WorldWideScience

Sample records for cyanobacterial photosystem ii

  1. Organisation on Photosystem I and Photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts

    Czech Academy of Sciences Publication Activity Database

    Gardian, Zdenko; Bumba, Ladislav; Schrofel, A.; Herbstová, Miroslava; Nebesářová, Jana; Vácha, František

    2007-01-01

    Roč. 1767, č. 6 (2007), s. 725-731 ISSN 0005-2728 R&D Projects: GA AV ČR IAA608170603; GA ČR GP310/07/P115; GA ČR GA206/06/0364 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60220518 Keywords : Photosystem I * Photosystem II Subject RIV: BO - Biophysics Impact factor: 3.835, year: 2007

  2. Hole burning study of cyanobacterial Photosystem II complexes differing in the content of small putative chlorophyll-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dedic, R. E-mail: roman@kchf-43.karlov.mff.cuni.cz; Promnares, K.; Psencik, J.; Svoboda, A.; Korinek, M.; Tichy, M.; Komenda, J.; Funk, C.; Hala, J

    2004-05-01

    This contribution presents low-temperature absorption, both broad-band and site-selective excited fluorescence, and persistent hole burning spectra of Photosystem II complexes from the Photosystem I-lacking strains of the cyanobacterium Synechocystis sp. PCC 6803 differing in the content of small putative chlorophyll-binding proteins (Scps). These proteins are homologous to light-harvesting complex of higher plants and may bind pigments. The excited state lifetimes of the complexes were determined from zero-phonon hole widths extrapolated to zero-burning dose. The area and spectral position of a phonon side-band with respect to the zero-phonon hole provided additional information concerning chlorophyll-protein coupling and the Stokes shift. Decrease of three absorption subbands at (670.0, 672.9, and 675.7 nm) in the Photosystem II isolated from the strain lacking ScpC and ScpD is in agreement with a hypothesis about the role of Scps in the chlorophyll binding. In addition, narrowing of the zero-phonon hole in Photosystem II without both Scps indicates slowering of the excitation energy transfer which may be explained by the absence of a protective excitation energy quenching related to the presence of Scps.

  3. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Mickelsen, J.; Tichý, Martin; Prášil, Ondřej; Eichacker, L. A.; Nixon, P. J.

    2008-01-01

    Roč. 283, č. 33 (2008), s. 22390-22399 ISSN 0021-9258 R&D Projects: GA ČR GA206/06/0322; GA AV ČR IAA400200801 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * algae * synechocystis sp. pcc 6803 Subject RIV: EE - Microbiology, Virology Impact factor: 5.520, year: 2008

  5. g-Anisotropy of the S2-state manganese cluster in single crystals of cyanobacterial photosystem II studied by W-band electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Matsuoka, Hideto; Furukawa, Ko; Kato, Tatsuhisa; Mino, Hiroyuki; Shen, Jian-Ren; Kawamori, Asako

    2006-07-06

    The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.

  6. Cyanobacterial Small Chlorophyll-binding Protein ScpD (HliB) Is Located on the Periphery of Photosystem II in the Vicinity of PsbH and CP47 Subunits

    Czech Academy of Sciences Publication Activity Database

    Promnares, Kamoltip; Komenda, Josef; Bumba, Ladislav; Nebesářová, Jana; Vácha, František; Tichý, Martin

    2006-01-01

    Roč. 281, č. 43 (2006), s. 32705-32713 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50510513; CEZ:AV0Z50200510 Keywords : photosystem II * cyanobacteria * electron microscopy Subject RIV: EE - Microbiology, Virology Impact factor: 5.808, year: 2006

  7. Functional architecture of photosystem II supercomplexes

    NARCIS (Netherlands)

    Caffarri, S.; Kouril, R.; Kereiche, S.; Boekema, E.J.; Croce, R.

    2009-01-01

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it

  8. Dynamic quenching in single photosystem II supercomplexes

    NARCIS (Netherlands)

    Gruber, J.M.; Xu, P.; Chmeliov, J.; Kruger, T.P.J.; Alexandre, M.T.A.; Valkunas, L.; Croce, R.; van Grondelle, R.

    2016-01-01

    Photosystem II (PSII) is a huge pigment-protein supercomplex responsible for the primary steps of photosynthesis in green plants. Its light-harvesting antenna exhibits efficient transfer of the absorbed excitation energy to the reaction center and also contains a well-regulated protection mechanism

  9. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl - 2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn 4 CaO 5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  10. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S.

    Science.gov (United States)

    Gerotto, Caterina; Franchin, Cinzia; Arrigoni, Giorgio; Morosinotto, Tomas

    2015-08-01

    Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Applications of Delayed Fluorescence from Photosystem II

    Directory of Open Access Journals (Sweden)

    Ya Guo

    2013-12-01

    Full Text Available While photosystem II (PSII of plants utilizes light for photosynthesis, part of the absorbed energy may be reverted back and dissipated as long-term fluorescence (delayed fluorescence or DF. Because the generation of DF is coupled with the processes of forward photosynthetic activities, DF contains the information about plant physiological states and plant-environment interactions. This makes DF a potentially powerful biosensing mechanism to measure plant photosynthetic activities and environmental conditions. While DF has attracted the interest of many researchers, some aspects of it are still unknown because of the complexity of photosynthetic system. In order to provide a holistic picture about the usefulness of DF, it is meaningful to summarize the research on DF applications. In this short review, available literature on applications of DF from PSII is summarized.

  12. Photoinduced changes in photosystem II pigments

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Atanaska S; Busheva, Mira C; Stoitchkova, Katerina V; Tzonova, Iren K, E-mail: katys@phys.uni-sofia.b

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ss-carotene (ss-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ss-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  13. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf

    NARCIS (Netherlands)

    Wientjes, Emilie; Philippi, John; Borst, Janwillem; Amerongen, van Herbert

    2017-01-01

    Oxygenic photosynthesis is driven by photosystems I (PSI) and II (PSII). In plants the number of chlorophylls of PSI versus PSII is adjusted to the light irradiance spectrum. On a timescale of days, this is regulated at the level of protein concentration. Instead, on a timescale of minutes, it is

  14. A comparison between plant photosystem I and photosystem II architecture and functioning.

    Science.gov (United States)

    Caffarri, Stefano; Tibiletti, Tania; Jennings, Robert C; Santabarbara, Stefano

    2014-01-01

    Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as obtained by structural, biochemical and spectroscopic investigations.

  15. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I

    NARCIS (Netherlands)

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into

  16. Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination

    Directory of Open Access Journals (Sweden)

    Yasusi eYamamoto

    2013-10-01

    Full Text Available In response to excessive light, the thylakoid membranes of higher plant chloroplasts show dynamic changes including the degradation and reassembly of proteins, a change in the distribution of proteins, and large-scale structural changes such as unstacking of the grana. Here, we examined the aggregation of light-harvesting chlorophyll-protein complexes and Photosystem II core subunits of spinach thylakoid membranes under light stress with 77K chlorophyll fluorescence; aggregation of these proteins was found to proceed with increasing light intensity. Measurement of changes in the fluidity of thylakoid membranes with fluorescence polarization of diphenylhexatriene showed that membrane fluidity increased at a light intensity of 500–1,000 µmol photons m-2 s-1, and decreased at very high light intensity (1,500 µmol photons m-2 s-1. The aggregation of light-harvesting complexes at moderately high light intensity is known to be reversible, while that of Photosystem II core subunits at extremely high light intensity is irreversible. It is likely that the reversibility of protein aggregation is closely related to membrane fluidity: increases in fluidity should stimulate reversible protein aggregation, whereas irreversible protein aggregation might decrease membrane fluidity. When spinach leaves were pre-illuminated with moderately high light intensity, the qE component of non-photochemical quenching and the optimum quantum yield of Photosystem II increased, indicating that Photosystem II/ light-harvesting complexes rearranged in the thylakoid membranes to optimize Photosystem II activity. Transmission electron microscopy revealed that the thylakoids underwent partial unstacking under these light stress conditions. Thus, protein aggregation is involved in thylakoid dynamics and regulates photochemical reactions, thereby deciding the fate of Photosystem II.

  17. Functional architecture of higher plant photosystem II supercomplexes

    NARCIS (Netherlands)

    Caffarri, Stefano; Kouril, Roman; Kereiche, Sami; Boekema, Egbert J.; Croce, Roberta; Kereïche, Sami

    2009-01-01

    Photosystem II ( PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it

  18. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  19. Supramolecular organization of photosystem II in green plants

    NARCIS (Netherlands)

    Kouril, Roman; Dekker, Jan P.; Boekema, Egbert J.

    Green plant photosystem II (PSII) is involved in the light reactions of photosynthesis, which take place in the thylakoid membrane of the chloroplast PSII is organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. These supercomplexes are dimeric and

  20. The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria

    Directory of Open Access Journals (Sweden)

    Jackie K. Zorz

    2015-02-01

    Full Text Available Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b6f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b6f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b6f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b6f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain.

  1. Spectral hole burning studies of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hai -Chou [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b559 and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Qy-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of ~1 cm-1/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  2. Functional architecture of higher plant photosystem II supercomplexes

    OpenAIRE

    Caffarri, Stefano; Kouřil, Roman; Kereïche, Sami; Boekema, Egbert J; Croce, Roberta

    2009-01-01

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C2S2M2 supercomplex were isolated. Ch...

  3. A Hard Day's Night: Diatoms continue recycling Photosystem II in the dark

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-11-01

    Full Text Available Marine diatoms are photosynthetic, and thrive in environments where light fluctuates. Like all oxygenic photosynthetic organisms diatoms face a light-dependent inactivation of the Photosystem II complexes that photooxidize water to generate biosynthetic reductant. To maintain photosynthesis this photoinactivation must be countered by slow and metabolically expensive protein turnover, which is light dependent in cyanobacteria and in plants. We tracked daily cycles of the content, synthesis and degradation of Photosystem II, in a small and in a large marine diatom, under low and high growth light levels. We show that, unlike plants, diatoms maintain extensive cycling of Photosystem II proteins even in the dark. Photosystem II protein cycling saturates at low light, and continued cycling in dark periods, using energy from respiration, allows the diatoms to catch up to excess photoinactivation accumulated over the preceding illuminated period. The large diatom suffers only limited photoinactivation of Photosystem II, but cycling of Photosystem II protein exceeds Photosystem II inactivation, so the large diatom recycles functional Photosystem II units before they are inactivated. Through the diel cycle the contents of active Photosystem II centers and Photosystem II proteins change predictably, but are not correlated, generating large changes in the fraction of total PSII that is active at a given time or growth condition. We propose that dark and steady cycling of Photosystem II proteins is driven by the tight integration of chloroplastic and mitochondrial metabolism in diatoms. This ability for baseline, continuous Photosystem II repair could contribute to the success of diatoms in mixed water environments that carry them from illumination to darkness and back.

  4. Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass.

    Science.gov (United States)

    Szewczyk, Sebastian; Giera, Wojciech; D'Haene, Sandrine; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2017-05-01

    Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4-7 and ~21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.

  5. Non-intrusive Assessment of Photosystem II and Photosystem I in Whole Coral Tissues

    Directory of Open Access Journals (Sweden)

    Milán Szabó

    2017-08-01

    Full Text Available Reef building corals (phylum Cnidaria harbor endosymbiotic dinoflagellate algae (genus Symbiodinium that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl fluorescence analyses of Photosystem II (PSII have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700 and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf. Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33°C for ~20 min, the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv/Fm and functional absorption cross-section of PSII (σPSII remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of

  6. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  7. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light.

    Science.gov (United States)

    Solhaug, Knut Asbjørn; Xie, Li; Gauslaa, Yngvar

    2014-08-01

    Photosynthesis was compared in two cyanobacterial lichens (Lobaria hallii and Peltigera praetextata) and two green algal lichens (Lobaria pulmonaria and Peltigera leucophlebia) exposed to red, green or blue light. Cyanolichens had substantially lower photosynthetic CO(2) uptake and O(2) evolution than the green algal lichens in blue light, but slightly higher photosynthesis in red and green light. The effective quantum yield of photosystem (PS) II (Φ(PSII)) decreased with increasing red and green light for all species, but in blue light this response occurred in green algal lichens only. Cyanolichen Φ(PSII) increased with increasing blue light at low irradiances, but decreased at stronger exposures. However, after adding red light the efficiency of blue light for photosynthetic O(2) evolution increased by 2.4 times. Because phycobilisomes associated with PSII have a low blue light absorption, our results are consistent with blue light absorption mainly by Chl in PSI. Thereby, unequal allocation of excitation energy between PSII and PSI results in low cyanolichen photosynthesis under blue light. This is new knowledge in the science of lichenology with important implications for e.g. the reliability of using Chl fluorometers with blue light for cyanolichens. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  9. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows

  10. Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea

    Czech Academy of Sciences Publication Activity Database

    Rathner, A.; Chandra, K.; Rathner, P.; Horničáková, M.; Schlagnitweit, J.; Kohoutová, Jaroslava; Ettrich, Rüdiger; Müller, N.

    2015-01-01

    Roč. 9, č. 2 (2015), s. 341-346 ISSN 1874-2718 Institutional support: RVO:61388971 Keywords : PsbP * Photosystem II * Oxygen evolving complex Subject RIV: EE - Microbiology, Virology Impact factor: 0.687, year: 2015

  11. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts

    NARCIS (Netherlands)

    Boekema, EJ; van Breemen, JFL; van Roon, H; Dekker, JP; Dekker, Jan P.

    2000-01-01

    The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained

  12. Structure, assembly and energy transfer of plant photosystem II supercomplex.

    Science.gov (United States)

    Cao, Peng; Su, Xiaodong; Pan, Xiaowei; Liu, Zhenfeng; Chang, Wenrui; Li, Mei

    2018-03-14

    Around photosystem II (PSII), the peripheral antenna system absorbs sunlight energy and transfers it to the core complex where the water-splitting and oxygen-evolving reaction takes place. The peripheral antennae in plants are composed of various light-harvesting complexes II (LHCII). Recently, the three-dimensional structure of the C 2 S 2 M 2 -type PSII-LHCII supercomplex from Pisum sativum (PsPSII) has been solved at 2.7-Å resolution using the single-particle cryo-electron microscopy method. The large homodimeric supercomplex has a total molecular weight of >1400 kDa. Each monomer has a core complex surrounded by strongly and moderately bound LHCII trimers, as well as CP29, CP26, and CP24 monomers. Here, we review and present a detailed analysis of the structural features of this supramolecular machinery. Specifically, we discuss the structural differences around the oxygen-evolving center of PSII from different species. Furthermore, we summarize the existing knowledge of the structures and locations of peripheral antenna complexes, and dissect the excitation energy transfer pathways from the peripheral antennae to the core complex. This detailed high-resolution structural information provides a solid basis for understanding the functional behavior of plant PSII-LHCII supercomplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Functional architecture of higher plant photosystem II supercomplexes.

    Science.gov (United States)

    Caffarri, Stefano; Kouril, Roman; Kereïche, Sami; Boekema, Egbert J; Croce, Roberta

    2009-10-07

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C(2)S(2)M(2) supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C(2)S(2)M(2) at 12 A resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb-deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non-photochemical quenching.

  14. Ultrafast energy transfer within the photosystem II core complex.

    Science.gov (United States)

    Pan, Jie; Gelzinis, Andrius; Chorošajev, Vladimir; Vengris, Mikas; Senlik, S Seckin; Shen, Jian-Ren; Valkunas, Leonas; Abramavicius, Darius; Ogilvie, Jennifer P

    2017-06-14

    We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.

  15. Photosystem II repair in marine diatoms with contrasting photophysiologies.

    Science.gov (United States)

    Lavaud, Johann; Six, Christophe; Campbell, Douglas A

    2016-02-01

    Skeletonema costatum and Phaeodactylum tricornutum are model marine diatoms with differing strategies for non-photochemical dissipation of excess excitation energy within photosystem II (PSII). We showed that S. costatum, with connectivity across the pigment bed serving PSII, and limited capacity for induction of sustained non-photochemical quenching (NPQ), maintained a large ratio of [PSII(Total)]/[PSII(Active)] to buffer against fluctuations in light intensity. In contrast, P. tricornutum, with a larger capacity to induce sustained NPQ, could maintain a lower [PSII(Total)]/[PSII(Active)]. Induction of NPQ was correlated with an active PSII repair cycle in both species, and inhibition of chloroplastic protein synthesis with lincomycin leads to run away over-excitation of remaining PSII(Active), particularly in S. costatum. We discuss these distinctions in relation to the differing capacities, induction and relaxation rates for NPQ, and as strain adaptations to the differential light regimes of their originating habitats. The present work further confirms the important role for the light-dependent fast regulation of photochemistry by NPQ interacting with PSII repair cycle capacity in the ecophysiology of both pennate and centric diatoms.

  16. A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures.

    Science.gov (United States)

    Palombi, Lorenzo; Cecchi, Giovanna; Lognoli, David; Raimondi, Valentina; Toci, Guido; Agati, Giovanni

    2011-09-01

    A new computational procedure to resolve the contribution of Photosystem I (PSI) and Photosystem II (PSII) to the leaf chlorophyll fluorescence emission spectra at room temperature has been developed. It is based on the Principal Component Analysis (PCA) of the leaf fluorescence emission spectra measured during the OI photochemical phase of fluorescence induction kinetics. During this phase, we can assume that only two spectral components are present, one of which is constant (PSI) and the other variable in intensity (PSII). Application of the PCA method to the measured fluorescence emission spectra of Ficus benjamina L. evidences that the temporal variation in the spectra can be ascribed to a single spectral component (the first principal component extracted by PCA), which can be considered to be a good approximation of the PSII fluorescence emission spectrum. The PSI fluorescence emission spectrum was deduced by difference between measured spectra and the first principal component. A single-band spectrum for the PSI fluorescence emission, peaked at about 735 nm, and a 2-band spectrum with maxima at 685 and 740 nm for the PSII were obtained. A linear combination of only these two spectral shapes produced a good fit for any measured emission spectrum of the leaf under investigation and can be used to obtain the fluorescence emission contributions of photosystems under different conditions. With the use of our approach, the dynamics of energy distribution between the two photosystems, such as state transition, can be monitored in vivo, directly at physiological temperatures. Separation of the PSI and PSII emission components can improve the understanding of the fluorescence signal changes induced by environmental factors or stress conditions on plants.

  17. Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo

    NARCIS (Netherlands)

    Hankamer, B; Nield, J; Zheleva, D; Boekema, E; Jansson, S; Barber, J

    1997-01-01

    Membranes enriched in photosystem II were isolated from spinach and further solubilised using n-octyl beta-D-glucopyranoside (OctGlc) and n-dodecyl beta-D-maltoside (DodGlc(2)). The OctGlc preparation had high rates of oxygen evolution and when subjected to size-exclusion HPLC and sucrose density

  18. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria

    OpenAIRE

    Xu, Hong; Vavilin, Dmitrii; Vermaas, Wim

    2001-01-01

    An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293–4297], chlorophyll b was made but accounted for le...

  19. Electric field effects on red chlorophylls, b-carotenes and P700 in cyanobacterial photosystem I complexes.

    NARCIS (Netherlands)

    Frese, R.N.; Palacios, M.A.; Azzizi, A.; van Stokkum, I.H.M.; Kruip, J.; Rögner, M.; Karapetyan, N.V.; Schlodder, E.; van Grondelle, R.; Dekker, J.P.

    2002-01-01

    We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S.

  20. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II.

    Science.gov (United States)

    Guerra, Federico; Siemers, Malte; Mielack, Christopher; Bondar, Ana-Nicoleta

    2018-03-28

    Photosystem II uses the energy of absorbed light to split water molecules, generating molecular oxygen, electrons and protons. The four protons generated during each reaction cycle are released to the lumen via mechanisms that are poorly understood. Given the complexity of photosystem II, which consists of multiple protein subunits and cofactor molecules and hosts numerous waters, a fundamental issue is finding transient networks of hydrogen bonds that bridge potential proton donor and acceptor groups. Here, we address this issue by performing all-atom molecular dynamics simulations of wild type and mutant photosystem II monomers, which we analyze using a new protocol designed to facilitate efficient analysis of hydrogen-bond networks. Our computations reveal that local protein/water hydrogen-bond networks can assemble transiently in photosystem II, such that the reaction center connects to the lumen. The dynamics of the hydrogen-bond networks couple to the protonation state of specific carboxylate groups, and are altered in a mutant with defective proton transfer. Simulations on photosystem II without its extrinsic PsbO subunit provide a molecular interpretation of the elusive functional role of this subunit.

  1. PHOTOINHIBITION AND RECOVERY IN RELATION TO HETEROGENEITY OF PHOTOSYSTEM-II

    NARCIS (Netherlands)

    VANWIJK, KJ; SCHNETTGER, B; GRAF, M; KRAUSE, GH

    1993-01-01

    Photosystem II (PS II) heterogeneity during photoinhibition at 4-degrees-C and subsequent recovery at 20-degrees-C was investigated in spinach leaves and chloroplasts. The population of inactive, Q(B)-nonreducing centers was estimated by means of fluorescence induction in the presence of

  2. Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity

    NARCIS (Netherlands)

    Haag, Elisabeth; Irrgang, Klaus-D.; Boekema, Egbert J.; Renger, Gernot

    1990-01-01

    Oxygen-evolving photo system II core complexes were prepared from spinach by solubilizing photosystem II membrane fragments with dodecyl-β-D-maltoside. The core complexes consist of the intrinsic 47-kDa, 43-kDa, D1 and D2 polypeptides, the two subunits of cytochrome b559 and the extrinsic 33-kDa

  3. Ultraviolet-B induced damage to photosystem II in intact filaments of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Kolli, B.K.; Tiwari, S.; Mohanty, P. [Jawaharlal Nehru Univ., New Delhi (India). Schoof of Life Sciences

    1998-05-01

    When Spirulina platensis filaments were exposed to 0.75 mW x m{sup -2} x s{sup -1} of ultraviolet-B radiation (the ultraviolet-B radiation under clear sky condition is {proportional_to}1.0 mW x m{sup -2} x s{sup -1}), an inhibition in photosystem II activity was observed, the inhibition being 90% after 90 min exposure. Upon exposure to ultraviolet-B, the room temperature emission characteristics of Spirulina cells were altered when excited with light primarily absorbed by chlorophyll a or phycobilisomes. When the cells were exposed for 3 h the emission at 685 nm (F{sub 685}), when excited at 440 nm (primarily chlorophyll a absorption), was enhanced compared to 715 nm (F{sub 715}) band of photosystem I suggesting a decrease in energy transfer from photosystem II to photosystem I. Similarly, when the cells were excited at 580 nm (primarily the phycobilisomes), the ratio of emission intensity at 685 nm (F{sub 685}) to that of 655 nm (F{sub 655}) was decreased in the exposed cells. This change in emission characteristics seems to be linked with the uncoupling of the energy transfer from all phycocyanin to chlorophyll a of photosystem II. A small shift in emission peak positions was also indicated when excited either at 440 nm or 580 nm. (orig./AJ)

  4. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, A.V.; Wentworth, M.; Yakushevska, A.E.; Andersson, J.; Lee, P.J.; Keegstra, W.; Dekker, J.P.; Boekema, E.J.; Jansson, S.; Horton, P.

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the

  5. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the

  6. Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana

    NARCIS (Netherlands)

    Van Oort, Bart; Alberts, Marieke; De Bianchi, Silvia; Dall'Osto, Luca; Bassi, Roberto; Trinkunas, Gediminas; Croce, Roberta; van Amerongen, Herbert

    2010-01-01

    The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29,

  7. Occupancy and Functional Architecture of the Pigment Binding Sites of Photosystem II Antenna Complex Lhcb5

    NARCIS (Netherlands)

    Ballottari, Matteo; Mozzo, Milena; Croce, Roberta; Morosinotto, Tomas; Bassi, Roberto

    2009-01-01

    Lhcb5 is an antenna protein that is highly conserved in plants and green algae. It is part of the inner layer of photosystem II antenna system retained in high light acclimated plants. To study the structure-function relation and the role of individual pigments in this complex, we (i) "knocked out"

  8. Pigment binding sites occupancy and functional architecture of the Photosystem II antenna complex Lhcb5

    NARCIS (Netherlands)

    Ballottari, M.; Mozzo, M.; Croce, R.; Morosinotto, T.; Bassi, R.

    2009-01-01

    Lhcb5 is an antenna protein that is highly conserved in plants and green algae. It is part of the inner layer of photosystem II antenna system retained in high light acclimated plants. To study the structure-function relation and the role of individual pigments in this complex, we (i) "knocked out"

  9. Recent advances in understanding the assembly and repair of photosystem II

    Czech Academy of Sciences Publication Activity Database

    Nixon, P. J.; Michoux, F.; Yu, J.; Boehm, M.; Komenda, Josef

    2010-01-01

    Roč. 106, č. 1 (2010), s. 1-16 ISSN 0305-7364 R&D Projects: GA AV ČR IAA400200801 Institutional research plan: CEZ:AV0Z50200510 Keywords : Photosynthesis * photoinhibition * Photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 3.388, year: 2010

  10. Localization of the small CAB-like proteins in photosystem II

    Czech Academy of Sciences Publication Activity Database

    Yao, D.; Kieselbach, T.; Komenda, Josef; Promnares, Kamoltip; Prieto, M. A. H.; Tichý, Martin; Vermaas, W.; Funk, C.

    2007-01-01

    Roč. 282, č. 1 (2007), s. 267-276 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * cab-like proteins * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  11. Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes

    NARCIS (Netherlands)

    Dekker, Jan P.; Germano, Marta; Roon, Henny van; Boekema, Egbert J.

    2002-01-01

    We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick andmild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy.

  12. Room temperature photooxidation of beta-carotene and peripheral chlorophyll in photosystem II reaction centre

    Czech Academy of Sciences Publication Activity Database

    Litvín, Radek; Bína, David; Vácha, František

    2008-01-01

    Roč. 98, č. 2 (2008), s. 179-187 ISSN 0166-8595 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : photosystem II Subject RIV: BO - Biophysics Impact factor: 2.681, year: 2008

  13. Conformational changes and their role in non-radiative energy dissipation in photosystem II reaction centres

    Czech Academy of Sciences Publication Activity Database

    Litvín, Radek; Bína, David; Šiffel, Pavel; Vácha, František

    2005-01-01

    Roč. 4, - (2005), 999-1002 ISSN 1474-905X R&D Projects: GA ČR(CZ) GA206/03/1107 Institutional research plan: CEZ:AV0Z50510513 Keywords : photosystem II Subject RIV: BO - Biophysics Impact factor: 2.117, year: 2005

  14. Modulation of photosystem II chlorophyll fluorescence by electrogenic events generated by photosystem I

    NARCIS (Netherlands)

    Bulychev, A.A.; Vredenberg, W.J.

    2001-01-01

    In an attempt to uncover electric field interactions between PS I and PS II during their functioning, fluorescence induction curves were measured on hydroxylamine-treated thylakoids of Chenopodium album under conditions ensuring low and high levels of photogenerated membrane potentials. In parallel

  15. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    OpenAIRE

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  16. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II.

    Science.gov (United States)

    Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan

    2016-01-01

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  17. Backbone assignment and secondary structure of the PsbQ protein from Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Horničáková, M.; Kohoutová, Jaroslava; Schlagnitweit, J.; Wohlschlager, Ch.; Ettrich, Rüdiger; Fiala, R.; Schoefberger, W.; Müller, N.

    2011-01-01

    Roč. 5, č. 2 (2011), s. 169-175 ISSN 1874-2718 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z60870520 Keywords : Photosystem II * PsbQ * Missing link * NMR resonance assignment * Protein-protein interaction Subject RIV: BO - Biophysics Impact factor: 0.720, year: 2011 http://www.springerlink.com/content/3n38075w5h1l1082/fulltext.pdf

  18. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; Dao, E. Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S.; Koglin, Jason E.; Boutet, Sébastien; Junco, Elia A.; Hayes, Brandon; Bogan, Michael J.; Hampton, Christina Y.; Puglisi, Elisabetta V.; Sauter, Nicholas K.; Stan, Claudiu A.; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.; Soltis, S. Michael; Puglisi, Joseph D.; DeMirci, Hasan

    2015-11-30

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  19. Editorial: Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Eaton-Rye, J.J.; Sobotka, Roman

    2017-01-01

    Roč. 8, May 26 (2017), s. 1-4, č. článku 884. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Photosystem II * photosynthetic electron transport * cyanobacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.298, year: 2016

  20. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Sobotka, Roman; Nixon, P. J.

    2012-01-01

    Roč. 15, č. 3 (2012), s. 245-2051 ISSN 1369-5266 R&D Projects: GA ČR GAP501/10/1000; GA ČR(CZ) GAP501/11/0377; GA MŠk(CZ) ED2.1.00/03.0110; GA AV ČR IAA400200801 Institutional support: RVO:61388971 Keywords : alga * cyanobacteria * Photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 8.455, year: 2012

  1. Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, F.X. Jr.; Mustardy, L.; Gantt, E. (Univ. of Maryland, College Park (USA)); Dennenberg, R.J.; Jursinic, P.A. (Department of Agriculture, Peoria, IL (USA))

    1989-11-01

    Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P{sub 700}) and PSII (chlorophyll/Q{sub A}) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in {beta}-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.

  2. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  3. KINETIC RESOLUTION OF DIFFERENT RECOVERY PHASES OF PHOTOINHIBITED PHOTOSYSTEM-II IN COLD-ACCLIMATED AND NON-ACCLIMATED SPINACH LEAVES

    NARCIS (Netherlands)

    VANWIJK, KJ; VANHASSELT, PR

    Leaf discs from spinach were exposed to a photon flux density of 1 250 mumol m-2 s-1 at 5-degrees-C for 2 or 3 h in ambient air. Photoinhibition of photosystem II (PS II) was measured by means of chlorophyll fluorescence. Recovery of photosystem II was followed at 6-degrees-C and 20-degrees-C in low

  4. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  5. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... is related to Mn efficiency in plants....

  6. Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants.

    Science.gov (United States)

    Giardi, Maria Teresa; Guzzella, Licia; Euzet, Pierre; Rouillon, Regis; Esposito, Dania

    2005-07-15

    Massive use of herbicides in agriculture over the last few decades has become a serious environmental problem. The residual concentration of these compounds frequently exceeds the maximum admissible concentration in drinking water for human consumption and is a real environmental risk for the aquatic ecosystem. Herbicides inhibiting photosynthesis via targeting photosystem II function still represent the basic means of weed control. A multibiosensor was constructed for detecting herbicides using as biosensing elements photosynthetic preparations coupled to an optical fluorescence transduction system (Giardi et al. EU patent EP1134585, 01830148.1-2204); this paper is about its application in the detection of herbicide subclasses in river water. Photosynthetic material was immobilized on a silicio septum inside a series of flow cells, close to diodes so as to activate photosystem II (PSII) fluorescence. The principle of the detection was based on the factthat herbicides selectively modify PSII fluorescence activity. The multibiosensor has the original feature of being able to distinguish the subclasses of the photosynthetic herbicides by using specific immobilized biomediators isolated from mutated organisms. This setup resulted in a reusable, portable multibiosensor for the detection of herbicide subclasses with a half-life of 54 h for spinach thylakoids and limit of detection of 3 x 10(-9) M for herbicides present in river water.

  7. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brose, K., E-mail: katharina.brose@gmx.net [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Zouni, A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Müh, F. [Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz (Austria); Mroginski, M.A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Maultzsch, J. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2013-06-03

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A{sub g} in the C{sub 2h} group is assigned to the β-Car modes ν{sub 66} and ν{sub 67}. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  8. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Niwa, Kyosuke; Abe, Tomoko; Murakami, Akio; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.

  9. Photosystem II electron flow as a measure for phytoplankton gross primary production = [Fotosysteem II elektronentransport als een maat voor de bruto primaire produktie van fytoplankton

    NARCIS (Netherlands)

    Geel, C.

    1997-01-01

    Saturating pulse fluorescence measurements, well known from studies of higher plants for determination of photosystem II (PS II) characteristics, were applied to cultures of the green alga Dunaliella teitiolecta (Chapter 2). The actual efficiency of PS IIPS

  10. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II.

    Science.gov (United States)

    Boehm, M; Yu, J; Reisinger, V; Beckova, M; Eichacker, L A; Schlodder, E; Komenda, J; Nixon, P J

    2012-12-19

    Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680(+), was similar to that of PSII complexes lacking the Mn(4)CaO(5) cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.

  11. Role of the PsbI protein in Photosystem II assembly and repair in the cyanobacterium Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Dobáková, Marika; Tichý, Martin; Komenda, Josef

    2007-01-01

    Roč. 145, - (2007), s. 1681-1691 ISSN 0032-0889 R&D Projects: GA ČR GA206/06/0322 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * cyanobacterium * synechocystis sp. pcc 6803 Subject RIV: EE - Microbiology, Virology Impact factor: 6.367, year: 2007

  12. Characterization of the alterations of the chlorophyll a fluorescence induction curve after addition of Photosystem II inhibiting herbicides

    NARCIS (Netherlands)

    Hiraki, M.; Rensen, van J.J.S.; Vredenberg, W.J.; Wakabayashi, K.

    2003-01-01

    The effects of Photosystem II inhibiting herbicides, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), atrazine and two novel 2-benzylamino-1,3,5-triazine compounds, on photosynthetic oxygen evolution and chlorophyll a fluorescence induction were measured in thylakoids isolated from Chenopodium

  13. The interaction of quinones, herbicides and bicarbonate with their binding environment at the acceptor side of photosystem II in photosynthesis

    NARCIS (Netherlands)

    Vermaas, W.F.J.

    1984-01-01

    In this thesis experiments are described which are directed towards a further characterization of the interaction of the native bound plastoquinone Q B , artificial quinones, herbicides and bicarbonate with their binding environment at the acceptor side of Photosystem II in

  14. Perioxidases play important roles in abscisic acid (ABA)-simulating photosystem II (PSII) thermostabilty of apple tree rootstock leaves

    Czech Academy of Sciences Publication Activity Database

    Brestic, M.; Shao, H. B.; Ferus, P.; Malbeck, Jiří

    2011-01-01

    Roč. 10, č. 71 (2011), s. 15891-15900 ISSN 1684-5315 Institutional research plan: CEZ:AV0Z50380511 Keywords : Photosystem II thermostability * antioxidant activity * phytohormones Subject RIV: EF - Botanics Impact factor: 0.573, year: 2010

  15. Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, K.; Trinkunas, G.; Hoek, van A.; Croce, R.; Amerongen, van H.

    2008-01-01

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  16. Determination of the excitation migration time in Photosystem II - Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  17. Determination of the excitation migration time in Photosystem II. Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  18. Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100.

    NARCIS (Netherlands)

    Eijckelhoff, C.; van Roon, H.; Groot, M.L.; van Grondelle, R.; Dekker, J.P.

    1996-01-01

    The pigment composition of the isolated photosystem II reaction center complex in its most stable and pure form currently is a matter of considerable debate. In this contribution, we present a new method based on a combination of gel filtration chromatography and diode array detection to analyze the

  19. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp PCC6803

    Czech Academy of Sciences Publication Activity Database

    Sealo, T.T.; Zhang, L.; Knoppová, Jana; Komenda, Josef; Norling, B.

    2016-01-01

    Roč. 57, č. 1 (2016), s. 95-104 ISSN 0032-0781 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Aqueous two-phase partitioning * Cyanobacteria * Photosystem II biogenesis Subject RIV: EE - Microbiology, Virology Impact factor: 4.760, year: 2016

  20. Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of photosystem II

    NARCIS (Netherlands)

    de Weerd, F.L.; Palacios, M.A.; Andrizhiyevskaya, E.; Dekker, J.P.; van Grondelle, R.

    2002-01-01

    CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been

  1. Different sensitivities of photosystem II in green algae and cyanobacteria to phenylurea and phenol-type herbicides: effect on electron donor side.

    Science.gov (United States)

    Yotsova, Ekaterina K; Stefanov, Martin A; Dobrikova, Anelia G; Apostolova, Emilia L

    2017-07-14

    The effects of short-term treatment with phenylurea (DCMU, isoproturon) and phenol-type (ioxynil) herbicides on the green alga Chlorella kessleri and the cyanobacterium Synechocystis salina with different organizations of photosystem II (PSII) were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution measured by polarographic oxygen electrodes (Clark-type and Joliot-type). The photosynthetic oxygen evolution showed stronger inhibition than the PSII photochemistry. The effects of the studied herbicides on both algal and cyanobacterial cells decreased in the following order: DCMU>isoproturon>ioxynil. Furthermore, we observed that the number of blocked PSII centers increased significantly after DCMU treatment (204-250 times) and slightly after ioxynil treatment (19-35 times) in comparison with the control cells. This study suggests that the herbicides affect not only the acceptor side but also the donor side of PSII by modifications of the Mn cluster of the oxygen-evolving complex. We propose that one of the reasons for the different PSII inhibitions caused by herbicides is their influence, in different extents, on the kinetic parameters of the oxygen-evolving reactions (the initial S0-S1 state distribution, the number of blocked centers SB, the turnover time of Si states, misses and double hits). The relationship between the herbicide-induced inhibition and the changes in the kinetic parameters is discussed.

  2. The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers.

    Science.gov (United States)

    Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D

    2016-12-01

    In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p  ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.

  3. The evolution of Photosystem II: insights into the past and future.

    Science.gov (United States)

    Williamson, Adele; Conlan, Brendon; Hillier, Warwick; Wydrzynski, Tom

    2011-01-01

    This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.

  4. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis.

    Science.gov (United States)

    Diner, Bruce A; Rappaport, Fabrice

    2002-01-01

    Recent progress in two-dimensional and three-dimensional electron and X-ray crystallography of Photosystem II (PSII) core complexes has led to major advances in the structural definition of this integral membrane protein complex. Despite the overall structural and kinetic similarity of the PSII reaction centers to their purple non-sulfur photosynthetic bacterial homologues, the different cofactors and subtle differences in their spatial arrangement result in significant differences in the energetics and mechanism of primary charge separation. In this review we discuss some of the recent spectroscopic, structural, and mutagenic work on the primary and secondary electron transfer reactions in PSII, stressing what is experimentally novel, what new insights have appeared, and where questions of interpretation remain.

  5. Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO.

    Science.gov (United States)

    Bommer, Martin; Coates, Leighton; Dau, Holger; Zouni, Athina; Dobbek, Holger

    2017-09-01

    The PsbO protein of photosystem II stabilizes the active-site manganese cluster and is thought to act as a proton antenna. To enable neutron diffraction studies, crystals of the β-barrel core of PsbO were grown in capillaries. The crystals were optimized by screening additives in a counter-diffusion setup in which the protein and reservoir solutions were separated by a 1% agarose plug. Crystals were cross-linked with glutaraldehyde. Initial neutron diffraction data were collected from a 0.25 mm 3 crystal at room temperature using the MaNDi single-crystal diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory.

  6. Quality control of Photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids

    Directory of Open Access Journals (Sweden)

    Yasusi Yamamoto

    2016-08-01

    Full Text Available When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e. the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition. When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition. Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.

  7. Mechanism of interaction of Al3+ with the proteins composition of photosystem II.

    Directory of Open Access Journals (Sweden)

    Imed Hasni

    Full Text Available The inhibitory effect of Al3+on photosystem II (PSII electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII. The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K, increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.

  8. Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata.

    Science.gov (United States)

    Umetani, Ikumi; Kunugi, Motoshi; Yokono, Makio; Takabayashi, Atsushi; Tanaka, Ayumi

    2018-04-01

    Diverse light-harvesting complexes (LHCs) have been found in photosynthetic microalgae that originated from secondary endosymbiosis involving primary red algae. However, the associations between LHCs and photosystem I (PSI) and photosystem II (PSII) in these microalgae are not fully understood. Eustigmatophyta is a red algal lineage that appears to have a unique organization in its photosynthetic machinery, consisting of only chlorophyll a and carotenoids that are atypical compared with other closely related groups. In this study, the supramolecular organization of pigment-protein complexes in the eustigmatophyte alga, Nannochloropsis granulata was investigated using Clear Native (CN) PAGE coupled with two-dimensional (2D) SDS-PAGE. Our results showed two slowly migrating green bands that corresponded to PSII supercomplexes, which consisted of reaction centers and LHCs. These green bands were also characterized as PSII complexes by their low temperature fluorescence emission spectra. The protein subunits of the PSII-LHC resolved by 2D CN/SDS-PAGE were analyzed by mass spectrometry, and four different LHC proteins were identified. Phylogenetic analysis of the identified LHC protein sequences revealed that they belonged to four different Lhc groups; (1) stress-related Lhcx proteins, (2) fucoxanthin chlorophyll a/c-binding Lhcf proteins, (3) red-shifted Chromera light-harvesting proteins (Red-CLH), and (4) Lhcr proteins, which are commonly found in organisms possessing red algal plastids. This is the first report showing evidence of a pigment-protein supercomplex consisting of PSII and LHCs, and to identify PSII-associated LHC proteins in Nannochloropsis.

  9. A miniature bioassay for testing the acute phytotoxicity of photosystem II herbicides on seagrass.

    Directory of Open Access Journals (Sweden)

    Adam D Wilkinson

    Full Text Available Photosystem II (PSII herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/F(m' was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/F(m' by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes, indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m(-2 s(-1. High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future.

  10. A Miniature Bioassay for Testing the Acute Phytotoxicity of Photosystem II Herbicides on Seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Mercurio, Phil; O’Brien, Jake; Ralph, Peter J.; Negri, Andrew P.

    2015-01-01

    Photosystem II (PSII) herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/Fm’) was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/Fm’ by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes), indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m-2 s-1). High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future. PMID:25674791

  11. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    Science.gov (United States)

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  12. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  13. Photochemical cooperativity in photosystem II. Characterization of oxygen evolution discontinuities in the light-response curves.

    Science.gov (United States)

    Viruvuru, V; Fragata, M

    2008-11-28

    In two previous papers (Fragata et al., J. Phys. Chem. B, 2005, 109, 14707-14714; Fragata et al., J. Phys. Chem. B, 2007, 111, 3315-3320), it was shown that the variation of oxygen evolution with the light intensity (I) in photosystem II (PSII) in steady state conditions can be formulated according to the Langmuir adsorption isotherm for heterogeneous catalysis. This yielded the expression OEth = OEth(max) I/(L1/2 + I), where OEth is the theoretical oxygen evolution, OEth(max) the maximum oxygen evolution, and L1/2 the irradiance giving OEth(max)/2. In this approximation, the photons interaction with the chlorophylls in the PSII reaction center is assumed to be a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave. That is, the chlorophyll molecules are the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons are the substrate, or the reagent. Recently, the examination of new experimental data obtained with 2,6-dichloro-p-benzoquinone (DCBQ) and p-benzoquinone (pBQ) as exogenous electron acceptors, disclosed the presence of oxygen evolution discontinuities (or transitions) in the light-response curves. The new data were fitted with a mathematical summation of hyperbola of order n(i) > 1, OEth = Sigma(i) [OEth(max)]iIn(i)/[(L1/2)i(n(i)) + I(n(i))], where the n(i)'s are the number of sites used by the incident photons in their interaction with the photosynthetic pigments in each population i of PSII centers open for photochemistry. The mathematical simulations yielded only three distinct n(i)'s, that is, 1.8, 4.8, 8.5 and 1.8, 4.2, 8.4 for isolated PSII particles incubated with DCBQ and pBQ, respectively. Implicitly, this means the simultaneous excitation of each PSII reaction center with more than one photon, that is, the excitation of more than one pigment molecule. It is suggested that these transitions have their origin in the cooperative interaction of the

  14. Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942

    OpenAIRE

    Brusslan, Judy; Haselkorn, Robert

    1989-01-01

    The transformable cyanobacterium, Synechococcus sp. PCC7942, was used to study the genetics of resistance to the herbicide diuron. In wild-type cells, diuron binds to one of the core proteins, called D1, of photosystem II reaction centres. This binding prevents the transfer of electrons from QA, the primary quinone acceptor, to QB, which is necessary to create the charge separation that drives ATP synthesis. A single amino acid substitution in the D1 protein reduces diuron binding and confers...

  15. Effects of iron on efficiency and map of photosystem II photochemical yield of rose flower using chlorophyll fluorescence imaging

    OpenAIRE

    Sh. Kiani

    2012-01-01

    Interveinal chlorosis induced by iron deficiency is considered to be one of the problems in rose production in greenhouses all over the world. This experiment was conducted to elucidate the capability of chlorophyll fluorescence imaging technique to recognize early iron deficiency and also determination of relationship between leaf iron concentration and leaf chlorophyll content index and photosystem II photochemical efficiency of rose flower (Rosa hybrida L., cv. First Red). Rose plants were...

  16. Subunit Organization of a Synechocystis Hetero-Oligomeric Thylakoid FtsH Complex Involved in Photosystem II Repair

    Czech Academy of Sciences Publication Activity Database

    Boehm, M.; Yu, J.; Krynická, Vendula; Barker, M.; Tichý, Martin; Komenda, Josef; Nixon, P. J.; Nield, J.

    2012-01-01

    Roč. 24, č. 9 (2012), s. 3669-3683 ISSN 1040-4651 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0110; GA ČR GBP501/12/G055 Institutional support: RVO:61388971 Keywords : photosystem II * FtsH metalloproteases * subunit Subject RIV: EE - Microbiology, Virology Impact factor: 9.251, year: 2012

  17. Crystal structure of the Psb27 assembly factor at 1.6: implications for binding to Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Michoux, F.; Takasaka, K.; Boehm, M.; Komenda, Josef; Nixon, P. J.; Murray, J. W.

    2012-01-01

    Roč. 110, č. 3 (2012), s. 169-175 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GAP501/11/0377; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Monomeric and dimeric photosystem II * Assembly * Repair Subject RIV: EE - Microbiology, Virology Impact factor: 3.150, year: 2012

  18. The role of calcium in the oxygen evolving center of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, Matthew John [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    The photosynthetic oxygen evolving complex (OEC) contains a cluster of four manganese atoms and requires both Ca and Cl for activity. Ca can be replaced by Sr with retention of activity. The role of Ca in the OEC has been investigated by performing Mn X-ray absorption experiments on Ca-depleted samples of photosystem II (PS II) and on PS II samples depleted of Ca and reconstituted by either Ca or Sr. Mn X-ray K-edge spectra exhibit no significant differences in oxidation state or symmetry between Ca- and Sr-reactivated preparations, but differences are observed in the extended X-ray absorption fine structure (EXAFS). The amplitude of a Fourier transform peak arising from scatterers at distances greater than 3 A is larger for samples reactivated with strontium relative to calcium. Curve-fitting analyses of the EXAFS data using FEFF 5-calculated parameters favor a model where both manganese and calcium (or strontium) scatterers contribute to the ~3 Å Fourier peak (Mn-Mn at 3.3Å and Mn-Ca(Sr) at 3.4--3.5 Å). Possible structural arrangements for a calcium binding site are discussed. Analysis of Mn K-edge spectra from Ca-depleted samples in the S1, S2, and S3 states shows an edge shift on the S1-S2 transition, but no edge shift on the S2-S3 transition, supporting a model where the oxidizing equivalent from the S2 to S3 transition is stored on a ligand or nearby protein residue rather than on the Mn cluster. Parallels between Ca-depleted and native samples are discussed.

  19. Plants lacking the main light-harvesting complex retain photosystem II macro-organization.

    Science.gov (United States)

    Ruban, A V; Wentworth, M; Yakushevska, A E; Andersson, J; Lee, P J; Keegstra, W; Dekker, J P; Boekema, E J; Jansson, S; Horton, P

    2003-02-06

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

  20. Isolation of CP43 and CP47 photosystem II proximal antenna complexes from plants.

    Science.gov (United States)

    Picorel, Rafael; Alfonso, Miguel; Seibert, Michael

    2004-01-01

    A single-column method to purify the CP43 and CP47 pigment-protein complexes of photo-system (PS)II from higher plants is presented. To validate the isolation procedure, three different species were used (Spinacea oleracea, Beta vulgaris, and Glycine max), and the procedure worked similarly with all three. Oxygen-evolving core complex obtained from highly enriched PSII membrane fragments were used as the starting material. The core complex is treated with the chaotropic agent LiClO4 and the nonionic detergent n-dodecyl beta-D-maltoside. After dialysis against buffer with no detergent or chaotropic agent, the solubilized material is separated by weak anion-exchange chromatography using a TSK-GEL Toyopearl DEAE 650s column. CP43 complex does not bind to the column and elutes with the first pigmented fractions. When the eluate becomes colorless, the column is subjected to a 0-175 mM LiClO4 linear gradient. The main pigment elution band corresponds to CP47 complex. The last pigmented elution band contains both reaction center-CP47 and reaction center complexes.

  1. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle.

    Science.gov (United States)

    Glöckner, Carina; Kern, Jan; Broser, Matthias; Zouni, Athina; Yachandra, Vittal; Yano, Junko

    2013-08-02

    The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.

  2. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    Science.gov (United States)

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  3. Structural Dynamics of the Oxygen-Evolving Complex of Photosystem II in Water-Splitting Action.

    Science.gov (United States)

    Wilson, Andrew J; Jain, Prashant K

    2018-04-17

    Oxygenic photosynthesis in nature occurs via water splitting catalyzed by the oxygen-evolving complex (OEC) of photosystem II. To split water, the OEC cycles through a sequence of oxidation states (S i , i = 0-4), the structural mechanism of which is not fully understood under physiological conditions. We monitored the OEC in visible-light-driven water-splitting action by using in situ, aqueous-environment surface-enhanced Raman scattering (SERS). In the unexplored low-frequency region of SERS, we found dynamic vibrational signatures of water binding and splitting. Specific snapshots in the dynamic SERS correspond to intermediate states in the catalytic cycle, as determined by density functional theory and isotopologue comparisons. We assign the previously ambiguous protonation configuration of the S 0 -S 3 states and propose a structural mechanism of the OEC's catalytic cycle. The findings address unresolved questions about photosynthetic water splitting and introduce spatially resolved, low-frequency SERS as a chemically sensitive tool for interrogating homogeneous catalysis in operando.

  4. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis.

    Science.gov (United States)

    Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano

    2016-09-02

    Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Two roles of thylakoid lipids in modifying the activity of herbicides which inhibit photosystem II

    International Nuclear Information System (INIS)

    Kupatt, C.C. Jr.

    1985-01-01

    Thylakoid lipids may modify the activity of herbicides which inhibit electron transport at the Q/sub B/ protein of photosystem II in two ways: (1) lipids can act as a hydrophobic barrier to a binding site localized close to the loculus of the membrane, and (2) changes in lipid composition can reduce the ability of inhibitors to block electron transport, possibly due to a change in the conformation of the Q/sub B/ protein. The herbicide binding site was localized close to the locular side of the thylakoid membrane by determining the activity of a number of substituted phenylurea and s-triazine herbicides in inverted and non-inverted thylakoids. Quantitative structure-activity relationship analysis showed that inversion of thylakoids reduced the requirement of molecular lipophilicity deemed necessary for phenylurea activity in non-inverted membranes, whereas s-triazines exhibited no differences in the lipophilicity requirement in thylakoid membranes of either orientation. The binding affinity of 14 C-diuron was reduced in bicarbonate-depleted thylakoids relative to reconstituted or control membranes, as is the case with atrazine binding. These observations support a model of the herbicide binding site containing both common and herbicide family specific binding domains. Thylakoids isolated either from detached lambs quarters (Chenopodium album L.) leaves, treated with SAN 6706, or from soybean (Glycine max L.), with norflurazon or pyrazon applied preemergence, exhibited decreased susceptibility to atrazine. The ability of lipid-modifying treatments to decrease the atrazine susceptibility of field-grown soybeans was also investigated

  6. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm‧.

  7. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  8. Two-Dimensional Electronic Spectroscopies for Probing Electronic Structure and Charge Transfer: Applications to Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Ogilvie, Jennifer P. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics

    2016-11-22

    Photosystem II (PSII) is the only known natural enzyme that uses solar energy to split water, making the elucidation of its design principles critical for our fundamental understanding of photosynthesis and for our ability to mimic PSII’s remarkable properties. This report discusses progress towards addressing key open questions about the PSII RC. It describes new spectroscopic methods that were developed to answer these questions, and summarizes the outcomes of applying these methods to study the PSII RC. Using 2D electronic spectroscopy and 2D electronic Stark spectroscopy, models for the PSII RC were tested and refined. Work is ongoing to use the collected data to elucidate the charge separation mechanism in the PSII RC. Coherent dynamics were also observed in the PSII RC for the first time. Through extensive characterization and modeling we have assigned these coherences as vibronic in nature, and believe that they reflect resonances between key vibrational pigment modes and electronic energy gaps that may facilitate charge separation. Work is ongoing to definitively test the functional relevance of electronic-vibrational resonances.

  9. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    Science.gov (United States)

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  10. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Science.gov (United States)

    Brose, K.; Zouni, A.; Müh, F.; Mroginski, M. A.; Maultzsch, J.

    2013-06-01

    In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry Ag in the C2h group is assigned to the β-Car modes ν66 and ν67. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  11. Structural studies of cyanobacterial PSII

    International Nuclear Information System (INIS)

    Da Fonseca, Paula Cristina Alves

    2001-01-01

    Photosystem II (PSII) is the photosynthetic transmembrane protein-pigment complex which utilises light energy to drive the splitting of water and release of oxygen, a unique reaction in biological systems. The determination of the structure of PSII at high resolution is required in order to understand its mechanisms of reaction. For this reason, methods have been developed to purify highly active PSII complexes from the thermophilic cyanobacterium Synechococcus elongate These complexes have been studied by high resolution electron microscopy, using both single particle analysis and electron crystallography. A 30A three-dimensional map of the cyanobacterial PSII complex was obtained by single particle analysis. The comparison of this map with structural data from the spinach PSII core dimer revealed that both complexes share similar overall size and shape. These data also allowed a discussion on the organisation and positioning of the extrinsic lumenal proteins within the cyanobacterial PSII complex. A Synechococcus elongatus PSII projection map, at a resolution of 20A, was determined by image processing of two-dimensional crystals formed by the in vitro reconstitution method. This was the first projection map obtained by electron crystallography of a cyanobacterial highly active PSII complex, with all the extrinsic subunits retained. The analysis of this map and its comparison with a 10A three-dimensional map recently obtained from the spinach PSII core dimer revealed a similar organisation of the main transmembrane subunits. Moreover, at the level of resolution of the present data it is possible to identify differences which can be related to the content and organisation of the small subunits forming the PSII complex from both organisms. Cytochrome b559, an important but incompletely understood PSII subunit, was purified and subjected to crystallisation trials in order to aid the interpretation of intermediate resolution PSII structural data. Small crystals were

  12. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2010-07-01

    Leaflets of Sphagnum capillifolium were exposed to temperatures from -5 degrees C to +60 degrees C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at -1.1 degrees C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 microm indicates a cell volume reduction of approximately -82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (-1.1 degrees C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (-16.1 degrees C; LT(50)) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5 degrees C which is significantly below the heat tolerance of chlorophyllous cells (49.9 degrees C; LT(50)). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence

  13. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  14. Electronic Structure and Oxidation State Changes in the Mn (4) Ca Cluster of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.; /SLAC

    2012-08-17

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  15. Photosystem II functionality in barley responds dynamically to changes in leaf manganese status

    Directory of Open Access Journals (Sweden)

    Sidsel Birkelund Schmidt

    2016-11-01

    Full Text Available A catalytic manganese (Mn cluster is required for the oxidation of water in the oxygen-evolving complex (OEC of photosystem II (PSII in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients, non-photochemical quenching and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce non-photochemical quenching (NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher non-photochemical quenching than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency.

  16. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.

    Science.gov (United States)

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2008-03-19

    This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of

  17. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions.

    Science.gov (United States)

    Jansen, Marcel A K; Martret, Bénedicte Le; Koornneef, Maarten

    2010-01-01

    The rise in ultraviolet-B (UV-B) (280-315 nm) radiation levels, that is a consequence of stratospheric ozone layer depletion, has triggered extensive research on the effects of UV-B on plants. Plants raised under natural sunlight conditions are generally well protected from the potentially harmful effects of UV-B radiation. However, it is mostly unknown to which extent UV protection is constitutive and/or induced. In this study, we have analysed the role of constitutive and inducible protection responses in avoiding UV-B damage to photosystem II of photosynthesis. We have assayed the UV susceptibility of photosystem II in 224 Arabidopsis thaliana accessions from across the Northern hemisphere, and found a continuum of constitutive UV-protection levels, with some accessions being UV sensitive and others UV tolerant. Statistical analysis showed only very weak associations between constitutive UV tolerance and the geographic origin of accessions. Instead, most of the variance in constitutive UV-B protection of photosynthesis is present at the level of local Arabidopsis populations originating in the same geographic and climatic area. The variance in constitutive UV protection is, however, small compared to the amplitude of environmentally induced changes in UV protection. Thus, our data emphasise the importance of inducible responses for the protection of photosystem II against UV-B. Remarkably, the conditions that induce UV-protective responses vary; accessions from lower latitudes were found to switch-on UV defences more readily than those of higher latitudes. Such altered regulation of induction may comprise a suitable adaptation response when levels of a stressor are fluctuating in the short term, but predictable over longer periods.

  18. Critical assessment of the emission spectra of various photosystem II core complexes.

    Science.gov (United States)

    Chen, Jinhai; Kell, Adam; Acharya, Khem; Kupitz, Christopher; Fromme, Petra; Jankowiak, Ryszard

    2015-06-01

    We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent

  19. Simulation of the S2 state multiline electron paramagnetic resonance signal of photosystem II: a multifrequency approach.

    OpenAIRE

    Ahrling, K A; Pace, R J

    1995-01-01

    The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at bot...

  20. Discovery of a Chllorophyll Binding Protein Complex Involved in the Early Steps of Photosystem II Assembly in Synechocystis

    Czech Academy of Sciences Publication Activity Database

    Knoppová, Jana; Sobotka, Roman; Tichý, Martin; Jianfeng, Yu; Koník, P.; Halada, Petr; Nixon, P. J.; Komenda, Josef

    2014-01-01

    Roč. 26, č. 4 (2014), s. 1200-1212 ISSN 1040-4651 R&D Projects: GA ČR P501/11/0377; GA MŠk ED2.1.00/03.0110 Grant - others:UK Biotechnology and Biological Sciences Research Council(GB) BB/F020554/1; UK Biotechnology and Biological Sciences Research Council(GB) BB/L003260/1; Magistrát hl. m. Prahy(CZ) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Synechocystis * photosystem II * assembly * proteins Subject RIV: EE - Microbiology, Virology Impact factor: 9.338, year: 2014

  1. Association of Photosystem I and Light-Harvesting Complex II during State Transitions

    NARCIS (Netherlands)

    Boekema, Egbert J.; Kouřil, Roman; Dekker, Jan P.; Jensen, Poul Erik; Golbeck, J.H.

    2006-01-01

    Green plant photosystem I (PS I) not only binds a chlorophyll a/b-binding, membrane-intrinsic antenna complex (LHCI) that is associated with the PS I core complex under almost all physiological conditions, but it can also transiently bind the major chlorophyll a/b-binding light-harvesting complex

  2. Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence

    NARCIS (Netherlands)

    Rensen, van J.J.S.; Vredenberg, W.J.; Rodrigues, G.C.

    2007-01-01

    The effects of ultraviolet-B (UV-B) radiation on photosystem II (PS II) were studied in leaves of Chenopodium album. After the treatment with UV-B the damage was estimated using chlorophyll a fluorescence techniques. Measurements of modulated fluorescence using a pulse amplitude modulated

  3. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available In higher plants, moderate photoinhibition of photosystem II (PSII leads to a stimulation of cyclic electron flow (CEF at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.

  4. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  5. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  6. Photosystem II function and dynamics in three widely used Arabidopsis thaliana accessions.

    Directory of Open Access Journals (Sweden)

    Lan Yin

    Full Text Available Columbia-0 (Col-0, Wassilewskija-4 (Ws-4, and Landsberg erecta-0 (Ler-0 are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL. The photosystem II (PSII complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis

  7. 'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'.

    Science.gov (United States)

    Barber, James

    2016-01-01

    About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally

  8. Non-photochemical Fluorescence Quenching in Photosystem II Antenna Complexes by the Reaction Center Cation Radical.

    Science.gov (United States)

    Paschenko, V Z; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Ivanov, M V; Maksimov, E G; Mamedov, M D

    2016-06-01

    In direct experiments, rate constants of photochemical (kP) and non-photochemical (kP(+)) fluorescence quenching were determined in membrane fragments of photosystem II (PSII), in oxygen-evolving PSII core particles, as well as in core particles deprived of the oxygen-evolving complex. For this purpose, a new approach to the pulse fluorometry method was implemented. In the "dark" reaction center (RC) state, antenna fluorescence decay kinetics were measured under low-intensity excitation (532 nm, pulse repetition rate 1 Hz), and the emission was registered by a streak camera. To create a "closed" [P680(+)QA(-)] RC state, a high-intensity pre-excitation pulse (pump pulse, 532 nm) of the sample was used. The time advance of the pump pulse against the measuring pulse was 8 ns. In this experimental configuration, under the pump pulse, the [P680(+)QA(-)] state was formed in RC, whereupon antenna fluorescence kinetics was measured using a weak testing picosecond pulsed excitation light applied to the sample 8 ns after the pump pulse. The data were fitted by a two-exponential approximation. Efficiency of antenna fluorescence quenching by the photoactive RC pigment in its oxidized (P680(+)) state was found to be ~1.5 times higher than that of the neutral (P680) RC state. To verify the data obtained with a streak camera, control measurements of PSII complex fluorescence decay kinetics by the single-photon counting technique were carried out. The results support the conclusions drawn from the measurements registered with the streak camera. In this case, the fitting of fluorescence kinetics was performed in three-exponential approximation, using the value of τ1 obtained by analyzing data registered by the streak camera. An additional third component obtained by modeling the data of single photon counting describes the P680(+)Pheo(-) charge recombination. Thus, for the first time the ratio of kP(+)/kP = 1.5 was determined in a direct experiment. The mechanisms of higher

  9. HERBICIDAS INIBIDORES DO FOTOSSISTEMA II – PARTE I /\tPHOTOSYSTEM II INHIBITOR HERBICIDES - PART I

    Directory of Open Access Journals (Sweden)

    ILCA P. DE F. E SILVA

    2013-11-01

    Full Text Available O controle químico tem sido o mais utilizado em grandes áreas de plantio, principalmente por ser um método rápido e eficiente. Os herbicidas inibidores do fotossistema II (PSII são fundamentais para o manejo integrado de plantas daninhas e práticas conservacionista de solo. A aplicação é realizada em pré-emergência ou pós-emergência inicial das plantas daninhas. A absorção é pelas raízes, tendo como barreira as estrias de Caspari, sendo a translocação realizada pelo xilema. O processo de absorção e translocação também são dependentes das próprias características do produto, como as propriedades lipofílicas e hidrofílicas, as quais podem ser medidas através do coeficiente de partição octanol-água (Kow. A inibição da fotossíntese acontece pela ligação dos herbicidas deste grupo ao sítio de ligação da QB, na proteína D1 do fotossistema II, o qual se localiza na membrana dos tilacóides dos cloroplastos, causando, o bloqueia do transporte de elétrons da QA para QB, interrompendo a fixação do CO2 e a produção de ATP e NAPH2.

  10. Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from Spinacia oleracea

    International Nuclear Information System (INIS)

    Kohoutová, J.; Kutá Smatanová, I.; Brynda, J.; Lapkouski, M.; Revuelta, J. L.; Arellano, J. B.; Ettrich, R.

    2009-01-01

    Degradation-free crystalization of thrombin-digested recombinant His-tagged PsbP protein of photosystem II from Spinacia oleracea resulting in crystals diffracting to 2.06 Å. Preliminary X-ray diffraction analysis of the extrinsic PsbP protein of photosystem II from spinach (Spinacia oleracea) was performed using N-terminally His-tagged recombinant PsbP protein overexpressed in Escherichia coli. Recombinant PsbP protein (thrombin-digested recombinant His-tagged PsbP) stored in bis-Tris buffer pH 6.00 was crystallized using the sitting-drop vapour-diffusion technique with PEG 550 MME as a precipitant and zinc sulfate as an additive. SDS–PAGE analysis of a dissolved crystal showed that the crystals did not contain the degradation products of recombinant PsbP protein. PsbP crystals diffracted to 2.06 Å resolution in space group P2 1 2 1 2 1 , with unit-cell parameters a = 38.68, b = 46.73, c = 88.9 Å

  11. Toward the crystallization of photosystem II core complex from Pisum sativum L

    Czech Academy of Sciences Publication Activity Database

    Prudnikova, T.; Gavira, J. A.; Řezáčová, Pavlína; Molina, E.P.; Hunalová, Ivana; Sviridova, E.; Schmidt, V.; Kohoutová, J.; Kutý, Michal; Kaftan, D.; Vácha, F.; Garcia-Ruiz, J. M.; Kutá-Smatanová, Ivana

    2010-01-01

    Roč. 10, č. 8 (2010), s. 3391-3396 ISSN 1528-7483 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50510513; CEZ:AV0Z60870520; CEZ:AV0Z40550506 Keywords : crystal-structure * cyanobacterial * elongatus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.390, year: 2010

  12. A novel P700 redox kinetics probe for rapid, non-intrusive and whole-tissue determination of photosystem II functionality, and the stoichiometry of the two photosystems in vivo.

    Science.gov (United States)

    Jia, Husen; Dwyer, Simon A; Fan, Da-Yong; Han, Yaqin; Badger, Murray R; von Caemmerer, Susanne; Chow, Wah Soon

    2014-11-01

    We sought a rapid, non-intrusive, whole-tissue measure of the functional photosystem II (PS II) content in leaves. Summation of electrons, delivered by a single-turnover flash to P700(+) (oxidized PS I primary donor) in continuous background far-red light, gave a parameter S in absorbance units after taking into account an experimentally determined basal electron flux that affects P700 redox kinetics. S was linearly correlated with the functional PS II content measured by the O(2) yield per single-turnover repetitive flash in Arabidopsis thaliana expressing an antisense construct to the PsbO (manganese-stabilizing protein in PS II) proteins of PS II (PsbO mutants). The ratio of S to z(max) (total PS I content in absorbance units) was comparable to the PS II/PS I reaction-center ratio in wild-type A. thaliana and in control Spinacea oleracea. Both S and S/z(max) decreased in photoinhibited spinach leaf discs. The whole-tissue functional PS II content and the PS II/photosystem I (PS I) ratio can be non-intrusively monitored by S and S/z(max), respectively, using a quick P700 absorbance protocol compatible with modern P700 instruments. © 2014 Scandinavian Plant Physiology Society.

  13. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... at different growth stages. The secondary aim was to investigate whether a pre-acclimation of plants to elevated temperature during the growth period induces a better tolerance to heat stress than for plants grown in ambient temperature or not. The plants were grown in two growth temperature conditions (15 °C...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...

  14. Electron spin-lattice relaxation of the S0 state of the oxygen-evolving complex in photosystem II and of dinuclear manganese model complexes.

    Science.gov (United States)

    Kulik, L V; Lubitz, W; Messinger, J

    2005-07-05

    The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.

  15. A role of the C-terminal extension of the Photosystem II D1 protein in sensitivity of the cyanobacterium Synechocystis PCC 6803 to photoinhibition

    Czech Academy of Sciences Publication Activity Database

    Kuviková, Stanislava; Tichý, Martin; Komenda, Josef

    2005-01-01

    Roč. 4, - (2005), s. 1044-1048 ISSN 1474-905X Institutional research plan: CEZ:AV0Z50200510 Keywords : c-terminal * synechocystis * photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 2.117, year: 2005

  16. Photosystem II Assembly in CP47 Mutant of Synechocystis sp. PCC 6803 Is Dependent on the Level of Chlorophyll Precursors Regulated by Ferrochelatase

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Roman; Komenda, Josef; Bumba, Ladislav; Tichý, Martin

    2005-01-01

    Roč. 280, č. 36 (2005), s. 31595-31602 ISSN 0021-9258 R&D Projects: GA AV ČR KJB5817301 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50200510 Keywords : photosystem II * synechocystis Subject RIV: EE - Microbiology, Virology Impact factor: 5.854, year: 2005

  17. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: Modeling of stark spectra with modified redfield theory

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Dekker, J.P.; van Grondelle, R.

    2007-01-01

    We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and

  18. Higher concentration of QB-nonreducing photosystem II centers in triazine-resistant Chenopodium album plants as revealed by analysis of chlorophyll fluorescence kinetics

    NARCIS (Netherlands)

    Rensen, van J.J.S.; Vredenberg, W.J.

    2009-01-01

    Plants resistant to triazine-type herbicides are known to be altered in their photosystem II reaction center. Serine at site 264 in D1 protein is replaced by glycine. The measurements of chlorophyll a fluorescence excitations with a variable number of saturating flashes in Chenopodium album plants

  19. Evidence for the semireduced primary quinone electron acceptor of photosystem II being a photosensitizer for UVB damage to the photosynthetic apparatus

    NARCIS (Netherlands)

    Rodrigues, G.C.; Jansen, M.A.K.; Noort, van den M.E.; Rensen, van J.J.S.

    2006-01-01

    Exposure to ultraviolet-B radiation (UVB) radiation affects plants in multiple ways, including effects on the photosynthetic apparatus. The carbon dioxide reduction reactions are affected as well as the light reactions, especially those of photosystem II. In the literature several UVB chromophores

  20. Direct mediatorless electron transport between the monolayer of photosystem II and poly (mercapto-p-benzoquinone) modified gold electrode-new design of biosensor for herbicide detection

    Czech Academy of Sciences Publication Activity Database

    Malý, J.; Masojídek, Jiří; Masci, A.; Ilie, M.; Cianci, E.; Foglieti, V.; Vastarella, W.; Pilloton, R.

    2005-01-01

    Roč. 21, - (2005), s. 923-932 ISSN 0956-5663 R&D Projects: GA ČR GA522/00/1274 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * biosensor * herbicides Subject RIV: EE - Microbiology, Virology Impact factor: 3.463, year: 2005

  1. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Kopečná, Jana; Sobotka, Roman; Komenda, Josef

    2013-01-01

    Roč. 237, č. 2 (2013), s. 497-508 ISSN 0032-0935 R&D Projects: GA ČR GAP501/10/1000; GA ČR GBP501/12/G055; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Chlorophyll biosynthesis * Cyanobacteria * Photosystems Subject RIV: EE - Microbiology, Virology Impact factor: 3.376, year: 2013

  2. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during Photosystem II assembly and repair

    Directory of Open Access Journals (Sweden)

    Anna eRast

    2016-05-01

    Full Text Available The assembly and repair of photosystem II (PSII is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis has previously been assigned a repair function under high light conditions (Yang et al., 2014, J. Integr. Plant Biol. 56, 1136-50. Here, we show that inactivation of Slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.

  4. Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis.

    Science.gov (United States)

    Santabarbara, Stefano; Tibiletti, Tania; Remelli, William; Caffarri, Stefano

    2017-03-29

    State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns -1 interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns -1 , likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns -1 ), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns -1 ), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.

  5. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    Directory of Open Access Journals (Sweden)

    Xiangyu Guan

    2013-01-01

    Full Text Available Photosystem II photochemistry and phycobiliprotein (PBP genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (Ik of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  6. A fluorescence detected magnetic resonance investigation of the carotenoid triplet states associated with Photosystem II of isolated spinach thylakoid membranes

    CERN Document Server

    Santabarbara, S; Carbonera, D; Heathcote, P

    2005-01-01

    The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680-690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters D = 0.0385 cm/sup -1/, E = 0.00367 cm/sup -1/; D = 0.0404 cm/sup -1/, E = 0.00379 cm/sup -1/ and D = 0.0386 cm/sup -1/, E = 0.00406 cm/sup -1/ which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed enviro...

  7. Photosystem II Water Oxidation: Mechanism, Efficiency and Flux in Diverse Oxygenic Phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, Gerard Charles [Rutgers Univ., Piscataway, NJ (United States); Ananyev, Gennady [Rutgers Univ., Piscataway, NJ (United States); Gates, Colin [Rutgers Univ., Piscataway, NJ (United States)

    2018-01-09

    In one year, we pursued four aims: 1) extend the VZAD model to allow analysis of PSII chlorophyll fluorescence emission as modulated by interaction with the WOC (partial success); 2) compare the solar energy conversion efficiencies of PSII-WOCs from intact cells, isolated thylakoid membranes and PSII core complexes and crystals from cyanobacterium Thermosynechococcus elongatus (collaboration with Lawrence Berkeley National Laboratory; some success after changing collaborator); 3) determine whether PSIIs can store light energy by pumping protons across the thylakoid membrane (PSII-cyclic electron flow) and how it is regulated within the green alga Chlorella ohadii (collaboration with the Hebrew University of Jerusalem; some success); and 4) genetically replace the native PSII-D1 protein subunit from a higher plant with two cyanobacterial D1 isoforms to test whether their functional advantages in growth and photoprotection can be transferred (collaboration with Rutgers University; success).

  8. Electronic structural changes of Mn in the oxygen-evolving complex of photosystem II during the catalytic cycle.

    Science.gov (United States)

    Glatzel, Pieter; Schroeder, Henning; Pushkar, Yulia; Boron, Thaddeus; Mukherjee, Shreya; Christou, George; Pecoraro, Vincent L; Messinger, Johannes; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-05-20

    The oxygen-evolving complex (OEC) in photosystem II (PS II) was studied in the S0 through S3 states using 1s2p resonant inelastic X-ray scattering spectroscopy. The spectral changes of the OEC during the S-state transitions are subtle, indicating that the electrons are strongly delocalized throughout the cluster. The result suggests that, in addition to the Mn ions, ligands are also playing an important role in the redox reactions. A series of Mn(IV) coordination complexes were compared, particularly with the PS II S3 state spectrum to understand its oxidation state. We find strong variations of the electronic structure within the series of Mn(IV) model systems. The spectrum of the S3 state best resembles those of the Mn(IV) complexes Mn3(IV)Ca2 and saplnMn2(IV)(OH)2. The current result emphasizes that the assignment of formal oxidation states alone is not sufficient for understanding the detailed electronic structural changes that govern the catalytic reaction in the OEC.

  9. Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.

    Science.gov (United States)

    Borisova-Mubarakshina, Maria M; Ivanov, Boris N; Vetoshkina, Daria V; Lubimov, Valeriy Y; Fedorchuk, Tatyana P; Naydov, Ilya A; Kozuleva, Marina A; Rudenko, Natalia N; Dall'Osto, Luca; Cazzaniga, Stefano; Bassi, Roberto

    2015-12-01

    Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes.

    Science.gov (United States)

    Bennett, Doran I G; Amarnath, Kapil; Fleming, Graham R

    2013-06-19

    Photosystem II (PSII) initiates photosynthesis in plants through the absorption of light and subsequent conversion of excitation energy to chemical energy via charge separation. The pigment binding proteins associated with PSII assemble in the grana membrane into PSII supercomplexes and surrounding light harvesting complex II trimers. To understand the high efficiency of light harvesting in PSII requires quantitative insight into energy transfer and charge separation in PSII supercomplexes. We have constructed the first structure-based model of energy transfer in PSII supercomplexes. This model shows that the kinetics of light harvesting cannot be simplified to a single rate limiting step. Instead, substantial contributions arise from both excitation diffusion through the antenna pigments and transfer from the antenna to the reaction center (RC), where charge separation occurs. Because of the lack of a rate-limiting step, fitting kinetic models to fluorescence lifetime data cannot be used to derive mechanistic insight on light harvesting in PSII. This model will clarify the interpretation of chlorophyll fluorescence data from PSII supercomplexes, grana membranes, and leaves.

  11. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Lavaud, Johann; Wilhelm, Christian

    2016-05-01

    Alternative electron sinks are an important regulatory mechanism to dissipate excessively absorbed light energy particularly under fast changing dynamic light conditions. In diatoms, the cyclic electron transport (CET) around Photosystem II (PS II) is an alternative electron transport pathway (AET) that contributes to avoidance of overexcitation under high light illumination. The combination of nitrogen limitation and high-intensity irradiance regularly occurs under natural conditions and is expected to force the imbalance between light absorption and the metabolic use of light energy. The present study demonstrates that under N limitation, the amount of AET and the activity of CETPSII in the diatom Phaeodactylum tricornutum were increased. Thereby, the activity of CETPSII was linearly correlated with the amount of AET rates. It is concluded that CETPSII significantly contributes to AET in P. tricornutum. Surprisingly, CETPSII was found to be activated already at the end of the dark period under N-limited conditions. This coincided with a significantly increased degree of reduction of the plastoquinone (PQ) pool. The analysis of the macromolecular composition of cells of P. tricornutum under N-limited conditions revealed a carbon allocation in favor of carbohydrates during the light period and their degradation during the dark phase. A possible linkage between the activity of CETPSII and degree of reduction of the PQ pool on the one side and the macromolecular changes on the other is discussed.

  12. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Science.gov (United States)

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  13. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during Photosystem II repair in Synechocystis sp

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Tichý, Martin; Prášil, Ondřej; Knoppová, Jana; Kuviková, Stanislava; de Vries, R.; Nixon, P. J.

    2007-01-01

    Roč. 19, - (2007), s. 2839-2854 ISSN 1040-4651 R&D Projects: GA MŠk LN00A141; GA ČR GA203/04/0800; GA ČR GA206/06/0322 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * cyanobacterium * synechocystis sp. pcc 6803 Subject RIV: EE - Microbiology, Virology Impact factor: 9.653, year: 2007

  14. The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Barker, M.; Kuviková, Stanislava; de Vries, R.; Mullineaux, C.W.; Tichý, Martin; Nixon, P.

    2006-01-01

    Roč. 281, č. 2 (2006), s. 1145-1151 ISSN 0021-9258 R&D Projects: GA ČR GA203/04/0800; GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * synechocystis sp. pcc 6803 * ftsh protease Subject RIV: EE - Microbiology, Virology Impact factor: 5.808, year: 2006

  15. Fluoride substitution in the Mn cluster from Photosystem II: EPR and X-ray absorption spectroscopy studies

    Science.gov (United States)

    DeRose, Victoria J.; Latimer, Matthew J.; Zimmermann, Jean-Luc; Mukerji, Ishita; Yachandra, Vittal K.; Sauer, Kenneth; Klein, Melvin P.

    1995-05-01

    X-band electron paramagnetic resonance (EPR) and Mn K-edge X-ray fluorescence absorption were used to study the effects of fluoride inhibition on the Mn complex in Photosystem II. The tetrameric Mn complex, responsible for the light-induced oxidation of H 2O to form molecular oxygen, is influenced by treatments in which the naturally occurring chloride salts are removed or replaced. Inhibition of the complex by fluoride is examined by parallel enzyme activity and EPR studies. It is found that, as a function of increasing fluoride concentration, the declining enzymatic activity is paralleled initially by an exchange of the S = 1/2 'multiline' EPR signal for the S > 1/2, 'g = 4' EPR signal in illuminated samples. High concentrations of fluoride induce a broad (≈ 200 G), featureless radical signal in samples which have not been illuminated; subsequent illumination of these samples also generates the g = 4 EPR signal. X-ray absorption studies (XAS) of fluoride-inhibited samples show subtle alterations of the conformation of the Mn complex that are consistent with the presence of two dissimilar pairs of Mn atoms. The halide studies are discussed in terms of structural models for the Mn complex.

  16. Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages.

    Science.gov (United States)

    Tian, Yonglan; Ungerer, Petra; Zhang, Huayong; Ruban, Alexander V

    2017-05-01

    The impact of chronic photoinhibition of photosystem II (PSII) on the productivity of plants remains unknown. The present study investigated the influences of persistent decline in the PSII yield on morphology and productivity of Arabidopsis plants that were exposed to lincomycin at two different developmental stages (seedling and rosette stage). The results indicated that, although retarded, the lincomycin treated plants were able to accomplish the entire growth period with only 50% of the maximum quantum yield of primary photochemistry (Fv/Fm) of the control plants. The decline in quantum yield limited the electron transport rate (ETR). The impact of lincomycin on NPQ was not significant in seedlings, but was pronounced in mature plants. The treated plants produced an above ground biomass of 50% compared to control plants. Moreover, a linear relationship was found between the above ground biomass and total rosette leaf area, and the slope was decreased due to photoinhibition. The starch accumulation was highly inhibited by lincomycin treatment. Lincomycin induced a significant decrease in seed yield with plants treated from the rosette state showing higher yield than those treated from the seedling stage. Our data suggest that the sustained decline of PSII efficiency decreases plant productivity by constraining the ETR, leaf development and starch production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Atomic force microscopy of photosystem II and its unit cell clustering quantitatively delineate the mesoscale variability in Arabidopsis thylakoids.

    Directory of Open Access Journals (Sweden)

    Bibiana Onoa

    Full Text Available Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ, which depend on the re-organization of photosystem (PS II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.

  18. Self-consistent QM/MM methodologies for structural refinement of photosystem II and other macromolecules of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Enrique R [Los Alamos National Laboratory; Sproviero, Eduardo M [YALE UNIV; Newcomer, Michael [YALE UNIV; Gascon, Jose A [YALE UNIV; Batista, Victor S [YALE UNIV

    2008-01-01

    The combination of quantum mechanics and molecular mechanics (QM/MM) is one of the most promising approaches to study the structure, function, and properties of proteins and nucleic acids. However, there some instances in which the limitations of either the MM (lack of a proper electronic description) or QM (limited to a few number of atoms) methods prevent a proper description of the system. To address this issue, we review here our approach to fine-tune the structure of biological systems using post-QM/MM refinements. These protocols are based on spectroscopy data, and/or partitioning of the system to extend the QM description to a larger region of a protein. We illustrate these methodologies through applications to several biomolecules, which were pre-optimized at the QM/MM level and then further refined using postQM/MM refinement methodologies: mod(QM/MM), which refines the atomic charges of the residues included in the MM region accounting for polarization effects; mod(QM/MM)-opt that partition the MM region in smaller parts and optimizes each part in an iterative. self-consistent way, and the Polarized-Extended X-Ray Absorption Fine Structure (P-EXAFS) fitting procedure, which fine-tune the atomic coordinates to reproduce experimental polarized EXAFS spectra. The first two techniques were applied to the guanine quadruplex. while the P-EXAFS refinement was applied to the oxygen evolving complex of photosystem II.

  19. Insights into substrate binding to the oxygen-evolving complex of photosystem II from ammonia inhibition studies.

    Science.gov (United States)

    Vinyard, David J; Brudvig, Gary W

    2015-01-20

    Water oxidation in Photosystem II occurs at the oxygen-evolving complex (OEC), which cycles through distinct intermediates, S0-S4. The inhibitor ammonia selectively binds to the S2 state at an unresolved site that is not competitive with substrate water. By monitoring the yields of flash-induced oxygen production, we show that ammonia decreases the net efficiency of OEC turnover and slows the decay kinetics of S2 to S1. The temperature dependence of biphasic S2 decay kinetics provides activation energies that do not vary in control and ammonia conditions. We interpret our data in the broader context of previous studies by introducing a kinetic model for both the formation and decay of ammonia-bound S2. The model predicts ammonia binds to S2 rapidly (t1/2 = 1 ms) with a large equilibrium constant. This finding implies that ammonia decreases the reduction potential of S2 by at least 2.7 kcal mol(-1) (>120 mV), which is not consistent with ammonia substitution of a terminal water ligand of Mn(IV). Instead, these data support the proposal that ammonia binds as a bridging ligand between two Mn atoms. Implications for the mechanism of O-O bond formation are discussed.

  20. Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms.

    Science.gov (United States)

    Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2008-09-01

    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.

  1. Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Langlois, Lucas; Ralph, Peter J.; Negri, Andrew P.

    2017-03-01

    Tropical seagrasses are at their highest risk of exposure to photosystem II (PSII) herbicides when elevated rainfall and runoff from farms transports these toxicants into coastal habitats during summer, coinciding with periods of elevated temperature. PSII herbicides, such as diuron, can increase the sensitivity of corals to thermal stress, but little is known of the potential for herbicides to impact the thermal optima of tropical seagrass. Here we employed a well-plate approach to experimentally assess the effects of diuron on the photosynthetic performance of Halophila ovalis leaves across a 25 °C temperature range (36 combinations of these stressors across 15-40 °C). The thermal optimum for photosynthetic efficiency (▵) in H. ovalis was 31 °C while lower and higher temperatures reduced ▵ as did all elevated concentrations of diuron. There were significant interactions between the effects of temperature and diuron, with a majority of the combined stresses causing sub-additive (antagonistic) effects. However, both stressors caused negative responses and the sum of the responses was greater than that caused by temperature or diuron alone. These results indicate that improving water quality (reducing herbicide in runoff) is likely to maximise seagrass health during extreme temperature events that will become more common as the climate changes.

  2. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    Science.gov (United States)

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  3. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region.

    Science.gov (United States)

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis "wild-type" substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not exactly

  4. Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pushkar, Yulia; Long, Xi; Glatzel, Pieter; Brudvig, Gary W.; Dismukes, G. Charles; Collins, Terrence J.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2009-06-16

    Ligands play critical roles during the catalytic reactions in metalloproteins through bond formation/breaking, protonation/deprotonation, and electron/spin delocalization. While there are well-defined element-specific spectroscopic handles, such as X-ray spectroscopy and EPR, to follow the chemistry of metal catalytic sites in a large protein matrix, directly probing particular ligand atoms like C, N, and O is challenging due to their abundance in the protein. FTIR/Raman and ligand-sensitive EPR techniques such as ENDOR and ESEEM have been applied to study metal-ligand interactions. X-ray absorption spectroscopy (XAS) can also indirectly probe the ligand environment; its element-specificity allows us to focus only on the catalytic metal site, and EXAFS and XANES provide metal-ligand distances, coordination numbers, and symmetry of ligand environments. However, the information is limited, since one cannot distinguish among ligand elements with similar atomic number (i.e. C, N. and O). As an alternative and a more direct method to probe the specific metal-ligand chemistry in the protein matrix, we investigated the application of X-ray emission spectroscopy (XES). Using this technique we have identified the oxo-bridging ligands of the Mn{sub 4}Ca complex of photosystem II (PS II), a multisubunit membrane protein, that catalyzes the water oxidizing reaction. The catalytic mechanism has been studied intensively by Mn XAS. The fundamental question of this reaction, however, is how the water molecules are ligated to the Mn{sub 4}Ca cluster and how the O-O bond formation occurs before the evolution of O{sub 2}. This implies that it is necessary to follow the chemistry of the oxygen ligands in order to understand the mechanism.

  5. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-11-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q{sub A} in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of {beta}-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of {beta}-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680{sup -} or Car{sup +} in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q{sub A} reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680{sup +} with consequent recombination of

  6. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of β-carotene

    International Nuclear Information System (INIS)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-01-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q A in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of β-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of β-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680 - or Car + in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q A reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680 + with consequent recombination of Car + and Chl-680 - (or Pheo

  7. Robust photosystem I activity by Cyanothece sp. (Cyanobacteria) and its role in prolonged bloom persistence in lake St Lucia, South Africa.

    Science.gov (United States)

    du Plooy, Schalk J; Anandraj, Akash; White, Sarah; Perissinotto, Renzo; du Preez, Derek R

    2018-04-12

    Worldwide, cyanobacterial blooms are becoming more frequent, exacerbated by eutrophication, anthropogenic effects, and global climate change. Environmental factors play a direct role in photosynthesis of cyanobacteria and subsequent cellular changes, growth, and bloom dynamics. This study investigated the photosynthetic functioning of a persistent bloom-forming (18 months) cyanobacterium, Cyanothece sp., isolated from Lake St Lucia, South Africa. DUAL-PAM fluorometric methods were used to observe physiological responses in Cyanothece sp. photosystems I and II. Results show that photosystem I activity was maintained under all environmental conditions tested, while photosystem II activity was not observed at all. Out of the environmental factors tested (temperature, salinity, and nitrogen presence), only temperature significantly influenced photosystem I activity. In particular, high temperature (40 °C) facilitated faster electron transport rates, while effects of salinity and nitrogen were variable. Cyanothece sp. has shown to sustain bloom status for long periods largely because of the essential role of photosystem I activity during highly dynamic and even extreme (e.g., salinities higher than 200) environmental conditions. This ensures the continual supply of cellular energy (e.g. ATP) to important processes such as nitrogen assimilation, which is essential for protein synthesis, cell growth and, therefore, bloom maintenance.

  8. Phosphatidylglycerol depletion affects photosystem II aktivity in Synechococcus sp. PCC 7942 cells

    Czech Academy of Sciences Publication Activity Database

    Bogos, B.; Ughy, B.; Domonkos, I.; Laczkó-Dobos, H.; Komenda, Josef; Abasova, L.; Cser, K.; Vass, I.; Sallai, A.; Wada, H.; Gombos, Z.

    2010-01-01

    Roč. 103, č. 1 (2010), s. 19-30 ISSN 0166-8595 Institutional research plan: CEZ:AV0Z50200510 Keywords : Oxygen-evolving activity * Phosphatidylglycerol * PS II acceptor side Subject RIV: EE - Microbiology, Virology Impact factor: 2.410, year: 2010

  9. Photoinhibition of photosynthesis in higher plants : From photosystem II paricticle to intact leaf

    NARCIS (Netherlands)

    van Wijk, Klaas Jan

    1992-01-01

    In this thesis several aspects of photoinhibition have been studied. Photoinhibition of PS II was studied, both on a basic (biophysical and biochemical) level and on a more integrated (eco)physiological level. The results of the different approaches were integrated and discussed with respect to the

  10. The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for Photosystem II.

    Science.gov (United States)

    Hernandez-Prieto, Miguel A; Tibiletti, Tania; Abasova, Leyla; Kirilovsky, Diana; Vass, Imre; Funk, Christiane

    2011-09-01

    The five small CAB-like proteins (ScpA-E) of the cyanobacterium Synechocystis sp. PCC 6803 belong to the family of stress-induced light-harvesting-like proteins, but are constitutively expressed in a mutant deficient of Photosystem I (PSI). Using absorption, fluorescence and thermoluminescence measurements this PSI-less strain was compared with a mutant, in which all SCPs were additionally deleted. Depletion of SCPs led to structural rearrangements in Photosystem II (PSII): less photosystems were assembled; and in these, the Q(B) site was modified. Despite the lower amount of PSII, the SCP-deficient cells contained the same amount of phycobilisomes (PBS) as the control. Although the excess PBS were functionally disconnected, their fluorescence was quenched under high irradiance by the activated Orange Carotenoid Protein (OCP). Additionally the amount of OCP, but not of the iron-stress induced protein (isiA), was higher in this SCP-depleted mutant compared with the control. As previously described, the lack of SCPs affects the chlorophyll biosynthesis (Vavilin, D., Brune, D. C., Vermaas, W. (2005) Biochim Biophys Acta 1708, 91-101). We demonstrate that chlorophyll synthesis is required for efficient PSII repair and that it is partly impaired in the absence of SCPs. At the same time, the amount of chlorophyll also seems to influence the expression of ScpC and ScpD. 2011 Elsevier B.V. All rights reserved.

  11. Studies on femtosecond fluorescence dynamics of photosystem II Particle complex at low temperature

    CERN Document Server

    Liu Xiao; He, Jun Fang; Cai, Xia; Peng Jun Fang; Kuang Ting Yun

    2004-01-01

    In order to understanding the diversity of energy transfer in PS II at different temperatures, PS II particle complex purified from spinach was investigated with femtosecond time-resolved fluorescence spectroscopy in the case of excitation 507 nm at 83 K, 160 K, 273 K. The data were analyzed by Gauss analysis and fluorescence decay time- fitting. Some results were achieved. (1) Increase of the temperature results in a broadening of the fluorescence emission spectra due to the temperature-dependent expressions for nonradiative transitions between two electronic states. (2) There are at least several characteristic Chl molecules exist in PS II particle complex, i.e. Chl b/sub 639//sup 640/, Chl b/sub 640//sup 645/, Chl a/sub 660//sup 663/, Chl a/sub 667//sup 668/, Chl a/sub 673//sup 676/, Chl a/sub 680 //sup 681/, Chl a/sub 680/681//sup 682/, Chl a/sub 684,685//sup 668 /689/, Chl a/sub 688//sup 698/, (Chl a/b/sub a//sup e/: a represents the peak of absorption, e represents the peak of emission). (3) Though the ...

  12. Endophytic infection alleviates Pb{sup 2+} stress effects on photosystem II functioning of Oryza sativa leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuemei, E-mail: lxmls132@163.com [College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034 (China); Zhang, Lihong, E-mail: lihongzhang132@163.com [Environmental Science Department of Liaoning University,Shenyang 110036 (China)

    2015-09-15

    Highlights: • Chl fluorescence parameters of endophyte-infected rice under Pb{sup 2+} stress were tested. • The efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress. • Endophyte infection improved photosynthetic system activity under Pb{sup 2+} stress. • JIP-test is a suitable tool for monitoring of Pb{sup 2+} stress. • Endophyte infection may increase tolerance to Pb{sup 2+} in rice. - Abstract: The aims of this study were to examine the effect of Pb{sup 2+} stress on the primary reaction of photosynthesis and to assess the potential benefits of endophytic infection on the Pb{sup 2+} tolerance of rice seedlings. Rice inoculated with an endophytic fungus (E+) and non-inoculated (E−) were subjected to 0, 50, 100, 150 and 200 μM Pb{sup 2+}. The responses to Pb{sup 2+} stress were characterized by the analysis of Chl a fluorescence. A comparison of E− with E+ rice seedlings, as evaluated by their performance index (PI{sub ABS} and PI{sub tot}), revealed the inhibitory effects of Pb{sup 2+} on photosystem II (PSII) connectivity, the oxygen evolving complex (OEC), and on the J step of the induction curves, which is associated with an inhibition of electron transport from the quinone acceptor Q{sub A} to Q{sub B}. Furthermore, the changes of the donor and the acceptor parameters of PSII were greater in E− than in E+ under Pb{sup 2+} stress. These observations suggest that the efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress, and the photosynthetic energy conservation in E+ was more effective than in E−. We showed that endophytic infection plays an important role in enhancing the photosynthetic mechanism of rice seedlings exposed to Pb{sup 2+} stress.

  13. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    Science.gov (United States)

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  14. Photosystem II repair and plant immunity: Lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3

    Directory of Open Access Journals (Sweden)

    Sari eJärvi

    2016-03-01

    Full Text Available Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425. Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

  15. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3.

    Science.gov (United States)

    Järvi, Sari; Isojärvi, Janne; Kangasjärvi, Saijaliisa; Salojärvi, Jarkko; Mamedov, Fikret; Suorsa, Marjaana; Aro, Eva-Mari

    2016-01-01

    Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

  16. An enzyme kinetics study of the pH dependence of chloride activation of oxygen evolution in photosystem II.

    Science.gov (United States)

    Baranov, Sergei; Haddy, Alice

    2017-03-01

    Oxygen evolution by photosystem II (PSII) involves activation by Cl - ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na 2 SO 4 /pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl - binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl - at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl - activation, K S , was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK a s were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I , was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na 2 SO 4 /pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O 2 evolution activity than has been previously presented.

  17. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2017-10-01

    Full Text Available Tall fescue (Festuca arundinacea Schreb is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition or 44°C (heat stress for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC. Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC (TP0/RC and ET0/RC. Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  18. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  19. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-10-01

    Full Text Available Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively. The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.

  20. Electronic structure of the oxygen evolving complex in photosystem II, as revealed by 55Mn Davies ENDOR studies at 2.5 K.

    Science.gov (United States)

    Jin, Lu; Smith, Paul; Noble, Christopher J; Stranger, Rob; Hanson, Graeme R; Pace, Ron J

    2014-05-07

    We report the first (55)Mn pulsed ENDOR studies on the S2 state multiline spin ½ centre of the oxygen evolving complex (OEC) in Photosystem II (PS II), at temperatures below 4.2 K. These were performed on highly active samples of spinach PS II core complexes, developed previously in our laboratories for photosystem spectroscopic use, at temperatures down to 2.5 K. Under these conditions, relaxation effects which have previously hindered observation of most of the manganese ENDOR resonances from the OEC coupled Mn cluster are suppressed. (55)Mn ENDOR hyperfine couplings ranging from ∼50 to ∼680 MHz are now seen on the S2 state multiline EPR signal. These, together with complementary high resolution X-band CW EPR measurements and detailed simulations, reveal that at least two and probably three Mn hyperfine couplings with large anisotropy are seen, indicating that three Mn(III) ions are likely present in the functional S2 state of the enzyme. This suggests a low oxidation state paradigm for the OEC (mean Mn oxidation level 3.0 in the S1 state) and unexpected Mn exchange coupling in the S2 state, with two Mn ions nearly magnetically silent. Our results rationalize a number of previous ligand ESEEM/ENDOR studies and labelled water exchange experiments on the S2 state of the photosystem, in a common picture which is closely consistent with recent photo-assembly (Kolling et al., Biophys. J. 2012, 103, 313-322) and large scale computational studies on the OEC (Gatt et al., Angew. Chem., Int. Ed. 2012, 51, 12025-12028, Kurashige et al. Nat. Chem. 2013, 5, 660-666).

  1. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.

    Science.gov (United States)

    Saison, Cyril; Perreault, François; Daigle, Jean-Christophe; Fortin, Claude; Claverie, Jérôme; Morin, Mario; Popovic, Radovan

    2010-01-31

    The effect of core-shell copper oxide nanoparticles with sizes smaller than 100 nm on cellular systems is still not well understood. Documenting these effects is pressing since core-shell copper oxide nanoparticles are currently components of pigments used frequently as antifouling paint protecting boats from crustacean, weed and slime fouling. However, the use of such paints may induce strong deteriorative effects on different aquatic trophic levels that are not the intended targets. Here, the toxic effect of core-shell copper oxide nanoparticles on the green alga, Chlamydomonas reinhardtii was investigated with regards to the change of algal cellular population structure, primary photochemistry of photosystem II and reactive oxygen species formation. Algal cultures were exposed to 0.004, 0.01 and 0.02 g/l of core-shell copper oxide nanoparticles for 6h and a change in algal population structure was observed, while the formation of reactive oxygen species was determined using the 2',7'-dichlorodihydrofluorescein diacetate marker measured by flow cytometry. For the study of the photosystem II primary photochemistry we investigated the change in chlorophyll a rapid rise of fluorescence. We found that core-shell copper oxide nanoparticles induced cellular aggregation processes and had a deteriorative effect on chlorophyll by inducing the photoinhibition of photosystem II. The inhibition of photosynthetic electron transport induced a strong energy dissipation process via non-photochemical pathways. The deterioration of photosynthesis was interpreted as being caused by the formation of reactive oxygen species induced by core-shell copper oxide nanoparticles. However, no formation of reactive oxygen species was observed when C. reinhardtii was exposed to the core without the shell or to the shell only. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from Spinacia oleracea

    Czech Academy of Sciences Publication Activity Database

    Kohoutová, Jaroslava; Kutá-Smatanová, Ivana; Brynda, Jiří; Lapkouski, Mikalai; Revuelta, J. L.; Arellano, J.B.; Ettrich, Rüdiger

    F65, č. 2 (2009), s. 111-115 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : photosystem protein * crystallization * X-ray analysis Subject RIV: CC - Organic Chemistry Impact factor: 0.551, year: 2009

  4. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Robblee, John Henry [Univ. of California, Berkeley, CA (United States)

    2000-12-01

    possible oxidation states of Mn in the S0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.

  5. Spin conversion of cytochrome b{sub 559} in photosystem II induced by exogenous high potential quinone

    Energy Technology Data Exchange (ETDEWEB)

    Kropacheva, Tatyana N.; Feikema, W. Onno; Mamedov, Fikret; Feyziyev, Yashar; Styring, Stenbjorn; Hoff, Arnold J

    2003-11-01

    The spin-state of cytochrome b{sub 559} (Cyt b{sub 559}) was studied in photosystem II (PSII) membrane fragments by low-temperature EPR spectroscopy. Treatment of the membranes with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) converts the native low-spin (LS) form of Cyt b{sub 559} to the high-spin (HS) form characterized with the g= 6.19 and g= 5.95 split signal. The HS Cyt b{sub 559} was pH dependent with the amplitude increasing toward more acidic pH values (pH 5.5-8.5). The HS state was not photochemically active upon 77 and 200 K continuous illumination under our conditions and was characterized by a low reduction potential ({<=}0 V). It was also demonstrated that DDQ treatment damages the oxygen evolving complex, leading to inhibition of oxygen evolution, decrease of the S{sub 2}-state EPR multiline signal and release of Mn{sup 2+}. In parallel, studies of model systems containing iron(III) protoporphyrin IX chloride (Fe{sup III}Por), which is a good model compound for the Cyt b{sub 559} prosthetic group, were performed by using optical and EPR spectroscopy. The interaction of Fe{sup III}Por with imidazole (Im) in weakly polar solvent results in formation of bis-imidazole coordinated heme iron (Fe{sup III}Por Im{sub 2}) which mimic the bis-histidine axial ligation of Cyt b{sub 559}. The reaction of DDQ with the LS Fe{sup III}Por Im{sub 2} complex leads to its transformation into the HS state (g{sub perpendicular}=5.95, g{sub parallel}=2.00). It was shown that the spin conversion occurs due to the donor-acceptor interaction of coordinated imidazole with this high-potential quinone causing the displacement of imidazole from the axial position. The similar mechanism of DDQ-induced spin change is assumed to be valid for the native membrane Cyt b{sub 559} in PSII centers.

  6. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  7. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kui; Juneau, Philippe, E-mail: juneau.philippe@uqam.ca

    2016-01-15

    Highlights: • The response mechanisms to high zinc was investigated among three cyanobacterial strains grown under two light regimes. • Photosystem II is more sensitive to high zinc compared to Photosystem I in the three studied strains. • High light increases the zinc uptake in two Microcystis aeruginosa strains, but not in Synechocystis sp.. • Combined high light and high zinc treatment is lethal for the toxic M. aeruginosa CPCC299. - Abstract: Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate—suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (Φ{sub M}) and operational (Φ'{sub M}) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299 > CPCC632 > FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios

  8. [Phototrophic microorganisms in the symbiotic communities of Baikal sponges: Diversity of psbA gene (encoding D1 protein of photosystem II) sequences].

    Science.gov (United States)

    Kaluzhnaya, O V; Itskovich, V B

    2017-01-01

    The psbA gene, which encodes a major photosystem II protein (protein II or D1), is a marker for the presence of phototrophic organisms in water communities. We have pioneered the use of this marker for studying the diversity of phototrophic microflora of freshwater invertebrates. The object of the study is the microbial associations accompanying the endemic Baikal sponge Baikalospongia intermedia and the surrounding aquatic microbial community. Analysis of the psbA gene sequences in the examined microbiomes demonstrates the presence of various phototrophic groups, such as Cyanobacteria, Chlorophyta, Heterokonta, Haptophyta, and Ochrophyta algae, as well as cyanophages. A total of 35 unique psbA gene sequences have been distinguished in the microbial communities of the endemic sponge B. intermedia and 32 unique sequences in the water community surrounding the sponge. These data demonstrate the involvement of sponge symbiotic communities in the accumulation of primary production and carbon cycle in the Lake Baikal ecosystem.

  9. Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of Photosystem II in Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Kuviková, Stanislava; Granvogl, B.; Eichacker, L. A.; Diner, B. A.; Nixon, P. J.

    2007-01-01

    Roč. 1767, - (2007), s. 829-837 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50200510 Keywords : ctpa protease * d1 maturation * photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 3.835, year: 2007

  10. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29 : Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms

    NARCIS (Netherlands)

    Giuffra, Elisabetta; Zucchelli, Giuseppe; Sandona, Dorianna; Croce, Roberta; Cugini, Daniela; Garlaschi, Flavio M.; Bassi, Roberto; Jennings, Robert C.

    1997-01-01

    The minor photosystem II antenna complex CP29(Lhcb-4) has been reconstituted in vitro with the Lhcb-4 apoprotein, overexpressed in Escherichia coli, and the native pigments. Modulation of the pigment composition during reconstitution yields binding products with markedly different chlorophyll a/b

  11. Primary light harvesting system: the relationship of phycobilisomes to photosystem I and II. Progress report, May 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.

    1986-01-01

    The energy transfer pathway from the phycobilisome to the photosystems in the photosynthetic membrane is being studied in cyanobacteria and red algae. Two independent terminal fluorescence emitters were resolved for the first time in isolated phycobilisomes. One of them was isolated and identified as the high molecular weight ''anchor polypeptide'' linking the phycobilisomes and the thylakoid. The other is assumed to be allophycocyanin-B. Location of the ''anchor polypeptide in both the phycobilisome and the thylakoid was verified by immunoprecipitation analysis. Within the phycobilisome core, energy flow from allophycocyanin seems to occur independently to the two terminal emitters. Since nearly parallel orientation of the dipole moment occurs only between allophycocyanin and the ''anchor polypeptide,'' the preferred energy transfer pathway is assumed to occur through the ''anchor polypeptide'' to the thylakoids. Regulation by light of the development of the photosynthetic apparatus is continuing. In the red algae Porphyridium cruentum, an obligate shade plant, the phycobilisome number changes while photosystem I remains relatively invariant with changes in light intensity. It appears that this organism will serve as a model system for studying intensity effects.

  12. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Gimpel, Javier A.; Nour-Eldin, Hussam Hassan; Scranton, Melissa A.

    2016-01-01

    Oxygenic photosynthesis provides the energy to produce all food and most of the fuel on this planet. Photosystem II (PSII) is an essential and rate-limiting component of this process. Understanding and modifying PSII function could provide an opportunity for optimizing photosynthetic biomass...... production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct......, synthetic cassettes, and refactoring strategy developed for this study demonstrate the potential of synthetic biology approaches for tailoring oxygenic photosynthesis and provide a powerful tool for unraveling PSII structure-function relationships....

  13. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests

    International Nuclear Information System (INIS)

    Pan Xiangliang; Deng Chunnuan; Zhang Daoyong; Wang Jianlong; Mu Guijin; Chen Ying

    2008-01-01

    Amoxicillin is one of the widely used antibiotics of environmental concern. This study shows that amoxicillin has toxic effects on the photosynthesis of Synechocystis sp. Its inhibitory effects on photosystem II (PSII) of Synechocystis sp. were investigated by using a variety of in vivo chlorophyll fluorescence tests. The inhibitory effects of amoxicillin on PSII activity of Synechocystis sp. are concentration-dependent. Amoxicillin exposure leads to slowing down of electron transport on both donor side and acceptor side and causes accumulation of P680 + . Q A - reoxidation test revealed that amoxicillin hinders electron transfer from Q A - to Q B /Q B - and more Q A - is oxidized through S 2 (Q A Q B ) - charge recombination. Analysis of PSII heterogeneity demonstrated that an exposure to amoxicillin increases the proportion of inactive PSII (PSII X ) centers and the proportion of PSII centers with small antenna (PSIIβ). These changes finally result in deterioration of full photosynthesis performance

  14. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Enrique Agustin [Univ. of California, Berkeley, CA (United States)

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  15. Differences in the responses of photosystems I and II in Cymbidium sinense and C. tracyanum to long-term chilling stress

    Directory of Open Access Journals (Sweden)

    Li eJia-wei

    2016-01-01

    Full Text Available The susceptibility of photosystem I (PSI and photosystem II (PSII to chilling stress depends on plant species, and cyclic electron flow (CEF plays an important role in photoprotection for some species under short stress periods. However, little is known about the responses of PSI and PSII to long-term chilling stress. We studied two orchid species -- Cymbidium sinense and C. tracyanum -- that differ in their capacity to adapt to low temperature, and exposed plants for 19 d to stress conditions that included 4°C and a light intensity of 250 to 350 μmol photons m-2 s-1. Meanwhile, we investigated their dynamic variations in Chl fluorescence and P700 parameters. After exposure to 4°C and 250 μmol photons m-2 s-1 for 6 h, PSI activity was maintained stable in both species, but stronger PSII photoinhibition was observed in C. sinense. During the long-term treatment, the maximum quantum yield of PSII was significantly reduced, with that decrease being greater in C. sinense. After 19 d of chilling treatment, the maximum photo-oxidizable P700 declined only slightly in C .tracyanum but dropped significantly in C. sinense. Linear electron flow was largely depressed during the long-term chilling treatment, especially in C. sinense. Meanwhile, C. tracyanum showed higher CEF activity than C. sinense. These results indicate that PSII is more sensitive to chilling-light stress than PSI in both species. The rate of PSII photodamage at chilling-light stress is higher in C. sinense than C .tracyanum, and CEF contributes to photoprotection for PSI and PSII under long-term chilling stress in C. tracyanum.

  16. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Antenna complexes protect Photosystem I from Photoinhibition

    Directory of Open Access Journals (Sweden)

    Hienerwadel Rainer

    2009-06-01

    Full Text Available Abstract Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.

  18. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases?

    Science.gov (United States)

    Flood, Pádraic J.; Yin, Lan; Herdean, Andrei; Harbinson, Jeremy; Aarts, Mark G. M.; Spetea, Cornelia

    2014-01-01

    Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments. PMID:24591726

  19. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II.

    Science.gov (United States)

    Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina

    2017-07-18

    In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

  20. Role of phosphatidylglycerol in the function and assembly of Photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes

    Czech Academy of Sciences Publication Activity Database

    Laczkó-Dobos, H.; Ughy, B.; Tóth, S. Z.; Komenda, Josef; Zsiros, O.; Domonkos, I.; Párducz, A.; Bogos, B.; Komura, M.; Itoh, S.; Gombos, Z.

    2008-01-01

    Roč. 1777, č. 9 (2008), s. 1184-1194 ISSN 0005-2728 R&D Projects: GA AV ČR IAA400200801 Grant - others:HU(HU) OTKA T60109; HU(HU) OTKA T68692 Institutional research plan: CEZ:AV0Z50200510 Keywords : synechocystis sp. pcc6803 * phosphatidylglycerol * photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 4.447, year: 2008

  1. A Novel Redoxin in the Thylakoid Membrane Regulates the Titer of Photosystem I.

    Science.gov (United States)

    Zhu, Yuehui; Liberton, Michelle; Pakrasi, Himadri B

    2016-09-02

    In photosynthetic organisms like cyanobacteria and plants, the main engines of oxygenic photosynthesis are the pigment-protein complexes photosystem I (PSI) and photosystem II (PSII) located in the thylakoid membrane. In the cyanobacterium Synechocystis sp. PCC 6803, the slr1796 gene encodes a single cysteine thioredoxin-like protein, orthologs of which are found in multiple cyanobacterial strains as well as chloroplasts of higher plants. Targeted inactivation of slr1796 in Synechocystis 6803 resulted in compromised photoautotrophic growth. The mutant displayed decreased chlorophyll a content. These changes correlated with a decrease in the PSI titer of the mutant cells, whereas the PSII content was unaffected. In the mutant, the transcript levels of genes for PSI structural and accessory proteins remained unaffected, whereas the levels of PSI structural proteins were severely diminished, indicating that Slr1796 acts at a posttranscriptional level. Biochemical analysis indicated that Slr1796 is an integral thylakoid membrane protein. We conclude that Slr1796 is a novel regulatory factor that modulates PSI titer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Yano, Junko; Visser, Hendrik; Robblee, John H.; Gu, Weiwei; de Groot, Frank M. F.; Christou, George; Pecoraro, Vincent L.

    2014-01-01

    Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p3/2 RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (MnIII(acac)3 and MnIV(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital. PMID:15303869

  3. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit.

    Science.gov (United States)

    Sperdouli, Ilektra; Moustakas, Michael

    2014-05-01

    Water deficit stress promotes excitation pressure and photooxidative damage due to an imbalance between light capture and energy use. Young leaves (YL) of Arabidopsis thaliana plants acclimate better to the onset of water deficit (OnsWD) than do mature leaves (ML). To obtain a better understanding of this differential response, we evaluated whether YL and ML of A. thaliana exposed to the OnsWD, mild water deficit (MiWD) and moderate water deficit (MoWD), show differences in their photosynthetic performance, and whether photosynthetic acclimation correlates with leaf developmental stage. Water deficit (WD) resulted in greater photooxidative damage in ML compared to YL, but the latter could not be protected under the OnsWD or MiWD, but only under MoWD. YL of A. thaliana with signs of photosynthetic acclimation under MoWD retained higher maximum quantum yield (Fv/Fm) and decreased reactive oxygen species (ROS) formation. YL under MoWD, show a reduced excitation pressure and a better balance between light capture and photochemical energy use, which contributed to their photoprotection, but only under low light intensity (LL, 130μmolphotonsm(-2)s(-1)) and not under high light (HL, 1200μmolphotonsm(-2)s(-1)). In conclusion, leaf developmental stage was correlated with photo-oxidative damage and a differential allocation of absorbed light energy in photosystem II (PSII) of Arabidopsis leaves under WD. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates.

    Science.gov (United States)

    Dwyer, Simon A; Chow, Wah Soon; Yamori, Wataru; Evans, John R; Kaines, Sarah; Badger, Murray R; von Caemmerer, Susanne

    2012-08-01

    Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.

  5. A synthetic DNA and fusion PCR approach to the ectopic expression of high levels of the D1 protein of photosystem II in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Nagarajan, Aparna; Winter, Regan; Eaton-Rye, Julian; Burnap, Robert

    2011-01-01

    A hybrid approach involving synthetic DNA, fusion PCR, and ectopic expression has been used to genetically manipulate the expression of the D1 protein of photosystem II (PSII) in the model cyanobacterium Synechocystis sp. PCC6803. Due to the toxicity of the full-length psbA gene in E. coli, a chimeric psbA2 gene locus was commercially synthesised and cloned in two halves. High-fidelity fusion PCR utilizing sequence overlap between the two synthetic gene halves allowed the production of a DNA fragment that was able to recombine the full-length psbA2 gene into the Synechocystis chromosome at an ectopic (non-native) location. This was accomplished by designing the synthetic DNA/fusion PCR product to have the psbA2 gene, with control sequences, interposed between chimeric sequences corresponding to an ectopic target chromosomal location. Additionally, a recipient strain of Synechocystis lacking all three psbA genes was produced by a combination of traditional marker replacement and markerless replacement techniques. Transformation of this multiple deletion strain by the synthetic DNA/fusion PCR product faithfully restored D1 expression in terms of its expression and PSII repair capacity. The advantages and potential issues for using this approach to rapidly introduce chimeric sequence characteristics as a general tool to produce novel genetic constructs are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Identification of the roles of individual amino acid residues of the helix E of the major antenna of photosystem II (LHCII) by alanine scanning mutagenesis.

    Science.gov (United States)

    Liu, Cheng; Rao, Yan; Zhang, Lei; Yang, Chunhong

    2014-10-01

    The functions of the helix E (W97-F105), an amphiphilic lumenal 310 helix of the major antenna of photosystem II (LHCII), are still unidentified. To elucidate the roles of individual amino acid residue of the helix E, alanine scanning mutagenesis has been performed to mutate every residue of this domain to alanine. The influence of every alanine substitution on the structure and function of LHCII has been investigated biochemically and spectroscopically. The results show that all mutations have little impact on the pigment binding and configuration. However, many mutants presented decreased thermo- or photo-stability compared with the wild type, highlighting the significance of this helix to the stability of LHCII. The most critical residue for stability is W97. The mutant W97A yielded very fragile trimeric pigment protein complexes. The structural analysis revealed that the hydrogen bonding and aromatic interactions between W97, F195, F194 and a water molecule contributed greatly to the stability of LHCII. Moreover, Q103A and F105A have been identified to be able to reinforce the tendency of aggregation in vitro. The structural analysis suggested that the enhancement in aggregation formation for Q103A and F105A might be attributed to the changing hydrophobicity of the region. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests

    Energy Technology Data Exchange (ETDEWEB)

    Pan Xiangliang [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumuqi, 830011 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Deng Chunnuan [Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130012 (China); Yunnan Normal University, Kunming 650092 (China); Zhang Daoyong [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumuqi, 830011 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China)], E-mail: zhangdaoyong@vip.gyig.ac.cn; Wang Jianlong [Institute of Nuclear Energy and Technology, Tsinghua University, Beijing, 100083 (China); Mu Guijin [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumuqi, 830011 (China); Chen Ying [Yunnan Normal University, Kunming 650092 (China)

    2008-09-29

    Amoxicillin is one of the widely used antibiotics of environmental concern. This study shows that amoxicillin has toxic effects on the photosynthesis of Synechocystis sp. Its inhibitory effects on photosystem II (PSII) of Synechocystis sp. were investigated by using a variety of in vivo chlorophyll fluorescence tests. The inhibitory effects of amoxicillin on PSII activity of Synechocystis sp. are concentration-dependent. Amoxicillin exposure leads to slowing down of electron transport on both donor side and acceptor side and causes accumulation of P680{sup +}. Q{sub A}{sup -} reoxidation test revealed that amoxicillin hinders electron transfer from Q{sub A}{sup -} to Q{sub B}/Q{sub B}{sup -} and more Q{sub A}{sup -} is oxidized through S{sub 2}(Q{sub A}Q{sub B}){sup -} charge recombination. Analysis of PSII heterogeneity demonstrated that an exposure to amoxicillin increases the proportion of inactive PSII (PSII{sub X}) centers and the proportion of PSII centers with small antenna (PSII{beta}). These changes finally result in deterioration of full photosynthesis performance.

  8. Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II.

    Science.gov (United States)

    Li, Xichen; Siegbahn, Per E M; Ryde, Ulf

    2015-03-31

    Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2-S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.

  9. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis.

    Science.gov (United States)

    Nagao, Ryo; Tomo, Tatsuya; Narikawa, Rei; Enami, Isao; Ikeuchi, Masahiko

    2016-12-01

    The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m -2  s -1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m -2  s -1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.

  10. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II

    DEFF Research Database (Denmark)

    Yano, Junko; Robblee, John; Pushkar, Yulia

    2007-01-01

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy...... structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese......-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach...

  11. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  12. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    Science.gov (United States)

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  13. Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (μ-oxo) of the manganese tetramer

    Science.gov (United States)

    Pérez Navarro, Montserrat; Ames, William M.; Nilsson, Håkan; Lohmiller, Thomas; Pantazis, Dimitrios A.; Rapatskiy, Leonid; Nowaczyk, Marc M.; Neese, Frank; Boussac, Alain; Messinger, Johannes; Lubitz, Wolfgang; Cox, Nicholas

    2013-01-01

    The assignment of the two substrate water sites of the tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (μ-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522–3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable μ-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable μ-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55–60]}; (ii) ammonia displaces a water ligand to the outer manganese (MnA4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the MnA4-O5 bond, leading to the perturbation of the μ-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water. PMID:24023065

  14. Optimal Thermal Environments for Plant Metabolic Processes (Cucumis sativus L.) (Light-Harvesting Chlorophyll a/b Pigment-Protein Complex of Photosystem II and Seedling Establishment in Cucumber).

    Science.gov (United States)

    Burke, J. J.; Oliver, M. J.

    1993-01-01

    Analysis of the temperatures providing maximal photosystem II fluorescence reappearance following illumination and thermal kinetic windows (TKWs), obtained from the temperature characteristics of enzyme apparent Km values, have been proposed as indicators of the bounds of thermal stress in plants. In this study, we have evaluated the temperature optimum for the accumulation of the chlorophyll a/b light-harvesting complex of photosystem II (LHCP II), its mRNA, and the mRNA of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in cucumber (Cucumis sativus L. cv Ashley) as a broader measure of metabolism than that provided by either the fluorescence reappearance or TKWs. The TKW for cucumber is between 23.5 and 39[deg]C, with the minimum apparent Km occurring at 32.5[deg]C. The photosystem II variable fluorescence reappearance following illumination was maximal between 30 and 35[deg]C. Maximum synthesis of the LHCP II occurred at 30[deg] C. The light-induced accumulation of the LHCP II and the small subunit of Rubisco mRNAs showed similar temperature characteristics. Suboptimal temperatures delayed germination, altered cotyledonary soluble sugar content, and broadened the temperature range for chlorophyll accumulation. These results demonstrate an effect of seed reserve mobilization on the range of temperatures for chlorophyll accumulation, and suggest that metabolic temperature characteristics may be broadened by increasing available substrates for enzyme utilization. This study provides new information about the relationship between TKWs and cellular responses to temperature. In addition, the results suggest that the temperature range outside of which plants experience temperature stress is narrower than traditionally supposed. PMID:12231821

  15. Insights into the Cyanobacterial Deg/HtrA Proteases

    Directory of Open Access Journals (Sweden)

    Otilia eCheregi

    2016-05-01

    Full Text Available Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g. caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologues. Homology modeling was used to find specific features of the Deg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.

  16. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat

    Science.gov (United States)

    Jorgensen, B. B.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux.

  17. Photo-electric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in absence and presence of valinomycin

    NARCIS (Netherlands)

    Vredenberg, W.J.; Bulychev, A.A.

    2003-01-01

    Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An

  18. EPR evidence for the primary water oxidation step upon the S 2 → S 3 transition in the Joliot-Kok cycle of plant photosystem II

    Science.gov (United States)

    Kusunoki, Masami

    1995-06-01

    A new type of 90-240 G wide EPR signal from the modified S 3 state of Ca 2+-depleted photosystem II (PSII) is concluded to arise from a partially oxidized water radical with spin S = 1/2 interacting with the S = 1/2 S 2-state manganese tetramer ('Mn 4'). This is based exclusively on the fact that the average g value of the radical is ≈ 2.010-2.012, a value close to that of OH radical (2.011) and significantly larger than either one of an oxidized imidazole (2.00226) or an oxidized tyrosine (2.0046), indicating that the radical may be (HOOH) -, the most probable intermediate produced by abstracting two protons and one electron from a bound water dimer. The effective interactions between the Mn 4 and radical spins ( S1 and S2, respectively) of the form H int = J 12S 1 · S 2 + S 1 · D12 · S 12 have been thoroughly investigated to find which Mn 4-radical complex can reasonably make both J 12andD12 as small as ≈ 100 G in magnitude and can, simultaneously, yield an X-ray absorption Mn K-edge energy 0.7 ± 0.3 eV higher than that in the modified S 2 state. As the most probable model, we propose that the radical must form the third bridging ligand between di-μ-oxo or μ2-oxo-( μ3-oxo) bridged Mn a(III) and Mn b(IV) ions on the opposite side of mono- μ2-oxo bridged Mn c and Mn d ions.

  19. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria.

    Science.gov (United States)

    Bec Ková, Martina; Yu, Jianfeng; Krynická, Vendula; Kozlo, Amanda; Shao, Shengxi; Koník, Peter; Komenda, Josef; Murray, James W; Nixon, Peter J

    2017-09-26

    One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  20. Comparison of photosynthesis recovery dynamics in floating leaves of Trapa natans after inhibition by manganese or molybdenum: effects on Photosystem II.

    Science.gov (United States)

    Baldisserotto, Costanza; Ferroni, Lorenzo; Pantaleoni, Laura; Pancaldi, Simonetta

    2013-09-01

    The aquatic plant Trapa natans L. is highly resistant to Mn and moderately resistant to Mo, mainly thanks to its ability to sequestrate the metals by chelation in the vacuole. Excess of Mn and Mo causes somewhat aspecific toxicity symptoms in plants, but the main target of their toxicity seems to be the photosynthetic process. In this work, we aimed at understanding how the effect on photosynthesis caused by Mn (130 μM, full recovery) or Mo (50 μM, partial recovery) in T. natans is linked to changes occurring in the photosynthetic apparatus, with emphasis on Photosystem II (PSII), during a 10 day treatment with these metals. The time-course of net photosynthesis, photosynthetic pigment content, amount of PSII and its peripheral antenna LHCII, and room-temperature fluorescence emission ratios F694/F680 and F700/(F685 + F695) showed that the early inhibiting effect of Mo and Mn (one day exposure) was essentially non-specific with respect to the metal, though more marked in Mo- than in Mn-treated plants. During the subsequent recovery phase, Mo still impaired PSII assembly and, consequently, photosynthesis could not reach the control values. Conversely, in Mn-treated plants the amount of PSII was fully re-established, as was photosynthesis, but the metal induced the accumulation of LHCII. The extent of inhibition and the effectiveness of photosynthesis recovery are proposed to reflect the different ability of T. natans to sequestrate safely excess Mn or Mo in vacuoles. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Dissecting the Photoprotective Mechanism Encoded by the flv4-2 Operon: a Distinct Contribution of Sll0218 in Photosystem II Stabilization.

    Science.gov (United States)

    Bersanini, Luca; Allahverdiyeva, Yagut; Battchikova, Natalia; Heinz, Steffen; Lespinasse, Maija; Ruohisto, Essi; Mustila, Henna; Nickelsen, Jörg; Vass, Imre; Aro, Eva-Mari

    2017-03-01

    In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting. © 2016 The Authors. Plant, Cell & Enviroment Published by John Wiley & Sons Ltd.

  2. Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements.

    Science.gov (United States)

    Grabolle, Markus; Dau, Holger

    2005-06-30

    Photon absorption by one of the roughly 200 chlorophylls of the plant Photosystem II (PSII) results in formation of an equilibrated excited state (Chl200*) and is followed by chlorophyll oxidation (formation of P680+) coupled to reduction of a specific pheophytin (Phe), then electron transfer from Phe- to a firmly bound quinone (QA), and subsequently reduction of P680+ by a redox-active tyrosine residue denoted as Z. The involved free-energy differences (DeltaG) and redox potentials are of prime interest. Oxygen-evolving PSII membrane particles of spinach were studied at 5 degrees C. By analyzing the delayed and prompt Chl fluorescence, we determined the equilibrium constant and thus free-energy difference between Chl200* and the [Z+,QA-] radical pair to be -0.43+/-0.025 eV, at 10 mus after the photon absorption event for PSII in its S(3)-state. On basis of this value and previously published results, the free-energy difference between P680* and [P680+,QA-] is calculated to be -0.50+/-0.04 eV; the free-energy loss associated with electron transfer from Phe to QA is found to be 0.34+/-0.04 eV. The given uncertainty ranges do not represent a standard deviation or likely error, but an estimate of the maximal error. Assuming a QA-/QA redox potential of -0.08 V, the following redox-potential estimates are obtained: +1.25 V for P680/P680+; +1.21 V for Z/Z+ (at 10 mus); -0.42 V for Phe-/Phe; -0.58 V for P680*/P680+.

  3. D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine YZfor proton exit during water oxidation.

    Science.gov (United States)

    Nagao, Ryo; Ueoka-Nakanishi, Hanayo; Noguchi, Takumi

    2017-12-08

    In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn 4 CaO 5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine Y Z in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near Y Z We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O 2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon Y Z oxidation, suggesting that the hydrogen-bonded structure of Y Z and electron transfer from the Mn 4 CaO 5 cluster to Y Z were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S 2 → S 3 and S 3 → S 0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S 2 → S 3 and S 3 → S 0 transitions. This in turn indicates that the hydrogen-bond network near Y Z can be functional as a proton transfer pathway during photosynthetic water oxidation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr 2 O 3 -NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr 2 O 3 -NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr 2 O 3 -NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L −1 Cr 2 O 3 -NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L −1 Cr 2 O 3 -NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr 2 O 3 -NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr 2 O 3 -NP after 24 h of treatment. - Highlights: • Cr 2 O 3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L −1 at 72 h. • Cr 2 O 3 nanoparticles increase ROS levels at 10 g L −1 . • Cr 2 O 3 nanoparticles affect photosynthetic electron transport.

  5. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  6. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus.

    Science.gov (United States)

    Sainz, Martha; Díaz, Pedro; Monza, Jorge; Borsani, Omar

    2010-09-01

    Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought-heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought-heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought-heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme-specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought-heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.

  7. High Yield Non-detergent Isolation of Photosystem I-Light-harvesting Chlorophyll II Membranes from Spinach Thylakoids: IMPLICATIONS FOR THE ORGANIZATION OF THE PS I ANTENNAE IN HIGHER PLANTS.

    Science.gov (United States)

    Bell, Adam J; Frankel, Laurie K; Bricker, Terry M

    2015-07-24

    Styrene-maleic acid copolymer was used to effect a non-detergent partial solubilization of thylakoids from spinach. A high density membrane fraction, which was not solubilized by the copolymer, was isolated and was highly enriched in the Photosystem (PS) I-light-harvesting chlorophyll (LHC) II supercomplex and depleted of PS II, the cytochrome b6/f complex, and ATP synthase. The LHC II associated with the supercomplex appeared to be energetically coupled to PS I based on 77 K fluorescence, P700 photooxidation, and PS I electron transport light saturation experiments. The chlorophyll (Chl) a/b ratio of the PS I-LHC II membranes was 3.2 ± 0.9, indicating that on average, three LHC II trimers may associate with each PS I. The implication of these findings within the context of higher plant PS I antenna organization is discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  9. Identification of the Chromophores Involved in Aggregation-dependent Energy Quenching of the Monomeric Photosystem II Antenna Protein Lhcb5*

    Science.gov (United States)

    Ballottari, Matteo; Girardon, Julien; Betterle, Nico; Morosinotto, Tomas; Bassi, Roberto

    2010-01-01

    Non-photochemical quenching (NPQ) of excess absorbed light energy is a fundamental process that regulates photosynthetic light harvesting in higher plants. Among several proposed NPQ mechanisms, aggregation-dependent quenching (ADQ) and charge transfer quenching have received the most attention. In vitro spectroscopic features of both mechanisms correlate with very similar signals detected in more intact systems and in vivo, where full NPQ can be observed. A major difference between the models is the proposed quenching site, which is predominantly the major trimeric light-harvesting complex II in ADQ and exclusively monomeric Lhcb proteins in charge transfer quenching. Here, we studied ADQ in both monomeric and trimeric Lhcb proteins, investigating the activities of each antenna subunit and their dependence on zeaxanthin, a major modulator of NPQ in vivo. We found that monomeric Lhcb proteins undergo stronger quenching than light-harvesting complex II during aggregation and that this is enhanced by binding to zeaxanthin, as occurs during NPQ in vivo. Finally, the analysis of Lhcb5 mutants showed that chlorophyll 612 and 613, in close contact with lutein bound at site L1, are important facilitators of ADQ. PMID:20584907

  10. Properties of the cyanobacterial coupling factor ATPase from Spirulina platensis. II. Activity of the purified and membrane-bound enzymes.

    Science.gov (United States)

    Hicks, D B; Yocum, C F

    1986-02-15

    Cyanobacterial (Spirulina platensis) photosynthetic membranes and isolated F1 ATPase were characterized with respect to ATP activity. The following results indicate that the regulation of expression of ATPase activity in Spirulina platensis is similar to that found in chloroplasts: the ATPase activity of Spirulina membranes and isolated F1 ATPase is mostly latent, a characteristic of chloroplast ATPase activity; treatments that elicit ATPase activity in higher plant chloroplast thylakoids and isolated chloroplast coupling factor (CF1) greatly stimulate the activity of Spirulina membranes and F1, and the cation specificity of chloroplast ATPase activity, e. g., light-induced membrane activity that is magnesium dependent and trypsin-activated CF1 activity that is calcium dependent, is also observed in Spirulina. Thus, an 8- to 15-fold increase in specific activity (to 13-15 mumol Pi min-1 mg chl-1) is obtained when Spirulina membranes are treated with trypsin (CaATPase) or with methanol (MgATPase): a light-induced, dithiothreitol-dependent MgATPase activity is also found in the membranes. Purified Spirulina F1 is a CaATPase when activated with trypsin (endogenous activity increases from 4 to 27-37 mumol Pi min-1 mg protein-1) or with dithiothreitol (5.6 mumol Pi min-1 mg-1), but a MgATPase when assayed with methanol (18-20 mumol Pi min-1 mg-1). The effects of varying calcium and ATP concentrations on the kinetics of trypsin-induced CaATPase activity of Spirulina F1 were examined. When the calcium concentration is varied at constant ATP concentration, the velocity plot shows a marked sigmoidicity. By varying Ca-ATP metal-nucleotide complex concentration at constant concentrations of free calcium or ATP, it is shown that the sigmoidicity is due to the effect of free ATP, which changes the Hill constant to 1.6 from 1.0 observed when the free calcium concentration is kept constant at 5 mM. Therefore not only is ATP an inhibitor but it is also an allosteric effector of

  11. Absence of the psbH gene product destabilizes photosystem II complex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Lupínková, Lenka; Kopecký, Jiří

    2002-01-01

    Roč. 269, - (2002), s. 610-619 ISSN 0014-2956 R&D Projects: GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacteria * d1 protein * photosystem Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.999, year: 2002

  12. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  13. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  14. Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhang

    Full Text Available BACKGROUND: Flavodiiron proteins (FDPs comprise a group of modular enzymes that function in oxygen and nitric oxide detoxification in Bacteria and Archaea. The FDPs in cyanobacteria have an extra domain as compared to major prokaryotic enzymes. The physiological role of cyanobacteria FDPs is mostly unknown. Of the four putative flavodiiron proteins (Flv1-4 in the cyanobacterium Synechocystis sp. PCC 6803, a physiological function in Mehler reaction has been suggested for Flv1 and Flv3. PRINCIPAL FINDINGS: We demonstrate a novel and crucial function for Flv2 and Flv4 in photoprotection of photosystem II (PSII in Synechocystis. It is shown that the expression of Flv2 and Flv4 is high under air level of CO(2 and negligible at elevated CO(2. Moreover, the rate of accumulation of flv2 and flv4 transcripts upon shift of cells from high to low CO(2 is strongly dependent on light intensity. Characterization of FDP inactivation mutants of Synechocystis revealed a specific decline in PSII centers and impaired translation of the D1 protein in Delta flv2 and Delta flv4 when grown at air level CO(2 whereas at high CO(2 the Flvs were dispensable. Delta flv2 and Delta flv4 were also more susceptible to high light induced inhibition of PSII than WT or Delta flv1 and Delta flv3. SIGNIFICANCE: Analysis of published sequences revealed the presence of cyanobacteria-like FDPs also in some oxygenic photosynthetic eukaryotes like green algae, mosses and lycophytes. Our data provide evidence that Flv2 and Flv4 have an important role in photoprotection of water-splitting PSII against oxidative stress when the cells are acclimated to air level CO(2. It is conceivable that the function of FDPs has changed during evolution from protection against oxygen in anaerobic microbes to protection against reactive oxygen species thus making the sustainable function of oxygen evolving PSII possible. Higher plants lack FDPs and distinctly different mechanisms have evolved for

  15. Accumulation of the D2 Protein Is a Key Regulatory Step for Assembly of the Photosystem II Reaction Center Complex in Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Reisinger, V.; Muller, B. Ch.; Dobáková, Marika; Granvogl, B.; Eichacker, L. A.

    2004-01-01

    Roč. 279, č. 47 (2004), s. 48620-48629 ISSN 0021-9258 R&D Projects: GA MŠk LN00A141 Grant - others:GA Deutsche Forschungsgemeinschaft Grants(DE) SFB TR1; GA Deutsche Forschungsgemeinschaft Grants(DE) SFB 594 Institutional research plan: CEZ:AV0Z5020903 Keywords : synechocystis PCC 6803 * D2 protein * photosystem PSII Subject RIV: EE - Microbiology, Virology Impact factor: 6.355, year: 2004

  16. Participation of Glutamate-354 of the CP43 Polypeptide in the Ligation of Mn and the Binding of Substrate Water in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Service, Rachel; Yano, Junko; McConnell, Iain; Hwang, Hong Jin; Niks, Dimitri; Hille, Russ; Wydrzynski, Tom; Burnap, Robert; Hillier, Warwick; Debus, Richard

    2010-09-30

    In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn4Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn4Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray Absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild-type. In addition, the oxygen flash-yields exhibited normal period-four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant?s lower steady-state rate (approx. 20percent compared to wild-type). Experiments conducted with H218O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S3 state compared to wild-type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S1 state Mn-EXAFS spectrum, a slightly altered S2 state multiline EPR signal, a substantially altered S2-minus-S1 FTIR difference spectrum, and an unusually long lifetime for the S2 state (> 10 hours) in a substantial fraction of reaction centers. In contrast, the S2 state Mn-EXAFS spectrum was nearly indistinguishable from that of wild-type. The S2-minus-S1 FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with 15N and specific labeling with L-[1-13C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the ?-COO? group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3 ? 4 cm-1 in both the S1 and S2 states

  17. Effects of ethylene glycol and methanol on ammonia-induced structural changes of the oxygen-evolving complex in photosystem II.

    Science.gov (United States)

    Fang, Cheng-Hao; Chiang, Kuo-An; Hung, Chung-Hsien; Chang, Keejong; Ke, Shyue-Chu; Chu, Hsiu-An

    2005-07-19

    Ammonia is an inhibitor of water oxidation and a structural analogue for substrate water, making it a valuable probe for the structural properties of the possible substrate-binding site on the oxygen-evolving complex (OEC) in photosystem II (PSII). By using the NH(3)-induced upshift of the 1365 cm(-)(1) IR mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum and the NH(3)-modified S(2) state EPR signals of PSII as spectral probes, we found that ethylene glycol has clear effects on the binding properties of the NH(3)-specific site on the OEC. Our results show that in PSII samples containing 30% (v/v) ethylene glycol, the affinity of the NH(3)-specific binding site on the OEC is estimated to be more than 10 times lower than that in PSII samples containing 0.4 M sucrose. In addition, our results show that the NH(3)-induced upshift of the 1365 cm(-)(1) IR mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum is dependent on the concentration of ethylene glycol, but not dependent on the concentration of sucrose (up to 1.5 M) or methanol (up to 5.4 M). By comparing the concentration dependence of sucrose and ethylene glycol on NH(3)-induced spectral change and also by comparing the sucrose and ethylene glycol data at similar concentrations ( approximately 1 M), we conclude that ethylene glycol has a clear effect on the NH(3)-induced spectral changes. Furthermore, our results also show that ethylene glycol alters the steric requirement of the amine effect on the upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum. In PSII samples containing 30% (v/v) ethylene glycol, only NH(3), not other bulkier amines (e.g., Tris, AEPD, and CH(3)NH(2)), has a clear effect on the upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum; in contrast, in PSII samples containing 0.4 M sucrose, both NH(3) and CH(3)NH(2) have a clear effect. On the basis of the results mentioned above, we propose that ethylene glycol acts directly or indirectly to decrease the affinity or limit the

  18. Sulfite-stress induced functional and structural changes in the complexes of photosystems I and II in a cyanobacterium, Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Kobayashi, Satomi; Tsuzuki, Mikio; Sato, Norihiro

    2015-08-01

    Excess sulfite is well known to have toxic effects on photosynthetic activities and growth in plants, however, so far, the behavior of the photosynthetic apparatus during sulfite-stress has not been characterized as to the responsible proteins or genes. Here, the effects of sulfite on photosystem complexes were investigated in a cyanobacterium, Synechococcus elongatus PCC 7942, a possible model organism of chloroplasts. Culturing of the cells for 24 h in the presence of 10 mM sulfite retarded cell growth of the wild type, concomitantly with synthesis of Chl and phycobilisome repressed. The excess sulfite simultaneously repressed photosynthesis by more than 90%, owing largely to structural destabilization and resultant inactivation of the PSII complex, which seemed to consequently retard the cell growth. Notably, the PsbO protein, one of the subunits that construct the water-splitting system of PSII, was retained at a considerable level, and disruption of the psbO gene led to higher sensitivity of photosynthesis and growth to sulfite. Meanwhile, the PSI complex showed monomerization of its trimeric configuration with little effect on the activity. The structural alterations of these PS complexes depended on light. Our data provide evidence for quantitative decreases in the photosystem complex(es) including their antenna(e), structural alterations of the PSI and PSII complexes that would modulate their functions, and a crucial role of psbO in PSII protection, in Synechococcus cells during sulfite-stress. We suggest that the reconstruction of the photosystem complexes is beneficial to cell survival. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration.

    Science.gov (United States)

    Gao, Shan; Niu, Jianfeng; Chen, Weizhou; Wang, Guangce; Xie, Xiujun; Pan, Guanghua; Gu, Wenhui; Zhu, Daling

    2013-09-01

    Photosynthetic electron flow changed considerably during desiccation and re-hydration of the intertidal macroalgae Porphyra haitanensis. Activities of both photosystem (PSI) and photosystem (PSII) increased significantly at moderate desiccation levels. Whereas PSII activity was abolished at an absolute water content (AWC) <24 %, PSI remained active with progressive decreases in AWC to values as low as 16 %. This result suggested that cyclic electron flow around PSI was still active after inactivation of linear electron flow following severe desiccation. Moreover, the PSI activity was restored more rapidly than that of PSII upon re-hydration. Pretreatment of the blades with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) suppressed PSII activity following desiccation to an AWC of ~16 % AWC. Cyclic electron flow around PSI decreased markedly in blades pretreated with DCMU than in blades without pretreatment of DCMU during re-hydration in seawater containing DCMU. All results suggested that the activity of PSII under desiccation conditions plays an important role in the operation of cyclic electron flow during desiccation and its recovery during re-hydration. Therefore, we proposed the PSII activity during desiccation could eventually lead to the accumulation of NADPH, which could serve as electron donor for P700(+) and promote its recovery during re-hydration, thereby favoring the operation of cyclic electron flow.

  20. Damage to the plasmalemma, chloroplasts and photosystem II after water shortage and high-temperature stress in two lines of maize which differ in endogenous levels of abscisic acid and drought resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Z.; Cass, D.D. (Univ. of Alberta, Edmonton (Canada))

    1991-05-01

    This study examines damage to the plasmalemma, chloroplasts and photosystem II (PS II), and the rate of CO{sub 2} fixation after exposure to 7-d water shortage followed by 6-h (WTS-6) or 24-h (WTS-24) high temperature (45C) stress in the high-level. Abscisic acid (ABA) drought-resistant (DR) line of maize ZPBL 1304 and the low-level ABA drought-sensitive line ZPL 389. Seven-day water shortage followed by 6-h high-temperature stress slightly damaged PS II in the DR line ZPBL 1304. The DS line ZPL 389 was affected by WTS-6 to a great extent; however, the stress-caused damage to this line was reversible. Exposure to WTS-24 caused reversible damage to the plasmalemma, chloroplasts and PS II in DR line. The DS line was not capable of withstanding severe stress conditions; WTS-24 killed almost all the plants. The results on the rate of CO{sub 2} fixation were in agreement with those on the damage to the plasmalemma, chloroplasts and PS II. Considerable drought and heat resistance was apparent in the line (ZPBL 1304) which synthesizes a unique band of heat-shock protein(s) of 45 KDa. In conclusion, the high-level ABA DR line ZPBL 1304 showed much greater capability of withstanding WTS than the low-level ABA DS line ZPL 389.

  1. Expression of Anabaena PCC 7937 plastocyanin in Synechococcus PCC 7942 enhances photosynthetic electron transfer and alters the electron distribution between photosystem I and cytochrome-c oxidase

    NARCIS (Netherlands)

    Geerts, D.; Schubert, H.; de Vrieze, G.; Borrias, M.; Matthijs, H. C.; Weisbeek, P. J.

    1994-01-01

    The petE gene encoding plastocyanin precursor protein from the cyanobacterium Anabaena PCC 7937 was introduced in the cyanobacterial host strain Synechococcus PCC 7942. The host normally only uses cytochrome c553 as Photosystem I (PS I) donor. The heterologous gene was efficiently expressed using

  2. Modern cyanobacterial analogs of paleozoic stromatoporoids.

    Science.gov (United States)

    Kazacutemierczak, J; Kempe, S

    1990-11-30

    Recent and subfossil calcareous structures resembling cystose and subclathrate Paleozoic stromatoporoids have been discovered in a sea-linked, stratified, alkaline crater lake on Satonda Island, Indonesia. The structures are produced by mats of coccoid cyanobacteria growing along the lakeshore from the water surface down to the O(2)-H(2)S interface located at a depth of 22.8 meters. Calcification of the mats is controlled by seasonal changes in calcium carbonate supersaturation in the epilimnion. The internally complex structures are a product of two different calcification processes: (i) periodic in vivo calcification of the surficial cyanobacterial layers by low-Mg calcite, and (ii) early postmortem calcification of the cyanobacterial aggregates below the mat surface by microbially precipitated aragonite. The finding supports the idea that Paleozoic stromatoporoids represent fossilized cyanobacteria (stromatolites). It also implies that the stromatoporoid-generating epicontinental seas during the early Paleozoic may have been more alkaline and had a higher carbonate mineral supersaturation than modern seawater.

  3. In vivo photosystem I reduction in thermophilic and mesophilic cyanobacteria: The thermal resistance of the process is limited by factors other than the unfolding of the partners

    International Nuclear Information System (INIS)

    Duran, Raul V.; Hervas, Manuel; Rosa, Miguel A. de la; Navarro, Jose A.

    2005-01-01

    Photosystem I reduction by plastocyanin and cytochrome c 6 in cyanobacteria has been extensively studied in vitro, but much less information is provided on this process inside the cell. Here, we report an analysis of the electron transfer from both plastocyanin and cytochrome c 6 to photosystem I in intact cells of several cyanobacterial species, including a comparative study of the temperature effect in mesophilic and thermophilic organisms. Our data show that cytochrome c 6 reduces photosystem I by following a reaction mechanism involving complex formation, whereas the copper-protein follows a simpler collisional mechanism. These results contrast with previous kinetic studies in vitro. The effect of temperature on photosystem I reduction leads us to conclude that the thermal resistance of this process is determined by factors other than the proper stability of the protein partners

  4. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.

    Science.gov (United States)

    Demmig-Adams, B; Adams, W W; Winter, K; Meyer, A; Schreiber, U; Pereira, J S; Krüger, A; Czygan, F C; Lange, O L

    1989-03-01

    During the "midday depression" of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and β-carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.

  5. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Unraveling photosystems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report highlights four main points. (1) A residue substitution in phosphoribulokinase of Synechocystis PCC 6803 renders the mutant light-sensitive. The authors isolated a light-sensitive mutant (BRLS) of the photosynthetic cyanobacterium Synechocystis 6803 that does not survive exposure to bright light; 70% of BRLS cells die upon exposure to light of > 3000 lux for 2 hr. (2) Excitation energy transfer from phycocyanin to chlorophyll in an apcA-defective mutant of Synechocystis sp. PCC 6803. A greenish mutant of the normally bule-green cyanobacterium Synechocystis sp. PC 6803, designated UV6p, was isolated and characterized. UV6p possesses functional photosystems I and II but lacks normal light harvesting phycobilisomes because allophycocyanin is absent and core-specific linker proteins are almost entirely absent. (3) Deletion of the psbG1 gene of the cyanobacterium Synechocystis sp. PCC 6803 leads to the activation of the cryptic psbG2 gene. The genes psbG1 and psbG2 in cyanobacterium Synechocystis sp. PCC 6803 are homologous. The psbG1 gene is located on the chromosome and is part of the ndhC-psbG1-ORF157 operon, while psbG2 is located on a plasmid and is not flanked by equivalent ndhC or ORF157 genes. (4) Deletion of the structural gene for the NADH-dehydrogenase subunit 4 of Synechocystis 6803 alters respiratory properties. Chloroplasts and cyanobacteria contain genes encoding polypeptides homologous to some subunits of the mitochondrial respiratory NADH-ubiquinol oxidoreductase complex (NADH dehydrogenase). Nothing is known of the role of the NADH dehydrogenase complex in photosynthesis, respiration, or other functions in chloroplasts, and little is known about their specific roles in the perhaps 42 subunits of this complex in the mitochondrion.

  7. Anti-cyanobacterial activity of Moringa oleifera seeds

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Beekman, W.

    2010-01-01

    Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per

  8. Solid-State 55Mn NMR Spectroscopy of bis(μ-oxo)dimanganese(IV) [Mn2O2(salpn)2], a Model for the Oxygen Evolving Complex in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Paul D.; Sears, Jesse A.; Yang, Ping; Dupuis, Michel; Boron, Ted; Pecoraro, Vince; Stich, Troy; Britt, R. David; Lipton, Andrew S.

    2010-12-01

    Given the obvious global energy needs, it has become imperative to develop a catalytic process for converting water to molecular oxygen and protons. Many have sought to understand the details of photosynthesis and in particular the water splitting reaction to help in the development of the appropriate catalysis.1-3 While the scientific community has made great strides towards this goal, it has fallen short at the critical stage of the determination of the structure associated with the oxygen evolving complex (OEC) within photosystem II (PSII).4,5 Despite the existence of x-ray structures of PSII,6-8 the best data we have for the structure of the OEC comes from models derived from EPR and EXAFS measurements.9-14 This experimental situation has led to collaborations with theoreticians to enable the development of models for the structure of the OEC where the experimental observables (EXAFS and magnetic resonance parameters) serve as constraints to the theoretical calculations. Of particular interest to this study is the observation of the S1 state of the Kok cycle15 where the core of the OEC can be described as a tetranuclear manganese cluster composed of Mn4OxCa. The simplest model for the OEC can be thought of as two Mn-pairs and a Ca2+ where each Mn-pair is antiferromagnetically coupled to its partner. We utilize the term "pair" to describe the Mn atoms within the OEC with the same oxidation state, which for the S1 state is (Mn2(III, III) and Mn2(IV, IV)).16 It is unclear as to the degree of interaction between the pairs as well as the role of the Ca2+. At cryogenic temperatures the S1 state of the OEC is diamagnetic and in principle amenable to solid-state NMR experiments.

  9. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    Science.gov (United States)

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  10. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    Science.gov (United States)

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  11. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state.

    Science.gov (United States)

    Cox, Nicholas; Rapatskiy, Leonid; Su, Ji-Hu; Pantazis, Dimitrios A; Sugiura, Miwa; Kulik, Leonid; Dorlet, Pierre; Rutherford, A William; Neese, Frank; Boussac, Alain; Lubitz, Wolfgang; Messinger, Johannes

    2011-03-16

    The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis

  12. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.

    Science.gov (United States)

    Diner, B A; Force, D A; Randall, D W; Britt, R D

    1998-12-22

    The redox-active tyrosines, Y(Z) and Y(D), of Photosystem II are oxidized by P680+ to the neutral tyrosyl radical. This oxidation thus involves the transfer of the phenolic proton as well as an electron. It has recently been proposed that tyrosine Y(Z) might replace the lost proton by abstraction of a hydrogen atom or a proton from a water molecule bound to the manganese cluster, thereby increasing the driving force for water oxidation. To compare and contrast with the intact system, we examine here, in a simplified Mn-depleted PSII core complex, isolated from a site-directed mutant of Synechocystis PCC 6803 lacking Y(D), the role of proton transfer in the oxidation and reduction of Y(Z). We show how the oxidation and reduction rates for Y(Z), the deuterium isotope effect on these rates, and the Y(Z)* - Y(Z) difference spectra all depend on pH (from 5.5 to 9.5). This simplified system allows examination of electron-transfer processes over a broader range of pH than is possible with the intact system and with more tractable rates. The kinetic isotope effect for the oxidation of P680+ by Y(Z) is maximal at pH 7.0 (3.64). It decreases to lower pH as charge recombination, which shows no deuterium isotope, starts to become competitive with Y(Z) oxidation. To higher pH, Y(Z) becomes increasingly deprotonated to form the tyrosinate, the oxidation of which at pH 9.5 becomes extremely rapid (1260 ms(-1)) and no longer limited by proton transfer. These observations point to a mechanism for the oxidation of Y(Z) in which the tyrosinate is the species from which the electron occurs even at lower pH. The kinetics of oxidation of Y(Z) show elements of rate limitation by both proton and electron transfer, with the former dominating at low pH and the latter at high pH. The proton-transfer limitation of Y(Z) oxidation at low pH is best explained by a gated mechanism in which Y(Z) and the acceptor of the phenolic proton need to form an electron/proton-transfer competent complex in

  14. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    Science.gov (United States)

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal

  15. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  16. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

    Directory of Open Access Journals (Sweden)

    Alberto A. Esteves-Ferreira

    2017-03-01

    Full Text Available Abstract Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2 and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i sequences of genes involved in nitrogen fixation (nifD from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.

  17. Evidence for multiple photosystems in jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2010-01-01

    cnidarians even possess multiple photosystems. The evidence is strongest within Cubomedusae where all known species posses 24 eyes of four morphological types. Physiological experiments show that each cubomedusan eye type likely constitutes a separate photosystem controlling separate visually guided......Cnidarians are often used as model animals in studies of eye and photopigment evolution. Most cnidarians display photosensitivity at some point in their lifecycle ranging from extraocular photoreception to image formation in camera-type eyes. The available information strongly suggests that some...... behaviors. Further, the visual system of cubomedusae also includes extraocular photoreception. The evidence is supported by immunocytochemical and molecular data indicating multiple photopigments in cubomedusae as well as in other cnidarians. Taken together, available data suggest that multiple photosystems...

  18. Consequences of Modification of Photosystem Stoichiometry and Amount in Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Willem [Arizona State Univ., Tempe, AZ (United States)

    2016-12-13

    The proposed research seeks to address two interconnected, important questions that impact photosynthetic processes and that reflect key differences between the photosynthetic systems of cyanobacteria and plants or algae. The first question is what are the reasons and consequences of the high photosystem I / photosystem II (PS I/PS II) ratio in many cyanobacteria, vs. a ratio that is close to unity in many plants and algae. The corresponding hypothesis is that most of PS I functions in cyclic electron transport, and that reduction in PS I will result primarily in a shortage of ATP rather than reducing power. This hypothesis will be tested by reducing the amount of PS I by changing the promoter region of the psaAB operon in the cyanobacterium Synechocystis sp. PCC 6803 and generating a range of mutants with different PS I content and thereby different PS I/PS II ratios, with some of the mutants having a PS II/PS I ratio closer to that in plants. The resulting mutants will be probed in terms of their growth rates, electron transfer rates, and P700 redox kinetics. A second question relates to a Mehler-type reaction catalyzed by two flavoproteins, Flv1 and Flv3, that accept electrons from PS I and that potentially function as an electron safety valve leading to no useful purpose of the photosynthesis-generated electrons. The hypothesis to be tested is that Flv1 and Flv3 use the electrons for useful purposes such as cyclic electron flow around PS I. This hypothesis will be tested by analysis of a mutant strain lacking flv3, the gene for one of the flavoproteins. This research is important for a more detailed understanding of the consequences of photosystem stoichiometry and amounts in a living system. Such an understanding is critical for not only insights in the regulatory systems of the organism but also to guide the development of biological or bio-hybrid systems for solar energy conversion into fuels.

  19. Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I.

    Science.gov (United States)

    Bos, Inge; Bland, Kaitlyn M; Tian, Lijin; Croce, Roberta; Frankel, Laurie K; van Amerongen, Herbert; Bricker, Terry M; Wientjes, Emilie

    2017-05-01

    Photosystems I and II (PSI and PSII) work in series to drive oxygenic photosynthesis. The two photosystems have different absorption spectra, therefore changes in light quality can lead to imbalanced excitation of the photosystems and a loss in photosynthetic efficiency. In a short-term adaptation response termed state transitions, excitation energy is directed to the light-limited photosystem. In higher plants a special pool of LHCII antennae, which can be associated with either PSI or PSII, participates in these state transitions. It is known that one LHCII antenna can associate with the PsaH site of PSI. However, membrane fractions were recently isolated in which multiple LHCII antennae appear to transfer energy to PSI. We have used time-resolved fluorescence-streak camera measurements to investigate the energy transfer rates and efficiency in these membrane fractions. Our data show that energy transfer from LHCII to PSI is relatively slow. Nevertheless, the trapping efficiency in supercomplexes of PSI with ~2.4 LHCIIs attached is 94%. The absorption cross section of PSI can thus be increased with ~65% without having significant loss in quantum efficiency. Comparison of the fluorescence dynamics of PSI-LHCII complexes, isolated in a detergent or located in their native membrane environment, indicates that the environment influences the excitation energy transfer rates in these complexes. This demonstrates the importance of studying membrane protein complexes in their natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Specific Distribution of Phosphatidylglycerol to Photosystem Complexes in the Thylakoid Membrane

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-11-01

    Full Text Available The thylakoid membrane is the site of photochemical and electron transport reactions of oxygenic photosynthesis. The lipid composition of the thylakoid membrane, with two galactolipids, one sulfolipid, and one phospholipid, is highly conserved among oxygenic photosynthetic organisms. Besides providing a lipid bilayer matrix, thylakoid lipids are integrated in photosynthetic complexes particularly in photosystems I and II and play important roles in electron transport processes. Thylakoid lipids are differentially allocated to photosynthetic complexes and the lipid bilayer fraction, but distribution of each lipid in the thylakoid membrane is unclear. In this study, based on published crystallographic and biochemical data, we estimated the proportions of photosynthetic complex-associated and bilayer-associated lipids in thylakoid membranes of cyanobacteria and plants. The data suggest that ∼30 mol% of phosphatidylglycerol (PG, the only major phospholipid in thylakoid membranes, is allocated to photosystem complexes, whereas glycolipids are mostly distributed to the lipid bilayer fraction and constitute the membrane lipid matrix. Because PG is essential for the structure and function of both photosystems, PG buried in these complexes might have been selectively conserved among oxygenic phototrophs. The specific and substantial allocation of PG to the deep sites of photosystems may need a unique mechanism to incorporate PG into the complexes possibly in coordination with the synthesis of photosynthetic proteins and pigments.

  1. The history of cyanobacterial blooms in the Baltic Sea.

    Science.gov (United States)

    Finni, T; Kononen, K; Olsonen, R; Wallström, K

    2001-08-01

    Long-term information on possible changes in cyanobacterial blooms in the Baltic Sea, formed mainly by Nodularia spumigena and Aphanizomenon sp., was sought in published records in historical (years 1887-1938) and modern (years 1974-1998) phytoplankton data sets. Old and new sampling methods and fixatives were tested to improve the comparison of data that had been collected and analyzed in different ways. A hundred years ago, plankton was mainly of interest as a source of fish food; eutrophication problems were only locally reported from the coast, mainly in southern haffs and the receiving waters of larger cities. There were few recordings of open-sea blooms before World War II. Abundances of Nodularia spumigena and Aphanizomenon sp. were low in the old material, and 137 summer samples from 1887-1938 showed no peak abundance. High abundances are common in the new material, and the range of the numbers of both taxa has increased markedly relative to the old material. Since the 1960s, cyanobacterial blooms have been common in the open sea in both the Baltic proper and the Gulf of Finland, indicating high availability of nutrients.

  2. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins

    Czech Academy of Sciences Publication Activity Database

    Staleva, H.; Komenda, Josef; Shukla, Mahendra K.; Šlouf, V.; Kaňa, Radek; Polívka, Tomáš; Sobotka, Roman

    2015-01-01

    Roč. 11, č. 4 (2015), s. 287-291 ISSN 1552-4450 R&D Projects: GA ČR GBP501/12/G055; GA ČR(CZ) GA14-13967S; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : photosystem II * fluorescence * chlorophyll Subject RIV: BO - Biophysics; BO - Biophysics (BC-A) Impact factor: 12.709, year: 2015

  3. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.

    Science.gov (United States)

    Pinnola, Alberta; Cazzaniga, Stefano; Alboresi, Alessandro; Nevo, Reinat; Levin-Zaidman, Smadar; Reich, Ziv; Bassi, Roberto

    2015-11-01

    Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR. © 2015 American Society of Plant Biologists. All rights reserved.

  4. The integration of nutrients, cyanobacterial biomass and ...

    Science.gov (United States)

    This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment - where biomass and toxin removal are achieved. Data is generated by a variety of methods: online instrumentation for chlorophyll, dissolved oxygen, temperature and pH; enzyme linked immune substrate (ELISA) and liquid chromatography/mass spectrometric (LC/MS) methods for toxin analysis; microscopic methods for species identification; quantitative PCR methods for species identification; and bench-scale engineering studies for removal of toxins and biomass through drinking water treatment. This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment. The content will be useful for EPA regional office staff, state primacy personnel, state and local health personnel, drinking water treatment managers and consulting engineers.

  5. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  6. Light-harvesting features revealed by the structure of plant Photosystem I

    CERN Document Server

    Ben-Shem, A; Nelson, N; 10.1023/B:PRES.0000036881.23512.42

    2004-01-01

    Oxygenic photosynthesis is driven by two multi-subunit membrane protein complexes, Photosystem I and Photosystem II. In plants and green algae, both complexes are composed of two moieties: a reaction center (RC), where light-induced charge translocation occurs, and a peripheral antenna that absorbs light and funnels its energy to the reaction center. The peripheral antenna of PS I (LHC I) is composed of four gene products (Lhca 1-4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and in their assembly into dimers. The recently determined structure of plant Photosystem I provides the first relatively high- resolution structural model of a super-complex containing a reaction center and its peripheral antenna. We describe some of the structural features responsible for the unique properties of LHC I and discuss the advantages of the particular LHC I dimerization mode over monomeric or trimeric forms. In addition, we delineate some of the interactions betw...

  7. Discovery of native metal ion sites located on the ferredoxin docking side of photosystem I.

    Energy Technology Data Exchange (ETDEWEB)

    Utschig, L. M.; Chen, L. X.; Poluektov, O. G.; Chemical Sciences and Engineering Division

    2008-03-25

    Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensis has a near-stoichiometric 1 molar equiv of Zn2+ per PSI monomer and two additional surface metal ion sites that favor Cu2+ binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu2+ centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu?PSI complexes reveal the direct interaction of ferredoxin with the Cu2+ centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu2+ binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin.

  8. Cyanobacterial Toxin Degrading Bacteria: Who Are They?

    Directory of Open Access Journals (Sweden)

    Konstantinos Ar. Kormas

    2013-01-01

    Full Text Available Cyanobacteria are ubiquitous in nature and are both beneficial and detrimental to humans. Benefits include being food supplements and producing bioactive compounds, like antimicrobial and anticancer substances, while their detrimental effects are evident by toxin production, causing major ecological problems at the ecosystem level. To date, there are several ways to degrade or transform these toxins by chemical methods, while the biodegradation of these compounds is understudied. In this paper, we present a meta-analysis of the currently available 16S rRNA and mlrA (microcystinase genes diversity of isolates known to degrade cyanobacterial toxins. The available data revealed that these bacteria belong primarily to the Proteobacteria, with several strains from the sphingomonads, and one from each of the Methylobacillus and Paucibacter genera. Other strains belonged to the genera Arthrobacter, Bacillus, and Lactobacillus. By combining the ecological knowledge on the distribution, abundance, and ecophysiology of the bacteria that cooccur with toxic cyanobacterial blooms and newly developed molecular approaches, it is possible not only to discover more strains with cyanobacterial toxin degradation abilities, but also to reveal the genes associated with the degradation of these toxins.

  9. Thermally altered Silurian cyanobacterial mats: a key to Earth's oldest fossils.

    Science.gov (United States)

    Kazmierczak, Józef; Kremer, Barbara

    2009-10-01

    Diagenetic changes in thermally altered cyanobacterial mats from early Silurian black radiolarian cherts of southwestern Poland (Bardzkie Montains, Sudetes) have been studied. These early diagenetically silicified mats are composed of variously degraded remains of benthic microbes that resemble some modern chroococcalean and pleurocapsalean cyanobacteria. Two modes of degradational processes have been recognized in the studied mats: (i) early postmortem biodegradation and (ii) late diagenetic thermal or thermobaric degradation. The latter led to partial transformation of the fossilized organic remnants of cyanobacterial sheaths and capsules, which resulted in the formation of objects morphologically distant from the original microbiota but preserved features that allow for their identification as bona fide biogenic structures. Some of these thermally generated Silurian fossils are highly similar to the controversial microfossil-like carbonaceous structures described from the Early Archean Apex Chert of Australia. This similarity opens a promising way for credible recognition of remnants of cyanobacteria and similar microbiota in other thermally metamorphosed Archean sedimentary rocks.

  10. Molecular characterization of cyanobacterial diversity in a shallow eutrophic lake

    NARCIS (Netherlands)

    Zwart, G.; Kamst-van Agterveld, M.P.; Van der Werff-Staverman, I.; Hagen, F.; Hoogveld, H.L.; Gons, H.J.

    2005-01-01

    We have studied the diversity of pelagic cyanobacteria in Lake Loosdrecht, the Netherlands, through recovery and analysis of small subunit ribosomal RNA gene sequences from lake samples and cyanobacterial isolates. We used an adapted protocol for specific amplification of cyanobacterial rDNA for

  11. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples

    NARCIS (Netherlands)

    Waajen, Guido W. A. M.; Faassen, Elisabeth J.; Lurling, Miquel

    2014-01-01

    Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a

  12. Dynamics of a cyanobacterial bloom in a hypereutrophic reservoir ...

    African Journals Online (AJOL)

    Blooming and non-blooming periods between 2004 and 2006 in a hypereutrophic reservoir, where cyanobacterial blooms have previously been reported to be permanent, presented an opportunity to characterise factors that may favour cyanobacterial dominance. As a bloom developed in May 2004, a shift to dominance by ...

  13. First report of cyanobacterial diversity and microcystins in a ...

    African Journals Online (AJOL)

    The cyanobacterial diversity of Sidi Boughaba, a Moroccan coastal lagoon and Ramsar site, was evaluated and its potentially toxic species were isolated and characterised. This study was the first time that cyanobacterial diversity and cyanotoxin production have been characterised in a Moroccan coastal lagoon. Samples ...

  14. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  15. Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL

    Science.gov (United States)

    Xu, Q.; Hoppe, D.; Chitnis, V. P.; Odom, W. R.; Guikema, J. A.; Chitnis, P. R.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We cloned, characterized, and inactivated the psaI gene encoding a 4-kDa hydrophobic subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. The psaI gene is located 90 base pairs downstream from psaL, and is transcribed on 0.94- and 0.32-kilobase transcripts. To identify the function of PsaI, we generated a cyanobacterial strain in which psaI has been interrupted by a gene for chloramphenicol resistance. The wild-type and the mutant cells showed comparable rates of photoautotrophic growth at 25 degrees C. However, the mutant cells grew slower and contained less chlorophyll than the wild-type cells, when grown at 40 degrees C. The PsaI-less membranes from cells grown at either temperature showed a small decrease in NADP+ photoreduction rate when compared to the wild-type membranes. Inactivation of psaI led to an 80% decrease in the PsaL level in the photosynthetic membranes and to a complete loss of PsaL in the purified photosystem I preparations, but had little effect on the accumulation of other photosystem I subunits. Upon solubilization with nonionic detergents, photosystem I trimers could be obtained from the wild-type, but not from the PsaI-less membranes. The PsaI-less photosystem I monomers did not contain detectable levels of PsaL. Therefore, a structural interaction between PsaL and PsaI may stabilize the association of PsaL with the photosystem I core. PsaL in the wild-type and PsaI-less membranes showed equal resistance to removal by chaotropic agents. However, PsaL in the PsaI-less strain exhibited an increased susceptibility to proteolysis. From these data, we conclude that PsaI has a crucial role in aiding normal structural organization of PsaL within the photosystem I complex and the absence of PsaI alters PsaL organization, leading to a small, but physiologically significant, defect in photosystem I function.

  16. Correlation of cyanobacterial harmful bloom monitoring parameters: A case study on western Lake Erie

    Directory of Open Access Journals (Sweden)

    Hesam Zamankhan Malayeri

    2018-02-01

    Full Text Available Occurrence of cyanobacterial harmful blooms (CHBs in water has caused serious concern to environmental and health authorities because of their potential to produce and release lethal biological toxins. Among many toxins, microcystins (MCs are of particular interest. There have been significant efforts to observe the harmful algal bloom events and cyanotoxin levels, including: (i manual field sampling followed by lab analysis to directly measure MCs, (ii remote sensing based on satellite image analysis to estimate cyanobacterial index (CI, and (iii in-situ sensing of proxy parameters to cyanobacterial blooms such as phycocyanin. This study compared the observation systems in western Lake Erie to find any potential correlations among these CHB monitoring parameters based on the Pearson Product-Moment equation. We found the relationships among the parameters to be site-specific and so we compared geographical, ecological, meteorological, and analytical factors specific to the locations to explain the observed correlations and variations. The CHB observing parameters (MCs, CI, and phycocyanin were generally well correlated because they inherently represented the same phenomenon. In particular, we found the measured biological toxin concentration (MCs to be strongly correlated with the cyanobacterial bloom activity (CI estimated by satellite image analysis. The phycocyanin concentration also had a strong correlation with CI, implying that measuring an easy-to-detect proxy parameter in-situ and in real-time is effective for monitoring CHBs. The results support the notion that key environmental management parameters such as CHB toxicity can be inferred from remotely-sensed ocean color through proxy variables such as CI.

  17. The plasticity of cyanobacterial carbon metabolism.

    Science.gov (United States)

    Xiong, Wei; Cano, Melissa; Wang, Bo; Douchi, Damien; Yu, Jianping

    2017-12-01

    This opinion article aims to raise awareness of a fundamental issue which governs sustainable production of biofuels and bio-chemicals from photosynthetic cyanobacteria. Discussed is the plasticity of carbon metabolism, by which the cyanobacterial cells flexibly distribute intracellular carbon fluxes towards target products and adapt to environmental/genetic alterations. This intrinsic feature in cyanobacterial metabolism is being understood through recent identification of new biochemical reactions and engineering on low-throughput pathways. We focus our discussion on new insights into the nature of metabolic plasticity in cyanobacteria and its impact on hydrocarbons (e.g. ethylene and isoprene) production. We discuss approaches that need to be developed to rationally rewire photosynthetic carbon fluxes throughout primary metabolism. We outline open questions about the regulatory mechanisms of the metabolic network that remain to be answered, which might shed light on photosynthetic carbon metabolism and help optimize design principles in order to improve the production of fuels and chemicals in cyanobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  19. Immunophilins and their function in photosystem II assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Luan

    2012-11-27

    In the past funding period, the following lines of experiments have been conducted: to identify the partner proteins for FKBP20-2; to identify the mechanism of CYP38 function; studies on other FKBPs in the thylakoid lumen; to identify the partner proteins for FKBP20-2 using yeast two hybrid and transgenic lines expressing HA-FKBP20-2; to identify the partner protein of CYP38; studies on other FKBPs in the chloroplast.

  20. The functional role of calcium in photosystem II

    NARCIS (Netherlands)

    Miqyass, Mohamed

    2008-01-01

    The oxygen we breathe, like the fuel we burn with it, is produced by photosynthesis. A series of electron transfer processes, powered by sunlight, ultimately leads to oxidation of water and reduction of carbon dioxide. How plants oxidize water to oxygen is not clear. The active site contains 4

  1. Performance of active Photosystem II centers in photoinhibited pea leaves

    NARCIS (Netherlands)

    Schansker, G.; Rensen, van J.J.S.

    1999-01-01

    Effects of photoinhibition on photosynthesis in pea (Pisum sativum L.) leaves were investigated by studying the relationship between the severity of a photoinhibitory treatment (measured as F_v/F_m) and several photoacoustic and chlorophyll a fluorescence parameters. Because of the observed linear

  2. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  3. Regulation of Photosystem II Electron transport by Bicarbonate

    NARCIS (Netherlands)

    Rensen, van J.J.S.

    2012-01-01

    In oxygenic photosynthesis, carbon dioxide is fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and further reduced to carbohydrates. However, CO2, in the form of carbonate or bicarbonate, is also directly involved in the “light reactions” through structural and regulatory roles

  4. Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II

    NARCIS (Netherlands)

    Vredenberg, W.J.; Durchan, M.; Prasil, O.

    2009-01-01

    This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range

  5. Early Archean origin of heterodimeric Photosystem I

    Directory of Open Access Journals (Sweden)

    Tanai Cardona

    2018-03-01

    Full Text Available When and how oxygenic photosynthesis originated remains controversial. Wide uncertainties exist for the earliest detection of biogenic oxygen in the geochemical record or the origin of water oxidation in ancestral lineages of the phylum Cyanobacteria. A unique trait of oxygenic photosynthesis is that the process uses a Type I reaction centre with a heterodimeric core, also known as Photosystem I, made of two distinct but homologous subunits, PsaA and PsaB. In contrast, all other known Type I reaction centres in anoxygenic phototrophs have a homodimeric core. A compelling hypothesis for the evolution of a heterodimeric Type I reaction centre is that the gene duplication that allowed the divergence of PsaA and PsaB was an adaptation to incorporate photoprotective mechanisms against the formation of reactive oxygen species, therefore occurring after the origin of water oxidation to oxygen. Here I show, using sequence comparisons and Bayesian relaxed molecular clocks that this gene duplication event may have occurred in the early Archean more than 3.4 billion years ago, long before the most recent common ancestor of crown group Cyanobacteria and the Great Oxidation Event. If the origin of water oxidation predated this gene duplication event, then that would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life. Keywords: Evolution, Biochemistry, Genetics

  6. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Tulip, Fahmida S [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Greenbaum, Elias [ORNL; Ericson, Milton Nance [ORNL

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  7. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Han, Ji-Mei; Chow, Wah Soon; Fan, Da-Yong; Zhang, Wang-Feng

    2018-01-01

    To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO 2 assimilation rate (A N ) and stomatal conductance (g s ) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (F v /F m ) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Emerging health issues of cyanobacterial blooms

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    2012-12-01

    Full Text Available This paper describes emerging issue related to cyanobacterial dynamics and toxicity and human health risks. Data show an increasing cyanobacteria expansion and dominance in many environments. However there are still few information on the toxic species fitness, or on the effects of specific drivers on toxin production. Open research fields are related to new exposure scenario (cyanotoxins in water used for haemodialysis and in food supplements; to new patterns of co-exposure between cyanotoxins and algal toxins and/or anthropogenic chemicals; to dynamics affecting toxicity and production of different cyanotoxin variants under environmental stress; to the accumulation of cyanotoxins in the food web. In addition, many data gaps exist in the characterization of the toxicological profiles, especially about long term effects.

  9. Nutrient control of cyanobacterial blooms in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Staal, M.J.; Villbrandt, M.

    1999-01-01

    Cyanobacterial blooms in the Baltic Sea were investigated with respect to growth Limitation and nitrogen fixation. The community was composed predominantly of Synechococcus spp., and large, heterocystous, nitrogen-fixing cyanobacteria (Aphanizomenon spp, and Nodularia spp.), that usually formed

  10. Cyanobacterial bloom detection based on coherence between ferrybox observations

    NARCIS (Netherlands)

    Groetsch, P.M.M.; Simis, S.G.H.; Eleveld, M.A.; Peters, S.W.M.

    2014-01-01

    Cyanobacterial bloom detection from flow-through optical sensors on ships-of-opportunity ('ferryboxes') is challenging in periods of strong stratification and due to varying cell physiology and phytoplankton community composition. Wavelet coherence analysis between ferrybox parameters (chlorophyll-

  11. Cyanobacterial Occurrence and Diversity in Seagrass Meadows in ...

    African Journals Online (AJOL)

    Oscillatoria, Lyngbya and Spirulina were the dominant cyanobacterial genera. Cyanobacterial coverage was higher in Mjimwema (31–100%) than in Ocean Road (0–60%). The levels of nutrients in tidal pool waters at Ocean Road ranged from 0.45–1.03 μmol NO3 -N/l, 0.19–0.27 μmol NO2 -N/l and 0.03–0.09 μmol PO4 ...

  12. Cyanobacterial lipopolysaccharides and human health – a review

    Directory of Open Access Journals (Sweden)

    Schluter Philip J

    2006-03-01

    Full Text Available Abstract Cyanobacterial lipopolysaccharide/s (LPS are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation.

  13. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay.

    Science.gov (United States)

    Noyma, Natalia Pessoa; de Magalhães, Leonardo; Furtado, Luciana Lima; Mucci, Maíra; van Oosterhout, Frank; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2016-06-15

    Eutrophication often results in blooms of toxic cyanobacteria that hamper the use of lakes and reservoirs. In this paper, we experimentally evaluated the efficacy of a metal salt (poly-aluminium chloride, PAC) and chitosan, alone and combined with different doses of the lanthanum modified bentonite Phoslock(®) (LMB) or local red soil (LRS) to sediment positively buoyant cyanobacteria from Funil Reservoir, Brazil, (22°30'S, 44°45'W). We also tested the effect of calcium peroxide (CaO2) on suspended and settled cyanobacterial photosystem efficiency, and evaluated the soluble reactive P (SRP) adsorbing capacity of both LMB and LRS under oxic and anoxic conditions. Our data showed that buoyant cyanobacteria could be flocked and effectively precipitated using a combination of PAC or chitosan with LMB or LRS. The SRP sorption capacity of LMB was higher than that of LRS. The maximum P adsorption was lowered under anoxic conditions especially for LRS ballast. CaO2 addition impaired photosystem efficiency at 1 mg L(-1) or higher and killed precipitated cyanobacteria at 4 mg L(-1) or higher. A drawback was that oxygen production from the peroxide gave positive buoyancy again to the settled flocs. Therefore, further experimentations with slow release pellets are recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. NDH-1 Is Important for Photosystem I Function ofSynechocystissp. Strain PCC 6803 under Environmental Stress Conditions.

    Science.gov (United States)

    Zhao, Jiaohong; Gao, Fudan; Fan, Da-Yong; Chow, Wah Soon; Ma, Weimin

    2017-01-01

    Cyanobacterial NDH-1 interacts with photosystem I (PSI) to form an NDH-1-PSI supercomplex. Here, we observed that absence of NDH-1 had little, if any, effect on the functional fractions of PSI under growth conditions, but significantly reduced the functional fractions of PSI when cells of Synechocystis sp. strain PCC 6803 were moved to conditions of multiple stresses. The significant reduction in NDH-1-dependent functional fraction of PSI was initiated after PSII activity was impaired. This finding is consistent with our observation that the functional fraction of PSI under growth conditions was rapidly and significantly decreased with increasing concentrations of DCMU, which rapidly and significantly suppressed PSII activity by blocking the transfer of electrons from Q A to Q B in the PSII reaction center. Furthermore, absence of NDH-1 resulted in the PSI limitation at the functionality of PSI itself but not its donor-side and acceptor-side under conditions of multiple stresses. This was supported by the result of a significant destabilization of the PSI complex in the absence of NDH-1 but the presence of multiple stresses. Based on the above results, we propose that NDH-1 is important for PSI function of Synechocystis sp. strain PCC 6803 mainly via maintaining stabilization of PSI under conditions of environmental stresses.

  15. NDH-1 Is Important for Photosystem I Function of Synechocystis sp. Strain PCC 6803 under Environmental Stress Conditions

    Directory of Open Access Journals (Sweden)

    Jiaohong Zhao

    2018-01-01

    Full Text Available Cyanobacterial NDH-1 interacts with photosystem I (PSI to form an NDH-1-PSI supercomplex. Here, we observed that absence of NDH-1 had little, if any, effect on the functional fractions of PSI under growth conditions, but significantly reduced the functional fractions of PSI when cells of Synechocystis sp. strain PCC 6803 were moved to conditions of multiple stresses. The significant reduction in NDH-1-dependent functional fraction of PSI was initiated after PSII activity was impaired. This finding is consistent with our observation that the functional fraction of PSI under growth conditions was rapidly and significantly decreased with increasing concentrations of DCMU, which rapidly and significantly suppressed PSII activity by blocking the transfer of electrons from QA to QB in the PSII reaction center. Furthermore, absence of NDH-1 resulted in the PSI limitation at the functionality of PSI itself but not its donor-side and acceptor-side under conditions of multiple stresses. This was supported by the result of a significant destabilization of the PSI complex in the absence of NDH-1 but the presence of multiple stresses. Based on the above results, we propose that NDH-1 is important for PSI function of Synechocystis sp. strain PCC 6803 mainly via maintaining stabilization of PSI under conditions of environmental stresses.

  16. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2017-02-01

    Full Text Available Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C with and without additional nutrients added (eutrophication mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll-a and 25 times more eukaryote algal chlorophyll-a. At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll-a being 17 times and eukaryote algal chlorophyll-a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis. This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.

  17. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, Poul Erik; Bassi, Roberto; Boekema, Egbert J.; Dekker, Jan P.; Jansson, Stefan; Leister, Dario; Robinson, Colin; Scheller, Henrik Vibe

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  18. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, P.E.; Bassi, R.; Boekema, E.J.; Dekker, J.P.; Jansson, S.; Leister, D.; Robinson, C.; Scheller, H.V.

    2007-01-01

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  19. The structure of spinach Photosystem I studied by electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard

    1990-01-01

    The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I

  20. Force field development on pigments of photosystem 2 reaction centre

    Czech Academy of Sciences Publication Activity Database

    Palenčár, Peter

    2005-01-01

    Roč. 43, č. 3 (2005), s. 417-420 ISSN 0044-5231 R&D Projects: GA ČR GP206/02/D177 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60870520 Keywords : photosystem 2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.750, year: 2005

  1. Photosystem I-​based Biophotovoltaics on Nanostructured Hematite

    NARCIS (Netherlands)

    Ocakoglu, K.; Krupnik, T.; van den Bosch, B.; Harputlu, E.; Gullo, M.P.; Olmos, J.D.J.; Yildirimcan, S.; Gupta, R.K.; Yakuphanoglu, F.; Barbieri, A.; Reek, J.N.H.; Kargul, J.

    2014-01-01

    The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n-​type semiconductors, TiO2 and hematite (α-​Fe2O3) is utilized for fabrication of the biohybrid dye-​sensitized solar cells (DSSC)​. PSI-​LHCI is

  2. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    NARCIS (Netherlands)

    Patty, C. H Lucas; Visser, Luuk J J; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J M; Röling, Wilfred F M; Snik, Frans

    2016-01-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤1%. In vegetation, these signals

  3. Photosystem I from the unusual cyanobacterium Gloeobacter violaceus

    NARCIS (Netherlands)

    Mangels, D.; Kruip, J.; Berry, S.; Rögner, M.; Boekema, E.J.; Koenig, F.

    2002-01-01

    Photosystem I (PS I) from the primitive cyanobacterium Gloeobacter violaceus has been purified and characterised. Despite the fact that the isolated complexes have the same subunit composition as complexes from other cyanobacteria, the amplitude of flash-induced absorption difference spectra

  4. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks.

    Science.gov (United States)

    Hammerschlag, Neil; Davis, David A; Mondo, Kiyo; Seely, Matthew S; Murch, Susan J; Glover, William Broc; Divoll, Timothy; Evers, David C; Mash, Deborah C

    2016-08-16

    Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg), because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA), a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  5. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks

    Directory of Open Access Journals (Sweden)

    Neil Hammerschlag

    2016-08-01

    Full Text Available Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg, because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA, a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  6. Molecular Diffusion through Cyanobacterial Septal Junctions

    Directory of Open Access Journals (Sweden)

    Mercedes Nieves-Morión

    2017-01-01

    Full Text Available Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata” linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  7. Satellite monitoring of cyanobacterial harmful algal bloom ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  8. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    Directory of Open Access Journals (Sweden)

    Piontek Marlena

    2017-03-01

    Full Text Available The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river, which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens. Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50 for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR. The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  9. CaCO3 Precipitation in Multilayered Cyanobacterial Mats: Clues to Explain the Alternation of Micrite and Sparite Layers in Calcareous Stromatolites

    Directory of Open Access Journals (Sweden)

    Józef Kaźmierczak

    2015-03-01

    Full Text Available Marine cyanobacterial mats were cultured on coastal sediments (Nivå Bay, Øresund, Denmark for over three years in a closed system. Carbonate particles formed in two different modes in the mat: (i through precipitation of submicrometer-sized grains of Mg calcite within the mucilage near the base of living cyanobacterial layers, and (ii through precipitation of a variety of mixed Mg calcite/aragonite morphs in layers of degraded cyanobacteria dominated by purple sulfur bacteria. The d13C values were about 2‰ heavier in carbonates from the living cyanobacterial zones as compared to those generated in the purple bacterial zones. Saturation indices calculated with respect to calcite, aragonite, and dolomite inside the mats showed extremely high values across the mat profile. Such high values were caused by high pH and high carbonate alkalinity generated within the mats in conjunction with increased concentrations of calcium and magnesium that were presumably stored in sheaths and extracellular polymer substances (EPS of the living cyanobacteria and liberated during their post-mortem degradation. The generated CaCO3 morphs were highly similar to morphs reported from heterotrophic bacterial cultures, and from bacterially decomposed cyanobacterial biomass emplaced in Ca-rich media. They are also similar to CaCO3 morphs precipitated from purely inorganic solutions. No metabolically (enzymatically controlled formation of particular CaCO3 morphs by heterotrophic bacteria was observed in the studied mats. The apparent alternation of in vivo and post-mortem generated calcareous layers in the studied cyanobacterial mats may explain the alternation of fine-grained (micritic and coarse-grained (sparitic laminae observed in modern and fossil calcareous cyanobacterial microbialites as the result of a probably similar multilayered mat organization.

  10. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    International Nuclear Information System (INIS)

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  11. Tailoring cyanobacterial cell factory for improved industrial properties.

    Science.gov (United States)

    Luan, Guodong; Lu, Xuefeng

    2018-01-10

    Photosynthetic biomanufacturing provides a promising solution for sustainable production of biofuels and biochemicals. Cyanobacteria are among the most promising microbial platforms for the construction of photosynthetic cell factories. Metabolic engineering of cyanobacteria has enabled effective photosynthetic synthesis of diverse natural or non-natural metabolites, while commercialization of photosynthetic biomanufacturing is usually restricted by process and economic feasibilities. In actual outdoor conditions, active cell growth and product synthesis is restricted to narrow light exposure windows of the day-night cycles and is threatened by diverse physical, chemical, and biological environmental stresses. For biomass harvesting and bioproduct recovery, energy and cost consuming processing and equipment is required, which further decreases the economic and environmental competitiveness of the entire process. To facilitate scaled photosynthetic biomanufacturing, lots of efforts have been made to engineer cyanobacterial cell properties required by robust & continual cultivation and convenient & efficient recovery. In this review, we specifically summarized recently reported engineering strategies on optimizing industrial properties of cyanobacterial cells. Through systematically re-editing the metabolism, morphology, mutualism interaction of cyanobacterial chassis cells, the adaptabilities and compatibilities of the cyanobacterial cell factories to the industrial process could be significantly improved. Cell growth and product synthesis of the tailored cyanobacterial cells could be expanded and maintained at night and in stressful environments, while convenient biomass harvesting could also be expected. For developing more feasible cyanobacterial photosynthetic biomanufacturing in large scale, we here propose the importance of tailoring industrial properties of cyanobacteria and outline the directions that should be exploited in the future. Copyright © 2018

  12. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization.

    Science.gov (United States)

    Ansari, Sabbir; Fatma, Tasneem

    2016-01-01

    In modern life petroleum-based plastic has become indispensable due to its frequent use as an easily available and a low cost packaging and moulding material. However, its rapidly growing use is causing aquatic and terrestrial pollution. Under these circumstances, research and development for biodegradable plastic (bioplastics) is inevitable. Polyhydroxybutyrate (PHB), a type of microbial polyester that accumulates as a carbon/energy storage material in various microorganisms can be a good alternative. In this study, 23 cyanobacterial strains (15 heterocystous and 8 non-heterocystous) were screened for PHB production. The highest PHB (6.44% w/w of dry cells) was detected in Nostoc muscorum NCCU- 442 and the lowest in Spirulina platensis NCCU-S5 (0.51% w/w of dry cells), whereas no PHB was found in Cylindrospermum sp., Oscillatoria sp. and Plectonema sp. Presence of PHB granules in Nostoc muscorum NCCU- 442 was confirmed microscopically with Sudan black B and Nile red A staining. Pretreatment of biomass with methanol: acetone: water: dimethylformamide [40: 40: 18: 2 (MAD-I)] with 2 h magnetic bar stirring followed by 30 h continuous chloroform soxhlet extraction acted as optimal extraction conditions. Optimized physicochemical conditions viz. 7.5 pH, 30°C temperature, 10:14 h light:dark periods with 0.4% glucose (as additional carbon source), 1.0 gl-1 sodium chloride and phosphorus deficiency yielded 26.37% PHB on 7th day instead of 21st day. Using FTIR, 1H NMR and GC-MS, extracted polymer was identified as PHB. Thermal properties (melting temperature, decomposition temperatures etc.) of the extracted polymer were determined by TGA and DSC. Further, the polymer showed good tensile strength and young's modulus with a low extension to break ratio comparable to petrochemical plastic. Biodegradability potential tested as weight loss percentage showed efficient degradation (24.58%) of PHB within 60 days by mixed microbial culture in comparison to petrochemical plastic.

  13. Health Risk Assessment for Cyanobacterial Toxins in Seafood

    Directory of Open Access Journals (Sweden)

    Andrew Humpage

    2012-03-01

    Full Text Available Cyanobacteria (blue-green algae are abundant in fresh, brackish and marine waters worldwide. When toxins produced by cyanobacteria are present in the aquatic environment, seafood harvested from these waters may present a health hazard to consumers. Toxicity hazards from seafood have been internationally recognised when the source is from marine algae (dinoflagellates and diatoms, but to date few risk assessments for cyanobacterial toxins in seafood have been presented. This paper estimates risk from seafood contaminated by cyanobacterial toxins, and provides guidelines for safe human consumption.

  14. Biomass accumulation, photochemical efficiency of photosystem II, nutrient contents and nitrate reductase activity in young rosewood plants (Aniba rosaeodora Ducke submitted to different NO3-:NH4+ ratios Acúmulo de biomassa, eficiência fotoquímica do fotossistema II, conteúdo de nutrientes e atividade da redutase do nitrato em plantas jovens de pau-rosa (Aniba rosaeodora Ducke submetidas a diferentes relações NO3-:NH4+

    Directory of Open Access Journals (Sweden)

    Denize Caranhas de Sousa Barreto

    2007-01-01

    Full Text Available The rosewood (Aniba rosaeodora Ducke is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+ may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII, and nitrate redutase activity (RN, E.C.1.6.6.1 on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%. The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.O pau-rosa (Aniba rosaeodora Ducke habita, naturalmente, solos florestais ácidos com potencial redox reduzido. No entanto, estas espécies têm sido encontradas também em clareiras que, teoricamente, apresentam solos mais oxidados. Nestas diferentes

  15. The Deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the Photosystem two repair cycle

    Czech Academy of Sciences Publication Activity Database

    Barker, M.; de Vries, R.; Nield, J.; Komenda, Josef; Nixon, P.

    2006-01-01

    Roč. 281, č. 41 (2006), s. 30347-30355 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50200510 Keywords : synechocystis 6803 * photosystem II * proteases Subject RIV: EE - Microbiology, Virology Impact factor: 5.808, year: 2006

  16. Cyanobacterial Polyhydroxybutyrate (PHB: Screening, Optimization and Characterization.

    Directory of Open Access Journals (Sweden)

    Sabbir Ansari

    Full Text Available In modern life petroleum-based plastic has become indispensable due to its frequent use as an easily available and a low cost packaging and moulding material. However, its rapidly growing use is causing aquatic and terrestrial pollution. Under these circumstances, research and development for biodegradable plastic (bioplastics is inevitable. Polyhydroxybutyrate (PHB, a type of microbial polyester that accumulates as a carbon/energy storage material in various microorganisms can be a good alternative. In this study, 23 cyanobacterial strains (15 heterocystous and 8 non-heterocystous were screened for PHB production. The highest PHB (6.44% w/w of dry cells was detected in Nostoc muscorum NCCU- 442 and the lowest in Spirulina platensis NCCU-S5 (0.51% w/w of dry cells, whereas no PHB was found in Cylindrospermum sp., Oscillatoria sp. and Plectonema sp. Presence of PHB granules in Nostoc muscorum NCCU- 442 was confirmed microscopically with Sudan black B and Nile red A staining. Pretreatment of biomass with methanol: acetone: water: dimethylformamide [40: 40: 18: 2 (MAD-I] with 2 h magnetic bar stirring followed by 30 h continuous chloroform soxhlet extraction acted as optimal extraction conditions. Optimized physicochemical conditions viz. 7.5 pH, 30°C temperature, 10:14 h light:dark periods with 0.4% glucose (as additional carbon source, 1.0 gl-1 sodium chloride and phosphorus deficiency yielded 26.37% PHB on 7th day instead of 21st day. Using FTIR, 1H NMR and GC-MS, extracted polymer was identified as PHB. Thermal properties (melting temperature, decomposition temperatures etc. of the extracted polymer were determined by TGA and DSC. Further, the polymer showed good tensile strength and young's modulus with a low extension to break ratio comparable to petrochemical plastic. Biodegradability potential tested as weight loss percentage showed efficient degradation (24.58% of PHB within 60 days by mixed microbial culture in comparison to

  17. Fatty Acid Composition of Six Freshwater Wild Cyanobacterial Species

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dor, I.; Prell, Aleš; Dembitský, V. M.

    2003-01-01

    Roč. 48, č. 1 (2003), s. 71-75 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacterial spcies * freshwater wild Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  18. Engineering a cyanobacterial cell factory for production of lactic acid.

    NARCIS (Netherlands)

    Angermayr, S.A.; Paszota, M.; Hellingwerf, K.J.

    2012-01-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by

  19. Cyanobacterial Occurrence and Diversity in Seagrass Meadows in ...

    African Journals Online (AJOL)

    The nutrient levels were significantly higher at Ocean Road than at Mjimwema (P = 0.001 for nitrate and P = 0.025 for phosphate). There was no significant difference in nitrite levels between the study sites (P = 0.83). The low cyanobacterial diversity and coverage in Ocean Road is related to the high levels of nutrients and ...

  20. Toxicological Review of Cyanobacterial Toxins: Cylindrospermopsin (External Review Draft)

    Science.gov (United States)

    The National Center for Environmental Assessment has prepared the Toxicological Reviews of Cyanobacterial Toxins: Anatoxin-a, Cylindrospermopsin and Microcystins (LR, RR, YR and LA) as a series of dose-response assessments to support the health assessment of unregulated contamina...

  1. Exploring cyanobacterial genomes for natural product biosynthesis pathways.

    Science.gov (United States)

    Micallef, Melinda L; D'Agostino, Paul M; Al-Sinawi, Bakir; Neilan, Brett A; Moffitt, Michelle C

    2015-06-01

    Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  3. Effects of cyanobacterial biomass on the Japanese quail

    Czech Academy of Sciences Publication Activity Database

    Skočovská, B.; Hilscherová, Klára; Babica, Pavel; Adamovský, Ondřej; Bandouchová, H.; Horáková, J.; Knotková, Z.; Maršálek, Blahoslav; Pašková, Veronika; Pikula, J.

    2007-01-01

    Roč. 49, č. 6 (2007), s. 793-803 ISSN 0041-0101 Grant - others:-(CZ) 1M6798593901 Institutional research plan: CEZ:AV0Z60050516 Keywords : Cyanobacterial water bloom * Avian toxicity tests * Microcystins Subject RIV: EF - Botanics Impact factor: 2.246, year: 2007

  4. Response of cyanobacterial mats to nutrient and salinity changes

    Czech Academy of Sciences Publication Activity Database

    Rejmánková, E.; Komárková, Jaroslava

    2005-01-01

    Roč. 83, č. 2 (2005), s. 87-107 ISSN 0304-3770. [INTECOL International Wetlands Conference /7./. Utrecht, 25.07.2004-30.7.2004] Grant - others:NSF(US) 0089211 Institutional research plan: CEZ:AV0Z60170517 Keywords : cyanobacterial mats * Belize * P-N impact Subject RIV: EH - Ecology, Behaviour Impact factor: 1.344, year: 2005

  5. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J. Phycol. 37 5–15. Howard-Williams C, Pridmore RD, Downes MT and Vincent WF. 1989 Microbial biomass, photosynthesis and chlorophyll a re- lated pigments in the ponds of the McMurdo Ice Shelf, Antarc ...

  6. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  7. An overview of cyanobacterial research and management in South ...

    African Journals Online (AJOL)

    2009-02-10

    Feb 10, 2009 ... Keywords: cyanobacteria, eutrophication, reservoirs, South Africa. Introduction. South Africa has a proud history of contributing to the global understanding of cyanobacteria, cyanobacterial toxins and the ecological associations of these organisms in eutrophic waters. In particular, research conducted ...

  8. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    Czech Academy of Sciences Publication Activity Database

    Tóth, T. N.; Chukhutsina, V.; Knoppová, Jana; Komenda, Josef; Kis, M.; Lenart, Z.; Garab, G.; Kovács, L.; Gombos, Z.; van Amerongen, H.

    2015-01-01

    Roč. 1847, č. 10 (2015), s. 1153-1165 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Carotenoid deficiency * Cyanobacterial photosynthesis * Phycobilisome Subject RIV: CE - Biochemistry Impact factor: 4.864, year: 2015

  9. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  10. Heat stress-induced effects of photosystem I: an overview of structural and functional responses.

    Science.gov (United States)

    Ivanov, Alexander G; Velitchkova, Maya Y; Allakhverdiev, Suleyman I; Huner, Norman P A

    2017-09-01

    Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.

  11. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  12. A single phosphorus treatment doubles growth of cyanobacterial lichen transplants.

    Science.gov (United States)

    McCune, Bruce; Caldwell, Bruce A

    2009-02-01

    Lichens are reputedly slow growing and become unhealthy or die in response to supplements of the usual limiting resources, such as water and nitrogen. We found, however, that the tripartite cyanobacterial lichen Lobaria pulmonaria doubled in annual biomass growth after a single 20-minute immersion in a phosphorus solution (K2HPO4), as compared to controls receiving no supplemental phosphorus. This stimulation of cyanolichens by phosphorus has direct relevance to community and population ecology of lichens, including improving models of lichen performance in relation to air quality, improving forest management practices affecting old-growth associated cyanolichens, and understanding the distribution and abundance of cyanolichens on the landscape. Phosphorus may be as important a stimulant to cyanobacterial-rich lichen communities as it is to cyanobacteria in aquatic ecosystems.

  13. Cyanobacterial chemotaxis to extracts of host and nonhost plants.

    Science.gov (United States)

    Nilsson, Malin; Rasmussen, Ulla; Bergman, Birgitta

    2006-03-01

    Chemotaxis may be important when forming cyanobacterial symbioses. However, knowledge of cyanobacterial attraction towards plants and factors affecting chemotaxis is limited. Chemo-attraction was observed in Nostoc strains 8964:3 and PCC 73102 towards exudate or crushed extract of the natural hosts Gunnera manicata, Cycas revoluta and Blasia pusilla, and the nonhost plants Trifolium repens, Arabidopsis thaliana and Oryza sativa. As all tested plant extracts generated chemotaxis, the possibility to attract cyanobacteria may be widespread in plants. Chemotaxis was reduced by increased temperature and darkness and was stimulated by phosphorous and iron starvation and elevated salt concentration. Sugars (arabinose, galactose, and glucose) had a positive effect on chemotaxis, whereas flavonoids (chrysin and naringenin) and amino acids (methionine, glycine, serine, phenylalanine, glutamine, and lysine) had no effect.

  14. Typology of secondary cyanobacterial metabolites from minimum spanning tree analysis.

    Science.gov (United States)

    Guyot, M; Doré, J C; Devillers, J

    2004-04-01

    Recently, two main events have spurred a rapid increase in cyanobacteria chemical, toxicological, and ecological research. The first deals with the interest in isolating compounds from these organisms as source of active products with potential therapeutic applications. The second pertains the crucial problem of harmful cyanobacterial blooms in the aquatic environments. In this context, 594 secondary metabolites belonging to more than 30 genera of cyanobacteria were retrieved from literature. In order to perform their typology, they were first associated with 87 different molecular archetypes and two orphan classes. These 89 groups of molecular structures were then confronted to minimum spanning tree analysis. Attempts were made to graphically derive chemotaxonomical relationships. The interest of QSAR models for estimating the potential pharmacological interest of the cyanobacterial secondary metabolites was also discussed.

  15. Ecology, Diversity and Comparative Genomics of Oceanic Cyanobacterial Viruses

    Science.gov (United States)

    2004-06-01

    Nostoc punctiforme PCC 73102 (ZP_00107423). 170 Chisholm Supplementary Figure 5 Agrobacterium tumefaciens Brucella melitensis • Sinorhizobium meliloti 9...phosphatase of Synechococcus PCC 7942 and related cyanobacterial genes. Accession numbers as follows: Brucella melitensis (NP_541633.1), Agrobacterium...can result in a rapid succession of phi PM2, was isolated off the coast of Chile in microbial species (Thingstad and Lignell, 1997; the 1960s (Espejo

  16. A novel earth observation based ecological indicator for cyanobacterial blooms

    Science.gov (United States)

    Anttila, Saku; Fleming-Lehtinen, Vivi; Attila, Jenni; Junttila, Sofia; Alasalmi, Hanna; Hällfors, Heidi; Kervinen, Mikko; Koponen, Sampsa

    2018-02-01

    Cyanobacteria form spectacular mass occurrences almost annually in the Baltic Sea. These harmful algal blooms are the most visible consequences of marine eutrophication, driven by a surplus of nutrients from anthropogenic sources and internal processes of the ecosystem. We present a novel Cyanobacterial Bloom Indicator (CyaBI) targeted for the ecosystem assessment of eutrophication in marine areas. The method measures the current cyanobacterial bloom situation (an average condition of recent 5 years) and compares this to the estimated target level for 'good environmental status' (GES). The current status is derived with an index combining indicative bloom event variables. As such we used seasonal information from the duration, volume and severity of algal blooms derived from earth observation (EO) data. The target level for GES was set by using a remote sensing based data set named Fraction with Cyanobacterial Accumulations (FCA; Kahru & Elmgren, 2014) covering years 1979-2014. Here a shift-detection algorithm for time series was applied to detect time-periods in the FCA data where the level of blooms remained low several consecutive years. The average conditions from these time periods were transformed into respective CyaBI target values to represent target level for GES. The indicator is shown to pass the three critical factors set for marine indicator development, namely it measures the current status accurately, the target setting can be scientifically proven and it can be connected to the ecosystem management goal. An advantage of the CyaBI method is that it's not restricted to the data used in the development work, but can be complemented, or fully applied, by using different types of data sources providing information on cyanobacterial accumulations.

  17. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    Science.gov (United States)

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  18. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  19. O2 evolution and cyclic electron flow around photosystem I in long-term ground batch culture of Euglena gracilis

    Science.gov (United States)

    An, Yanjun; Wang, Suqin; Hao, Zongjie; Zhou, Yiyong; Liu, Yongding

    2014-12-01

    Based on the purpose of better exploring the function of green producers in the closed aquatic biological life support system, the condition of dynamic O2 evolution and performance of cyclic electron flow around photosystem I (CEF-PSI) in long-term ground batch culture of Euglena gracilis were studied, the relationship between linear electron flow (LEF) and CEF-PSI was revealed, the function of CEF-PSI was investigated. Excellent consistency in O2 evolution pattern was observed in cultures grown in both closed and open containers, O2 evolution was strictly suppressed in phase 1, but the rate of it increased significantly in phase 2. CEF-PSI was proposed to be active during the whole course of cultivation, even in the declining phase 3, it still operated at the extent of 47-55%. It is suggested that the relationship between LEF and CEF-PSI is not only competition but also reciprocity. CEF-PSI was proposed to contribute to the considerable growth in phase 1; it was also suggested to play an important protective role against photosystem II (PSII) photoinhibition at the greatly enhanced level (approximately 80-95%) on the 2nd day. Our results in this research suggest that E. gracilis had very particular photosynthetic characteristics, the strict O2 evolution suppression in the initial culture phase might be a special light acclimation behavior, and CEF-PSI could be an important mechanism involved in this kind of adaptation to the changeable light environment.

  20. The Arabidopsis nox Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis[C][W

    Science.gov (United States)

    Dall’Osto, Luca; Piques, Maria; Ronzani, Michela; Molesini, Barbara; Alboresi, Alessandro; Cazzaniga, Stefano; Bassi, Roberto

    2013-01-01

    Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth. PMID:23396829

  1. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Luo, Hong-Hai; Gou, Ling; Chow, Wah Soon; Zhang, Wang-Feng

    2016-05-01

    The responses of gas exchange, chlorophyll fluorescence and the anti-oxidative system of cotton leaves were studied during water deficit and recovery. The results show that water deficit led to a reversible reduction in the photosynthetic rate. This reduction was mainly accompanied by stomatal limitation. The activity of photosystem II (PSII) and photosystem I (PSI) was relatively stable during water deficit and recovery. Water deficit caused an enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation. Proline accumulation and the anti-oxidative enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), along with the antioxidant ascorbate (AsA), increased during water deficit. On re-watering, the ROS generation rate, anti-oxidative enzymes activities and the extent of the lipid peroxidation returned to near control values. Overall, rapid recovery of the photosynthetic rate is related to the stability of the photosystems which appears to be a critical mechanism allowing cotton plants to withstand and survive drought environments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea

    NARCIS (Netherlands)

    Kremer, B.; Kazmierczak, J.; Stal, L.J.

    2008-01-01

    Precipitated calcium carbonate was found in annual cyanobacterial mats developing on the beaches of the North Sea barrier island Schiermonnikoog (the Netherlands). A variety of different calcium carbonate morphs were found in the cyanobacterial mucous secretions and identified by light- and scanning

  3. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water

    NARCIS (Netherlands)

    Simis, S.G.H.; Peters, S.W.M.; Gons, H.J.

    2005-01-01

    The pigment phycocyanin (PC) is a marker for cyanobacterial presence in eutrophic inland water. We present a reflectance band–ratio algorithm for retrieval of cyanobacterial PC. The model conforms to the band settings of the Medium Resolution Imaging Spectrometer. The parameters of the algorithm

  4. Cyanobacterial community diversity in the sediments of the Pearl River Estuary in China

    Directory of Open Access Journals (Sweden)

    Fu-Lin Sun

    2017-12-01

    Full Text Available Cyanobacterial community diversity in the sediment of the Pearl River Estuary in China was evaluated in this study by denaturing gradient gel electrophoresis (DGGE during the wet and dry seasons. Nucleotide sequences obtained from DGGE bands were classified into five cyanobacterial clusters, including Synechococcus, Cyanobium, Chroococcus, Prochlorales and Tolypothrix. Synechococcus was identified as the dominant cyanobacterial group in the sediment samples; its distribution varied from the inner estuary to the outer estuary, with a wide range of salinity adaptation. Observed patterns of cyanobacterial communities changed markedly between sampling sites and seasons, suggesting that most cyanobacteria were not delivered via fresh water. Canonical correspondence analysis was conducted to determine the relationship between environmental variables and bacterial community structures during the dry season. The results suggested that the cyanobacterial community was significantly influenced by pH, salinity, PO4-P and NO3-N in sediments.

  5. Importance of climate change-physical forcing on the increase of cyanobacterial blooms in a small, stratified lake

    Directory of Open Access Journals (Sweden)

    Dolores Planas

    2016-03-01

    Full Text Available The community structure of planktonic cyanobacteria was studied in a dimictic lake in which recurrent summer surface algal blooms have frequently occurred since the beginning of this millennium. In eutrophic-hypereutrophic lakes, epilimnetic cyanobacterial blooms are promoted by increased ambient temperatures and water column thermal stability, which favour the vertical migration of buoyancy-regulating cyanobacteria. Here we propose that intensified external energy (wind that alters thermocline stability could explain the occurence of heavy blooms in the surface of lakes with low external nutrient loading. Specifically, we hypothesized that: i in small stratified lakes with low external nutrient sources, cyanobacterial growth primarily occurs near the lake bottom, where phosphorus is more abundant and light is available; ii we additionally hypothesized that turbulence induced by strong winds increases the amplitude and energy of metalimnetic internal waves and entrains meta- and hypolimnetic water,  rich in nutrients and cyanobacteria, into the epilimnion. The study was done in a small lake (45 Ha, maximum and mean depth 7.2 m and 4.3 m, respectively with mean epilimnetic dissolved phosphorus concentrations ≈ 4 μg L-1 and chlorophyll α ≈ 8 μg L-1.  Vertical temperature profiles during the open season were continuously registered using thermistors.  Weekly vertical profiles of light transmission, phytoplankton distribution and water chemistry were also taken. On one occasion, these variables were measured throughout a continuous 24 h cycle. Results demonstrated that summer cyanobacterial blooms were dominated by Plankthotrix spp., which began their cycle in late spring at the bottom of the lake, and grew to form dense metalimnetic biomass peaks. Time series analysis of isotherms and the Lake number indicated that internal metalimnetic waves (seiches were present through the summer. During the diel sampling cycle, we found that medium to

  6. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies.

    Science.gov (United States)

    Jiang, Yongguang; Xiao, Peng; Yu, Gongliang; Shao, Jihai; Liu, Deming; Azevedo, Sandra M F O; Li, Renhui

    2014-09-01

    Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs

    Science.gov (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto

    2017-04-01

    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  8. Catchment-fed cyanobacterial blooms in brownified temperate lakes

    Science.gov (United States)

    Senar, O.; Creed, I. F.

    2017-12-01

    One of the most significant impacts of global atmospheric change is the alteration of hydrological regimes and the associated disruption of hydrological connectivity within watersheds. We show how changes in the frequency, magnitude, and duration of hydrological connectivity and disconnectivity is compromising the capacity of forest soils to store organic carbon, and increasing its export to both aquatic and atmospheric systems. Increases in dissolved organic matter (DOM) loads from forested landscapes to aquatic systems and the shift of the DOM pool to a more refractory mixture of organic compounds, a process known as brownification, alters the physical and chemical characteristics of lake environments. Furthermore, by characterizing the stages of brownification (from low to high concentrations of refractory DOM), we show a shift in the limiting factors for phytoplankton growth from macronutrients (nitrogen -N- and phosphorus -P) to micronutrients (iron -Fe) and light availability. This shift is driven by the low concentrations of DOM supplying N and P in early stages of brownification, to the strong Fe-binding capacity of refractory DOM in brownified lakes. As lakes undergo brownification, cyanobacteria adapted to scavenge Fe from DOM-Fe complexes have a competitive advantage leading to the formation of cyanobacterial blooms. Our findings provide evidence that brownification is a driving force leading to cyanobacterial blooms in lakes on forested landscapes, with expected cascading consequences to lake food webs.

  9. Cyanobacterial bloom in the world largest freshwater lake Baikal

    Science.gov (United States)

    Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton

    2018-02-01

    Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.

  10. Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways.

    Science.gov (United States)

    Yang, Guang; Zhang, Yi; Lee, Nicholas K; Cozad, Monica A; Kearney, Sara E; Luesch, Hendrik; Ding, Yousong

    2017-09-19

    Cyanobacteria produce structurally and functionally diverse polyketides, nonribosomal peptides and their hybrids. Sfp-type phosphopantetheinyl transferases (PPTases) are essential to the production of these compounds via functionalizing carrier proteins (CPs) of biosynthetic megaenzymes. However, cyanobacterial Sfp-type PPTases remain poorly characterized, posing a significant barrier to the exploitation of cyanobacteria for biotechnological and biomedical applications. Herein, we describe the detailed characterization of multiple cyanobacterial Sfp-type PPTases that were rationally selected. Biochemical characterization of these enzymes along with the prototypic enzyme Sfp from Bacillus subtilis demonstrated their varying specificities toward 11 recombinant CPs of different types of biosynthetic pathways from cyanobacterial and Streptomyces strains. Kinetic analysis further indicated that PPTases possess the higher binding affinity and catalytic efficiency toward their cognate CPs in comparison with noncognate substrates. Moreover, when chromosomally replacing the native PPTase gene of Synechocystis sp. PCC6803, two selected cyanobacterial PPTases and Sfp supported the growth of resulted mutants. Cell lysates of the cyanobacterial mutants further functionalized recombinant CP substrates. Collectively, these studies reveal the versatile catalysis of selected cyanobacterial PPTases and provide new tools to synthesize cyanobacterial natural products using in vitro and in vivo synthetic biology approaches.

  11. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    Abstract Reported are findings of Neoarchean benthic colonial coccoid cyanobacteria preserved as abundant remnants of mineralized capsules and sheaths visible in SEM images as characteristic patterns after etching highly polished carbonate rock platelets. The samples described herein were collected from the Nauga Formation at Prieska (Kaapvaal craton, South Africa). The stratigraphic position of the sampling horizon (Fig. 1) is bracketed by single zircon ages from intercalated tuffs, of 2588±6 Ma and 2549±7Ma [1]. The cyanobacteria-bearing samples are located within sedimentary sequence which begins with Peritidal Member displaying increasingly transgressive character, passing upward into the Chert Member and followed by the Proto-BIF Member and by the Naute Shale Member of the Nauga Formation successively. All three latter members were deposited below the fair weather wave base. As in our previous report [2], the samples are taken from lenses of massive micritic flat pebble conglomerate occurring in otherwise finely laminated siliceous shales intercalating with thin bedded platy limestone. This part of the Nauga Formation is about 30 m thick. The calcareous, cyanobacteria-bearing flat pebble conglomerate and thin intercalations of fine-grained detrital limestones embedded in the clayey sapropel-rich deposits are interpreted as carbonate sediments winnowed during stormy weather from the nearby located peritidal carbonate platform. The mass occurrence and exceptional preservation of mineralised cyanobacterial remains in the micritic carbonate (Mg-calcite) of the redeposited flat pebbles can be explained by their sudden burial in deeper, probably anoxic clay- and sapropel-rich sediments. When examined with standard petrographic optical microscopic technique, the micritic carbonates show rather obscure structure (Fig. 2a), whereas under the SEM, polished and slightly etched platelets of the same samples reveal surprisingly well preserved patterns (Fig. 2b

  12. Cyanobacterial calcification in modern microbialites at the submicrometer scale

    Directory of Open Access Journals (Sweden)

    E. Couradeau

    2013-08-01

    Full Text Available The search for microfossils in the geological record has been a long-term challenge. Part of the problem comes from the difficulty of identifying such microfossils unambiguously, since they can be morphologically confused with abiotic biomorphs. One route to improve our ability to correctly identify microfossils involves studying fossilization processes affecting bacteria in modern settings. We studied the initial stages of fossilization of cyanobacterial cells in modern microbialites from Lake Alchichica (Mexico, a Mg-rich hyperalkaline crater lake (pH 8.9 hosting currently growing stromatolites composed of aragonite [CaCO3] and hydromagnesite [Mg5(CO34(OH2 · 4(H2O]. Most of the biomass associated with the microbialites is composed of cyanobacteria. Scanning electron microscopy analyses coupled with confocal laser scanning microscopy observations were conducted to co-localize cyanobacterial cells and associated minerals. These observations showed that cyanobacterial cells affiliated with the order Pleurocapsales become specifically encrusted within aragonite with an apparent preservation of cell morphology. Encrustation gradients from non-encrusted to totally encrusted cells spanning distances of a few hundred micrometers were observed. Cells exhibiting increased levels of encrustation along this gradient were studied down to the nm scale using a combination of focused ion beam (FIB milling, transmission electron microscopy (TEM and scanning transmission x-ray microscopy (STXM at the C, O and N K-edges. Two different types of aragonite crystals were observed: one type was composed of needle-shaped nano-crystals growing outward from the cell body with a crystallographic orientation perpendicular to the cell wall, and another type was composed of larger crystals that progressively filled the cell interior. Exopolymeric substances (EPS, initially co-localized with the cells, decreased in concentration and dispersed away from the cells while

  13. Inhibition of Cyanobacterial Growth on a Municipal Wastewater Sidestream Is Impacted by Temperature.

    Science.gov (United States)

    Korosh, Travis C; Dutcher, Andrew; Pfleger, Brian F; McMahon, Katherine D

    2018-01-01

    Sidestreams in wastewater treatment plants can serve as concentrated sources of nutrients (i.e., nitrogen and phosphorus) to support the growth of photosynthetic organisms that ultimately serve as feedstock for production of fuels and chemicals. However, other chemical characteristics of these streams may inhibit growth in unanticipated ways. Here, we evaluated the use of liquid recovered from municipal anaerobic digesters via gravity belt filtration as a nutrient source for growing the cyanobacterium Synechococcus sp. strain PCC 7002. The gravity belt filtrate (GBF) contained high levels of complex dissolved organic matter (DOM), which seemed to negatively influence cells. We investigated the impact of GBF on physiological parameters such as growth rate, membrane integrity, membrane composition, photosystem composition, and oxygen evolution from photosystem II. At 37°C, we observed an inverse correlation between GBF concentration and membrane integrity. Radical production was also detected upon exposure to GBF at 37°C. However, the dose-dependent relationship between the GBF concentration and the lack of membrane integrity was abolished at 27°C. Immediate resuspension of strains in high levels of GBF showed markedly reduced oxygen evolution rates relative to those seen with the control. Taken together, the data indicate that one mechanism responsible for GBF toxicity to Synechococcus is the interruption of photosynthetic electron flow and subsequent phenomena. We hypothesize that this is likely due to the presence of phenolic compounds within the DOM. IMPORTANCE Cyanobacteria are viewed as promising platforms to produce fuels and/or high-value chemicals as part of so-called "biorefineries." Their integration into wastewater treatment systems is particularly interesting because removal of the nitrogen and phosphorus in many wastewater streams is an expensive but necessary part of wastewater treatment. In this study, we evaluated strategies for cultivating

  14. Isolation and characterization of oxygen-evolving photosystem II particles and photosystem II core complex from the filamentous cyanobacterium Spirulina platensis

    Czech Academy of Sciences Publication Activity Database

    Šetlíková, Eva; Sofrová, D.; Kovář, V.; Budáč, Petr

    2013-01-01

    Roč. 51, č. 4 (2013), s. 517-530 ISSN 0300-3604 R&D Projects: GA ČR GA206/08/1683; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : antibodies * fluorescence spectra * IMAC chromatography Subject RIV: EE - Microbiology, Virology Impact factor: 1.007, year: 2013

  15. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp PCC 6803: implications for the assembly and repair of photosystem II

    Czech Academy of Sciences Publication Activity Database

    Boehm, M.; Yu, J.; Reisinger, V.; Bečková, Martina; Eichacker, L. A.; Schlodder, E.; Komenda, Josef; Nixon, P. J.

    2012-01-01

    Roč. 367, č. 1608 (2012), s. 3444-3454 ISSN 0962-8436 R&D Projects: GA ČR(CZ) GAP501/11/0377; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Synechocystis * RC47 * low-molecular-mass subunit Subject RIV: EE - Microbiology, Virology Impact factor: 6.230, year: 2012

  16. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    Science.gov (United States)

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The cyanobacterial nitrogen fixation paradox in natural waters.

    Science.gov (United States)

    Paerl, Hans

    2017-01-01

    Nitrogen fixation, the enzymatic conversion of atmospheric N (N 2 ) to ammonia (NH 3 ), is a microbially mediated process by which "new" N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N 2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth) biochemical process is inhibited by another. N 2 -fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the "oxygen problem"; however, none of these allows N 2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of "new" N by N 2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial) play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls) as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N 2 to ammonia (NH 3 ) is a  microbially-mediated process by which "new" nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N 2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in

  18. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  19. Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts.

    Science.gov (United States)

    Green, Thomas George Allan; Sancho, Leopoldo G; Pintado, Ana; Saco, Dolores; Martín, Soledad; Arróniz-Crespo, María; Angel Casermeiro, Miguel; de la Cruz Caravaca, Maria Teresa; Cameron, Steven; Rozzi, Ricardo

    2017-11-01

    The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if . high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg -1 , about 20 times greater than measured in other higher plants in the community (0.29 g kg -1 ). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla , a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera . Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg -1 ) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear.

  20. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion.

    Science.gov (United States)

    Nguyen, Khoa; Bruce, Barry D

    2014-09-01

    Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013. Published by Elsevier B.V.

  1. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  2. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  3. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Monchamp

    Full Text Available The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA, the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity.

  4. Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Drahorad, Sylvie L; Berkowicz, Simon M; Felix-Henningsen, Peter; Kaplan, Aaron

    2015-07-01

    Cyanobacteria occur worldwide but play an important role in the formation and primary activity of biological soil crusts (BSCs) in arid and semi-arid ecosystems. The cyanobacterial diversity in BSCs of the northwest Negev desert of Israel was surveyed at three fixed sampling stations situated along a precipitation gradient in the years 2010 to 2012. The three stations also are characterized by marked differences in soil features such as soil carbon, nitrogen, or electrical conductivity. The cyanobacterial biodiversity was analyzed by sequencing inserts of clone libraries harboring partial 16S rRNA gene sequences obtained with cyanobacteria-specific primers. Filamentous, non-diazotrophic strains (subsection III), particularly Microcoleus-like, dominated the cyanobacterial community (30% proportion) in all years. Specific cyanobacterial groups showed increased (e.g., Chroococcidiopsis, Leptolyngbya, and Nostoc strains) or decreased (e.g., unicellular strains belonging to the subsection I and Scytonema strains) abundances with declining water availability at the most arid, southern station, whereas many cyanobacterial strains were frequently found in the soils of all three stations. The cyanobacterial diversity at the three sampling stations appears dependent on the available precipitation, whereas the differences in soil chemistry were of lower importance.

  5. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Science.gov (United States)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  6. Microcystin in cyanobacterial blooms in a Chilean lake.

    Science.gov (United States)

    Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Wirsing, B; Neumann, U; Weckesser, J

    1999-05-01

    Cyanobacterial blooms dominated by Microcystis sp. occurred in lake Rocuant ("marisma", near Concepción/Chile) in February 1995 and 1996. In the bloom samples collected in both years the hepatotoxin microcystin was detected by RP-HPLC in both samples and in the sample of 1995 also by a toxicity assay using primary rat hepatocytes. In the bloom of 1995, the microcystin content of the dry bloom biomass was determined to be 130 micrograms/g on the basis of the RP-HPLC peak area and 800 micrograms/g on the basis of the rat hepatotoxicity assay, respectively. In the bloom of 1996, RP-HPLC analysis revealed a microcystin content of 8.13 micrograms/g bloom material dry weight. In this year no hepatotoxicity was measured using a concentration range up to 0.8 mg (d. w.) of bloom material per ml in the rat hepatotoxicity assay. This is the first report on the detection of microcystins in Chilean water bodies.

  7. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  8. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms.

    Directory of Open Access Journals (Sweden)

    Mélanie Gerphagnon

    Full Text Available Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids. However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes, spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by "mechanistic fragmentation" following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.

  9. A method for examining temporal changes in cyanobacterial ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here

  10. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    Full Text Available Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena, a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  11. Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes

    NARCIS (Netherlands)

    Gordiichuk, Pavlo I; Rimmerman, Dolev; Paul, Avishek; Gautier, Daniel A; Gruszka, Agnieszka; Saller, Manfred; de Vries, Jan Willem; Wetzelaer, Gert-Jan A H; Manca, Marianna; Gomulya, Widianta; Matmor, Maayan; Gloukhikh, Ekaterina; Loznik, Mark; Ashkenasy, Nurit; Blom, Paul W M; Rögner, Matthias; Loi, Maria Antonietta; Richter, Shachar; Herrmann, Andreas

    Photosynthesis is Natur&s major process for converting solar into chemical energy. One of the key players' in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident,photons enables electron transfer, which makes this, protein attractive for applications in

  12. Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL

    NARCIS (Netherlands)

    Kouril, R.; Yeremenko, N.; D'Haene, S.; Oostergetel, G.T.; Matthijs, H.C.P.; Dekker, J.P.; Boekema, E.J.

    2005-01-01

    The cyanobacterium Synechocystis PCC 6803 grown under short-term iron-deficient conditions assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 IsiA complexes. Furthermore, it has been shown that single or double rings of IsiA with up to 35 copies

  13. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives

    Directory of Open Access Journals (Sweden)

    Jainendra Pathak

    2018-02-01

    Full Text Available Sustainable supply of food and energy without posing any threat to environment is the current demand of our society in view of continuous increase in global human population and depletion of natural resources of energy. Cyanobacteria have recently emerged as potential candidates who can fulfill abovementioned needs due to their ability to efficiently harvest solar energy and convert it into biomass by simple utilization of CO2, water and nutrients. During conversion of radiant energy into chemical energy, these biological systems produce oxygen as a by-product. Cyanobacterial biomass can be used for the production of food, energy, biofertilizers, secondary metabolites of nutritional, cosmetics, and medicinal importance. Therefore, cyanobacterial farming is proposed as environment friendly sustainable agricultural practice which can produce biomass of very high value. Additionally, cyanobacterial farming helps in decreasing the level of greenhouse gas, i.e., CO2, and it can be also used for removing various contaminants from wastewater and soil. However, utilization of cyanobacteria for resolving the abovementioned problems is subjected to economic viability. In this review, we provide details on different aspects of cyanobacterial system that can help in developing sustainable agricultural practices. We also describe different large-scale cultivation systems for cyanobacterial farming and discuss their merits and demerits in terms of economic profitability.

  15. Antibacterial and Antifungal Activities of Cyanobacterial Strains Isolated from Hot Springs in Oman

    Directory of Open Access Journals (Sweden)

    Neelam Sherwani1

    2015-06-01

    Full Text Available In this study, cyanobacterial microbial mats from five hot springs in Oman, namely Al Kasfah Rustaq, Al Thwara Nakhl, Al–Ali Hammam, Gala and Bowsher, were characterized using direct microscopy. Nine monoclonal cyanobacterial cultures were obtained and their extracts in butanol, dichloromethane (DCM and hexane were screened for antibacterial and antifungal activities. Direct microscopy revealed the presence of 12 different unicellular and filamentous morphotypes, with different distribution in the various mats. Temperature seems to be one of the most important parameters that accounts for the differences in cyanobacterial composition of the mats. Cells of the nine isolates and their aqueous supernatants were subsequently extracted with butanol, DCM and hexane. Dried extracts were tested against nine bacterial (i.e. gram +ve Staphylococcus aureus, Bacillus subtilis and gram –ve, Escherichia coli, Klebsiella pneumoniae, Salmonella choleraesuis, S. enterica, Psuedomonas aeruginosa, Providencia stuartii, and  Acinetobacter calcoaceticus and two fungal pathogens (Rhizoctonia solani and Pythium sp.. All isolates exhibited antibacterial and antifungal activities, which depended mainly on the type of cyanobacterial culture, type of solvent used and the pathogen tested. The highest antibacterial activity was observed in Phormidium species, and butanol was found to be the most appropriate solvent to extract bioactivity from these cyanobacterial species. The results of this study suggest that thermal springs in Oman harbor diverse types of cyanobacteria, which may constitute an important source of antibacterial and antifungal compounds. Further investigation is needed to purify these compounds and find their chemical compositions and modes of action.

  16. Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy

    Science.gov (United States)

    Benning, Liane G.; Phoenix, V. R.; Yee, N.; Tobin, M. J.

    2004-02-01

    Synchrotron-based Fourier-transform infrared (SR-FTIR) micro-spectroscopy was used to determine the concentration-dependent response of the organic structure of live cyanobacterial cells to silicification. Mid-infrared (4000-600 cm -1) measurements carried out on single filaments and sheaths of the cyanobacteria Calothrix sp. (strain KC97) were used to monitor the interaction between a polymerizing silica solution and the organic functional groups of the cells during progressive silicification. Spectra of whole-cells and sheaths were analyzed and the spectral features were assigned to specific functional groups related to the cell: lipids (-CH 2 and -CH 3; at 2870-2960 cm -1), fatty acids (>C=O at 1740 cm -1), proteins (amides I and II at 1650 and 1540 cm -1), nucleic acids (>P=O 1240 cm -1), carboxylic acids (C-O at 1392 cm -1), and polysaccharides (C-O between 1165 and 1030 cm -1). These vibrations and the characteristic vibrations for silica (Si-O between 1190 and 1060 cm -1; to some extent overlapping with the C-O frequencies of polysaccharides and Si-O at 800 cm -1) were used to follow the progress of silicification. Relative to unsilicified samples, the intensity of the combined C-O/Si-O vibration band increased considerably over the course of the silicification (whole-cells by > 90% and sheath by ˜75%). This increase is a consequence of (1) extensive growth of the sheath in response to the silicification, and (2) the formation of thin amorphous silica layers on the sheath. The formation of a silica specific band (˜800 cm -1) indicates, however, that the precipitation of amorphous silica is controlled by the dehydroxylation of abiotically formed silanol groups.

  17. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  18. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, N., E-mail: touzet.nicolas@itsligo.ie [Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo (Ireland); McCarthy, D.; Gill, A.; Fleming, G.T.A. [Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway (Ireland)

    2016-05-15

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  19. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.

    Science.gov (United States)

    Zhang, Bingchang; Li, Renhui; Xiao, Peng; Su, Yangui; Zhang, Yuanming

    2016-03-01

    Cyanobacteria are the primary colonizers and form a dominant component of soil photosynthetic communities in biological soil crusts. They are crucial in improving soil environments, namely accumulating soil carbon and nitrogen. Many classical studies have examined cyanobacterial diversity in desert crusts, but relatively few comprehensive molecular surveys have been conducted. We used 454 pyrosequencing of 16S rRNA to investigate cyanobacterial composition and distribution on regional scales in the Gurbantunggut Desert. The relationship between cyanobacterial distribution and environmental factors was also explored. A total of 24,973 cyanobacteria partial 16S rRNA gene sequences were obtained, and 507OTUs were selected, as most OTUs had very few reads. Among these, 347 OTU sequences were of cyanobacteria origin, belonging to Oscillatoriales, Nostocales, Chroococcales, and uncultured cyanobacterium clone, respectively. Microcoleus vaginatus, Chroococcidiopsis spp. and M. steenstrupii were the dominant species in most areas of the Gurbantunggut Desert. Compared with other desert, the Gurbantunggut Desert differed in the prominence of Chroococcidiopsis spp. and lack of Pseudanabaenales. Species composition and abundance of cyanobacteria also showed distinct variations. Soil texture, precipitation, and nutrients and salt levels affected cyanobacterial distribution. Increased precipitation was helpful in improving cyanobacterial diversity. A higher content of coarse sand promoted the colonization and growth of Oscillatoriales and some phylotypes of Chroococcales. The fine-textured soil with higher nutrients and salts supported more varied populations of cyanobacteria, namely some heterocystous cyanobacteria. The results suggested that the Gurbantunggut Desert was rich in cyanobacteria and that precipitation was a primary regulating factor for cyanobacterial composition on a regional scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aerosolization of cyanobacterial cells across ecosystem boundaries in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Trout-Haney, J.; Heindel, R. C.; Virginia, R. A.

    2017-12-01

    Cyanobacteria play a major ecological role in polar freshwaters, occurring predominately as small single cells in the water column, i.e., picocyanobacteria, or large multicellular colonies and mats that reside on the lake bottom. Cyanobacteria are also present in terrestrial polar habitats, including within soils, soil crusts, rocks, and glacial ice. Despite their predominance in polar ecosystems, the extent to which cyanobacteria move between terrestrial and aquatic landscape units remains poorly understood. In polar deserts such as the McMurdo Dry Valleys, aeolian processes influence terrestrial landscape morphology and drive the transport of sediments and other particles. Water surfaces can also act as a source of aerosolized particles, such as the production of sea spray aerosols through wave breaking in marine environments. However, aerosolization from freshwater bodies has been far less studied, especially in polar regions. We conducted a field-study to examine the transport of aerosolized cyanobacterial cells from ponds and soils in the McMurdo Dry Valleys. We used highly portable aerosol collection devices fitted with GF/F filters combusted at 500°C (0.3 µm) to collect small particles, such as picocyanobacteria (0.2 - 2 µm), from near-shore water and adjacent soil. We used epifluorescence microscopy to quantify aerosolized cells, with excitation filters for chlorophyll a (435 nm) and phycobilin pigments (572 nm), to distinguish cyanobacterial cells. We detected aerosolized picocyanobacterial cells from all ponds and soils sampled, indicating that these cells may be quite mobile and transported across ecosystem boundaries. We observed cyanobacterial cells individually, clustered, and associated with other organic material, suggesting multiple modes of cell transport. Further, we investigated the potential for aerosolization of toxin-producing cyanobacterial taxa (or unbound cyanotoxins), and the ecological and ecosystem-scale implications of

  1. Close Link Between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Iame A. Guedes

    2018-03-01

    Full Text Available Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic

  2. Spatial patterns of cyanobacterial mat growth on sand ripples

    Science.gov (United States)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  3. Effet de l'interaction lumiere-salinite sur l'activite du photosysteme ii ...

    African Journals Online (AJOL)

    Pour vérifiers'il y'aura récupération de leur activité photochimique, d'autres feuilles qui ont été mises à absorber du NaCl dans une solution de 300 mM à la lumière pendant 4 heures, sont transferees dans de l'eau distillée en obscurité ou en lumière. Les resultants montrent une stabilité du rendement quantique maximal ...

  4. Photosystem II functionality in barley responds dynamically to changes in leaf manganese status

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Powikrowska, Marta; Krogholm, Ken Suszkiewicz

    2016-01-01

    functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn...... the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ...... than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic...

  5. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Goněc, T.; Kos, J.; Pesko, M.; Dohanosová, J.; Oravec, Michal; Liptaj, T.; Králová, K.; Jampílek, J.

    2017-01-01

    Roč. 22, č. 10 (2017), č. článku 1709. ISSN 1420-3049 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : hydroxynaphthalene-carboxamides * photosynthetic electron transport (PET) inhibition * spinach chloroplasts * structure-activity relationships Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.861, year: 2016

  6. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, Neal [Arizona State University

    2010-03-31

    The use of methods to create large arrays of potential catalysts for the reaction H2O ½ O2 + 2H+ on the anode of an electrolysis system were investigated. This reaction is half of the overall reaction involved in the splitting of water into hydrogen and oxygen gas. This method consisted of starting with an array of electrodes and developing patterned electrochemical approaches for creating a different, defined peptide at each position in the array. Methods were also developed for measuring the rate of reaction at each point in the array. In this way, the goal was to create and then tests many thousands of possible catalysts simultaneously. This type of approach should lead to an ability to optimize catalytic activity systematically, by iteratively designing and testing new libraries of catalysts. Optimization is important to decrease energy losses (over-potentials) associated with the water splitting reaction and thus for the generation of hydrogen. Most of the efforts in this grant period were focused on developing the chemistry and analytical methods required to create pattern peptide formation either using a photolithography approach or an electrochemical approach for dictating the positions of peptide bond formation. This involved testing a large number of different reactions and conditions. We have been able to find conditions that have allowed us to pattern peptide bond formation on both glass slides using photolithographic methods and on electrode arrays made by the company Combimatrix. Part of this effort involved generating novel approaches for performing mass spectroscopy directly from the patterned arrays. We have also been able to demonstrate the ability to measure current at each electrode due to electrolysis of water. This was performed with customized instrumentation created in collaboration with Combimatrix. In addition, several different molecular designs for peptides that bound metals (primarily Mn) were developed and synthesized and metal binding was demonstrated. Finally, we investigated a number of methods. We have shown that we can create surfaces on glass slides appropriate for patterning peptide formation and have made arrays of peptides as large as 30,000 using photolithographic methods. However, side reactions with certain amino acid additions greatly limited the utility of the photolithographic approach. In addition, we found that transferring this patterned chemistry approach to large arrays was problematic. Thus, we turned to direct electrochemical patterning using the Combimatrix electrode arrays. Here we were also able to demonstrate patterned peptide bond forming chemistry, but yield and consistency of the reaction remains insufficient to create the quality of array required for realistic optimization of catalytic peptide sequences. We are currently exploring both new polymerization chemistries for generating catalysts on surface as well as adopting methods developed at Intel for creating peptide arrays directly on electronic substrates (silicon wafers).

  7. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis.

    Science.gov (United States)

    Ikeuchi, Masahiro; Sato, Fumihiko; Endo, Tsuyoshi

    2016-07-01

    To analyze changes of energy allocation in PSII at non-steady state photosynthesis, the induction and relaxation of non-photochemical quenching of Chl fluorescence was re-evaluated with the use of Arabidopsis thaliana mutants in which the ability to induce non-photochemical quenching was either enhanced (npq2) or suppressed (npq1 and npq4). When dark-treated leaves of the wild type (WT) were illuminated, very high Φ f,D , which represents the loss of excitation energy via non-regulated dissipation, at the beginning of light illumination was gradually decreased to the steady-state level. In contrast, Φ NPQ , representing regulated energy dissipation in PSII, was relatively constant after a significant change in the first 10 min. In npq1 and npq4 mutants, lower Φ NPQ resulted in much higher Φ f,D than in the WT. Comparison of npq1 and npq4 mutants showed a kinetic difference of two types of non-photochemical quenching. Because non-photochemical quenching calculated as NPQ = F m - F m ')/F m ' was determined by the interplay between Φ NPQ and Φ f,D , NPQ and Φ NPQ , both of which represent regulatory heat dissipation, were not linearly correlated. We showed that the kinetics of NPQ formation in the light and relaxation in the dark were affected by drastic changes in Φ f,D We discuss the nature of a high level of Φ f,D at the dark-light transition. We also point out an unavoidable problem of applying the energy allocation model when the F v /F m value changes during a photoinhibiotry illumination. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Siderin from Toona ciliata (Meliaceae) as photosystem II inhibitor on spinach thylakoids.

    Science.gov (United States)

    Veiga, Thiago A M; González-Vázquez, Raquel; Neto, João Oiano; Silva, Maria F G F; King-Díaz, Beatriz; Lotina-Hennsen, Blas

    2007-09-01

    Four natural products were isolated from plants of the Rutaceae and Meliaceae families and their effect on photosynthesis was tested. Siderin (1) inhibited both ATP synthesis and electron flow (basal, phosphorylating, and uncoupled) from water to methylviologen (MV); therefore, it acts as Hill reaction inhibitor in freshly lysed spinach thylakoids. Natural products 2-4 were inactive. Secondary metabolite 1 did not inhibit PSI electron transport. It inhibits partial reactions of PSII electron flow from water to 2,6-dichlorophenol indophenol (DCPIP), from water to sodium silicomolybdate, and partially inhibits electron flow from diphenylcarbazid (DPC) to DCPIP. These results established that the site of inhibition of 1 was at the donor and acceptor sides of PSII, between P(680) and Q(A). Chlorophyll a fluorescence measurements confirmed the behavior of the Toona ciliate coumarin 1 as P(680) to Q(A) inhibitor by the creation of silent centers. May be this is the mechanisms of action of 1 and is the way in which it develops a phytotoxic activity against photosynthesis.

  9. Experimental and theoretical studies on the excess capacity of Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Kaňa, R.; Lazár, D.; Prášil, Ondřej; Nauš, J.

    2002-01-01

    Roč. 72, - (2002), s. 271-284 ISSN 0166-8595 R&D Projects: GA ČR GP204/02/P071; GA ČR GA206/98/P110 Institutional research plan: CEZ:AV0Z5020903; CEZ:MSM 153100010 Keywords : chlorella * model * photoinhibition Subject RIV: BO - Biophysics Impact factor: 1.567, year: 2002

  10. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.

    Science.gov (United States)

    Dang, Aaditi; Silburn, Mark; Craig, Ian; Shaw, Melanie; Foley, Jenny

    2016-05-25

    Herbicides are often applied to crop residues, but their fate has not been well studied. We measured herbicide washoff from sugar cane trash during simulated rainfall, at 1, 8, and 40 days after spraying (DAS), to provide insight into herbicide fate and for use in modeling. Herbicides included are commonly used in the sugar industry, either in Australia or in Brazil. Concentrations of all herbicides and applied Br tracer in washoff declined exponentially over time. The rate of washoff during rainfall declined with increasing DAS. Cumulative washoff as a function of rainfall was similar for most herbicides, although the most soluble herbicides did have more rapid washoff. Some but not all herbicides became more resistant to washoff with increasing DAS. Of the total mass washed off, 80% washed off in the first 30 mm (∼40 min) of rainfall for most herbicides. Little herbicide remained on the trash after rainfall, implying nearly complete washoff.

  11. effet de l'interaction lumiere-salinite sur l'activite du photosysteme ii ...

    African Journals Online (AJOL)

    ACSS

    19 nov. 2015 ... collectrices est transmise sous forme d'énergie d'excitation vers les centres réactionnels, ..... les cultures fourragères dans le périmètre irrigué du Tadla, Maroc. In : Hartani T.,. Douaoui, A. and Kuper, M. (Eds.). Economies d'eau en systèmes irrigués au Maghreb.Actes du quatrième atelier régional du projet.

  12. Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor

    Czech Academy of Sciences Publication Activity Database

    Masojídek, Jiří; Souček, Pavel; Máchová, J.; Frolík, Jan; Klem, Karel; Malý, J.

    2011-01-01

    Roč. 74, č. 1 (2011), s. 117-122 ISSN 0147-6513 R&D Projects: GA MPO FT-TA/089 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60870520 Keywords : PSII-biosensor * Biotest * Herbicide Subject RIV: EE - Microbiology, Virology Impact factor: 2.294, year: 2011

  13. effet de l'interaction lumiere-salinite sur l'activite du photosysteme ii ...

    African Journals Online (AJOL)

    ACSS

    19 nov. 2015 ... l'effet de l'interaction de plusieurs types de stress environnementaux. La réponse des végétaux à une telle situation est souvent complexe. En effet, ... serre vitrée. Les pots utilisés ont pour dimensions. 45 cm de diamètre supérieur, 23 cm de diamètre inférieur et 66 cm de profondeur, contenant chacun au ...

  14. FtsH-mediated repair of the Photosystem II complex in response to light stress

    Czech Academy of Sciences Publication Activity Database

    Nixon, P. J.; Barker, M.; Boehm, M.; De Vries, M.; Komenda, Josef

    2005-01-01

    Roč. 56, č. 411 (2005), s. 357-363 ISSN 0022-0957 R&D Projects: GA ČR GA203/04/0800; GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacteria * DegP/HtrA proteases * FtsH proteases Subject RIV: EE - Microbiology, Virology Impact factor: 3.336, year: 2005

  15. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.

  16. Biophysical probing of Spartina maritima photo-system II changes during prolonged tidal submersion periods.

    Science.gov (United States)

    Duarte, B; Santos, D; Marques, J C; Caçador, I

    2014-04-01

    Submergence is one of the major constrains affecting wetland plants, with inevitable impacts on their physiology and productivity. Global warming as a driving force of sea level rise, tend to increase the submersion periods duration. Photosynthesis biophysical probing arise as an important tool to understand the energetics underlying plant feedback to these constrains. As in previous studies with Spartina maritima, there was no inhibition of photosynthetic activity in submerged individuals. Comparing both donor and acceptor sides of the PSII, the first was more severely affected during submersion, driven by the inactivation of the OEC with consequent impairment of the ETC. Although this apparent damage in the PSII donor side, the electron transport per active reaction centre was not substantially affected, indicating that this reduction in the electron flow is accompanied by a proportional increase in the number of active reaction centres. These conditions lead to the accumulation of excessive reducing power, source of damaging ROS, counteracted by efficient energy dissipation processes and anti-oxidant enzymatic defences. This way, S. maritima appears as a well-adapted species with an evident photochemical plasticity towards submersion, allowing it to maintain its photosynthetic activity even during prolonged submersion periods. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Accessibility controls selective degradation of photosystem II subunits by FtsH protease

    Czech Academy of Sciences Publication Activity Database

    Krynická, Vendula; Shao, S.; Nixon, P.J.; Komenda, Josef

    2015-01-01

    Roč. 1, č. 12 (2015), UNSP 15168 ISSN 2055-026X R&D Projects: GA MŠk(CZ) LO1416; GA ČR GBP501/12/G055 Institutional support: RVO:61388971 Keywords : SYNECHOCYSTIS SP PCC-6803 * DRIVEN SYNTHESIS * COMPLEX Subject RIV: EE - Microbiology, Virology

  18. Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles

    Czech Academy of Sciences Publication Activity Database

    Dědic, R.; Svoboda, A.; Pšenčík, J.; Lupínková, Lenka; Komenda, Josef; Hála, J.

    2003-01-01

    Roč. 102, - (2003), s. 313-317 ISSN 0022-2313 R&D Projects: GA ČR GA203/00/1257; GA MŠk LN00A141 Grant - others:GA ČR(CZ) GP202/01/D100 Institutional research plan: CEZ:MSM 113200001 Keywords : singlet oxygen phosphorescence * triplet kinetics Subject RIV: BO - Biophysics Impact factor: 1.314, year: 2003

  19. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    Science.gov (United States)

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1 O 2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Room temperature oxidation of the peripheral chlorophyll of photosystem II reaction centre

    Czech Academy of Sciences Publication Activity Database

    Litvín, R.; Vácha, František

    2004-01-01

    Roč. 26, - (2004), s. 98 ISSN 0137-5881. [FESPB Congress Book of Abstracts /14./. Cracow, 23.08.2004-27.08.2004] Keywords : plant physiology Subject RIV: CE - Biochemistry Impact factor: 0.433, year: 2004

  1. Isolation of thermo-tolerant and high lipid content green microalgae: oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus.

    Science.gov (United States)

    Pan, Yi-Ying; Wang, Suz-Ting; Chuang, Lu-Te; Chang, Yen-Wei; Chen, Ching-Nen Nathan

    2011-11-01

    Discoveries of new microalgae with thermo-tolerance, high growth rate, and high lipid content are crucial to algal biodiesel production in tropical and subtropical zones. Four new green microalgae were isolated in southern Taiwan. All four species are members of the genus Desmodesmus under the family Scenedesmaceae based on molecular and morphological analyses. Two of the four species survived at 45 °C for 24 h, with 5-13% of mortality rates caused by the heat. Total lipid contents of the two species reached over 50% in dry biomass under nitrogen starvation, and their triacylglycerols constituted around 75% of the total lipids. Thus the two species are good potential feedstocks for biodiesel production. Oil accumulation in the four species positively correlates with their photosystem II efficiencies during stress treatments (R2=0.90). This finding further supports that photosynthesis is essential for oil body formation under nitrogen starvation in green microalgae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Directory of Open Access Journals (Sweden)

    Mingxu Fang

    2017-03-01

    Full Text Available Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq and ChIP-seq and exonuclease digestion (ChIP-exo studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2 and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function.

  3. Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community

    Czech Academy of Sciences Publication Activity Database

    Borovec, Jakub; Sirová, D.; Mošnerová, Petra; Rejmánková, E.; Vrba, J.

    2010-01-01

    Roč. 101, 1-3 (2010), s. 323-333 ISSN 0168-2563 R&D Projects: GA MZe(CZ) QH81012 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : phosphorus partitioning * cyanobacterial mat * diurnal changes * sequential fractionation * EPS Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.674, year: 2010

  4. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms

    Czech Academy of Sciences Publication Activity Database

    Jančula, Daniel; Maršálek, Blahoslav

    2011-01-01

    Roč. 85, č. 9 (2011), s. 1415-1422 ISSN 0045-6535 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algicide * bloom management * cyanobacterial blooms Subject RIV: EF - Botanics Impact factor: 3.206, year: 2011

  5. Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB

    Science.gov (United States)

    Soybean C3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial i...

  6. Toxicological Review of Cyanobacterial Toxins: Anatoxin-a (External Review Draft)

    Science.gov (United States)

    The National Center for Environmental Assessment has prepared the Toxicological Reviews of Cyanobacterial Toxins: Anatoxin-a, Cylindrospermopsin and Microcystins (LR, RR, YR and LA) as a series of dose-response assessments to support the health assessment of unregulated contamina...

  7. Toxicological Review of Cyanobacterial Toxins: Microcystins Lr, Rr, Yr and La (External Review Draft)

    Science.gov (United States)

    The National Center for Environmental Assessment has prepared the Toxicological Reviews of Cyanobacterial Toxins: Anatoxin-a, Cylindrospermopsin and Microcystins (LR, RR, YR and LA) as a series of dose-response assessments to support the health assessment of unregulated contamina...

  8. Organic matter degradation drives benthic cyanobacterial mat abundance on caribbean coral reefs

    NARCIS (Netherlands)

    Brocke, Hannah J.; Polerecky, Lubos; De Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised

  9. Impact of water level fluctuations on cyanobacterial blooms: Options for management

    NARCIS (Netherlands)

    Bakker, E.S.; Hilt, Sabine

    2016-01-01

    Climate change can promote harmful cyanobacteria blooms in eutrophic waters through increased droughts or flooding. In this paper, we explore how water-level fluctuations affect the occurrence of cyanobacterial blooms, and based on the observations from case studies, we discuss the options and

  10. An application of cellular organic matter to coagulation of cyanobacterial cells (Merismopedia tenuissima)

    Czech Academy of Sciences Publication Activity Database

    Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.

    2017-01-01

    Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental science s (social aspects to be 5.7) Impact factor: 6.942, year: 2016

  11. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

    Czech Academy of Sciences Publication Activity Database

    Bormans, M.; Maršálek, Blahoslav; Jančula, Daniel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 407-422 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : internal P loading * cyanobacterial control * physical in-lake restoration methods * adverse impacts on biota Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  12. Dynamic modelling of viral impact on cyanobacterial populations in shallow lakes: Implications of burst size

    NARCIS (Netherlands)

    Gons, H.J.; Hoogveld, H.L.; Simis, S.G.H.; Tijdens, M.

    2006-01-01

    Laboratory experiments with whole water-columns from shallow, eutrophic lakes repeatedly showed collapse of the predominant filamentous cyanobacteria. The collapse could be due to viral activity, from the evidence of electron microscopy of infected cyanobacterial cells and observed dynamics of

  13. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  14. Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance.

    Directory of Open Access Journals (Sweden)

    Natalia P Noyma

    Full Text Available Cyanobacteria blooms are a risk to environmental health and public safety due to the potent toxins certain cyanobacteria can produce. These nuisance organisms can be removed from water bodies by biomass flocculation and sedimentation. Here, we studied the efficacy of combinations of a low dose coagulant (poly-aluminium chloride-PAC-or chitosan with different ballast compounds (red soil, bauxite, gravel, aluminium modified zeolite and lanthanum modified bentonite to remove cyanobacterial biomass from water collected in Funil Reservoir (Brazil. We tested the effect of different cyanobacterial biomass concentrations on removal efficiency. We also examined if zeta potential was altered by treatments. Addition of low doses of PAC and chitosan (1-8 mg Al L-1 to the cyanobacterial suspensions caused flock formation, but did not settle the cyanobacteria. When those low dose coagulants were combined with ballast, effective settling in a dose-dependent way up to 99.7% removal of the flocks could be achieved without any effect on the zeta potential and thus without potential membrane damage. Removal efficacy was influenced by the cyanobacterial biomass and at higher biomass more ballast was needed to achieve good removal. The combined coagulant-ballast technique provides a promising alternative to algaecides in lakes, ponds and reservoirs.

  15. Characterization of the cyanobacterial biocenosis of a freshwater reservoir in Italy

    Czech Academy of Sciences Publication Activity Database

    Mugnai, M. A.; Turicchia, S.; Margheri, M. C.; Sili, C.; Gugger, M.; Tedioli, G.; Komárek, Jiří; Ventura, S.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 403-419 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research /15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : freshwater reservoir * cyanobacterial diversity * morphology Subject RIV: EF - Botanics

  16. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...

  17. Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts

    Czech Academy of Sciences Publication Activity Database

    Kubečková, Klára; Johansen, J. R.; Warren, S. D.; Sparks, R.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 341-362 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research/15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : cyanobacteria * cyanobacterial amendments * desert soil Subject RIV: EF - Botanics

  18. An application of cellular organic matter to coagulation of cyanobacterial cells (Merismopedia tenuissima)

    Czech Academy of Sciences Publication Activity Database

    Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.

    2017-01-01

    Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 6.942, year: 2016

  19. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass

    NARCIS (Netherlands)

    Simis, S.G.H.; Ruiz-Verdú, A.; Domínguez-Gómez, J.A.; Peña-Martinez, R.; Peterson, S.W.; Gons, H.J.

    2007-01-01

    An extensive field campaign was carried out for the validation of a previously published reflectance ratio-based algorithm for quantification of the cyanobacterial pigment phycocyanin (PC). The algorithm uses band settings of the Medium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, and

  20. Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Storf, Stefanie; Stauber, Einar J; Hippler, Michael; Schmid, Volkmar H R

    2004-07-20

    Until now, more genes of the light-harvesting antenna of higher-plant photosystem I (PSI) than proteins have been described. To improve our understanding of the composition of light-harvesting complex I (LHCI) of tomato (Lycopersicon esculentum), we combined one- and two-dimensional (1-D and 2-D, respectively) gel electrophoresis with immunoblotting and tandem mass spectrometry (MS/MS). Separation of PSI with high-resolution 1-D gels allowed separation of five bands attributed to proteins of LHCI. Immunoblotting with monospecific antibodies and MS/MS analysis enabled the correct assignment of the four prominent bands to light-harvesting proteins Lhca1-4. The fifth band was recognized by only the Lhca1 antibody. Immunodetection as well as mass spectrometric analysis revealed that these protein bands contain not only the eponymous protein but also other Lhca proteins, indicating a heterogeneous protein composition of Lhca bands. Additionally, highly sensitive MS/MS allowed detection of a second Lhca4 isoform and of Lhca5. These proteins had not been described before on the protein level in higher plants. Two-dimensional gel electrophoresis revealed an even more diverse composition of individual Lhca proteins than was apparent from 1-D gels. For each of the four prominent Lhca proteins, four to five isoforms with different isoelectric points could be identified. In the case of Lhca1, Lhca4, and Lhca3, additional isoforms with slightly differing molecular masses were identified. Thus, we were able to detect four to ten isoforms of each individual Lhca protein in PSI. Reasons for the origin of Lhca heterogeneity are discussed. The observed variety of Lhca proteins and their isoforms is of particular interest in the context of the recently published crystal structure of photosystem I from pea, which showed the presence of only four Lhca proteins per photosystem I. These findings indicate that several populations of photosystem I that differ in their Lhca composition may

  1. Probing the connection of PBSs to the photosystems in Spirulina platensis by artificially induced fluorescence fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Li Heng [Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Yang Shuzhen [Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Xie Jie [Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Zhao Jingquan [Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: zhaojq@iccas.ac.cn

    2007-01-15

    The molecular architecture and the structural connections of phycobilisomes (PBSs) to the photosystems in the intact cells of Spirulina platensis were studied by taking advantage of glycerol- and betaine-induced fluorescence fluctuations. Generally, with a selective excitation of C-phycocyanin (C-PC), glycerol could induce not only decoupling of PBSs from the photosystems but also of C-PC rods from allophycocyanin (APC) cores, while betaine could strengthen the connection of PBSs to the thylakoid membrane but induce a partial dissociation of PBS. On the other hand, glycerol did not exert an influence on the fluorescence spectra of the photosystems in isolated thylakoid membrane. Therefore, it was deduced that glycerol could provide a molecular environment to weaken the hydrophobic interactions of not only the L{sub CM} with the membrane but also the linker polypeptides to the water-soluble phycobiliproteins (C-PC and APC), while the betaine could strengthen the hydrophobic interaction of L{sub CM} with the membrane but weaken the electrostatic interaction of linker polypeptides to C-PC and/or APC.

  2. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    Energy Technology Data Exchange (ETDEWEB)

    Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not

  3. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    Science.gov (United States)

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Identification of Photosystem I and Photosystem II enriched regions of thylakoid membrane by optical microimaging of cryo-fluorescence emission spectra and of variable fluorescence

    Czech Academy of Sciences Publication Activity Database

    Vácha, F.; Sarafis, V.; Benediktyová, Z.; Bumba, Ladislav; Valenta, J.; Vácha, M.; Sheue, Ch.; R.; Nedbal, L.

    2007-01-01

    Roč. 38, - (2007), s. 170-175 ISSN 0968-4328 Grant - others:GA ČR(CZ) GA206/05/0894 Program:GA Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50510513; CEZ:AV0Z60870520 Source of funding: V - iné verejné zdroje Keywords : chloroplast * heterogeneity * microscopy Subject RIV: EE - Microbiology, Virology Impact factor: 1.651, year: 2007

  5. Contribution of LHC II complex to the electric properties of thylakoid membranes: an electric light scattering study of Chl b-less barley mutant.

    Science.gov (United States)

    Dobrikova, A G; Ivanov, A G; Morgan, R; Petkanchin, I B; Taneva, S G

    2000-08-01

    Electric light scattering measurements demonstrate a strong decline in the permanent electric dipole moment and electric polarizability of both thylakoid membranes and photosystem II-enriched particles of the Chlorina f2 mutant which has severely reduced levels of light-harvesting chlorophyll a/b-binding proteins compared to the wild type barley chloroplasts. The shift in the electric polarizability relaxation to higher frequencies in thylakoids and photosystem II particles from Chlorina f2 reflects higher mobility of the interfacial charges of the mutant than that of the wild type membranes. The experimental data strongly suggest that the major light-harvesting complex of photosystem II directly contribute to the electric properties of thylakoid membranes.

  6. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I.

    Science.gov (United States)

    Campos, Huitziméngari; Trejo, Carlos; Peña-Valdivia, Cecilia B; García-Nava, Rodolfo; Conde-Martínez, F Víctor; Cruz-Ortega, Ma Del Rocío

    2014-10-01

    Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and -1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.

  7. .A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  8. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing (Harmful Algae)

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  9. Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel - effects of local conditions and disturbance.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Berkowicz, Simon M; Raanan, Hagai; Pade, Nadin; Felix-Henningsen, Peter; Kaplan, Aaron

    2016-11-02

    Biological soil crusts (BSCs) fulfill numerous ecological functions in arid and semiarid areas. Cyanobacteria are important BSC organisms, which are responsible for carbon fixation, N 2 -fixation, and binding of soil via extracellular polysaccharides. The cyanobacterial populations were characterized in different sampling plots established in three experimental stations along a rainfall gradient within NW Negev Desert, Israel. Cyanobacterial crust thickness and osmolyte accumulation therein decreased in plots with lower moisture. The cyanobacterial population structure also changed in different plots. We observed an increase of subsection III cyanobacteria such as Microcoleus spp. and Leptolyngbya sp. and a decreasing proportion of strains belonging to subsections I and IV in drier areas on the rainfall gradient. This population shift was also observed in the sampling plots, which were situated at various relief positions within the sand dune experimental sites. We also characterized the cyanobacterial populations within mechanically disturbed plots. After four years, they reached between 80 and 50% of the control populations in the northern-most and southern stations, respectively. Our results suggest that the cyanobacterial population is sensitive not only to macroscale factors but may also be subject to local climate variations and that four years were insufficient for complete recovery of the cyanobacterial population. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production.

    Science.gov (United States)

    Heimann, Kirsten

    2016-04-01

    Growing demand for energy and food by the global population mandates finding water-efficient renewable resources. Microalgae/cyanobacteria have shown demonstrated capacity to contribute to global energy and food security. Yet, despite proven process technology and established net energy-effectiveness and cost-effectiveness through co-product generation, microalgal biofuels are not a reality. This review outlines novel biofilm cultivation strategies that are water-smart, the opportunity for direct energy conversion via anaerobic digestion of N2-fixing cyanobacterial biomass and integrative strategies for microalgal biodiesel and/or biocrude production via supercritical methanol-direct transesterification and hydrothermal liquefaction, respectively. Additionally, fermentation of cyanobacterial biofilms could supply bioethanol to feed wet transesterification to biodiesel conversion for on-site use in remote locations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake

    DEFF Research Database (Denmark)

    De Figueiredo, Daniela R.; P. S. Reboleira, Ana Sofia; Antunes, Sara C.

    2006-01-01

    The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture...... (particularly phosphorus). Diatoms were dominant during winter months (inferior temperatures and higher nutrients availability) followed by green algae in early spring and then cyanobacteria from late spring until early autumn (less nutrient availability and higher temperatures). A massive cyanobacterial bloom...... for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae....

  12. Biochemical indices are modulated in fish exposed to cyanobacterial toxins (microcystins

    Directory of Open Access Journals (Sweden)

    Jana Hlávková

    2008-01-01

    Full Text Available In this work were summarized changes of biochemical markers of fish under the thumb of cyanobacterial toxins (microcystins. Among the most studied biomarkers of the influence of cyanobacterial toxins on fish belong oxidative stress parameters – glutathione S-transferase (GST, non-enzymatic antioxidant glutathione (GSH, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, lipid peroxidation (LPO, malondialdehyde (MDA, glutatione reductase (GR, parameters of blood – values of haemoglobin (Hb, haematocrit (PCV, mean corpuscular haemoglobin concentration (MCHC, mean corpuscular volume (MCV, mean corpuscular haemoglobin (MCH, erythrocyte (RBC, leukocyte counts (WBC and plasma – alanine aminotransferase (ALT, aspartate aminotransferase (AST, lactate dehydrogenase (LDH, alkaline phosphatase (ALP, cholinesterase (CHE, total serum protein (TP, glucose (GLU, lactate (LACT, iron (Fe, calcium (Ca, magnesium (Mg, total bilirubin (BIL, phosphorus (P and protein phosphatase activities (PP1, PP2A.

  13. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p......-1) even in the absence of any other nutrient additions to the fermentation medium. Conclusions: Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using...

  14. Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England

    Directory of Open Access Journals (Sweden)

    Andrew D. Turner

    2018-01-01

    Full Text Available Cyanobacterial blooms in freshwater bodies in England are currently monitored reactively, with samples containing more than 20,000 cells/mL of potentially toxin-producing species by light microscopy resulting in action by the water body owner. Whilst significantly reducing the risk of microcystin exposure, there is little data describing the levels of these toxins present in cyanobacterial blooms. This study focused on the quantitative LC-MS/MS analysis of microcystins in freshwater samples, collected across England during 2016 and found to contain potentially toxin-producing cyanobacteria. More than 50% of samples contained quantifiable concentrations of microcystins, with approximately 13% exceeding the WHO medium health threshold of 20 μg/L. Toxic samples were confirmed over a nine-month period, with a clear increase in toxins during late summer, but with no apparent geographical patterns. No statistical relationships were found between total toxin concentrations and environmental parameters. Complex toxin profiles were determined and profile clusters were unrelated to cyanobacterial species, although a dominance of MC-RR was determined in water samples from sites associated with lower rainfall. 100% of samples with toxins above the 20 μg/L limit contained cell densities above 20,000 cells/mL or cyanobacterial scum, showing the current regime is suitable for public health. Conversely, with only 18% of cell density threshold samples having total microcystins above 20 μg/L, there is the potential for reactive water closures to unnecessarily impact upon the socio-economics of the local population. In the future, routine analysis of bloom samples by LC-MS/MS would provide a beneficial confirmatory approach to the current microscopic assessment, aiding both public health and the needs of water users and industry.

  15. Observations of volatile organic compounds over the North Atlantic Ocean: relationships to dominant cyanobacterial populations.

    Science.gov (United States)

    Swarthout, R.; Rossell, R.; Sive, B. C.; Zhou, Y.; Reddy, C. M.; Valentine, D. L.; Cox, D.

    2017-12-01

    Marine cyanobacteria are abundant primary producers that can have a major influence on the oceanic biogeochemical cycles. In particular, the prominent cyanobacterial genera Prochlorococcus, Synechococcus, and Trichodesmium can impact the air-sea flux of volatile organic compounds (VOCs) including reactive compounds, such as isoprene, that control the oxidative capacity of the atmosphere and climate-relevant compounds, such as dimethyl sulfide. These groups of cyanobacteria have been estimated to increase in abundance by up to 29% by the end of the century as a result of rising sea surface temperatures and dissolved carbon dioxide concentrations. Given their current and predicted future abundance, understanding the role of different cyanobacterial populations on VOC emissions from the ocean is critical in understanding the future oxidative capacity of the remote atmosphere and climate feedback cycles. During the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics cruise aboard the R/V Neil Armstrong, 160 whole air canister samples were collected along a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24-hour stops at nine stations encompassing different nutrient regimes and cyanobacterial populations. At each station, a diurnal time series of samples was collected and higher frequency sampling was conducted during transits of the north wall. Canister samples were analyzed on a five-detector gas chromatography system for over 80 individual VOCs including biogenics, aromatics, chlorinated and brominated compounds, and sulfur containing compounds. Trends in reactive and climate-relevant VOCs will be discussed as a function of the predominant cyanobacterial populations at each sample location. These data provide increased information on the spatial and diurnal variability of trace gases associated with these globally important photosynthetic cyanobacteria.

  16. Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Montoya, H.; Komárek, J.

    2016-01-01

    Roč. 764, č. 1 (2016), s. 249-258 ISSN 0018-8158. [Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP) /17./. Kastoria, 14.09.2014-21.09.2014] Institutional support: RVO:60077344 Keywords : Titicaca Lake * cyanobacterial water bloom * Limnoraphis robusta * Diazocytes * Atitlán Lake * N:P ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.056, year: 2016

  17. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2008-04-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. Results Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. Conclusion Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT.

  18. The composition of the global and feature specific cyanobacterial core-genomes

    Directory of Open Access Journals (Sweden)

    Stefan eSimm

    2015-03-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes important for many ecosystems with a high potential for biotechnological usage e.g. in the production of bioactive molecules. Either asks for a deep understanding of the functionality of cyanobacteria and their interaction with the environment. This in part can be inferred from the analysis of their genomes or proteomes. Today, many cyanobacterial genomes have been sequenced and annotated. This information can be used to identify biological pathways present in all cyanobacteria as proteins involved in such processes are encoded by a so called core-genome. However, beside identification of fundamental processes, genes specific for certain cyanobacterial features can be identified by a holistic genome analysis as well. We identified 559 genes that define the core-genome of 58 analyzed cyanobacteria, as well as 3 genes likely to be signature genes for thermophilic and 57 genes likely to be signature genes for heterocyst-forming cyanobacteria. To get insights into cyanobacterial systems for the interaction with the environment we also inspected the diversity of the outer membrane proteome with focus on β-barrel proteins. We observed that most of the transporting outer membrane β-barrel proteins are not globally conserved in the cyanobacterial phylum. In turn, the occurrence of β-barrel proteins shows high strain specificity. The core set of outer membrane proteins globally conserved in cyanobacteria comprises three proteins only, namely the outer membrane β-barrel assembly protein Omp85, the lipid A transfer protein LptD and an OprB-type porin. Thus, we conclude that cyanobacteria have developed individual strategies for the interaction with the environment, while other intracellular processes like the regulation of the protein homeostasis are globally conserved.

  19. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors

    Directory of Open Access Journals (Sweden)

    Maxine A.D. Mowe

    2014-12-01

    Full Text Available Toxic cyanobacterial blooms are a major issue in freshwater systems in many countries. The potentially toxic species and their ecological causes are likely to be different in tropical zones from those in temperate water bodies; however, studies on tropical toxic cyanobacterial blooms are sporadic and currently there is no global synthesis. In this review, we examined published information on tropical cyanobacterial bloom occurrence and toxin production to investigate patterns in their growth and distribution. Microcystis was the most frequently occurring bloom genus throughout tropical Asia, Africa and Central America, while Cylindrospermopsis and Anabaena blooms occurred in various locations in tropical Australia, America and Africa. Microcystis blooms were more prevalent during the wet season while Cylindrospermopsis blooms were more prevalent during the dry period. Microcystin was the most encountered toxin throughout the tropics. A meta-analysis of tropical cyanobacterial blooms showed that Microcystis blooms were more associated with higher total nitrogen concentrations, while Cylindrospermopsis blooms were more associated with higher maximum temperatures. Meta-analysis also showed a positive linear relationship between levels of microcystin and N:P (nitrate:phosphate ratio. Tropical African Microcystis blooms were found to have the lowest microcystin levels in relation to biomass and N:P (nitrate:phosphate compared to tropical Asian, Australian and American blooms. There was also no significant correlation between microcystin concentration and cell concentration for tropical African blooms as opposed to tropical Asian and American blooms. Our review illustrates that some cyanobacteria and toxins are more prevalent in tropical areas. While some tropical countries have considerable information regarding toxic blooms, others have few or no reported studies. 

  20. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning

    2014-01-01

    hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p...... cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used...

  1. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review.

    Science.gov (United States)

    Nagarajan, M; Maruthanayagam, V; Sundararaman, M

    2013-05-01

    Freshwater and terrestrial cyanobacteria resemble the marine forms in producing divergent chemicals such as linear, cyclic and azole containing peptides, alkaloids, cyclophanes, terpenes, lactones, etc. These metabolites have wider biomedical potentials in targeting proteases, cancers, parasites, pathogens and other cyanobacteria and algae (allelopathy). Among the various families of non-marine cyanobacterial peptides reported, many of them are acting as serine protease inhibitors. While the micropeptin family has a preference for chymotrypsin inhibition rather than other serine proteases, the aeruginosin family targets trypsin and thrombin. In addition, cyanobacterial compounds such as scytonemide A, lyngbyazothrins C and D and cylindrocyclophanes were found to inhibit 20S proteosome. Apart from proteases, metabolites blocking the other targets of cancer pathways may exhibit cytotoxic effect. Colon and rectum, breast, lung and prostate are the worst affecting cancers in humans and are deduced to be inhibited by both peptidic and non-peptidic compounds. Moreover, the growth of infections causing parasites such as Plasmodium, Leishmania and Trypanosoma are well controlled by peptides: aerucyclamides A-D, tychonamides and alkaloids: nostocarboline and calothrixins. Likewise, varieties of cyanobacterial compounds tend to inhibit serious infectious disease causing bacterial, fungal and viral agents. Interestingly, portoamides, spiroidesin, nostocyclamide and kasumigamide are the allelopathic peptides determined to suppress the growth of toxic cyanobacteria and nuisance algae. Thus cyanobacterial compounds have a broad bioactive spectrum; the analysis of SAR studies will not only assist to find out the mode of action but also reveal bioactive key components. Thereby, developing the drugs bearing these bioactive skeletons to treat various illnesses is wide open. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Composition and structure of photosystem I in the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Busch, Andreas; Petersen, Jørgen; Webber-Birungi, Miriam T.

    2013-01-01

    Recently, bryophytes, which diverged from the ancestor of seed plants more than 400 million years ago, came into focus in photosynthesis research as they can provide valuable insights into the evolution of photosynthetic complexes during the adaptation to terrestrial life. This study isolated...... intact photosystem I (PSI) with its associated light-harvesting complex (LHCI) from the moss Physcomitrella patens and characterized its structure, polypeptide composition, and light-harvesting function using electron microscopy, mass spectrometry, biochemical, and physiological methods. It became......, in contrast to previous reports, it was demonstrated that Physcomitrella assembles a light-harvesting complex consisting of four light-harvesting proteins forming a higher-plant-like PSI superstructure....

  3. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming

    2014-04-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge\\'s mild intercellular environment. 2014 Gao et al.

  5. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes.

    Science.gov (United States)

    Xu, Minli; Lawrence, Jeffrey G; Durand, Dannie

    2018-02-08

    Highly Iterated Palindrome 1 (HIP1, GCGATCGC) is hyper-abundant in most cyanobacterial genomes. In some cyanobacteria, average HIP1 abundance exceeds one motif per gene. Such high abundance suggests a significant role in cyanobacterial biology. However, 20 years of study have not revealed whether HIP1 has a function, much less what that function might be. We show that HIP1 is 15- to 300-fold over-represented in genomes analyzed. More importantly, HIP1 sites are conserved both within and between open reading frames, suggesting that their overabundance is maintained by selection rather than by continual replenishment by neutral processes, such as biased DNA repair. This evidence for selection suggests a functional role for HIP1. No evidence was found to support a functional role as a peptide or RNA motif or a role in the regulation of gene expression. Rather, we demonstrate that the distribution of HIP1 along cyanobacterial chromosomes is significantly periodic, with periods ranging from 10 to 90 kb, consistent in scale with periodicities reported for co-regulated, co-expressed and evolutionarily correlated genes. The periodicity we observe is also comparable in scale to chromosomal interaction domains previously described in other bacteria. In this context, our findings imply HIP1 functions associated with chromosome and nucleoid structure. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The current status of cyanobacterial nomenclature under the "prokaryotic" and the "botanical" code.

    Science.gov (United States)

    Oren, Aharon; Ventura, Stefano

    2017-10-01

    Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the "Botanical Code") differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the "Prokaryotic Code"). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.

  7. Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia.

    Science.gov (United States)

    Garby, Tamsyn J; Walter, Malcolm R; Larkum, Anthony W D; Neilan, Brett A

    2013-05-01

    Families of closely related chemical compounds, which are relatively resistant to degradation, are often used as biomarkers to help trace the evolutionary history of early groups of organisms and the environments in which they lived. Biomarkers derived from hopanoid variations are particularly useful in determining bacterial community compositions. 2-Methylhopananoids have been thought to be diagnostic for cyanobacteria, and 2-methylhopanes in the geological record are taken as evidence for the presence of cyanobacteria-containing communities at the time of sediment deposition. Recently, however, doubt has been cast on the validity of 2-methylhopanes as cyanobacterial biomarkers, since non-cyanobacterial species have been shown to produce significant amounts of 2-methylhopanoids. This study examines the diversity of hpnP, the hopanoid biosynthesis gene coding for the enzyme that methylates hopanoids at the C2 position. Genomic DNA isolated from stromatolite-associated pustular and smooth microbial mat samples from Shark Bay, Western Australia, was analysed for bacterial diversity, and used to construct an hpnP clone library. A total of 117 partial hpnP clones were sequenced, representing 12 operational taxonomic units (OTUs). Phylogenetic analysis showed that 11 of these OTUs, representing 115 sequences, cluster within the cyanobacterial clade. We conclude that the dominant types of microorganisms with the detected capability of producing 2-methylhopanoids within pustular and smooth microbial mats in Shark Bay are cyanobacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Mining Metatranscriptomic Data of a Cyanobacterial Bloom for Patterns of Secondary Metabolism Gene Expression

    Science.gov (United States)

    Penn, K.; Wang, J.; Thompson, J. R.

    2012-12-01

    The secondary metabolism of bacterial cells produces small molecules that can have both medicinal properties and toxigenic effects. This study focuses on mining metatranscriptomes from a tropical eutrophic water reservoir in Singapore experiencing a cyanobacterial Harmful Algal Bloom dominated by Microcystis, to identify the types of secondary metabolites genes being expressed and by what taxa. A phylogenomic approach as implemented in the online tool Natural Product Domain Seeker (NaPDoS) was used. NaPDoS was recently developed to classify ketosynthase and condensation domains from polyketide synthases and non-ribosomal peptide synthetases, respectively, to provide insight into potential types of pathway products. Water samples from the reservoir were collected six times over a day/night cycle. Total RNA was extracted and subjected to ribosomal depletion followed by cDNA synthesis and next-generation Illumina DNA sequencing, generating 493,468 to 678,064 95-101 base pairs post-quality control reads per sample. Evidence for expression of PKS and NRPS type genes based on identification of a ketosynthase and condensation domains are present in all time points. KS domains fall into to two main phylogenetic groups, type I and type II, within the type II group of domains are domains for fatty acid biosynthesis (fab), which is considered a part of primary metabolism. Type I KS domains are part of the classic PKS natural product biosynthetic genes that make things such as antibiotics and other toxins such as microcystin. 2849 KS domains were detected in the combined reservoir samples, of these 1141 were likely from fatty acid biosynthesis and 1708 were related to secondary metabolism type KS domains. The most abundant KS domains (485) besides the fab genes are closely related to a KS domain that is not currently experimentally linked to a known secondary metabolite but the domain is found in four Microcystis genomes along with two other species of cyanobacteria. The three

  9. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of13C-labeled and15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM.

  10. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade.

    Science.gov (United States)

    Ndlela, L L; Oberholster, P J; Van Wyk, J H; Cheng, P H

    2016-12-01

    Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa's delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12°C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the

  11. Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico.

    Science.gov (United States)

    Omoregie, Enoma O; Crumbliss, Lori L; Bebout, Brad M; Zehr, Jonathan P

    2004-04-01

    In many environments, biological nitrogen fixation can alleviate nitrogen limitation. The high rates of N(2) fixation often observed in cyanobacterial mats suggest that N(2) fixation may be an important source of N. In this study, organisms expressing nifH were identified in a Lyngbya sp.- and two Microcoleus chthonoplastes-dominated cyanobacterial mats. The pattern of nitrogenase activity was determined for the Lyngbya sp. mat and a Microcoleus chthonoplastes mat sampled directly in Guerrero Negro, Mexico. Their maximum rates were 23 and 15 micro mol of C(2)H(4) m(-2) h(-1), respectively. The second Microcoleus mat, which was maintained in a greenhouse facility, had a maximum rate of 40 micro mol of C(2)H(4) m(-2) h(-1). The overall diel pattern of nitrogenase activity in the three mats was similar, with the highest rates of activity occurring during the dark period. Analysis of nifH transcripts by reverse transcription-PCR revealed that several different organisms were expressing nifH during the dark period. nifH phylotypes recovered from these mats were similar to sequences from the unicellular cyanobacterial genera Halothece, Myxosarcina, and Synechocystis, the filamentous cyanobacterial genera Plectonema and Phormidium, and several bacterial nifH groups. The results of this study indicate that several different organisms, some of which were not previously known to fix nitrogen, are likely to be responsible for the observed dark-period nitrogenase activity in these cyanobacterial mats.

  12. Removal of cyanobacterial bloom from a biopond-wetland system and the associated response of zoobenthic diversity.

    Science.gov (United States)

    Wu, Yonghong; Kerr, Philip G; Hu, Zhengyi; Yang, Linzhang

    2010-06-01

    Harmful cyanobacterial bloom in water bodies frequently occurs due to eutrophication, leading to the excessive growth of cyanobacteria which in turn may lead to a decrease in biodiversity. A biopond-wetland system to control cyanobacterial bloom and stabilize or even increase biodiversity is proposed and applied in a pond, Kunming, western China where cyanobacterial blooms frequently break out. The biopond-wetland system examined includes three main parts: filter-feeding fish, replanted pond macrophytes, and a terminal artificial wetland. When the hydraulic load of the biopond-wetland system was 500m(3)/d on non-rainy days, the system successfully decreased the level of chlorophyll-a (Chl-a). The declining levels of total nitrogen (TN), total phosphorus (TP) and ammonia in the water after establishing the biopond-wetland system also coincided with the disappearance of the cyanobacterial bloom. In the second summer, when the biopond-wetland system was in a relatively steady-state condition, the overall average nutrient removal efficiencies were as follows, Chl-a (83%), TN (57%), TP (70%) and ammonia (66%), while in the second winter, the overall average removal efficiencies were Chl-a (66%), TN (40%), TP (53%) and ammonia (49%). Simpson's diversity index of zoobenthos indicated that the system increased the zoobenthic diversity and improved the growth conditions of the zoobenthos habitat. The results demonstrated that the biopond-wetland system could control cyanobacterial blooms. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: Evidence from an experimental approach

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2016-10-01

    Full Text Available To overcome the limitations associated with studying the interactions between bacterial communities (BCs and cyanobacteria in natural environments, we compared the structural and functional diversities of the BCs associated with fifteen non-axenic cyanobacterial strains in culture and two natural BCs sampled during cyanobacterial blooms. No significant differences in richness and diversity were found between the natural and cultivated BCs, although some of the cyanobacterial strains had been isolated 11 years earlier. Moreover, these BCs shared some similar characteristics, such as a very low abundance of Actinobacteria, but they display significant differences at the OTU level. Overall, our findings suggest that BCs associated with cyanobacteria in culture are good models to better understand the interactions between heterotrophic bacteria and cyanobacteria. Additionally, BCs associated with heterocystous cyanobacterial strains cultivated in Z8X culture medium without nitrate (Aphanizomenon-Dolichospermum demonstrated significant differences compared to BCs associated with non-heterocystous strains cultivated in Z8 culture medium (Planktothrix-Microcystis in terms of their composition and their ability to utilize different carbon sources, suggesting the potential influence of cyanobacterial metabolism and/or culture media on associated BCs. Finally, half of the dominant operational taxonomic units (OTUs in these BCs were specifically associated with cyanobacteria or other phytoplankton, whereas the remaining OTUs were generally associated with ecosystems containing high Organic Matter (OM content, such as sludge or intestines.

  14. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine.

    Science.gov (United States)

    Laue, Pauline; Bährs, Hanno; Chakrabarti, Shumon; Steinberg, Christian E W

    2014-06-01

    Allelochemical action against planktonic phototrophs is one central issue in freshwater ecology and quality management. To determine some basic mechanisms of this toxic action, we exposed the coccal green alga, Desmodesmus armatus, and the coccal cyanobacterium, Microcystis aeruginosa, in a batch culture well-supplied with carbon dioxide to increasing concentrations of the polyphenols tannic acid and gallic acid and the alkaloid gramine. The phototrophs were checked after 2d and at the end of the culture for biomass-based growth rates, cell volume, maximum quantum yield of photosystem II (ΦPSIImax), chlorophyll a content (chla) after 2d and at the end of the culture, and lipid peroxidation only at the end of the culture. During the culture, the pH rose from 7.64 to 10.95, a pH characteristic of eutrophic freshwater bodies during nuisance algal blooms. All xenobiotics reduced the growth rate, ΦPSIImax, and chla during the first 2d with M. aeruginosa being more sensitive to the polyphenols than D. armatus. The efficacy of the polyphenols declined with increasing pH, indicating potential polymerization and corresponding reduced bioavailability of the polyphenols. In contrast to the polyphenols, gramine increased its toxic action over time, independent of the prevailing pH. All exposures caused slight to severe lipid peroxidation (LPO) in the phototrophs. Hence, one mechanism of growth inhibition may be oxidative stress-mediated reduction in photosynthesis. The presented results suggest that in successful field trials with leachate, the prevailing environmental conditions may inactivate polyphenols and xenobiotics other than polyphenols may be more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I

    NARCIS (Netherlands)

    Croce, Roberta; Mozzo, Milena; Morosinotto, Tomas; Romeo, Alessandro; Hienerwadel, Rainer; Bassi, Roberta

    2007-01-01

    In this work, the spectroscopic characteristics of carotenoids associated with the antenna complexes of Photosystem I have been studied. Pigment composition, absorption spectra, and laser-induced triplet-minus-singlet (T-S) spectra were determined for native LHCI from the wild type (WT) and lut2

  16. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J.; Croce, Roberta; Morosinotto, Tomas

    2017-01-01

    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the

  17. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J.; Croce, Roberta; Morosinotto, Tomas

    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the

  18. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem NN Contains Tandem Duplication of a Large Chromosomal Region

    Czech Academy of Sciences Publication Activity Database

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, J.; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Roč. 7, May 12 (2016), s. 648 ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Synechocystis 6803 * chlorophyll * photosystem I Subject RIV: EE - Microbiology, Virology Impact factor: 4.298, year: 2016

  19. The molecular structure of the IsiA-Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein.

    Science.gov (United States)

    Zhang, Yinan; Chen, Min; Church, W Bret; Lau, Kwok Wai; Larkum, Anthony W D; Jermiin, Lars S

    2010-04-01

    We present the molecular structure of the IsiA-Photosystem I (PSI) supercomplex, inferred from high-resolution, crystal structures of PSI and the CP43 protein. The structure of iron-stress-induced A protein (IsiA) is similar to that of CP43, albeit with the difference that IsiA is associated with 15 chlorophylls (Chls), one more than previously assumed. The membrane-spanning helices of IsiA contain hydrophilic residues many of which bind Chl. The optimal structure of the IsiA-PSI supercomplex was inferred by systematically rearranging the IsiA monomers and PSI trimer in relation to each other. For each of the 6,969,600 structural configurations considered, we counted the number of optimal Chl-Chl connections (i.e., cases where Chl-bound Mg atoms are 228% the energy-transfer potential. In conclusion, our model allows us to explain how the IsiA-PSI supercomplex may act as an efficient light-harvesting structure under low-light conditions and as an efficient dissipater of excess energy under high-light conditions.

  20. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    Science.gov (United States)

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  1. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Rhona K. Stuart

    2016-06-01

    Full Text Available Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of 13C-labeled and 15N-labeled cyanobacterial extracellular organic matter (EOM in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM.

  2. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  3. Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics

    Directory of Open Access Journals (Sweden)

    Carlo Berg

    2018-02-01

    Full Text Available Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 μm in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.

  4. Effects of Light Stress on Extracellular Cycling in a Cyanobacterial Biofilm Community

    Science.gov (United States)

    Stuart, R.; Mayali, X.; Pett-Ridge, J.; Weber, P. K.; Thelen, M.; Bebout, B.; Lipton, M. S.

    2015-12-01

    Cyanobacterial carbon excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of the carbon excreted is dependent on physiological function, which is often unknown. Cyanobacteria are the dominant primary producers in hypersaline mats and there is large reservoir of carbon in the extracellular matrix, but the nature and flux is understudied. In a previous study, we examined the macromolecular composition of the matrix of microbial mats from Elkhorn Slough in Monterey Bay, California and a unicyanobacterial culture, ESFC-1, isolated from the those mats, and found evidence for cyanobacterial degradation and re-uptake of extracellular organic matter. In this work, we further explore mechanisms of this degradation and re-uptake by examining effects of light using a combination of high-resolution imaging mass spectrometry (NanoSIMS) and metaproteomics of extracellular proteins. Based on these findings, we propose that mat Cyanobacteria store and recycle organic material from the mat extracellular matrix. Cyanobacteria can account for 70-90% of the biomass in the upper phototrophic layer of the mats, so their re-uptake of organic carbon and nitrogen has the potential to re-define organic matter availability in these systems. This work has implications for cyanobacterial adaptation to dynamic environments like microbial mats, where uptake of carbon and nitrogen in variable forms may be necessary to persist. This research was supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research Genomic Science program under FWP SCW1039. Work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344.

  5. Cyanobacterial pigments as natural anti-hyperglycemic agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    Tonmoy Ghosh

    2016-08-01

    Full Text Available Traditional medicines for controlling postprandial hyperglycemia includes herbs and plant extracts as well as synthetic drugs like acarbose. Synthetic drug molecules frequently have side effects such as flatulence and diarrhea. Cyanobacterial pigments have excellent anti-oxidant and free radical scavenging properties. Thus, α-amylase and α-glucosidase inhibiting activities of purified pigments and crude extracts from three cyanobacterial species, Lyngbya, Microcoleus and Synechocystis sp., were investigated. Lyngbya extract had the highest total anti-oxidant activity (TAC before digestion (48.26 ± 0.04 µg AAE ml-1 while purified lycopene had the highest TAC after digestion (154.16 ± 0.96 µg AAE ml-1. The Microcoleus extract had the highest ABTS scavenging activity before digestion (98.23 ± 0.25 % while purified C-phycocyanin (C-PC had the highest ABTS scavenging after digestion (99.69 ±0.04 %. None of the digested or undigested extracts performed better than acarbose in inhibiting α-amylase but the digested Microcoleus extract was able to inhibit its activity by ~35 %. The purified pigments gave inhibitory activities ranging from ~ 8 – 16 %. The Lyngbya extract had the highest inhibitory activity against α-glucosidase both before and after digestion (62.22 ± 0.02 and 97.82 ± 0.03 % respectively. Purified C-phycoerythrin (C-PE, C-PC, lycopene and myxoxanthophyll could inhibit α-glucosidase in a range of ~83 – 96 %. Considering the potent inhibitory activities of purified pigments against both α-amylase and α-glucosidase, cyanobacterial pigments could be used as food additives for their dual advantage of anti-oxidant and anti-hyperglycemic activities.

  6. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.

    Directory of Open Access Journals (Sweden)

    Mattias K Ekvall

    Full Text Available Eutrophication has been one of the largest environmental problems in aquatic ecosystems during the past decades, leading to dense, and often toxic, cyanobacterial blooms. In a way to counteract these problems many lakes have been subject to restoration through biomanipulation. Here we combine 13 years of monitoring data with experimental assessment of grazing efficiency of a naturally occurring zooplankton community and a, from a human perspective, desired community of large Daphnia to assess the effects of an altered trophic cascade associated with biomanipulation. Lake monitoring data show that the relative proportion of Daphnia spp. grazers in June has increased following years of biomanipulation and that this increase coincides with a drop in cyanobacterial biomass and lowered microcystin concentrations compared to before the biomanipulation. In June, the proportion of Daphnia spp. (on a biomass basis went from around 3% in 2005 (the first year of biomanipulation up to around 58% in 2012. During months when the proportion of Daphnia spp. remained unchanged (July and August no effect on lower trophic levels was observed. Our field grazing experiment revealed that Daphnia were more efficient in controlling the standing biomass of cyanobacteria, as grazing by the natural zooplankton community never even compensated for the algal growth during the experiment and sometimes even promoted cyanobacterial growth. Furthermore, although the total cyanobacterial toxin levels remained unaffected by both grazer communities in the experimental study, the Daphnia dominated community promoted the transfer of toxins to the extracellular, dissolved phase, likely through feeding on cyanobacteria. Our results show that biomanipulation by fish removal is a useful tool for lake management, leading to a top-down mediated trophic cascade, through alterations in the grazer community, to reduced cyanobacterial biomass and lowered cyanobacterial toxin levels. This

  7. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China.

    Science.gov (United States)

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Luo, Liancong; Ding, Yanqing; Bian, Geya

    2013-12-01

    Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.

  8. The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution

    Directory of Open Access Journals (Sweden)

    Lockhart Peter J

    2008-01-01

    Full Text Available Abstract Background Bacteria occur in facultative association and intracellular symbiosis with a diversity of eukaryotic hosts. Recently, we have helped to characterise an intracellular nitrogen fixing bacterium, the so-called spheroid body, located within the diatom Rhopalodia gibba. Spheroid bodies are of cyanobacterial origin and exhibit features that suggest physiological adaptation to their intracellular life style. To investigate the genome modifications that have accompanied the process of endosymbiosis, here we compare gene structure, content and organisation in spheroid body and cyanobacterial genomes. Results Comparison of the spheroid body's genome sequence with corresponding regions of near free-living relatives indicates that multiple modifications have occurred in the endosymbiont's genome. These include localised changes that have led to elimination of some genes. This gene loss has been accompanied either by deletion of the respective DNA region or replacement with non-coding DNA that is AT rich in composition. In addition, genome modifications have led to the fusion and truncation of genes. We also report that in the spheroid body's genome there is an accumulation of deleterious mutations in genes for cell wall biosynthesis and processes controlled by transposases. Interestingly, the formation of pseudogenes in the spheroid body has occurred in the presence of intact, and presumably functional, recA and recF genes. This is in contrast to the situation in most investigated obligate intracellular bacterium-eukaryote symbioses, where at least either recA or recF has been eliminated. Conclusion Our analyses suggest highly specific targeting/loss of individual genes during the process of genome reduction and establishment of a cyanobacterial endosymbiont inside a eukaryotic cell. Our findings confirm, at the genome level, earlier speculation on the obligate intracellular status of the spheroid body in Rhopalodia gibba. This

  9. Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile

    Science.gov (United States)

    Edwards, Howell G. M.; Moody, Caroline D.; Newton, Emma M.; Villar, Susana E. Jorge; Russell, Michael J.

    2005-06-01

    Raman spectra of an extremophile cyanobacterial colony in hydromagnesite from Lake Salda in Turkey have revealed a biogeological modification which is manifest as aragonite in the stratum associated with the colony. The presence of key spectral biomarkers of organic protectant molecules such as β-carotene and scytonemin indicate that the survival strategy of the cyanobacteria is significantly one of UV-radiation protection. The terrestrial location of this extremophile is worthy of consideration further because of its possible putative link with the "White Rock" formations in Sabaea Terra and Juventae Chasma on Mars.

  10. An overview of cyanobacterial blooms occurrences and research in Africa over the last decade

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2016-12-01

    Full Text Available as the 349 dominant species (Boelee et al., 2009). A majority of the reports related to cyanobacteria are 350 not accessible in English however according to Boelee et al. (2009), a study assessing 23 351 lakes and reservoirs by Cecchi et al (2009), found... water source in the area with 404 cyanobacterial blooms. This lake is the largest reservoir supplying freshwater to the capital 405 city of the country. Although reports are not extensive on blooms in the past ten years, toxic 406 blooms have been...

  11. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  12. Health Risk Assessment of Cyanobacterial (Blue-green Algal Toxins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Andrew R. Humpage

    2005-04-01

    Full Text Available Cyanobacterial toxins have caused human poisoning in the Americas, Europe and Australia. There is accumulating evidence that they are present in treated drinking water supplies when cyanobacterial blooms occur in source waters. With increased population pressure and depleted groundwater reserves, surface water is becoming more used as a raw water source, both from rivers and lakes/reservoirs. Additional nutrients in water which arise from sewage discharge, agricultural run-off or storm water result in overabundance of cyanobacteria, described as a ‘water bloom’. The majority of cyanobacterial water-blooms are of toxic species, producing a diversity of toxins. The most important toxins presenting a risk to the human population are the neurotoxic alkaloids (anatoxins and paralytic shellfish poisons, the cyclic peptide hepatotoxins (microcystins and the cytotoxic alkaloids (cylindrospermopsins. At the present time the only cyanobacteral toxin family that have been internationally assessed for health risk by the WHO are the microcystins, which cause acute liver injury and are active tumour promoters. Based on sub-chronic studies in rodents and pigs, a provisional Guideline Level for drinking water of 1μg/L of microcystin-LR has been determined. This has been adopted in legislation in countries in Europe, South America and Australasia. This may be revised in the light of future teratogenicity, reproductive toxicity and carcinogenicity studies. The other cyanobacterial toxin which has been proposed for detailed health risk assessment is cylindrospermopsin, a cytotoxic compound which has marked genotoxicity, probable mutagenicity, and is a potential carcinogen. This toxin has caused human poisoning from drinking water, and occurs in water supplies in the USA, Europe, Asia, Australia and South America. An initial health risk assessment is presented with a proposed drinking water Guideline Level of 1μg/L. There is a

  13. Molecular electronics of a single photosystem I reaction center: Studies with scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.; Lee, J.W.; Warmack, R.J.; Allison, D.P.; Greenbaum, E. [Oak Ridge National Lab., TN (United States)

    1995-03-14

    Thylakoids and photosystem I (PSI) reaction centers were imaged by scanning tunneling microscopy. The thylakoids were isolated from spinach chloroplasts, and PSI reaction centers were extracted from thylakoid membranes. Because thylakoids are relatively thick nonconductors, they were sputter-coated with Pd/Au before imaging. PSI photosynthetic centers and chemically platinized PSI were investigated without sputter-coating. They were mounted on flat gold substrates that had been treated with mercaptoacetic acid to help bind the proteins. With tunneling spectroscopy, the PSI centers displayed a semiconductor-like response with a band gap of 1.8 eV. Lightly platinized (platinized for 1 hr) centers displayed diode-like conduction that resulted in dramatic contrast changes between images taken with opposite bias voltages. The electronic properties of this system were stable under long-term storage. 42 refs., 7 figs.

  14. Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem

    Energy Technology Data Exchange (ETDEWEB)

    Florida Solar Energy Center

    2003-03-30

    A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

  15. Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus

    Directory of Open Access Journals (Sweden)

    Imran Ashraf

    2015-07-01

    Full Text Available The fluorescence of photosystem I (PSI trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS at cryogenic temperature (1.6 K. PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic films. The fluorescence of PSI has been intensified due to the coupling with plasmonic nanostructures. Enhancement factors up to 22.9 and 5.1 are observed for individual PSI complexes coupled to Au/Au and Ag/Au samples, respectively. Additionally, a wavelength dependence of fluorescence enhancement is observed, which can be explained by the multichromophoric composition of PSI.

  16. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Johnston, Jonathan B.; Montellano, Paul R. Ortiz de

    2012-01-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multif......The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx......) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP+ to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron...

  17. Methodology of Pulsed Photoacoustics and Its Application to Probe Photosystems and Receptors

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2010-06-01

    Full Text Available We review recent advances in the methodology of pulsed time-resolved photoacoustics and its application to studies of photosynthetic reaction centers and membrane receptors such as the G protein-coupled receptor rhodopsin. The experimental parameters accessible to photoacoustics include molecular volume change and photoreaction enthalpy change. Light-driven volume change secondary to protein conformational changes or electrostriction is directly related to the photoreaction and thus can be a useful measurement of activity and function. The enthalpy changes of the photochemical reactions observed can be measured directly by photoacoustics. With the measurement of enthalpy change, the reaction entropy can also be calculated when free energy is known. Dissecting the free energy of a photoreaction into enthalpic and entropic components may provide critical information about photoactivation mechanisms of photosystems and photoreceptors. The potential limitations and future applications of time-resolved photoacoustics are also discussed.

  18. Quinone exchange at the A{sub 1} site in photosystem I [PSI

    Energy Technology Data Exchange (ETDEWEB)

    Barkoff, A.; Brunkan, N.; Snyder, S.W.; Ostafin, A.; Werst, M.; Thurnauer, M.C. [Argonne National Lab., IL (United States); Biggins, J. [Brown Univ., Providence, RI (United States)

    1995-12-31

    Quinones play an essential role in light-induced electron transport in photosynthetic reaction centers (RC). Study of quinone binding within the protein matrix of the RC is a focal point of understanding the biological optimization of photosynthesis. In plant and cyanobacterial PSI, phylloquinone (K{sub 1}) is believed to be the secondary electron acceptor, A{sub 1}, similar to Q{sub a} in the purple bacterial RC. Photoinduced electron transfer is initiated by reduction of the electron acceptor (A{sub 0}), a chlorophyll species, by the photoexcited primary donor *P{sub 700}. A{sub 1} acts as a transient redox intermediate between A{sub 0} and the iron-sulfur centers (FeS). We have examined the characteristic PSI electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal as a marker of the interacting radical pairs developed during electron transfer.

  19. Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium Synechococcus elongatus UTEX 2973

    Directory of Open Access Journals (Sweden)

    Justin Ungerer

    2018-02-01

    Full Text Available At the genome level, Synechococcus elongatus UTEX 2973 (Synechococcus 2973 is nearly identical to the model cyanobacterium Synechococcus elongatus PCC 7942 (Synechococcus 7942 with only 55 single nucleotide differences separating the two strains. Despite the high similarity between the two strains, Synechococcus 2973 grows three times faster, accumulates significantly more glycogen, is tolerant to extremely high light intensities, and displays higher photosynthetic rates. The high homology between the two strains provides a unique opportunity to examine the factors that lead to increased photosynthetic rates. We compared the photophysiology of the two strains and determined the differences in Synechococcus 2973 that lead to increased photosynthetic rates and the concomitant increase in biomass production. In this study, we identified inefficiencies in the electron transport chain of Synechococcus 7942 that have been alleviated in Synechococcus 2973. Photosystem II (PSII capacity is the same in both strains. However, Synechococcus 2973 exhibits a 1.6-fold increase in PSI content, a 1.5-fold increase in cytochrome b6f content, and a 2.4-fold increase in plastocyanin content on a per cell basis. The increased content of electron carriers allows a higher flux of electrons through the photosynthetic electron transport chain, while the increased PSI content provides more oxidizing power to maintain upstream carriers ready to accept electrons. These changes serve to increase the photosynthetic efficiency of Synechococcus 2973, the fastest growing cyanobacterium known.

  20. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  1. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  2. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain.

    Science.gov (United States)

    Mbeunkui, F; Richaud, C; Etienne, A-L; Schmid, R D; Bachmann, T T

    2002-11-01

    Cyanobacteria are a major group of photosynthetic bacteria that can accumulate in surface water as so-called "blooms" in response to environmental factors such as temperature, light and certain nutrients such as N, P, and Fe. Some species of cyanobacteria produce toxins, causing a considerable danger for human and livestock health. As a consequence, monitoring of bloom formation and toxin production of drinking water supplies has become a major concern. To enable prediction and monitoring of cyanobacterial blooms, tools to detect nutrient bioavailability in water would be advantageous. A whole-cell biosensor was developed for monitoring nitrate (NO(3-)) bioavailability in aquatic ecosystems using the recombinant bioluminescent cyanobacterial strain Synechocystis PCC 6803 harboring an insertion of a luxAB-kmr fusion with nblA1 in its chromosomal DNA, leading to PnblA::luxAB-kmr. This reporter strain was designated N1LuxKm. Cells were immobilized in microtiter plates and showed a dose-dependent response to nitrate deprivation. The resultant CyanoSensor could detect nitrate in the 4-100 micro M concentration range after a sample incubation time of 10 h under continuous illumination (50 micro E m(-2) s(-1)). The optimal temperature for sensor operation was 29 degrees C and the immobilized biosensor could be stored at 4 degrees C in dark for about 1 month without significant loss of sensitivity.

  3. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Kateřina Voráčová

    Full Text Available Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7-4.5 μM against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

  4. What season suits you best? Seasonal light changes and cyanobacterial competition

    Directory of Open Access Journals (Sweden)

    G. Cascallares

    2015-05-01

    Full Text Available Nearly all living organisms, including some bacterial species, exhibit biological processes with a period of about 24 h called circadian (from the Latin circa, about and dies, day rhythms. These rhythms allow living organisms to anticipate the daily alternation of light and darkness. Experiments carried out in cyanobacteria have shown the adaptive value of circadian clocks. In theseexperiments, a wild type cyanobacterial strain (with a 24 h circadian rhythm and a mutantstrain (with a longer or shorter period grow in competition. In different experiments, the external light dark cycle was chosen to match the circadian period of the different strains, revealing that the strain whose circadian period matches the light-dark cycle has a larger fitness. As a consequence, the initial population of one strain grows while the other decays. These experiments were made under fixed light and dark intervals. In Nature, however, this relationship changes according to the season. Therefore, seasonalchanges in light could affect the results of the competition. Using a theoretical model, we analyze how modulation of light can change the survival of the different cyanobacterial strains. Our results show that there is a clear shift in the competition due to the modulation of light, which could be verified experimentally. Received: 20 Novembre 2014, Accepted: 29 March 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070005 Cite as: G Cascallares, P M Gleiser, Papers in Physics 7, 070005 (2015

  5. Cyanobacterial Nitrogen Fixation Influences the Nitrogen Removal Efficiency in a Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2017-11-01

    Full Text Available Nitrogen removal efficiency in constructed wetlands (CW is influenced by multiple environmental factors. However, little is known about the role of cyanobacterial nitrogen fixation in affecting nitrogen removal efficiency. This study investigated how cyanobacterial nitrogen fixation affects the efficiency, at which a CW removes nitrogen from an associated artificial lake (AL in Beijing. For this purpose, we measured cell densities of N-fixing and non-N-fixing cyanobacteria, the aquatic nitrogen fixation rate (RNfix, and the concentration of various nitrogen fractions over the growing season (April–November of 2014 in both AL and CW. We found that the removal of particulate organic nitrogen (PON contributed to >90% of the total nitrogen removal in the CW. The removal efficiency of PON was lower during August–October (55.45 ± 27.49% than during April–July (68.86 ± 8.83%. Phytoplankton proliferation in summer, as one of the main sources of PON, may have exceeded the capacity of the CW and led to declines in PON removal efficiency. RNfix peaked in July–October (3–169 ng N·L−1·h−1 and was positively correlated with both PON concentration and the cell density of N-fixing Anabaena sp. over the growing season, suggesting that aquatic nitrogen fixation (primarily in the AL may increase PON and thereby reduce the its removal efficiency in the CW.

  6. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts.

    Directory of Open Access Journals (Sweden)

    Susanna López-Legentil

    Full Text Available Symbiotic interactions between ascidians (sea-squirts and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS and by examining symbiont morphology with transmission electron (TEM and confocal microscopy (CM. As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d and phycobiliproteins (PBPs within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

  7. Monitoring studies should consider temporal variability to reveal relations between cyanobacterial abundance and environmental variables

    Directory of Open Access Journals (Sweden)

    JULIANA WOJCIECHOWSKI

    2015-09-01

    Full Text Available One of the main goals of monitoring cyanobacteria blooms in aquatic environments is to reveal the relationship between cyanobacterial abundance and environmental variables. Studies typically correlate data that were simultaneously sampled. However, samplings occur sparsely over time and may not reveal the short-term responses of cyanobacterial abundance to environmental changes. In this study, we tested the hypothesis that stronger cyanobacteria x environment relationships in monitoring are found when the temporal variability of sampling points is incorporated in the statistical analyses. To this end, we investigated relationships between cyanobacteria and seven environmental variables that were sampled twice yearly for three years across 11 reservoirs, and data from an intensive monitoring in one of these reservoirs. Poor correlations were obtained when correlating data simultaneously sampled. In fact, the 'highly recurrent' role of phosphorus in cyanobacteria blooms is not properly observed in all sampling periods. On the other hand, the strongest correlation values for the total phosphorus x cyanobacteria relationship were observed when we used the variation of sampling points. We have also shown that environment variables better explain cyanobacteria when a time lag is considered. We conclude that, in cyanobacteria monitoring, the best approach to reveal determinants of cyanobacteria blooms is to consider environmental variability.

  8. Diel variation in gene expression of the CO2-concentrating mechanism during a harmful cyanobacterial bloom

    Directory of Open Access Journals (Sweden)

    Giovanni eSandrini

    2016-04-01

    Full Text Available Dense phytoplankton blooms in eutrophic waters often experience large daily fluctuations in environmental conditions. We investigated how this diel variation affects in situ gene expression of the CO2-concentrating mechanism (CCM and other selected genes of the harmful cyanobacterium Microcystis aeruginosa. Photosynthetic activity of the cyanobacterial bloom depleted the dissolved CO2 concentration, raised pH to 10, and caused large diel fluctuations in the bicarbonate and O2 concentration. The Microcystis population consisted of three Ci uptake genotypes that differed in the presence of the low-affinity and high-affinity bicarbonate uptake genes bicA and sbtA. Expression of the bicarbonate uptake genes bicA, sbtA and cmpA (encoding a subunit of the high-affinity bicarbonate uptake system BCT1, the CCM transcriptional regulator gene ccmR and the photoprotection gene flv4 increased at first daylight and was negatively correlated with the bicarbonate concentration. In contrast, genes of the two CO2 uptake systems were constitutively expressed, whereas expression of the RuBisCO chaperone gene rbcX, the carboxysome gene ccmM, and the photoprotection gene isiA was highest at night and down-regulated during daytime. In total, our results show that the harmful cyanobacterium Microcystis is very responsive to the large diel variations in carbon and light availability often encountered in dense cyanobacterial blooms.

  9. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities

    Science.gov (United States)

    Ward, D. M.; Ferris, M. J.; Nold, S. C.; Bateson, M. M.

    1998-01-01

    This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.

  10. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal.

    Science.gov (United States)

    Huang, Yingying; Li, Panpan; Chen, Guiqin; Peng, Lin; Chen, Xuechu

    2018-01-01

    Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NO X - -N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs. Copyright © 2017. Published by Elsevier Ltd.

  11. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  12. Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats

    Directory of Open Access Journals (Sweden)

    Amanda K. Ford

    2018-02-01

    Full Text Available Benthic cyanobacteria have commonly been a small but integral component of coral reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an inherently oligotrophic environment. Though surveys may have previously neglected benthic cyanobacteria, or grouped them with more conspicuous benthic groups, emerging evidence strongly indicates that they are becoming increasingly prevalent on reefs worldwide. Some species can form mats comprised by a diverse microbial consortium which allows them to exist across a wide range of environmental conditions. This review evaluates the putative driving factors of increasing benthic cyanobacterial mats, including climate change, declining coastal water quality, iron input, and overexploitation of key consumer and ecosystem engineer species. Ongoing global environmental change can increase growth rates and toxin production of physiologically plastic benthic cyanobacterial mats, placing them at a considerable competitive advantage against reef-building corals. Once established, strong ecological feedbacks [e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC] reinforce reef degradation. The review also highlights previously overlooked implications of mat proliferation, which can extend beyond reef health and affect human health and welfare. Though identifying (opportunistic consumers of mats remains a priority, their perceived low palatability implies that herbivore management alone may be insufficient to control their proliferation and must be accompanied by local measures to improve water quality and watershed management.

  13. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  14. Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Heizir F. De Castro

    2013-07-01

    Full Text Available Five non-toxin producing cyanobacterial isolates from the genera Synechococcus, Trichormus, Microcystis, Leptolyngbya and Chlorogloea were examined in terms of quantity and quality as lipid feedstock for biofuel production. Under the conditions used in this study, the biomass productivity ranged from 3.7 to 52.7 mg·L−1·day−1 in relation to dry biomass, while the lipid productivity varied between 0.8 and 14.2 mg·L−1·day−1. All cyanobacterial strains evaluated yielded lipids with similar fatty acid composition to those present in the seed oils successfully used for biodiesel synthesis. However, by combining biomass and lipid productivity parameters, the greatest potential was found for Synechococcus sp. PCC7942, M. aeruginosa NPCD-1 and Trichormus sp. CENA77. The chosen lipid samples were further characterized using Fourier Transform Infrared spectroscopy (FTIR, viscosity and thermogravimetry and used as lipid feedstock for biodiesel synthesis by heterogeneous catalysis.

  15. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells.

    Science.gov (United States)

    Voráčová, Kateřina; Hájek, Jan; Mareš, Jan; Urajová, Petra; Kuzma, Marek; Cheel, José; Villunger, Andreas; Kapuscik, Alexandra; Bally, Marcel; Novák, Petr; Kabeláč, Martin; Krumschnabel, Gerhard; Lukeš, Martin; Voloshko, Ludmila; Kopecký, Jiří; Hrouzek, Pavel

    2017-01-01

    Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA) that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7-4.5 μM) against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

  16. Treatment of Cyanobacterial (Microcystin Toxicosis Using Oral Cholestyramine: Case Report of a Dog from Montana

    Directory of Open Access Journals (Sweden)

    Michael J. Murray

    2013-05-01

    Full Text Available A two and a half year old spayed female Miniature Australian Shepherd presented to a Montana veterinary clinic with acute onset of anorexia, vomiting and depression. Two days prior, the dog was exposed to an algal bloom in a community lake. Within h, the animal became lethargic and anorexic, and progressed to severe depression and vomiting. A complete blood count and serum chemistry panel suggested acute hepatitis, and a severe coagulopathy was noted clinically. Feces from the affected dog were positive for the cyanobacterial biotoxin, microcystin-LA (217 ppb. The dog was hospitalized for eight days. Supportive therapy consisted of fluids, mucosal protectants, vitamins, antibiotics, and nutritional supplements. On day five of hospitalization, a bile acid sequestrant, cholestyramine, was administered orally. Rapid clinical improvement was noted within 48 h of initiating oral cholestyramine therapy. At 17 days post-exposure the dog was clinically normal, and remained clinically normal at re-check, one year post-exposure. To our knowledge, this is the first report of successful treatment of canine cyanobacterial (microcystin toxicosis. Untreated microcystin intoxication is commonly fatal, and can result in significant liver damage in surviving animals. The clinical success of this case suggests that oral administration of cholestyramine, in combination with supportive therapy, could significantly reduce hospitalization time, cost-of-care and mortality for microcystin-poisoned animals

  17. Cyanobacterial crusts linked to soil productivity under different grazing management practices in Northern Australia

    Science.gov (United States)

    Alchin, Bruce; Williams, Wendy

    2015-04-01

    In arid and semi-arid Australia, the central role of healthy soil ecosystems in broad-acre grazing lands may be attributed to the widespread presence of cyanobacterial crusts. In terms of soil nutrient cycling and stability their role is particularly crucial in a climate dominated by annual dry seasons and variable wet seasons. In this study, we aimed to measure the contribution of cyanobacteria to soil nutrient cycling under contrasting levels of disturbance associated with grazing management. Field sampling was carried out on six paired sites (twelve properties) located across an east-west 3,000 km transect that covered different rangeland types on grazing properties in northern Australia (Queensland, Northern Territory and Western Australia). At each location paired sites were established and two different management systems were assessed, cell-paddock rotations (25-400 ha) and continuous grazing (200-2,000 ha). Cyanobacterial soil crusts were recorded from all of the twelve sites and cyanobacteria with the capacity to fix nitrogen were found at ten of the twelve sites. The overall diversity of cyanobacteria varied from three to ten species under any type of grazing system. As field work was conducted in the dry season, it is likely that the diversity may be greater in the wet season than the initial data may indicate. The average cyanobacterial soil crust cover across soil surfaces, between grass tussocks, during the dry season was estimated to be 50.9% and, 42.6% in the early wet season. This reflected longer established crust cover (dry season) versus newly established crusts. There was a high level of variability in the biomass of cyanobacteria however; the grazing system did not have any marked effect on the biomass for any one rangeland type. The grazing system differences did not appear to significantly influence the diversity at any location except on a floodplain in the Pilbara (WA). Biological nitrogen fixation by cyanobacteria was recorded at all

  18. Modulation of Biochemical and Haematological Indices of Silver Carp (Hypophthalmichthys molitrix Val.) Exposed to Toxic Cyanobacterial Water Bloom

    Czech Academy of Sciences Publication Activity Database

    Kopp, Radovan; Palíková, M.; Navrátil, S.; Kubíček, Z.; Ziková, A.; Mareš, J.

    2010-01-01

    Roč. 79, č. 1 (2010), s. 135-146 ISSN 0001-7213 Institutional research plan: CEZ:AV0Z60050516 Keywords : silver carp * cyanobacterial water blooms * haematological indices Subject RIV: EF - Botanics Impact factor: 0.534, year: 2010

  19. Effects of physicochemical variables and cyanobacterial extracts on the immunoassay of microcystin-LR by two ELISA kits.

    Science.gov (United States)

    Metcalf, J S; Hyenstrand, P; Beattie, K A; Codd, G A

    2000-09-01

    Two types of commercially available ELISA kits for the immunoassay of cyanobacterial microcystins were evaluated for potential interference effects due to methanol, salinity, pH, plasticware and cyanobacterial extract. Of the treatments examined, methanol had the greatest effect, giving false positive microcystin concentrations with increasing methanol concentrations up to 30% (v/v) compared with the negative calibrators of each kit. False positive microcystin results were also produced with increasing salinity up to full strength seawater. Decreases in microcystin-LR equivalents were observed when assaying purified microcystin-LR at pH values between 6.25 and 10. Aqueous microcystin-LR solutions in plastic microcentrifuge tubes after pipetting with disposable plastic tips had lower toxin concentrations than expected when analysed by ELISA. Indicated microcystin concentrations in cyanobacterial extracts varied between kit types and the choice of blanks used. Although ELISAs can be useful tools for the screening of water and cyanobacterial blooms for microcystins and nodularins, users should be aware that commercial kits can be susceptible to interference by commonly encountered environmental and laboratory conditions and materials.

  20. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Hilscherová, Klára; Babica, Pavel; Vršková, D.; Maršálek, Blahoslav; Bláha, Luděk

    2006-01-01

    Roč. 80, č. 4 (2006), s. 346-354 ISSN 0166-445X R&D Projects: GA MŠk 1M0571; GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : FETAX * Xenopus laevis * malformations * cyanobacterial fractions * biomarkers Subject RIV: EF - Botanics Impact factor: 2.964, year: 2006