary, chap. 191: Dependability and quality of service (1993, in a technical systems dependability analysis. The goal of the paper is to find a relation between terms introduced in the mentioned standard and used in the technical systems dependability analysis and rules and practices used in a system analysis of the system theory. Description of a part of the system life cycle related to reliability is used as a starting point. The part of a system life cycle is described by the state diagram and reliability relevant therms are assigned.

  6. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  7. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  8. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  9. Control system options and strategies for supercritical CO2 cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  10. Control system options and strategies for supercritical CO2 cycles

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Kulesza, K.P.; Sienicki, J.J.

    2009-01-01

    The Supercritical Carbon Dioxide (S-CO 2 ) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO 2 Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO 2 Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO 2 Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO 2 Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO 2 Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO 2 Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO 2 Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO 2 Brayton Cycle as well as the benefits in expanding the range

  11. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  12. Determining the Life Cycle Energy Efficiency of Six Biofuel Systems in China: A Data Envelopment Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2014-01-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has...

  13. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2003-01-01

    to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case. The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process...... could be divided into two streams, one for primary and one for supplementary firing. A preliminary analysis of the ideal, recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  14. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    Science.gov (United States)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  15. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  16. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle

    International Nuclear Information System (INIS)

    Dai Yiping; Wang Jiangfeng; Gao Lin

    2009-01-01

    A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition.

  17. An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

    Directory of Open Access Journals (Sweden)

    Karina Condeixa

    2015-06-01

    Full Text Available Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

  18. A Thermodynamic Analysis of Two Competing Mid-Sized Oxyfuel Combustion Combined Cycles

    Directory of Open Access Journals (Sweden)

    Egill Thorbergsson

    2016-01-01

    Full Text Available A comparative analysis of two mid-sized oxyfuel combustion combined cycles is performed. The two cycles are the semiclosed oxyfuel combustion combined cycle (SCOC-CC and the Graz cycle. In addition, a reference cycle was established as the basis for the analysis of the oxyfuel combustion cycles. A parametric study was conducted where the pressure ratio and the turbine entry temperature were varied. The layout and the design of the SCOC-CC are considerably simpler than the Graz cycle while it achieves the same net efficiency as the Graz cycle. The fact that the efficiencies for the two cycles are close to identical differs from previously reported work. Earlier studies have reported around a 3% points advantage in efficiency for the Graz cycle, which is attributed to the use of a second bottoming cycle. This additional feature is omitted to make the two cycles more comparable in terms of complexity. The Graz cycle has substantially lower pressure ratio at the optimum efficiency and has much higher power density for the gas turbine than both the reference cycle and the SCOC-CC.

  19. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  20. Exergoeconomic analysis of utilizing the transcritical CO_2 cycle and the ORC for a recompression supercritical CO_2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle. • Performance of the sCO_2/tCO_2 cycle and sCO_2/ORC cycle are presented and compared. • The sCO_2/tCO_2 cycle performs better than the sCO_2/ORC cycle at lower PRc. • The sCO_2/tCO_2 cycle has comparable total product unit cost with the sCO_2/ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by either a transcritical CO_2 cycle (tCO_2) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle performance and its comparison to the sCO_2/ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO_2/tCO_2 and sCO_2/ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO_2/tCO_2 cycle is preferable and performs better than the sCO_2/ORC cycle at lower PRc. When the sCO_2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO_2 cycle is preferable to be integrated with the recompression sCO_2 cycle considering the off-design conditions. Moreover, contrary to the sCO_2/ORC system, a higher tCO_2 turbine inlet temperature improves exergoeconomic performance of the sCO_2/tCO_2 cycle. The thermodynamic optimization study reveals that the sCO_2/tCO_2 cycle has comparable second law efficiency with the sCO_2/ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO_2/ORC is slightly lower than that of the sCO_2/tCO_2

  1. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil

    International Nuclear Information System (INIS)

    Campos Rodríguez, Carlos Eymel; Escobar Palacio, José Carlos; Venturini, Osvaldo J.; Silva Lora, Electo E.; Cobas, Vladimir Melián; Marques dos Santos, Daniel; Lofrano Dotto, Fábio R.; Gialluca, Vernei

    2013-01-01

    This paper deals with the thermodynamic analysis, of both the first and second law of thermodynamic of two different technologies, (ORC and Kalina cycle) for power production through an enhanced geothermal system (EGS). In order to find a better performance of both thermal cycles it were evaluated 15 different working fluids for ORC and three different composition of the ammonia–water mixture for the Kalina cycle. In this work, the Aspen-HYSYS software was used to simulate both thermal cycles and to calculate the thermodynamic properties based on Peng–Robinson Stryjek–Vera (PRSV) Equation of State (EoS). At the end the two cycles was compared using an economic analysis with the fluid that offers the best performance for each thermal cycle which are R-290 for ORC and for Kalina cycle a composition of the mixture of 84% of ammonia mass fraction and 16% of water mass fraction. For this conditions the Kalina cycle produce 18% more net power than the ORC. A levelized electricity costs of 0.22 €/kW h was reached for ORC and 0.18 €/kW h for Kalina cycle. Finally a sensitivity analysis of the EGS LCOE was carried out for a few economic parameters to determinate how is the variation of LCOE for a % change from the base case. -- Highlights: ► The aim of this paper is to compare both cycles (ORC and Kalina). ► Kalina cycle offer 18% more net power than ORC and require 37% less mass flow rate. ► It was obtained 17.8% lower levelized electricity costs for Kalina cycle over the ORC

  2. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campos Rodríguez, Carlos Eymel, E-mail: eymelcampos@hotmail.com [Federal University of Itajuba (UNIFEI), Mechanical Engineering Institute – IEM, Excellence Group in Thermal Power and Distributed Generation (NEST), Minas Gerais (Brazil); Escobar Palacio, José Carlos; Venturini, Osvaldo J.; Silva Lora, Electo E.; Cobas, Vladimir Melián [Federal University of Itajuba (UNIFEI), Mechanical Engineering Institute – IEM, Excellence Group in Thermal Power and Distributed Generation (NEST), Minas Gerais (Brazil); Marques dos Santos, Daniel, E-mail: danielmarques.Santos@aes.com [AES Tietê, Bauru, São Paulo (Brazil); Lofrano Dotto, Fábio R., E-mail: fabio@farolconsultoria.com.br [FAROL Pesquisa, Desenvolvimento e Consultoria (Brazil); Gialluca, Vernei [Gênera Serviços e Comércio LTDA (Brazil)

    2013-04-05

    This paper deals with the thermodynamic analysis, of both the first and second law of thermodynamic of two different technologies, (ORC and Kalina cycle) for power production through an enhanced geothermal system (EGS). In order to find a better performance of both thermal cycles it were evaluated 15 different working fluids for ORC and three different composition of the ammonia–water mixture for the Kalina cycle. In this work, the Aspen-HYSYS software was used to simulate both thermal cycles and to calculate the thermodynamic properties based on Peng–Robinson Stryjek–Vera (PRSV) Equation of State (EoS). At the end the two cycles was compared using an economic analysis with the fluid that offers the best performance for each thermal cycle which are R-290 for ORC and for Kalina cycle a composition of the mixture of 84% of ammonia mass fraction and 16% of water mass fraction. For this conditions the Kalina cycle produce 18% more net power than the ORC. A levelized electricity costs of 0.22 €/kW h was reached for ORC and 0.18 €/kW h for Kalina cycle. Finally a sensitivity analysis of the EGS LCOE was carried out for a few economic parameters to determinate how is the variation of LCOE for a % change from the base case. -- Highlights: ► The aim of this paper is to compare both cycles (ORC and Kalina). ► Kalina cycle offer 18% more net power than ORC and require 37% less mass flow rate. ► It was obtained 17.8% lower levelized electricity costs for Kalina cycle over the ORC.

  3. Energy and entropy analysis of closed adiabatic expansion based trilateral cycles

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero

    2016-01-01

    Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which

  4. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  5. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  6. Second Law Of Thermodynamics Analysis Of Triple Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    Matheus M. Dwinanto

    2012-11-01

    Full Text Available Triple cycle power plant with methane as a fuel has been analyzed on the basis of second law of thermodynamics.In this model, ideal Brayton cycle is selected as a topping cycle as it gives higher efficiency at lower pressure ratio comparedintercooler and reheat cycle. In trilple cycle the bottoming cycles are steam Rankine and organic Rankine cycle. Ammoniahas suitable working properties like critical temperature, boiling temperature, etc. Steam cycle consists of a deaerator andreheater. The bottoming ammonia cycle is a ideal Rankine cycle. Single pressure heat recovery steam and ammoniagenerators are selected for simplification of the analysis. The effects of pressure ratio and maximum temperature which aretaken as important parameters regarding the triple cycle are discussed on performance and exergetic losses. On the otherhand, the efficiency of the triple cycle can be raised, especially in the application of recovering low enthalpy content wasteheat. Therefore, by properly combining with a steam Rankine cycle, the ammonia Rankine cycle is expected to efficientlyutilize residual yet available energy to an optimal extent. The arrangement of multiple cycles is compared with combinedcycle having the same sink conditions. The parallel type of arrangement of bottoming cycle is selected due to increasedperformance.

  7. Prediction of solar cycle 24 using fourier series analysis

    International Nuclear Information System (INIS)

    Khalid, M.; Sultana, M.; Zaidi, F.

    2014-01-01

    Predicting the behavior of solar activity has become very significant. It is due to its influence on Earth and the surrounding environment. Apt predictions of the amplitude and timing of the next solar cycle will aid in the estimation of the several results of Space Weather. In the past, many prediction procedures have been used and have been successful to various degrees in the field of solar activity forecast. In this study, Solar cycle 24 is forecasted by the Fourier series method. Comparative analysis has been made by auto regressive integrated moving averages method. From sources, January 2008 was the minimum preceding solar cycle 24, the amplitude and shape of solar cycle 24 is approximate on monthly number of sunspots. This forecast framework approximates a mean solar cycle 24, with the maximum appearing during May 2014 (+- 8 months), with most sunspot of 98 +- 10. Solar cycle 24 will be ending in June 2020 (+- 7 months). The difference between two consecutive peak values of solar cycles (i.e. solar cycle 23 and 24 ) is 165 months(+- 6 months). (author)

  8. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  9. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle

    International Nuclear Information System (INIS)

    Domingues, António; Santos, Helder; Costa, Mário

    2013-01-01

    This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy

  10. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  11. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  12. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  13. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  14. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations

    Science.gov (United States)

    Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.

    2010-01-01

    Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate

  15. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  16. Systems Studies Department FY 78 activity report. Volume 2. Systems analysis

    International Nuclear Information System (INIS)

    Gold, T.S.

    1979-02-01

    The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures

  17. Characterising volcanic cycles at Soufriere Hills Volcano, Montserrat: Time series analysis of multi-parameter satellite data

    Science.gov (United States)

    Flower, Verity J. B.; Carn, Simon A.

    2015-10-01

    The identification of cyclic volcanic activity can elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation to cross-correlate cyclical signals identified using complementary measurement techniques at Soufriere Hills Volcano (SHV), Montserrat. In this paper we present a Multi-taper (MTM) Fast Fourier Transform (FFT) analysis of coincident SO2 and thermal infrared (TIR) satellite measurements at SHV facilitating the identification of cyclical volcanic behaviour. These measurements were collected by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) (respectively) in the A-Train. We identify a correlating cycle in both the OMI and MODIS data (54-58 days), with this multi-week feature attributable to episodes of dome growth. The 50 day cycles were also identified in ground-based SO2 data at SHV, confirming the validity of our analysis and further corroborating the presence of this cycle at the volcano. In addition a 12 day cycle was identified in the OMI data, previously attributed to variable lava effusion rates on shorter timescales. OMI data also display a one week (7-8 days) cycle attributable to cyclical variations in viewing angle resulting from the orbital characteristics of the Aura satellite. Longer period cycles possibly relating to magma intrusion were identified in the OMI record (102-, 121-, and 159 days); in addition to a 238-day cycle identified in the MODIS data corresponding to periodic destabilisation of the lava dome. Through the analysis of reconstructions generated from cycles identified in the OMI and MODIS data, periods of unrest were identified, including the major dome collapse of 20th May 2006 and significant explosive event of 3rd January 2009. Our analysis confirms the potential for identification of cyclical volcanic activity through combined

  18. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    opportunities, a generic modelling framework is proposed to handle this task. This framework outlines a set of building blocks which are necessary for carrying out the economic analysis of various BS applications. Further, special focus is given on describing how to use the rainflow cycle counting algorithm...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so......Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...

  19. Innovation Cycles Concerning Strategic Planning of Product-Service-Systems

    OpenAIRE

    Hepperle, Clemens;Mörtl, Markus;Lindemann, Udo

    2017-01-01

    This paper proposes a research program for identifying, understanding and describing innovation cycles concerning strategic planning of product-service-systems. A general overview about the background of cycle management in innovation processes, which the proposed research program is part of, is given before focusing cycles concerning strategic planning. As companies offer more and more complex products in order to satisfy market needs, the innovation process of such products becomes also mor...

  20. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  1. Off-design performance analysis of Kalina cycle for low temperature geothermal source

    International Nuclear Information System (INIS)

    Li, Hang; Hu, Dongshuai; Wang, Mingkun; Dai, Yiping

    2016-01-01

    Highlights: • The off-design performance analysis of Kalina cycle is conducted. • The off-design models are established. • The genetic algorithm is used in the design phase. • The sliding pressure control strategy is applied. - Abstract: Low temperature geothermal sources with brilliant prospects have attracted more and more people’s attention. Kalina cycle system using ammonia water as working fluid could exploit geothermal energy effectively. In this paper, the quantitative analysis of off-design performance of Kalina cycle for the low temperature geothermal source is conducted. The off-design models including turbine, pump and heat exchangers are established preliminarily. Genetic algorithm is used to maximize the net power output and determine the thermodynamic parameters in the design phase. The sliding pressure control strategy applied widely in existing Rankine cycle power plants is adopted to response to the variations of geothermal source mass flow rate ratio (70–120%), geothermal source temperature (116–128 °C) and heat sink temperature (0–35 °C). In the off-design research scopes, the guidance for pump rotational speed adjustment is listed to provide some reference for off-design operation of geothermal power plants. The required adjustment rate of pump rotational speed is more sensitive to per unit geothermal source temperature than per unit heat sink temperature. Influence of the heat sink variation is greater than that of the geothermal source variation on the ranges of net power output and thermal efficiency.

  2. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  3. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  4. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  5. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  6. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  7. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  8. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  9. Life Cycle Analysis of a Geothermal Heatpump Installation and Comparison with a Conventional Fuel Boiler System in a Nursery School in Galicia (Spain

    Directory of Open Access Journals (Sweden)

    Castro M.

    2012-10-01

    Full Text Available Within the work lines in sustainable energy field of the EnergyLab Technology Centre (Vigo, Spain, associated with the technologies that are under investigation by this centre, it is developed a study about the Life Cycle Analysis (hereinafter, LCA over a geothermal heatpump (hereafter, GSHP installation in a nursery school in the province of Pontevedra (Galicia, Spain, and its comparison with the fuel boiler system prior to GHP. Thus, with the use of computer tools and following specific rules about the calculation of LCA, assessing the environmental impact of each system, and perform the appropriate comparison in order to quantify the savings emissions and the improvement in sustainability related to the replacement of diesel boiler system by the GSHP system.

  10. EMERGY ANALYSIS OF THE PREHISTORIC NITROGEN CYCLE

    Science.gov (United States)

    Several relationships between the specific emergy or the emergy per unit mass and the mass concentration of nitrogen were shown to exist through an analysis of the global nitrogen cycle. These observed relationships were interpreted by examining the nature of the underlying ener...

  11. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Science.gov (United States)

    P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner

    2014-01-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...

  12. Structural analysis of fuel handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L S.S. [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The purpose of this paper has three aspects: (i) to review `why` and `what` types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs.

  13. Structural analysis of fuel handling systems

    International Nuclear Information System (INIS)

    Lee, L.S.S.

    1996-01-01

    The purpose of this paper has three aspects: (i) to review 'why' and 'what' types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs

  14. Assessing an Adaptive Cycle in a Social System under External Pressure to Change: the Importance of Intergroup Relations in Recreational Fisheries Governance

    Directory of Open Access Journals (Sweden)

    Katrin Daedlow

    2011-06-01

    Full Text Available The adaptive cycle constitutes a heuristic originally used to interpret the dynamics of complex ecosystems in response to disturbance and change. It is assumed that socially constructed governance systems go through similar phases (K, Ω [omega], α [alpha], r as evident in ecological adaptive cycles. Two key dimensions of change shaping the four phases of an adaptive cycle are the degree of connectedness and the range of potential in the system. Our purpose was to quantitatively assess the four phases of the adaptive cycle in a social system by measuring the potential and connectedness dimensions and their different levels in each of the four phases. We assessed these dimensions using quantitative data from content analysis of magazine articles describing the transition process of East German recreational fisheries governance after the fall of the Berlin Wall in 1989. This process was characterized by the discussion of two governance alternatives amendable for implementation: a central East German and a decentralized West German approach. Contrary to assumptions in the adaptive cycle heuristic, we were unable to identify the four phases of the adaptive cycle in our governance system based on quantitatively assessed levels of connectedness and potential alone. However, the insertion of in-group (East Germans and out-group (West Germans dimensions representing the two governance alternatives in our analysis enabled us to identify the specific time frames for all four phases of the adaptive cycle on a monthly basis. These findings suggest that an unmodified "figure-eight model" of the adaptive cycle may not necessarily hold in social systems. Inclusion of disciplinary theories such as intergroup relation theory will help in understanding adaptation processes in social systems.

  15. Development of multilateral comparative evaluation method for fuel cycle system

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Ikushima, Takeshi; Nomura, Yasushi; Nakajima, Kiyoshi.

    1998-03-01

    In the near future, Japanese nuclear fuel cycle system will be promoted by national nuclear energy policy, and it''s options i.e. once through, thermal cycle and fast breeder cycle must be selected by multilateral comparative evaluation method from various aspects of safety, society, economy, and e.t.c. Therefore such a problem can be recognized as a social problem of decision making and applied for AHP (Analytic Hierarchy Process) that can multilaterally and comparatively evaluate the problem. On comparative evaluation, much information are needed for decision making, therefore two kinds of databases having these information have been constructed. And then, the multilateral comparative evaluation method consisting of two kinds of databases and AHP for optimum selection of fuel cycle system option have been developed. (author)

  16. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  17. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  18. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  19. Infrastructures and Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2012-01-01

    Design and maintenance of infrastructures using Life-Cycle Cost-Benefit analysis is discussed in this paper with special emphasis on users costs. This is for several infrastructures such as bridges, highways etc. of great importance. Repair or/and failure of infrastructures will usually result...

  20. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  1. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  2. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    International Nuclear Information System (INIS)

    Miron, Adrian; Valentine, Joshua; Christenson, John; Hawwari, Majd; Bhatt, Santosh; Dunzik-Gougar, Mary Lou; Lineberry, Michael

    2009-01-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), University of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  3. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    Energy Technology Data Exchange (ETDEWEB)

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  4. An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis

    Science.gov (United States)

    2013-03-01

    AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks

  5. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system

    DEFF Research Database (Denmark)

    Brøns, Morten; Sturis, Jeppe

    2001-01-01

    A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong sensit...... sensitivity was introduced due to bifurcation to infinity resulting in chaotic dynamics on adding diffusion....

  6. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander

    International Nuclear Information System (INIS)

    Yang Junlan; Ma Yitai; Li Minxia; Guan Haiqing

    2005-01-01

    In this paper, a comparative study is performed for the transcritical carbon dioxide refrigeration cycles with a throttling valve and with an expander, based on the first and second laws of thermodynamics. The effects of evaporating temperature and outlet temperature of gas cooler on the optimal heat rejection pressure, the coefficients of performance (COP), the exergy losses, and the exergy efficiencies are investigated. In order to identify the amounts and locations of irreversibility within the two cycles, exergy analysis is employed to study the thermodynamics process in each component. It is found that in the throttling valve cycle, the largest exergy loss occurs in the throttling valve, about 38% of the total cycle irreversibility. In the expander cycle, the irreversibility mainly comes from the gas cooler and the compressor, approximately 38% and 35%, respectively. The COP and exergy efficiency of the expander cycle are on average 33% and 30% higher than those of the throttling valve cycle, respectively. It is also concluded that an optimal heat rejection pressure can be obtained for all the operating conditions to maximize the COP. The analysis results are of significance to provide theoretical basis for optimization design and operation control of the transcritical carbon dioxide cycle with an expander

  7. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    International Nuclear Information System (INIS)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G.

    2010-01-01

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different

  8. Cycling empirical antibiotic therapy in hospitals: meta-analysis and models.

    Directory of Open Access Journals (Sweden)

    Pia Abel zur Wiesch

    2014-06-01

    Full Text Available The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to different conclusions regarding the usefulness of rotating first-line therapy (cycling. Here, we performed a quantitative pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43-0.48] and resistant infections by 7.2 [14.00-0.44]. This positive effect was observed in most pathogens despite a large variance between individual species. Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various infections and hospital settings to compare cycling to random assignment to different drugs (mixing. We make the realistic assumption that therapy is changed when first line treatment is ineffective, which we call "adjustable cycling/mixing". In concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our theoretical model indicate that "adjustable cycling" is especially useful to suppress emergence of multiple resistance. While our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental. Our results suggest that

  9. Global water cycle

    Science.gov (United States)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  10. The Application of Supercritical CO{sub 2} Power Cycle to Various Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this paper, various applications of supercritical CO{sub 2} power cycle to nuclear systems will be presented and summarized. The S-CO{sub 2} cycle can achieve relatively high efficiency within the mild turbine inlet temperature range (450 - 850 .deg. C) compared with other power conversion systems. The main benefit of the S-CO{sub 2} cycle is the small size of the overall system and its application includes not only the next generation nuclear reactors but also conventional water-cooled reactors too. Various layouts were compared and the recompression cycle shows the best efficiency. The layout is suitable for application to advanced nuclear reactor systems. To evaluate the S-CO{sub 2} cycle performance, various countries constructed and demonstrated S-CO{sub 2} integral system test loops and similar research works are ongoing in Korea as well. However, to evaluate the commercial S-CO{sub 2} power systems, development of a large scale (> 10 MW) prototype S-CO{sub 2} system is necessary.

  11. Market-Based and System-Wide Fuel Cycle Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul Philip Hood [Univ. of Wisconsin, Madison, WI (United States); Scopatz, Anthony [Univ. of South Carolina, Columbia, SC (United States); Gidden, Matthew [Univ. of Wisconsin, Madison, WI (United States); Carlsen, Robert [Univ. of Wisconsin, Madison, WI (United States); Mouginot, Baptiste [Univ. of Wisconsin, Madison, WI (United States); Flanagan, Robert [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-13

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  12. Market-Based and System-Wide Fuel Cycle Optimization

    International Nuclear Information System (INIS)

    Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew; Carlsen, Robert; Mouginot, Baptiste; Flanagan, Robert

    2017-01-01

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  13. Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Taieb, Ahmed; Mejbri, Khalifa; Bellagi, Ahmed

    2016-01-01

    This paper proposes an advanced simulation model for a Diffusion-Absorption Refrigerator DAR using ammonia/water/hydrogen as working fluids, and developed to describe and predict the behavior of the device under different operating conditions. The system is supposed to be cooled with ambient air and actuated with solar hot water available at 200 °C. The DAR is first simulated for a set of basic data; a COP of 0.126 associated to a cooling capacity of 22.3 W are found. Basing on the obtained results an exergetic analysis of the system is performed which shows that the rectifier contribution to the exergy destruction is the most important with 34%. In a second step, the thermal capacities of all heat exchangers of the DAR are evaluated and the mathematical model so modified that the calculated capacities are now used as input data. A parametric study of the cycle is then carried out. The COP is found to exhibit a maximum when the heat supplied to the boiler or to the bubble pump is varied. Similar behavior is observed for variable submergence ratio. It is further noted that the COP is very sensitive to the ambient air temperature and to the absorber efficiency. - Highlights: • A detailed model of a Diffusion Absorption is developed and simulated. • Irreversibility of each component of the cycle is examined. • A modified model based on thermal capacity of components of the DAR is elaborated. • System performance is calculated over a series of practical operating conditions.

  14. Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water–LiBr absorption refrigeration system

    International Nuclear Information System (INIS)

    Talukdar, K.; Gogoi, T.K.

    2016-01-01

    Highlights: • A combined vapor power and double effect water–LiBr absorption refrigeration system is proposed. • The flue gas of the power cycle boiler is the heat source for the double effect refrigeration system. • Energy and exergy analyses are performed to evaluate performance of the combined system. • Effect of high pressure generator temperature on combined system performance is highlighted. • Comparison is provided with a single effect absorption system integrated combined system. - Abstract: A combined vapor power cycle (PC) and double effect water–LiBr absorption refrigeration system (ARS) is proposed in this study. The boiler leaving flue gas of the PC is the heat source for the high pressure generator (HPG) of the double effect ARS. Exergy analysis of the proposed system is performed to show the performance variation of both the topping PC and the bottoming ARS with changing HPG temperature from 120 °C to 150 °C. Further the performance of double effect ARS integrated combined power and cooling system is compared with a similar system integrated with a single effect ARS. HPG temperature of the double effect ARS and generator temperature of the single effect ARS are considered as 120 °C and 80 °C respectively. Results show that the power and efficiency of the topping PC decreases with HPG temperature due to reduction in steam generation rate in the boiler. COP and exergy efficiency of the double effect ARS also reduces with increasing HPG temperature. The irreversible losses in the PC components decrease while the total irreversibility of the combined power and cooling system increases with HPG temperature due to increase in exergy loss with the HPG leaving flue gas and irreversibility of the ARS components. PC performance does not vary much due to replacement of the double effect ARS with the single effect ARS, however higher COP and exergy efficiency of the double effect system are achieved with much lower irreversible losses in the

  15. V.S.O.P.-computer code system for reactor physics and fuel cycle simulation

    International Nuclear Information System (INIS)

    Teuchert, E.; Hansen, U.; Haas, K.A.

    1980-03-01

    V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de

  16. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  17. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  18. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Jian; Tian, Hua; Liang, Xingyu; Wei, Haiqiao

    2012-01-01

    The paper analyzes the combined TEG-ORC (thermoelectric generator and organic rankine cycle) used in exhaust heat recovery of ICE (internal combustion engine) theoretically. A theoretical model is proposed to calculate the optimal parameters of the bottoming cycle based on thermodynamic theory when net output power and volumetric expansion ratio are selected as objective functions, which affect system performance and size. The effects of relative TEG flow direction, TEG scale, highest temperature, condensation temperature, evaporator pressure and efficiency of IHE (internal heat exchanger) on system performance are investigated. R123 is chosen among the fluids whose decomposition temperature exceeds 600 K to avoid fluid resolving and resulting in wet stroke when expansion process ends. The thermodynamic irreversibility that occurs in evaporator, turbine, IHE, condenser, pump and TEG is revealed at target working areas. The results indicate a significant increase of system performance when TEG and IHE are combined with ORC bottoming cycle. It is also suggested that TEG-ORC system is suitable to recovering waste heat from engines, because TEG can extend the temperature range of heat source and thereby improve the security and fuel economy of engines. -- Highlights: ► Development of a TEG-ORC system using R123 as working fluid for WHR of engines. ► Performance of the developed cycle was investigated theoretically. ► Optimization of configurations and parameters can be obtained. ► Irreversibility in the evaporator, turbine, IHE, condenser, pump and TEG is revealed. ► Optimal net power and indicated efficiency is 27 kW and 45.7%, respectively.

  19. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  20. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  1. Analysis of Availability of Longwall-Shearer Based On Its Working Cycle

    Science.gov (United States)

    Brodny, Jaroslaw; Tutak, Magdalena

    2017-12-01

    Effective use of any type of devices, particularly machines has very significant meaning for mining enterprises. High costs of their purchase and tenancy cause that these enterprises tend to the best use of own technical potential. However, characteristics of mining production causes that this process not always proceeds without interferences. Practical experiences show that determination of objective measure of utilization of machine in mining company is not simple. In the paper methodology allowing to solve this problem is presented. Longwall-shearer, as the most important machine between longwall mechanical complex. Also it was assumed that the most significant meaning for determination of effectiveness of longwall-shearer has its availability, i.e. its effective time of work related to standard time. Such an approach is conforming to OEE model. However, specification of mining branch causes that determined availability do not give actual state of longwall-shearer’s operation. Therefore, this availability was related to the operation cycle of longwall-shearer. In presented example a longwall-shearer works in unidirectional cycle of mining. It causes that in one direction longwall-shearer mines, moving with operating velocity, and in other direction it does not mine and moves with manoeuvre velocity. Such defined working cycle became a base for determinate availability of longwall-shearer. Using indications of industrial automatic system for each of working shift there were determined number of cycles of longwall-shearer and availability of each one. Accepted of such way of determination of availability of longwall-shearer enabled to perform accurate analysis of losses of its availability. These losses result from non-planned shutdowns of longwall-shearer. Thanks to performed analysis based on the operating cycle of longwall-shearer time of its standstill for particular phase of cycle were determined. Presented methodology of determination of longwall

  2. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  4. Evaluation methodology and prospective introduction scenarios of FR cycle systems

    International Nuclear Information System (INIS)

    Fujii, Sumio; Katoh, Atsushi; Sato, Kazujiro

    2003-01-01

    The 21st century society will be facing growing demand of energy, global environmental issues and concerns about fossil fuel exhaustion. In this society, it is essential to seek for a sustainable energy system to solve these energy-related concerns. In order to find ways for solving these problems, 'Feasibility Study on Commercialized FR Cycle System' was launched in 1999 as a joint research project of JNC, electric utilities, JAERI, CRIEPI etc. This project aims to build promising FR cycle technologies for the 21st century. Now, we are in the second phase (JFY 2001-2005) of this project. At the end of the second phase, we will propose promising concepts through applying innovative technologies. We started this Feasibility Study with defining the development target, which ended in five items; safety, economy, environmental burden, resource utilization and nuclear non-proliferation. These items should also serve as basic viewpoints to evaluate achievements of the study. This paper describes how we evaluate FR cycle options to come up with the final promising candidates. This paper also describes a prospective scenario to introduce FR cycle system, which shows how the FR cycle will be replacing existing LWRs by using limited natural uranium resource and spent fuels. (author)

  5. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  6. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  7. Integrating Life-cycle Assessment into Transport Cost-benefit Analysis

    DEFF Research Database (Denmark)

    Manzo, Stefano; Salling, Kim Bang

    2016-01-01

    Traditional transport Cost-Benefit Analysis (CBA) commonly ignores the indirect environmental impacts of an infrastructure project deriving from the overall life-cycle of the different project components. Such indirect impacts are instead of key importance in order to assess the long......-term sustainability of a transport infrastructure project. In the present study we suggest to overcome this limit by combining a conventional life-cycle assessment approach with standard transport cost-benefit analysis. The suggested methodology is tested upon a case study project related to the construction of a new...... fixed link across the Roskilde fjord in Frederikssund (Denmark). The results are then compared with those from a standard CBA framework. The analysis shows that indirect environmental impacts represent a relevant share of the estimated costs of the project, clearly affecting the final project evaluation...

  8. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  9. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  10. Current status of feasibility studies on commercialized fuel cycle system for Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ojima, Hisao; Nagaoki, Yoshihiro

    2000-01-01

    A 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' is underway at the Japan Nuclear Cycle Development Institute (JNC). The study will select the promising concepts with their R and D tasks in order to commercialize the fast breeder reactor (FBR) cycle system. The feasibility studies (F/S) have to present surveyed and screened various relevant technologies, and defined the design requirement of the commercialized fuel cycle system for FBR. The promising technical options are being evaluated and conceptual designs are being examined. At the end of JFY2000, several candidate concepts of the commercialized FBR cycle system will be proposed. (author)

  11. A synthesis/design optimization algorithm for Rankine cycle based energy systems

    International Nuclear Information System (INIS)

    Toffolo, Andrea

    2014-01-01

    The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case

  12. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  13. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  14. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    Science.gov (United States)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test

  15. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  16. Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models : a critical review

    NARCIS (Netherlands)

    Baustert, P.M.; Benetto, E.

    2017-01-01

    The evolution of life cycle assessment (LCA) from a merely comparative tool for the assessment of products to a policy analysis tool proceeds by incorporating increasingly complex modelling approaches. In more recent studies of complex systems, such as the agriculture sector or mobility, agent-based

  17. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  18. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  19. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  20. Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Salek, Farhad; Moghaddam, Alireza Naghavi; Naserian, Mohammad Mahdi

    2017-01-01

    Highlights: • Coupling ORC and Ammonia absorption cycles with diesel engine to recover energy. • By using designed bottoming system, recovered diesel engine energy is about 10%. • By using designed bottoming system, engine efficiency will grow about 4.65%. - Abstract: In this paper, Rankine cycle and Ammonia absorption cycle are coupled with Diesel engine to recover the energy of exhaust gases. The novelty of this paper is the use of ammonia absorption refrigeration cycle bottoming Rankine cycle which coupled with diesel engine to produce more power. Bottoming system converts engine exhaust thermal energy to cooling and mechanical energy. Energy transfer process has been done by two shell and tube heat exchangers. Simulation processes have been done by programming mathematic models of cycles in EES Program. Based on results, recovered energy varies with diesel engine load. For the particular load case of current research, the use of two heat exchangers causes 0.5% decrement of engine mechanical power. However, the recovered energy is about 10% of engine mechanical power.

  1. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy

  2. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    Science.gov (United States)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  3. Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Lee, Jae Wan; Park, Warn Gyu; Choi, Hwan Jong; Lee, Sang Hun; Oh, Sai Kee

    2015-01-01

    Cascade cycle is widely applied to heat pumps operating at low ambient temperature to overcome problems such as low heating capacity and Coefficient of performance (COP) deterioration A number of researches have been conducted on cascade cycle heat pumps, but most of those studies were focused on system optimization to determine optimal intermediate temperature in air-to-water heat pumps. However, experimental optimization in regard to air and water heating simultaneously using a cascade cycle has been an understudied area. Therefore, we focused on experimental analysis for a cascade system with Variable refrigerant flow (VRF) heat pumps. Experiments were conducted under a variety of operating conditions, such as ambient and water inlet temperature. COP increased up to 16% when water inlet temperature decreased. COP of VRF heat pumps with cascade cycle is three-times higher compared with conventional boilers as well as 17% higher compared to single heat pumps

  4. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    the heat transfer to the water splitting cycle. A preliminary exergy analysis of the proposed heat pump is conducted and a coefficient of performance (COP), taking into account a decrease in electricity generation in the nuclear power generation cycle, is evaluated. The calculated per unit mass flow heat supply rate to the thermochemical cycle increases by a factor of 3 to 5 depending on the steam temperature. A combined system comprising a SCW nuclear plant, a chemical heat pump and a lower temperature UT-3 thermochemical water splitting cycle is presented. Despite a decrease in electricity generation, the calculated exergy efficiency of hydrogen production in the considered system appears to be competitive with that for low temperature water electrolysis

  5. Life cycle analysis on carbon emissions from power generation – The nuclear energy example

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.; Su, Bin; Bauly, John

    2014-01-01

    Highlights: • This paper discusses about a methodology on the life cycle analysis of power generation using nuclear as an example. • The methodology encompasses generic system, input–output, and boundaries definitions. • The boundaries facilitate the use of Kaya Identity and decomposition technique to identify carbon emission streams. - Abstract: A common value of carbon emission factor, t-CO 2 /GWh, in nuclear power generation reported in the literature varies by more than a factor of 100. Such a variation suggests a margin of uncertainty and reliability. In this study, we employ a bottom-up approach to better define the system, its input and output, and boundaries. This approach offers improved granularity at the process level and consistency in the results. Based on this approach, we have developed a methodology to enable comparison of carbon emissions from nuclear power generation. The proposed methodology employs the principle of energy balance on a defined power generation system. The resulting system boundary facilitates the use of the “Kaya Identity” and the decomposition technique to identify the carbon emission streams. Using nuclear power as a case study, we obtained a carbon emission factor of 22.80 t-CO 2 /GWh, which falls to within 2.5% of the median of globally reported LCA results. We demonstrate that the resulting methodology could be used as a generic tool for life cycle analysis of carbon emissions from other power generation technologies and systems

  6. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  7. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jr, A S

    1969-04-15

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency.

  8. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    International Nuclear Information System (INIS)

    Roberts, A.S. Jr.

    1969-04-01

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency

  9. Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture

    International Nuclear Information System (INIS)

    Yang, Xingyang; Zhao, Li; Li, Hailong; Yu, Zhixin

    2015-01-01

    Highlights: • A combined power and refrigeration cycle using zeotropic mixture is analyzed. • The cycle performances with different mixture compositions are compared. • Both exergy and parametric analysis of the combined cycle are conducted. - Abstract: A theoretical study on a combined power and ejector refrigeration cycle using zeotropic mixture isobutane/pentane is carried out. The performances of different mixture compositions are compared. An exergy analysis is conducted for the cycle. The result reveals that most exergy destruction happens in the ejector, where more than 40% exergy is lost. The heat exchange in generator causes the second largest exergy loss, larger than 28%. As the mass fraction of isobutane changes ranges from 100% to 0%, the relative exergy destruction of each component is also changing. And mixture isobutane/pentane (50/50) has the maximum exergy efficiency of 7.83%. The parametric analysis of generator temperature, condenser temperature and evaporator temperature for all the mixtures shows that, all these three thermodynamic parameters have a strong effect on the cycle performance.

  10. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  11. Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia

    Science.gov (United States)

    Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.

    2018-03-01

    Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.

  12. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  13. Prospects and progress status of the Advanced Fuel Cycle System in Japan

    International Nuclear Information System (INIS)

    Namba, T.; Funasaka, H.; Nagaoki, Y.; Sagayama, Y.

    2004-01-01

    Feasibility study on commercialized FR cycle systems has been carried out by a joint team established within JNC with the participation of all parties concerned in Japan since July, 1999. This research program aims to clarify various perspectives for commercializing the FR cycle. This also will suggest development strategies that correspond flexibly to diverse future social needs in the 21. century. After the Phase I, Phase II stage started from April, 2001 for five years. In this stage the highly feasible candidate concepts for FR cycle systems screened in the previous step have been intensively studied by both design study and elemental process tests. In this paper, results of mid-term evaluation of these concepts for FR cycle systems will be summarized

  14. Prospects and progress status of the Advanced Fuel Cycle System in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Namba, T.; Funasaka, H.; Nagaoki, Y.; Sagayama, Y

    2004-07-01

    Feasibility study on commercialized FR cycle systems has been carried out by a joint team established within JNC with the participation of all parties concerned in Japan since July, 1999. This research program aims to clarify various perspectives for commercializing the FR cycle. This also will suggest development strategies that correspond flexibly to diverse future social needs in the 21. century. After the Phase I, Phase II stage started from April, 2001 for five years. In this stage the highly feasible candidate concepts for FR cycle systems screened in the previous step have been intensively studied by both design study and elemental process tests. In this paper, results of mid-term evaluation of these concepts for FR cycle systems will be summarized.

  15. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  16. Promising fast reactor systems in the feasibility study on commercialized FR cycle system

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kotake, S.; Enuma, Y.; Sagayama, Y.; Nishikawa, A.; Ando, M.

    2005-01-01

    The Feasibility Study on Commercialized Fast Reactor (FR) Cycle Systems is under way in order to propose prominent FR cycle systems that will respond to the diverse needs of society in the future. The design studies on various FR system concepts have been achieved and then the evaluations of potential to achieve the development targets have been carried out. Crucial issues have been found out for each FR system concept and their development plans for the key technologies are summarized as the roadmap. The characteristics and the differences in performances have been investigated. The crucial issues and the development periods have been clarified. Further investigation is now in progress. The promising concept will be proposed based on result of comparative evaluation at the end of the Phase II study. (authors)

  17. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  19. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  20. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  1. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  2. ANALYSIS OF THE BEEF LIFE CYCLE OF CHICHÍ PADRÓN SLAUGHTERHOUSE

    Directory of Open Access Journals (Sweden)

    Yulexis Meneses Linares

    2016-07-01

    Full Text Available This work combines the methodologies Analysis of the Life Cycle and Analysis of Hazards and Critical Control Points. In addition, we incorporate the category of impact innocuousness food assisted by the software Sima Pro 7.3 with the ReCipe method. We take as case of study the obtaining of beef bones in the slaughterhouse Chichí Padrón of Santa Clara city. As a result, there are critical points related with the innocuousness bovine livestock, the remove of leather and storage and the category of eutrophication of the waters as the most affected, which is why some minimization techniques of liquid residuals and a system of treatment of these effluents are settled down, this last one is economically analyzed demonstrating its feasibility.

  3. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  4. A Life-Cycle Analysis of Social Security with Housing

    OpenAIRE

    Chen, Kaiji

    2009-01-01

    This paper incorporates two features of housing in a life-cycle analysis of social security: housing as a durable good and housing market frictions. We find that with housing as a durable good unfunded social security substantially crowds out housing consumption throughout the life cycle. By contrast, aggregate non-durable consumption is higher when social security is present, although it is postponed until late in life. Moreover, in the presence of housing market frictions, social security l...

  5. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  6. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  7. Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei.

    Science.gov (United States)

    Crozier, Thomas W M; Tinti, Michele; Wheeler, Richard J; Ly, Tony; Ferguson, Michael A J; Lamond, Angus I

    2018-06-01

    We describe a single-step centrifugal elutriation method to produce synchronous Gap1 (G1)-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labeling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741 (https://www.ebi.ac.uk/pride/archive/). © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Applications and control of air conditioning systems using rapid cycling to modulate capacity

    Energy Technology Data Exchange (ETDEWEB)

    Poort, M.J.; Bullard, C.W. [Department of Mechanical and Industrial Engineering, Air Conditioning and Refrigeration Center, University of Illinois, 1206 W. Green St., Urbana, IL 61801 (United States)

    2006-08-15

    Rapid cycling the compressor of an air conditioning or refrigeration system can be used to modulate capacity, thus offering an alternative to a variable speed compressor. This paper explores design tradeoffs to optimize rapid cycling performance based on experimental results using two different evaporators and changing other components of an air conditioning system. Rapid cycling has inherent compressor lift penalties associated with larger mass flow rates, which need to be minimized. Preventing dryout (superheating) in the evaporator during the off cycle, a major penalty as cycles are lengthened, is also important. Evaporator dryout is minimized by increasing the refrigerant side area and reducing off cycle drainage. Combining a flash gas bypass with a suction line heat exchanger was found to maximize performance during the off cycle while allowing increased cycle lengths without incurring major penalties. (author)

  9. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  10. Investigation into life-cycle costing as a comparative analysis approach of energy systems

    CSIR Research Space (South Africa)

    Mokheseng, B

    2010-08-31

    Full Text Available selection based on a simple payback period. Due to life-cycle stages, often the real costs of the project or equipment, either to the decision maker or the cost bearer, are not reflected by the upfront capital costs. In this paper, the life-cycle costing...

  11. Analytical and experimental investigation of closed-cycle sorption cooling systems

    Science.gov (United States)

    Liu, Lianquan

    1992-01-01

    The first part of the present thesis concerns the Coefficient of Performance (COP) of two types of closed-cycle sorption cooling systems: the Single Effect Liquid (SEL) absorption system and the Regenerative Solid (RS) adsorption system. When specific cycle configurations are considered, the COP is always less than that allowed by the second law. The potential of the two systems to approach the second law limit is considered in this work. The analysis shows that COP of a SEL system using LiBr-H2O is not limited by one, as believed before, and that the COP of a RS cooling system using zeolite-water is considerably larger than that of the SEL system. This is due to recovery of the heat of adsorption which is made possible by capturing the thermal wave in the solid adsorbent. In the second part, a one dimensional model has been developed for a real RS cooling system featured by finite heat transfer coefficients. The problem is solved numerically to yield the temperature and uptake profiles, COP, and cooling capacity and cooling rates. The effects of various design and operating parameters on system performance have been investigated by using the model. The convective heat transfer coefficient at the inner wall of the fluid channel passing through the zeolite columns, the flow rate of the heat transfer fluid, the condenser and evaporator temperature are identified as the most significant factors. A new correlation of adsorption equilibrium has been derived in this thesis. The derivation is based on established thermodynamic relationships and is shown to be able to well represent the data of three adsorption pairs widely used in sorption cooling applications: zeolite-water, silica gel-water and activated carbon-methanol. Finally, in the experimental part of the present work a test set-up of a zeolite-water heat and mass regenerator was designed, instrumented and built. Temperature profiles at various operating conditions were measured. The data of a 'single blow' mode

  12. US activities on fuel cycle transition scenarios

    International Nuclear Information System (INIS)

    McCarthy, Kathryn A.

    2010-01-01

    Countries with active nuclear programmes typically have as a goal transition to a closed fuel cycle. A closed fuel cycle enables long-term sustainability, provides waste management benefits, and as a system, can reduce overall proliferation risk. This transition will take many decades, thus the study of the actual transition is an important topic. The United States systems analysis activities as part of the Advanced Fuel Cycle Initiative (AFCI) provide the integrating analyses for the fuel cycle programme, and recent activities are focusing on transition options, and specifically, the dynamics of the transition. The United States is still studying both one-tier (recycling in fast reactors only) and two-tier (recycling in both thermal and fast reactors) systems, and the systems analysis activities provide insight into the trade-offs associated with the systems, and variations of each. Most recently, a series of sensitivity studies have been completed which provide insight into the behaviour of a transition system. These studies evaluate the impact of changing various parameters in the fuel cycle system, and provide insight into how the system will change as parameters change. Because these deployment analyses look at the development of nuclear energy systems over a long period of time, it is very unlikely that we will accurately predict the system's characteristics over time (for example, growth in electricity demand, how quickly nuclear reactors will be deployed, how many fast rectors versus thermal reactors, the conversion ratio of the fast reactors, etc.). How the system will develop will depend on a variety of factors, ranging from political to technical, rational to irrational. Because we cannot accurately predict the future, we need to understand how things could change, and what impact those changes have. Analyses of future fuel cycle systems require a number of assumptions. These include growth rates for nuclear energy, general architecture of fuel cycle

  13. Parametric analysis and optimization for a combined power and refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Gao Lin

    2008-01-01

    A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia-water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition

  14. SALT [System Analysis Language Translater]: A steady state and dynamic systems code

    International Nuclear Information System (INIS)

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs

  15. Life-cycle cost analysis for Foreign Research Reactor, Spent Nuclear Fuel disposal

    International Nuclear Information System (INIS)

    Parks, P.B.; Geddes, R.L.; Jackson, W.N.; McDonell, W.R.; Dupont, M.E.; McWhorter, D.L.; Liutkus, A.S.

    1994-01-01

    DOE-EM-37 requested a life-cycle cost analysis for disposal of the Foreign Research Reactor-Spent Nuclear Fuel (FRR-SNF). The analysis was to address life-cycle and unit costs for a range of FRR-SNF elements from those currently available (6,000 elements) to the (then) bounding case (15,000 elements). Five alternative disposition strategies were devised for the FRR-SNF elements. Life-cycle costs were computed for each strategy. In addition, the five strategies were evaluated in terms of six societal and technical goals. This report summarizes the study that was originally documented to DOE-EM

  16. Overview of NASA Langley's Systems Analysis Capabilities

    Science.gov (United States)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  17. Validation and application of a physics database for fast reactor fuel cycle analysis

    International Nuclear Information System (INIS)

    McKnight, R.D.; Stillman, J.A.; Toppel, B.J.; Khalil, H.S.

    1994-01-01

    An effort has been made to automate the execution of fast reactor fuel cycle analysis, using EBR-II as a demonstration vehicle, and to validate the analysis results for application to the IFR closed fuel cycle demonstration at EBR-II and its fuel cycle facility. This effort has included: (1) the application of the standard ANL depletion codes to perform core-follow analyses for an extensive series of EBR-II runs, (2) incorporation of the EBR-II data into a physics database, (3) development and verification of software to update, maintain and verify the database files, (4) development and validation of fuel cycle models and methodology, (5) development and verification of software which utilizes this physics database to automate the application of the ANL depletion codes, methods and models to perform the core-follow analysis, and (6) validation studies of the ANL depletion codes and of their application in support of anticipated near-term operations in EBR-II and the Fuel Cycle Facility. Results of the validation tests indicate the physics database and associated analysis codes and procedures are adequate to predict required quantities in support of early phases of FCF operations

  18. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  19. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  20. Clinical and economic analysis of rescue intracytoplasmic sperm injection cycles.

    Science.gov (United States)

    Shalom-paz, Einat; Alshalati, Jana; Shehata, Fady; Jimenez, Luis; Son, Weon-Young; Holzer, Hananel; Tan, Seang Lin; Almog, Benny

    2011-12-01

    To identify clinical and embryological factors that may predict success in rescue intracytoplasmic sperm injection (ICSI) cycles (after total fertilization failure has occurred) and to evaluate the cost effectiveness of rescue ICSI strategy. Additionally, follow-up of 20 rescue ICSI pregnancies is reported. Retrospective analysis of total fertilization failure cycles. University-based tertiary medical center. In total, 92 patients who had undergone conventional in-vitro fertilization (IVF) cycles with total fertilization failure were included. The patients were divided into two subgroups: those who conceived through rescue ICSI and those who did not. The pregnant members of the rescue ICSI subgroup were found to be significantly younger (32.9 ± 4.2 vs. 36.3 ± 4.5, respectively, p = 0.0035,) and to have better-quality embryos than those who did not conceive (cumulative embryo score: 38.3 ± 20.4 vs. 29.3 ± 14.7, p = 0.025). Cost effectiveness analysis showed 25% reduction in the cost per live birth when rescue ICSI is compared to cycle cancellation approach. The pregnancies follow-up did not show adverse perinatal outcome. Rescue ICSI is an option for salvaging IVF cycles complicated by total fertilization failure. Success in rescue ICSI was found to be associated with younger age and higher quality of embryos. Furthermore, the cost effectiveness of rescue ICSI in terms of total fertilization failure was found to be worthwhile.

  1. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-02-15

    The thermochemical Copper-Chlorine (Cu-Cl) cycle is an emerging new method of nuclear-based hydrogen production. In the process, water is decomposed into hydrogen and oxygen through several physical and chemical processes. In this paper, a Distributed Control System (DCS) is designed for the thermochemical Cu-Cl cycle. The architecture and the communication networks of the DCS are discussed. Reliability of the DCS is assessed using fault trees. In the assessment, the impact of the malfunction of the actuators, sensors, controllers and communication networks on the overall system reliability is investigated. This provides key information for the selection of control system components, and determination of their inspection frequency and maintenance strategy. The hydrogen reactor unit, which is one of the major components in the thermochemical Cu-Cl cycle, is used to demonstrate the detailed design and analysis. (author)

  2. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    Science.gov (United States)

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  3. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  4. Nuclear fusion systems analysis research. FY 1975 annual report, 1 July 1974--30 June 1975

    International Nuclear Information System (INIS)

    Weatherwax, R.K.

    1975-01-01

    This report summarizes research conducted during FY 1975 on the parametric systems analysis of fusion central power stations. As described in the report the methodology being pursued provides for a phased analysis starting with simple ''nominal'' parameters and associated computer codes and progressing to more complex functional models and then to physically based mathematical models for the systems of major significance in future power station viability. The nominal parameter analysis for preliminary screening only derives from consideration of extant reactor point designs and defines a nominal 5000 MWt reactor with either a 900 or 1250 K peak blanket coolant temperature. Functionalized performance and cost models are described for helium Brayton cycle, steam Rankine cycle and binary cycle electric power generation systems

  5. Nuclear fusion systems analysis research. FY 1975 annual report, 1 July 1974--30 June 1975

    Energy Technology Data Exchange (ETDEWEB)

    Weatherwax, R.K. (ed.)

    1975-12-31

    This report summarizes research conducted during FY 1975 on the parametric systems analysis of fusion central power stations. As described in the report the methodology being pursued provides for a phased analysis starting with simple ''nominal'' parameters and associated computer codes and progressing to more complex functional models and then to physically based mathematical models for the systems of major significance in future power station viability. The nominal parameter analysis for preliminary screening only derives from consideration of extant reactor point designs and defines a nominal 5000 MWt reactor with either a 900 or 1250 K peak blanket coolant temperature. Functionalized performance and cost models are described for helium Brayton cycle, steam Rankine cycle and binary cycle electric power generation systems.

  6. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  7. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    Science.gov (United States)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur

  8. Synthesis and analysis of a closed cycle methane-fueled marine energy process

    International Nuclear Information System (INIS)

    Teich, C.I.

    1983-01-01

    A marine energy system has been synthesized from state-of-the-art technology to convert nuclear derived electricity into liquefied methane. In the first part of the process, the on-board process, liquid methane is burned in a combined gas turbine-steam turbine system to provide propulsion power and the carbon dioxide created during combustion recovered. In the second part of the process, the fuel regeneration process, the methane is regenerated in a centralized land-based facility by the reaction of the recovered carbon dioxide with hydrogen obtained from nuclear-powered electrolysis of water. The system was analyzed by combining thermodynamic available energy analysis and an approximate preliminary design. The available energy analysis of the combined system established the thermodynamic feasibility of the methane-carbon dioxide cycle and resulted in various process improvements because of the inefficiencies disclosed by the analysis. The more critical on-board process was analyzed and developed further by a capital cost optimization and ranking alternate process options by their available energy consumptions. The optimal on-board process, whose capital cost is 16% less than the preliminary design, has an effectiveness of 47% and the fuel regeneration process an effectiveness of 56%. It was also found that the process cost was proportional to the horsepower raised to the seven-tenths power

  9. Investigation of CO{sub 2} Recovery System Design in Supercritical Carbon Dioxide Power Cycle for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    economics of the system, designing a process for CO{sub 2} recovery to maintain the system mass at constant is important because this is directly connected to the cycle efficiency. Calculating the leakage amount per day through a turbo-machinery and the ratio of leaked to total CO{sub 2} mass will be conducted for accurate system design and analysis.

  10. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Akhil Kadiyala

    2016-06-01

    Full Text Available This study evaluated the life cycle greenhouse gas (GHG emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh. A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity” was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e., the facility type (impoundment (I, diversion (D, pumped storage (PS, miscellaneous hydropower works (MHPW and the electric power generation capacity (micro (µ, small (S, large (L. The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24, I-L (N = 8, D-µ (N = 3, D-S (N = 133, D-L (N = 3, PS-L (N = 3, MHPW-µ (N = 3, and MHPW-S (N = 1 hydroelectricity generation systems are 21.05 gCO2e/kWh, 40.63 gCO2e/kWh, 47.82 gCO2e/kWh, 27.18 gCO2e/kWh, 3.45 gCO2e/kWh, 256.63 gCO2e/kWh, 19.73 gCO2e/kWh, and 2.78 gCO2e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases.

  11. METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

    Directory of Open Access Journals (Sweden)

    MARKUS GÖRING

    2013-10-01

    On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  12. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Science.gov (United States)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.

  13. Application of structured analysis to a telerobotic system

    Science.gov (United States)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  14. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  15. Residual energy applications program systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  16. Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships

    International Nuclear Information System (INIS)

    Táboas, Francisco; Bourouis, Mahmoud; Vallès, Manel

    2014-01-01

    In this work, the use of waste heat energy of jacket water in diesel engines of fishing ships was analysed for use as a heat source for absorption refrigeration systems. The thermodynamic simulation of an absorption refrigeration cycle with three different working fluid mixtures that use ammonia as a refrigerant was carried out. This analysis was assessed in terms of the cooling demand and cycle performance as a function of the evaporator, condenser and generator temperatures. Moreover, the need for rectifying the vapour stream leaving the generator was analysed together with the drag of the fraction of non-evaporated liquid to the absorber. The results show that the NH 3 /(LiNO 3  + H 2 O) and NH 3 /LiNO 3 fluid mixtures have higher values of COP as compared to NH 3 /H 2 O fluid mixture, the differences being more pronounced at low generation temperatures. If the activation temperature is set to 85 °C, the minimum evaporation temperatures that can be achieved are −18.8 °C for the cycle with NH 3 /LiNO 3 , −17.5 °C for the cycle with NH 3 /(LiNO 3  + H 2 O) cycle and −13.7 °C for the NH 3 /H 2 O cycle at a condensing temperature of 25 °C. Also, for the NH 3 /(LiNO 3  + H 2 O) fluid mixture, it has been demonstrated that the absorption refrigeration cycle can be operated without a distillation column and in this case the water content in the refrigerant stream entering the evaporator is less than 1.5% in weight at the operating conditions selected. - Highlights: •Ammonia absorption systems can provide refrigeration necessities for fishing ships. •Absorption refrigeration systems reduce the energy consumption of fishing ships. •The NH 3 /(LiNO 3  + H 2 O) mixture is recommended for absorption refrigeration cycles

  17. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    Johnson, E.R.; Best, R.E.

    2009-01-01

    produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model also included recycle and reuse of extant inventories of spent LWR fuel. The results of the simulations allowed comparisons of the two fuel cycles from the standpoints of cost, non-proliferation, radiological health, wastes generated, and sustainability. Results of the research also provide insights regarding (i) multiple recycling of uranium and plutonium from spent MOX fuel in LWRs, (ii) costs and benefits of reenriching and reusing uranium from spent LWR fuel; (iii) effects of using uranium, plutonium, and minor actinides from LWR spent fuels to produce fuel for FRs; (iv) net rates of consumption (burning) in FRs of actinide elements produced in LWRs, and (v) ependencies of and interactions among the different systems of an advanced nuclear fuel cycle -- and the flows of nuclear materials between these systems.

  18. Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle

    Directory of Open Access Journals (Sweden)

    Barari Bamdad

    2012-01-01

    Full Text Available In this study, time dependent exergy analysis of the Fars Combined Power Plant Cycle has been investigated. Exergy analysis has been used for investigating each part of actual combined cycle by considering irreversibility from Apr 2006 to Oct 2010. Performance analysis has been done for each part by evaluating exergy destruction in each month. By using of exergy analysis, aging of each part has been evaluated respect to time duration. In addition, the rate of lost work for each month has been calculated and variation of this parameter has been considered as a function of aging rate. Finally, effects of exergy destruction of each part have been investigated on exergy destruction of whole cycle. Entire analysis has been done for Unit 3 and 4 of gas turbine cycle which combined by Unit B of steam cycle in Fars Combined Power Plant Cycle located in Fars province in Iran.

  19. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  20. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  1. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  2. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  3. A comparison of nuclear power systems for Brazil using plutonium and binary cycles

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Fernandes, J.E.

    1985-01-01

    Nuclear power systems based on plutonium cycle and binary cycle are compared taking into account natural uranium demand and reactor combination. The systems start with PWR type reactors (U5/U8) and change to systems composed exclusively of FBR type reactors or PWR-FBR symbiotic systems. Four loading modes are considered for the PWR and two for the FBR. The FBR is either a LMFBR loaded with PU/U or a LMFBR loaded the binary way. A linear and a non-linear capacity growth and two different criteria for the FBR introduction are considered. The results show that a 100 GWe permanent system can be established in 50 years in all cases, based on 300000 t of natural uranium and in case of delay in the FBR introduction and if a thermal-fast symbiotic system is chosen, a binary cycle could be more advantageous than a plutonium cycle. (F.E.) [pt

  4. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    Highlights: • A dual loop ORC system is designed for engine waste heat recovery. • The two loops are coupled via a shared heat exchanger. • The influence of the HT loop condensation parameters on the LT loop is evaluated. • Pinch point locations determine the thermal parameters of the LT loop. - Abstract: This paper presents a dual loop Organic Rankine Cycle (ORC) system consisting of a high temperature (HT) loop and a low temperature (LT) loop for engine waste heat recovery. The HT loop recovers the waste heat of the engine exhaust gas, and the LT loop recovers that of the jacket cooling water in addition to the residual heat of the HT loop. The two loops are coupled via a shared heat exchanger, which means that the condenser of the HT loop is the evaporator of the LT loop as well. Cyclohexane, benzene and toluene are selected as the working fluids of the HT loop. Different condensation temperatures of the HT loop are set to maintain the condensation pressure slightly higher than the atmosphere pressure. R123, R236fa and R245fa are chosen for the LT loop. Parametric analysis is conducted to evaluate the influence of the HT loop condensation temperature and the residual heat load on the LT loop. The simulation results reveal that under different condensation conditions of the HT loop, the pinch point of the LT loop appears at different locations, resulting in different evaporation temperatures and other thermal parameters. With cyclohexane for the HT loop and R245fa for the LT loop, the maximum net power output of the dual loop ORC system reaches 111.2 kW. Since the original power output of the engine is 996 kW, the additional power generated by the dual loop ORC system can increase the engine power by 11.2%.

  5. Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol, E-mail: csy@kaeri.re.kr; Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr; Ko, Won Il, E-mail: nwiko@kaeri.re.kr

    2014-10-01

    Highlights: • Dynamic behavior of system costs, both reactor and fuel cycle costs, is analyzed. • Relative economics of once-through and closed fuel cycles is explored. • Probabilistic approaches are adopted for levelized electricity generation costs. • Main cost drivers for cost gaps between once-through and closed cycles are identified. - Abstract: Although no consensus about the best approach to manage spent fuels has been achieved, economics is one of the major criteria for assessing and selecting acceptable management options. This study compares the reactor and fuel cycle costs of the closed system associated with sodium-cooled fast reactors and pyroprocessing versus the once-through system. We specifically investigated the fuel cycle transition cases of the Republic of Korea from 2013 to 2100. The results revealed that the closed system (34.00 mills/kWh as a mean value) could be more expensive than the once-through system (32.75 mills/kWh). In contrast, the once-through fuel cycle costs (8.31 mills/kWh), excluding reactor costs, were projected to be greater than the closed fuel cycle costs (7.77 mills/kWh) because of the increased costs of interim storage estimated by the Korean government and the limited contribution of backend fuel cycle components to the discounted costs. The capital cost of sodium-cooled fast reactor is the largest component contributing to the cost gap between the two systems. Among fuel cycle components, pyroprocessing has the largest uncertainty contribution to the cost gap. We also calculated the breakeven unit costs of SFR capital cost and PWR spent fuel pyroprocessing cost.

  6. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  7. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis

    International Nuclear Information System (INIS)

    Beltrán-Esteve, Mercedes; Reig-Martínez, Ernest; Estruch-Guitart, Vicent

    2017-01-01

    Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' global eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.

  8. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Esteve, Mercedes, E-mail: mercedes.beltran@uv.es [Department of Applied Economics II, University of Valencia (Spain); Reig-Martínez, Ernest [Department of Applied Economics II, University of Valencia, Ivie (Spain); Estruch-Guitart, Vicent [Department of Economy and Social Sciences, Polytechnic University of Valencia (Spain)

    2017-03-15

    Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' global eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.

  9. Economic optimization of the combined cycle integrated with multi-product gasification system

    International Nuclear Information System (INIS)

    Liszka, M.; Ziebik, A.

    2009-01-01

    The system taken into consideration consists of the Corex unit, combined cycle power plant and air separation unit (ASU). The Corex process (trademark of Siemens-VAI) is one of technologies for cokeless hot metal production. Coal is gasified by oxygen in the hot metal environment. The excess gas can be used out of installation. It has been assumed that the Corex export gas is fired in combined cycle. The gas turbine (GT) structure was assumed as a fixed simple cycle while the heat recovery steam generator (HRSG) and steam turbine arrangements are free for optimization. The examples of independent variables selected for optimization are number of HRSG pressure levels, GT pressure ratio, minimal temperature differences in HRSG, flow rate of compressed air form GT compressor to ASU. Finally, 16 independent variables have been qualified for optimization. The synthesis optimization is based on the superstructure method. The economic net present value (NPV) has been chosen as the objective function. All power plant facilities have been modeled on the GateCycle software. The off-design models include, among others, the GT blade cooling and HRSG heat transfer coefficient analyses. Two optimization methods - genetic algorithm and Powells conjugate directions have been coupled in one hybrid procedure. The whole optimization analysis has been repeated several times for different price scenarios on the coal, iron and electricity markets

  10. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  11. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  12. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  13. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    Science.gov (United States)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  14. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    .... The DoD Acquisition Reform Goal 10 required DoD to define requirements and establish an implementation plan for a cost-accounting system that provides routine visibility into weapon system life-cycle...

  15. A full life cycle nuclear knowledge management framework based on digital system

    International Nuclear Information System (INIS)

    Wang, Minglu; Zheng, Mingguang; Tian, Lin; Qiu, Zhongming; Li, Xiaoyan

    2017-01-01

    Highlights: • A full life cycle nuclear power plant knowledge management framework is introduced. • This framework benefits the safe design, construction, operation and maintenance. • This framework enhances safety, economy and reliability of nuclear power plant. - Abstract: The nuclear power plant is highly knowledge-intensive facility. With the rapid advent and development of modern information and communication technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This paper introduces a full cycle nuclear power plant knowledge management framework based on digital system and tries to find solutions to knowledge creation, sharing, transfer, application and further innovation in nuclear industry. This framework utilizes information and digital technology to build top-tier object driven work environment, automatic design and analysis integration platform, digital dynamic performance Verification & Validation (V&V) platform, collaborative manufacture procedure, digital construction platform, online monitoring and configuration management which benefit knowledge management in NPP full life cycle. The suggested framework will strengthen the design basis of the nuclear power plants (NPPs) and will ensure the safety of the NPP design throughout the whole lifetime of the plant.

  16. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  17. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  18. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  19. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  20. Issues in System Boundary Definition for Substance Flow Analysis: The Case of Nitrogen Cycle Management in Catalonia

    Directory of Open Access Journals (Sweden)

    Jordi Bartrola

    2001-01-01

    Full Text Available The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA, which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies.