WorldWideScience

Sample records for cyanobacterial cell division

  1. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  2. Tailoring cyanobacterial cell factory for improved industrial properties.

    Science.gov (United States)

    Luan, Guodong; Lu, Xuefeng

    Photosynthetic biomanufacturing provides a promising solution for sustainable production of biofuels and biochemicals. Cyanobacteria are among the most promising microbial platforms for the construction of photosynthetic cell factories. Metabolic engineering of cyanobacteria has enabled effective photosynthetic synthesis of diverse natural or non-natural metabolites, while commercialization of photosynthetic biomanufacturing is usually restricted by process and economic feasibilities. In actual outdoor conditions, active cell growth and product synthesis is restricted to narrow light exposure windows of the day-night cycles and is threatened by diverse physical, chemical, and biological environmental stresses. For biomass harvesting and bioproduct recovery, energy and cost consuming processing and equipment is required, which further decreases the economic and environmental competitiveness of the entire process. To facilitate scaled photosynthetic biomanufacturing, lots of efforts have been made to engineer cyanobacterial cell properties required by robust & continual cultivation and convenient & efficient recovery. In this review, we specifically summarized recently reported engineering strategies on optimizing industrial properties of cyanobacterial cells. Through systematically re-editing the metabolism, morphology, mutualism interaction of cyanobacterial chassis cells, the adaptabilities and compatibilities of the cyanobacterial cell factories to the industrial process could be significantly improved. Cell growth and product synthesis of the tailored cyanobacterial cells could be expanded and maintained at night and in stressful environments, while convenient biomass harvesting could also be expected. For developing more feasible cyanobacterial photosynthetic biomanufacturing in large scale, we here propose the importance of tailoring industrial properties of cyanobacteria and outline the directions that should be exploited in the future. Copyright © 2018

  3. Aerosolization of cyanobacterial cells across ecosystem boundaries in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Trout-Haney, J.; Heindel, R. C.; Virginia, R. A.

    2017-12-01

    Cyanobacteria play a major ecological role in polar freshwaters, occurring predominately as small single cells in the water column, i.e., picocyanobacteria, or large multicellular colonies and mats that reside on the lake bottom. Cyanobacteria are also present in terrestrial polar habitats, including within soils, soil crusts, rocks, and glacial ice. Despite their predominance in polar ecosystems, the extent to which cyanobacteria move between terrestrial and aquatic landscape units remains poorly understood. In polar deserts such as the McMurdo Dry Valleys, aeolian processes influence terrestrial landscape morphology and drive the transport of sediments and other particles. Water surfaces can also act as a source of aerosolized particles, such as the production of sea spray aerosols through wave breaking in marine environments. However, aerosolization from freshwater bodies has been far less studied, especially in polar regions. We conducted a field-study to examine the transport of aerosolized cyanobacterial cells from ponds and soils in the McMurdo Dry Valleys. We used highly portable aerosol collection devices fitted with GF/F filters combusted at 500°C (0.3 µm) to collect small particles, such as picocyanobacteria (0.2 - 2 µm), from near-shore water and adjacent soil. We used epifluorescence microscopy to quantify aerosolized cells, with excitation filters for chlorophyll a (435 nm) and phycobilin pigments (572 nm), to distinguish cyanobacterial cells. We detected aerosolized picocyanobacterial cells from all ponds and soils sampled, indicating that these cells may be quite mobile and transported across ecosystem boundaries. We observed cyanobacterial cells individually, clustered, and associated with other organic material, suggesting multiple modes of cell transport. Further, we investigated the potential for aerosolization of toxin-producing cyanobacterial taxa (or unbound cyanotoxins), and the ecological and ecosystem-scale implications of

  4. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  5. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  6. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  7. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  9. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  10. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  11. An application of cellular organic matter to coagulation of cyanobacterial cells (Merismopedia tenuissima)

    Czech Academy of Sciences Publication Activity Database

    Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.

    2017-01-01

    Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 6.942, year: 2016

  12. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring is regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...... division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...... with FtsZ in a bacterial two-hybrid analysis. The simultaneous inactivation of FtsA and ZipA prevented Z ring assembly and ZapB localization. Time lapse microscopy showed that ZapB-GFP is present at mid-cell in a pattern very similar to that of FtsZ. Cells carrying a zapB deletion and the ftsZ84ts allele...

  13. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    Science.gov (United States)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  14. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    Science.gov (United States)

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  15. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  16. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  17. The stem cell division theory of cancer.

    Science.gov (United States)

    López-Lázaro, Miguel

    2018-03-01

    All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the

  18. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2017-02-01

    Full Text Available Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C with and without additional nutrients added (eutrophication mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll-a and 25 times more eukaryote algal chlorophyll-a. At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll-a being 17 times and eukaryote algal chlorophyll-a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis. This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.

  19. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    Science.gov (United States)

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  20. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  1. Nuclear size and cell division delay

    International Nuclear Information System (INIS)

    Bird, R.P.

    1986-01-01

    Radiation-induced division delay has been linked to damage at the nuclear envelope. Further, cells in G 2 phase are drastically arrested by high LET radiation such that single particles traversing cell nuclei may produce measurable division delay. A modest effort was initiated using two related cell lines of different size, near-diploid cells and near-tetraploid cells of Chinese hamster origin, to compare their sensitivity for radiation-induced division delay. If the nuclear surface is the critical target, then a larger nuclear cross-section presented to an alpha-particle beam should exhibit delay induced by a lesser particle fluence. Preliminary estimates of the extent of delay in asynchronous cultures following low doses of gamma-irradiation or of alpha-irradiation were made by in-situ observation of the time of onset of mitosis and by fixation and staining of cultures to determine the mitotic index as a function of time after irradiation. The basic approach to evaluating division delay will be to use Colecemid to accumulate mitotic cells over a period of time

  2. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  3. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    Science.gov (United States)

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  4. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  5. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  6. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  7. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing further division. (C) 12 h, differentiated ...

  8. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  9. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  10. Quantitative regulation of B cell division destiny by signal strength.

    Science.gov (United States)

    Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D

    2008-07-01

    Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.

  11. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

    Science.gov (United States)

    Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek

    2017-01-01

    Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

  12. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review.

    Science.gov (United States)

    Zegura, Bojana; Straser, Alja; Filipič, Metka

    2011-01-01

    The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro

  13. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  14. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Kateřina Voráčová

    Full Text Available Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7-4.5 μM against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

  15. Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England

    Directory of Open Access Journals (Sweden)

    Andrew D. Turner

    2018-01-01

    Full Text Available Cyanobacterial blooms in freshwater bodies in England are currently monitored reactively, with samples containing more than 20,000 cells/mL of potentially toxin-producing species by light microscopy resulting in action by the water body owner. Whilst significantly reducing the risk of microcystin exposure, there is little data describing the levels of these toxins present in cyanobacterial blooms. This study focused on the quantitative LC-MS/MS analysis of microcystins in freshwater samples, collected across England during 2016 and found to contain potentially toxin-producing cyanobacteria. More than 50% of samples contained quantifiable concentrations of microcystins, with approximately 13% exceeding the WHO medium health threshold of 20 μg/L. Toxic samples were confirmed over a nine-month period, with a clear increase in toxins during late summer, but with no apparent geographical patterns. No statistical relationships were found between total toxin concentrations and environmental parameters. Complex toxin profiles were determined and profile clusters were unrelated to cyanobacterial species, although a dominance of MC-RR was determined in water samples from sites associated with lower rainfall. 100% of samples with toxins above the 20 μg/L limit contained cell densities above 20,000 cells/mL or cyanobacterial scum, showing the current regime is suitable for public health. Conversely, with only 18% of cell density threshold samples having total microcystins above 20 μg/L, there is the potential for reactive water closures to unnecessarily impact upon the socio-economics of the local population. In the future, routine analysis of bloom samples by LC-MS/MS would provide a beneficial confirmatory approach to the current microscopic assessment, aiding both public health and the needs of water users and industry.

  16. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    Science.gov (United States)

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  17. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  18. Eutrophication and warming boost cyanobacterial biomass and microcystins

    NARCIS (Netherlands)

    Lurling, Miguel; Oosterhout, Jean; Faassen, Els

    2017-01-01

    Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC) concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial

  19. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  20. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute towards a fundamental understanding of the molecular basis of efficient plant

  1. Cyanobacterial flora from polluted industrial effluents.

    Science.gov (United States)

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  2. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  3. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  4. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    Science.gov (United States)

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  6. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  7. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  8. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  9. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Kelsom Corey

    2012-11-01

    Full Text Available Abstract Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC. There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.

  10. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  11. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans

    OpenAIRE

    1987-01-01

    The establishment of cell division axes was examined in the early embryonic divisions of Caenorhabditis elegans. It has been shown previously that there are two different patterns of cleavage during early embryogenesis. In one set of cells, which undergo predominantly determinative divisions, the division axes are established successively in the same orientation, while division axes in the other set, which divide mainly proliferatively, have an orthogonal pattern of division. We have investig...

  12. Cyanobacterial lipopolysaccharides and human health – a review

    Directory of Open Access Journals (Sweden)

    Schluter Philip J

    2006-03-01

    Full Text Available Abstract Cyanobacterial lipopolysaccharide/s (LPS are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation.

  13. Proteomic Analysis of Hepatic Tissue of Cyprinus carpio L. Exposed to Cyanobacterial Blooms in Lake Taihu, China

    Science.gov (United States)

    Jiang, Jinlin; Wang, Xiaorong; Shan, Zhengjun; Yang, Liuyan; Zhou, Junying; Bu, Yuanqin

    2014-01-01

    With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L.) in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs), major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS). MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH), directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms. PMID:24558380

  14. Z ring as executor of bacterial cell division.

    Science.gov (United States)

    Dajkovic, Alex; Lutkenhaus, Joe

    2006-01-01

    It has become apparent that bacteria possess ancestors of the major eukaryotic cytoskeletal proteins. FtsZ, the ancestral homologue of tubulin, assembles into a cytoskeletal structure associated with cell division, designated the Z ring. Formation of the Z ring represents a major point of both spatial and temporal regulation of cell division. Here we discuss findings concerning the structure and the formation of the ring as well as its spatial and temporal regulation.

  15. Impacts of Rac- and S-metolachlor on cyanobacterial cell integrity and release of microcystins at different nitrogen levels.

    Science.gov (United States)

    Wang, Jia; Zhang, Lijuan; Fan, Jiajia; Wen, Yuezhong

    2017-08-01

    Pesticide residues and nitrogen overload (which caused cyanobacteria blooms) have been two serious environmental concerns. In particular, chiral pesticides with different structures may have various impacts on cyanobacteria. Nitrogen may affect the behavior between pesticides and cyanobacteria (e.g., increase the adverse effects of pesticides on cyanobacteria). This study evaluated the impacts of Rac- and S-metolachlor on the cell integrity and toxin release of Microcystis aeruginosa cells at different nitrogen levels. The results showed that (both of the configurations: Rac-, S-) metolachlor could inhibit M. aeruginosa cell growth under most conditions, and the inhibition rates were increased with the growing concentrations of nitrogen and metolachlor. However, cyanobacterial growth was promoted in 48 h under environmental relevant condition (1 mg/L metolachlor and 0.15 mg/L nitrogen). Therefore, the water authorities should adjust the treatment parameters to remove possible larger numbers of cyaonbacteria under that condition. On the other hand, the inhibition degree of M. aeruginosa cell growth by S-metolachlor treatments was obviously larger than Rac-metolachlor treatments. S-metolachlor also had a stronger ability in compromising M. aeruginosa cells than Rac-metolachlor treatments. Compared to control samples, more extracellular toxins (12%-86% increases) were detected after 5 mg/L S-metolachlor treatment for 72 h at different nitrogen levels, but the variations of extracellular toxins caused by 5 mg/L Rac-metolachlor addition could be neglected. Consequently, higher concentrations of metolachlor in source waters are harmful to humans, but it may prevent cyanobacterial blooms. However, the potential risks (e.g. build-up of extracellular toxins) should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Division of Labor in Biofilms: the Ecology of Cell Differentiation.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.

  17. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

    Directory of Open Access Journals (Sweden)

    Alberto A. Esteves-Ferreira

    2017-03-01

    Full Text Available Abstract Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2 and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i sequences of genes involved in nitrogen fixation (nifD from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.

  18. A crucial step in cell division identified | Center for Cancer Research

    Science.gov (United States)

    When cell division doesn’t go according to plan, the resulting daughter cells can become unstable or even cancerous. A team of CCR investigators has now discovered a crucial step required for normal cell division to occur. Read more...

  19. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p...

  20. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    Science.gov (United States)

    Piontek, Marlena; Czyżewska, Wanda

    2017-03-01

    The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river), which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina) and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens). Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50) for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50) 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR). The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  1. ESCRT-III mediated cell division in Sulfolobus acidocaldarius –A reconstitution perspective

    Directory of Open Access Journals (Sweden)

    Tobias eHärtel

    2014-06-01

    Full Text Available In the framework of Synthetic Biology, it has become an intriguing question what would be the minimal representation of cell division machinery. Thus, it seems appropriate to compare how cell division is realized in different microorganisms. In particular, the cell division system of Crenarchaeota lacks certain proteins found in most bacteria and Euryarchaeota, such as FtsZ, MreB or the Min system. The Sulfolobaceae family encodes functional homologs of the eukaryotic proteins Vps4 and ESCRT-III. ESCRT-III is essential for several eukaryotic pathways, e.g. budding of intralumenal vesicles (ILVs, or cytokinesis, whereas Vps4 dissociates the ESCRT-III complex from the membrane. CdvA (Cell Division A is required for the recruitment of crenarchaeal ESCRT-III proteins to the membrane at mid-cell. The proteins polymerize and form a smaller structure during constriction. Thus, ESCRT-III mediated cell division in S. acidocaldarius shows functional analogies to the Z ring observed in prokaryotes like E. coli, which has recently begun to be reconstituted in vitro. In this short perspective, we discuss the possibility of building such an in vitro cell division system on basis of archaeal ESCRT-III.

  2. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  3. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

    Science.gov (United States)

    Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong

    2009-09-15

    Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

  4. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  5. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    Science.gov (United States)

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  6. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.

    Science.gov (United States)

    Merel, Sylvain; Walker, David; Chicana, Ruth; Snyder, Shane; Baurès, Estelle; Thomas, Olivier

    2013-09-01

    Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs. Cyanobacterial blooms usually occur according to a combination of environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, water movement, stagnation and residence time, as well as several other variables. These environmental variables, in turn, have promoted the evolution and biosynthesis of strain-specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during the exponential growth phase. Release of toxins into water can occur during cell death or senescence but can also be due to evolutionary-derived or environmentally-mediated circumstances such as allelopathy or relatively sudden nutrient limitation. Consequently, when cyanobacterial blooms occur in drinking water resources, treatment has to remove both cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins previously released. Cells are usually removed with limited lysis by physical processes such as clarification or membrane filtration. However, aqueous toxins are usually removed by both physical retention, through adsorption on activated carbon or reverse osmosis, and chemical oxidation, through ozonation or chlorination. While the efficient oxidation of the more common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been extensively reported, the chemical

  7. Cell division requirement for activation of murine leukemia virus in cell culture by irradiation

    International Nuclear Information System (INIS)

    Otten, J.A.; Quarles, J.M.; Tennant, R.W.

    1976-01-01

    Actively dividing cultures of AKR mouse cells were exposed to relatively low dose-rates of γ radiation and tested for activation of endogenous leukemia viruses. Efficient and reproducible induction of virus was obtained with actively dividing cells, but cultures deprived of serum to inhibit cell division before and during γ irradiation were not activated, even when medium with serum was added immediately after irradiation. These results show that cell division was required for virus induction but that a stable intermediate similar to the state induced by halogenated pyrimidines was not formed. In actively dividing AKR cell cultures, virus activation appeared to be proportional to the dose of γ radiation; the estimated frequency of activation was 1-8 x 10 - 5 per exposed cell and the efficiency of activation was approximately 0.012 inductions per cell per rad. Other normal primary and established mouse cell cultures tested were not activated by γ radiation. The requirement of cell division for radiation and chemical activation may reflect some common mechanism for initiation of virus expression

  8. Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division

    International Nuclear Information System (INIS)

    Etoh, H.; Taguchi, Y.H.; Tabachnick, J.

    1975-01-01

    Guinea-pig epidermis was irradiated with 3000 rad of beta rays 1 hr after two injections of [ 3 H]thymidine 5 hr apart (labeled cells in S phase and G 2 phase) or 18 hr after injection (labeled early G 1 cells). In nonirradiated epidermis labeled basal cells divided within 24 hr with daughter cells remaining in the basal layer, and approximately 50 percent of the labeled cells moved into the spinal layer by the 3rd day. Cell division in nonirradiated epidermis diluted the number of silver grains/nucleus, and lightly labeled cells were found in the granular layer by day 7. Beta irradiation inhibited cell division but it did not slow the rate of transit (ca 8 days) of irradiated labeled cells from basal to granular layer, some of these remaining heavily labeled. Although cell division may play some role in upward movement of basal cells in normal epidermis detachment of a basal cell from the basement membrane and its transit to the granular layer is unimpaired in the absence of cell division. These findings suggest that some radioresistant metabolic function(s), not cell division, is responsible for upward movement of basal cells. (auth)

  9. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    Science.gov (United States)

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  10. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    Directory of Open Access Journals (Sweden)

    Piontek Marlena

    2017-03-01

    Full Text Available The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river, which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens. Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50 for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR. The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  11. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage

    OpenAIRE

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-01-01

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearra...

  12. Using stochastic cell division and death to probe minimal units of cellular replication

    Science.gov (United States)

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  13. Mechanical Division of Cell-Sized Liposomes

    NARCIS (Netherlands)

    Deshpande, S.R.; Kerssemakers, J.W.J.; Dekker, C.

    2018-01-01

    Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and

  14. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms

    International Nuclear Information System (INIS)

    Dixon, Mike B.; Richard, Yann; Ho, Lionel; Chow, Christopher W.K.; O'Neill, Brian K.; Newcombe, Gayle

    2011-01-01

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition.

  15. CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division.

    Science.gov (United States)

    Galgano, Alessia; Barinov, Aleksandr; Vasseur, Florence; de Villartay, Jean-Pierre; Rocha, Benedita

    2015-01-01

    Immune responses are efficient because the rare antigen-specific naïve cells are able to proliferate extensively and accumulate upon antigen stimulation. Moreover, differentiation into memory cells actually increases T cell accumulation, indicating improved productive division in secondary immune responses. These properties raise an important paradox: how T cells may survive the DNA lesions necessarily induced during their extensive division without undergoing transformation. We here present the first data addressing the DNA damage responses (DDRs) of CD8 T cells in vivo during exponential expansion in primary and secondary responses in mice. We show that during exponential division CD8 T cells engage unique DDRs, which are not present in other exponentially dividing cells, in T lymphocytes after UV or X irradiation or in non-metastatic tumor cells. While in other cell types a single DDR pathway is affected, all DDR pathways and cell cycle checkpoints are affected in dividing CD8 T cells. All DDR pathways collapse in secondary responses in the absence of CD4 help. CD8 T cells are driven to compulsive suicidal divisions preventing the propagation of DNA lesions. In contrast, in the presence of CD4 help all the DDR pathways are up regulated, resembling those present in metastatic tumors. However, this up regulation is present only during the expansion phase; i.e., their dependence on antigen stimulation prevents CD8 transformation. These results explain how CD8 T cells maintain genome integrity in spite of their extensive division, and highlight the fundamental role of DDRs in the efficiency of CD8 immune responses.

  16. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  17. Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Uttara N Lele

    Full Text Available Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.

  18. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  19. Modelling cell division and endoreduplication in tomato fruit pericarp

    NARCIS (Netherlands)

    Apri, M.; Kromdijk, J.; Visser, de P.H.B.; Gee, de M.; Molenaar, J.

    2014-01-01

    In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This

  20. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  1. An Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division

    Science.gov (United States)

    Denker, Elsa; Bhattachan, Punit; Deng, Wei; Mathiesen, Birthe T.; Jiang, Di

    2014-01-01

    Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation. PMID:24503569

  2. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  3. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  4. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive

  5. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.

    Science.gov (United States)

    Persson, Karl-Johan; Bergström, Kristofer; Mazur-Marzec, Hannah; Legrand, Catherine

    2013-12-15

    Toxic cyanobacterial blooms are an important problem worldwide. Cyanobacteria may negatively impact young-of-the-year (YOY) fish directly (toxin production, turbidity, decrease in water quality) or indirectly (trophic toxin transfer, changes in prey species composition). Here we test whether there are any differences in cyanobacterial tolerance between four geographically distinct populations of European perch (Perca fluviatilis). We show that P. fluviatilis may develop tolerance against cyanobacteria demonstrated by the ability of individuals from a marine site (exposed to annual cyanobacterial blooms) to increase their detoxification more than individuals from an oligotrophic site (rarely exposed to cyanobacteria). Our results also revealed significant interaction effects between genotypes within a population and response to cyanobacterial exposure in terms of absolute growth and detoxification activity. This genotype by treatment interaction may result in local adaptations to cyanobacterial exposure in P. fluviatilis. Hence, the sensitivity against cyanobacterial exposure may differ between within species populations increasing the importance of local management of fish populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  7. Formation of a cylindrical bridge in cell division

    Science.gov (United States)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  8. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  9. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  10. Are There Really Animals Like That? No Cell Division.

    Science.gov (United States)

    Blackwelder, R. E.; Garoian, G. S.

    1984-01-01

    Provides examples of animals in which growth occurs without cell division. Indicates that this phenomenon (called cell constancy or eutely) is an oddity of development that has arisen independently in several animal groups. (JN)

  11. Dynamics of a cyanobacterial bloom in a hypereutrophic reservoir ...

    African Journals Online (AJOL)

    Blooming and non-blooming periods between 2004 and 2006 in a hypereutrophic reservoir, where cyanobacterial blooms have previously been reported to be permanent, presented an opportunity to characterise factors that may favour cyanobacterial dominance. As a bloom developed in May 2004, a shift to dominance by ...

  12. First report of cyanobacterial diversity and microcystins in a ...

    African Journals Online (AJOL)

    The cyanobacterial diversity of Sidi Boughaba, a Moroccan coastal lagoon and Ramsar site, was evaluated and its potentially toxic species were isolated and characterised. This study was the first time that cyanobacterial diversity and cyanotoxin production have been characterised in a Moroccan coastal lagoon. Samples ...

  13. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  14. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  15. Interdependence of bacterial cell division and genome segregation and its potential in drug development.

    Science.gov (United States)

    Misra, Hari S; Maurya, Ganesh K; Chaudhary, Reema; Misra, Chitra S

    2018-03-01

    Cell division and genome segregation are mutually interdependent processes, which are tightly linked with bacterial multiplication. Mechanisms underlying cell division and the cellular machinery involved are largely conserved across bacteria. Segregation of genome elements on the other hand, follows different pathways depending upon its type and the functional components encoded on these elements. Small molecules, that are known to inhibit cell division and/or resolution of intertwined circular chromosome and maintenace of DNA topology have earlier been tested as antibacterial agents. The utility of such drugs in controlling bacterial infections has witnessed only partial success, possibly due to functional redundancy associated with targeted components. However, in due course, literature has grown with newer information. This review has brought forth some recent findings on bacterial cell division with special emphasis on crosstalk between cell division and genome segregation that could be explored as novel targets in drug development. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  17. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    Science.gov (United States)

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  18. A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division

    Science.gov (United States)

    Cruz-Ramírez, Alfredo; Díaz-Triviño, Sara; Blilou, Ikram; Grieneisen, Verônica A.; Sozzani, Rosangela; Zamioudis, Christos; Miskolczi, Pál; Nieuwland, Jeroen; Benjamins, René; Dhonukshe, Pankaj; Caballero-Pérez, Juan; Horvath, Beatrix; Long, Yuchen; Mähönen, Ari Pekka; Zhang, Hongtao; Xu, Jian; Murray, James A.H.; Benfey, Philip N.; Bako, Laszlo; Marée, Athanasius F.M.; Scheres, Ben

    2012-01-01

    SUMMARY In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a “flip flop” that constrains asymmetric cell division to the stem cell region. PMID:22921914

  19. Radiomimetic effect of cisplatin on cucumber root development: the relationship between cell division and cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, J. G. [Division of Experimental Biology, Center for Biological Research (CIB), PO Box 128, La Paz, BCS 23000 (Mexico)

    1993-07-01

    Cisplatin [DDP, cis-dichlorodiammine platinum (II)], a strong cytostatic and antineoplastic agent, was tested on seedlings of cucumber Cucumis sativus L. for its general effect on root development and its particular effects on root cell division and cell growth. DDP was characterized as a radiomimetic compound since both DDP (1·3 × 10{sup -5} M) and γ-irradiation (2·5-10 kGy) drastically and irreversibly stopped development of embryonic lateral root primordia (LRPs) in the radicle by inhibiting both mitotic activity and cell growth. In 20% of the LRPs of DDP-treated roots, cells did not divide at all. Dividing cells completed no more than two cell cycles. These effects were specific because when DDP was available to the roots only at the onset of cell division, cell proliferation and cell growth were similar to that produced by constant incubation. Neither DDP nor γ-irradiation affected non-meristematic cell elongation. It was concluded that cell growth of meristematic cells is closely related to cell division. However, non-meristematic cell growth is independent of DNA damage. This suggests DDP as a tool to reveal these autonomous processes in plants development and to detect tissue compartments in mature plant embryos which contain potentially non-meristematic cells. (author)

  20. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories.

    Science.gov (United States)

    Angermayr, S Andreas; Hellingwerf, Klaas J

    2013-09-26

    Oxygenic photosynthesis will have a key role in a sustainable future. It is therefore significant that this process can be engineered in organisms such as cyanobacteria to construct cell factories that catalyze the (sun)light-driven conversion of CO2 and water into products like ethanol, butanol, or other biofuels or lactic acid, a bioplastic precursor, and oxygen as a byproduct. It is of key importance to optimize such cell factories to maximal efficiency. This holds for their light-harvesting capabilities under, for example, circadian illumination in large-scale photobioreactors. However, this also holds for the "dark" reactions of photosynthesis, that is, the conversion of CO2, NADPH, and ATP into a product. Here, we present an analysis, based on metabolic control theory, to estimate the optimal capacity for product formation with which such cyanobacterial cell factories have to be equipped. Engineered l-lactic acid producing Synechocystis sp. PCC6803 strains are used to identify the relation between production rate and enzymatic capacity. The analysis shows that the engineered cell factories for l-lactic acid are fully limited by the metabolic capacity of the product-forming pathway. We attribute this to the fact that currently available promoter systems in cyanobacteria lack the genetic capacity to a provide sufficient expression in single-gene doses.

  1. Cyanobacterial Occurrence and Diversity in Seagrass Meadows in ...

    African Journals Online (AJOL)

    Oscillatoria, Lyngbya and Spirulina were the dominant cyanobacterial genera. Cyanobacterial coverage was higher in Mjimwema (31–100%) than in Ocean Road (0–60%). The levels of nutrients in tidal pool waters at Ocean Road ranged from 0.45–1.03 μmol NO3 -N/l, 0.19–0.27 μmol NO2 -N/l and 0.03–0.09 μmol PO4 ...

  2. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Høst, Thomas; Hay-Schmidt, Anders

    2017-01-01

    a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd...

  3. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs

    Science.gov (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto

    2017-04-01

    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  4. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Directory of Open Access Journals (Sweden)

    Schulz Burkhard

    2010-12-01

    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  5. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  6. Control of cell division and radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Yamaguchi, Takeo

    1974-01-01

    The method for determining the inhibitors of cell division (chalone-adrenalin system) in the irradiated epidermis and blood was developed using the epidermis of mouse ear conch during the cure of wounds (in vivo), and the epidermis cultured for a long period (in vitro). The whole body was irradiated with 200KV, 20 mA x-rays of 96 R/min filtered by 0.5 mmCu + 0.5 mmAl. Chalone, which is a physiologically intrinsic substance to control the proliferation, inhibits the DNA synthesis. From changes in cell division with time, chalone in the epidermis is considered to inhibit each process from G 2 to M, from G 2 to S, from G 1 to S. Adrenalin is indispensable when epidermal chalone acts the inhibition of cell division. Chalone activities in the epidermis irradiated with almost lethal doses were decreased. Factors to inhibit the proliferation of the epidermis by the potentiation of chalone and adrenalin are present in sera of animals irradiated to x-rays. (Serizawa, K.)

  7. Cyanobacterial bloom in the world largest freshwater lake Baikal

    Science.gov (United States)

    Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton

    2018-02-01

    Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.

  8. Molecular Diffusion through Cyanobacterial Septal Junctions

    Directory of Open Access Journals (Sweden)

    Mercedes Nieves-Morión

    2017-01-01

    Full Text Available Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata” linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  9. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  10. The current status of cyanobacterial nomenclature under the "prokaryotic" and the "botanical" code.

    Science.gov (United States)

    Oren, Aharon; Ventura, Stefano

    2017-10-01

    Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the "Botanical Code") differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the "Prokaryotic Code"). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.

  11. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  12. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  13. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  14. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  15. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives

    Directory of Open Access Journals (Sweden)

    Jainendra Pathak

    2018-02-01

    Full Text Available Sustainable supply of food and energy without posing any threat to environment is the current demand of our society in view of continuous increase in global human population and depletion of natural resources of energy. Cyanobacteria have recently emerged as potential candidates who can fulfill abovementioned needs due to their ability to efficiently harvest solar energy and convert it into biomass by simple utilization of CO2, water and nutrients. During conversion of radiant energy into chemical energy, these biological systems produce oxygen as a by-product. Cyanobacterial biomass can be used for the production of food, energy, biofertilizers, secondary metabolites of nutritional, cosmetics, and medicinal importance. Therefore, cyanobacterial farming is proposed as environment friendly sustainable agricultural practice which can produce biomass of very high value. Additionally, cyanobacterial farming helps in decreasing the level of greenhouse gas, i.e., CO2, and it can be also used for removing various contaminants from wastewater and soil. However, utilization of cyanobacteria for resolving the abovementioned problems is subjected to economic viability. In this review, we provide details on different aspects of cyanobacterial system that can help in developing sustainable agricultural practices. We also describe different large-scale cultivation systems for cyanobacterial farming and discuss their merits and demerits in terms of economic profitability.

  16. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater.

    Science.gov (United States)

    Forlani, Giuseppe; Prearo, Valentina; Wieczorek, Dorota; Kafarski, Paweł; Lipok, Jacek

    2011-03-07

    The ability of Spirulina spp. to metabolize the recalcitrant xenobiotic Dequest 2054(®) [hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid)], a CaSO(4) inhibitor used for boiler treatment and reverse osmosis desalination, was investigated. The compound served as sole source of phosphorus, but not of nitrogen, for cyanobacterial growth. In vivo utilization was followed by (31)P NMR analysis. The disappearance of the polyphosphonate proceeded only with actively dividing cells, and no release of inorganic phosphate was evident. However, no difference was found between P-starved and P-fed cultures. Maximal utilization reached 1.0 ± 0.2 mmoll(-1), corresponding to 0.56 ± 0.11 mmol g(-1) dry biomass, thus residual amounts were still present in the exhausted medium when the compound was supplied at higher initial concentrations. At low substrate levels metabolism rates were lower, suggesting that a concentration-driven uptake may represent a limiting step during the biodegradation process. The compound was not retained by biocolumns made with immobilized cyanobacterial cells, either alive or dead. A lab-scale pilot plant, consisting of a series of sequentially connected vessels containing an actively proliferating algal culture, was built and tested for wastewater treatment. Results showed 50% removal of the polyphosphonate added to an initial concentration of 2.5mM. Although further optimization will be required, data strengthen the possibility of using cyanobacterial strains for bioremediation purposes. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    Science.gov (United States)

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  18. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  19. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  20. Regulation of the number of cell division rounds by tissue-specific transcription factors and Cdk inhibitor during ascidian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Mami Kuwajima

    Full Text Available Mechanisms that regulate the number of cell division rounds during embryogenesis have remained largely elusive. To investigate this issue, we used the ascidian, which develops into a tadpole larva with a small number of cells. The embryonic cells divide 11.45 times on average from fertilization to hatching. The number of cell division rounds varies depending on embryonic lineages. Notochord and muscle consist of large postmitotic cells and stop dividing early in developing embryos. Here we show that conversion of mesenchyme to muscle cell fates by inhibition of inductive FGF signaling or mis-expression of a muscle-specific key transcription factor for muscle differentiation, Tbx6, changed the number of cell divisions in accordance with the altered fate. Tbx6 likely activates a putative mechanism to halt cell division at a specific stage. However, precocious expression of Tbx6 has no effect on progression of the developmental clock itself. Zygotic expression of a cyclin-dependent kinase inhibitor, CKI-b, is initiated in muscle and then in notochord precursors. CKI-b is possibly downstream of tissue-specific key transcription factors of notochord and muscle. In the two distinct muscle lineages, postmitotic muscle cells are generated after 9 and 8 rounds of cell division depending on lineage, but the final cell divisions occur at a similar developmental stage. CKI-b gene expression starts simultaneously in both muscle lineages at the 110-cell stage, suggesting that CKI-b protein accumulation halts cell division at a similar stage. The difference in the number of cell divisions would be due to the cumulative difference in cell cycle length. These results suggest that muscle cells do not count the number of cell division rounds, and that accumulation of CKI-b protein triggered by tissue-specific key transcription factors after cell fate determination might act as a kind of timer that measures elapsed time before cell division termination.

  1. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    International Nuclear Information System (INIS)

    Nathan, P.D.

    1988-01-01

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with [ 3 H] penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that is required for cell division is identified. PBP 1B competes for β-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl- 3 H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography

  2. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  3. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors

    Directory of Open Access Journals (Sweden)

    Maxine A.D. Mowe

    2014-12-01

    Full Text Available Toxic cyanobacterial blooms are a major issue in freshwater systems in many countries. The potentially toxic species and their ecological causes are likely to be different in tropical zones from those in temperate water bodies; however, studies on tropical toxic cyanobacterial blooms are sporadic and currently there is no global synthesis. In this review, we examined published information on tropical cyanobacterial bloom occurrence and toxin production to investigate patterns in their growth and distribution. Microcystis was the most frequently occurring bloom genus throughout tropical Asia, Africa and Central America, while Cylindrospermopsis and Anabaena blooms occurred in various locations in tropical Australia, America and Africa. Microcystis blooms were more prevalent during the wet season while Cylindrospermopsis blooms were more prevalent during the dry period. Microcystin was the most encountered toxin throughout the tropics. A meta-analysis of tropical cyanobacterial blooms showed that Microcystis blooms were more associated with higher total nitrogen concentrations, while Cylindrospermopsis blooms were more associated with higher maximum temperatures. Meta-analysis also showed a positive linear relationship between levels of microcystin and N:P (nitrate:phosphate ratio. Tropical African Microcystis blooms were found to have the lowest microcystin levels in relation to biomass and N:P (nitrate:phosphate compared to tropical Asian, Australian and American blooms. There was also no significant correlation between microcystin concentration and cell concentration for tropical African blooms as opposed to tropical Asian and American blooms. Our review illustrates that some cyanobacteria and toxins are more prevalent in tropical areas. While some tropical countries have considerable information regarding toxic blooms, others have few or no reported studies. 

  4. An Improved Model of Nonuniform Coleochaete Cell Division.

    Science.gov (United States)

    Wang, Yuandi; Cong, Jinyu

    2016-08-01

    Cell division is a key biological process in which cells divide forming new daughter cells. In the present study, we investigate continuously how a Coleochaete cell divides by introducing a modified differential equation model in parametric equation form. We discuss both the influence of "dead" cells and the effects of various end-points on the formation of the new cells' boundaries. We find that the boundary condition on the free end-point is different from that on the fixed end-point; the former has a direction perpendicular to the surface. It is also shown that the outer boundaries of new cells are arc-shaped. The numerical experiments and theoretical analyses for this model to construct the outer boundary are given.

  5. Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Drahorad, Sylvie L; Berkowicz, Simon M; Felix-Henningsen, Peter; Kaplan, Aaron

    2015-07-01

    Cyanobacteria occur worldwide but play an important role in the formation and primary activity of biological soil crusts (BSCs) in arid and semi-arid ecosystems. The cyanobacterial diversity in BSCs of the northwest Negev desert of Israel was surveyed at three fixed sampling stations situated along a precipitation gradient in the years 2010 to 2012. The three stations also are characterized by marked differences in soil features such as soil carbon, nitrogen, or electrical conductivity. The cyanobacterial biodiversity was analyzed by sequencing inserts of clone libraries harboring partial 16S rRNA gene sequences obtained with cyanobacteria-specific primers. Filamentous, non-diazotrophic strains (subsection III), particularly Microcoleus-like, dominated the cyanobacterial community (30% proportion) in all years. Specific cyanobacterial groups showed increased (e.g., Chroococcidiopsis, Leptolyngbya, and Nostoc strains) or decreased (e.g., unicellular strains belonging to the subsection I and Scytonema strains) abundances with declining water availability at the most arid, southern station, whereas many cyanobacterial strains were frequently found in the soils of all three stations. The cyanobacterial diversity at the three sampling stations appears dependent on the available precipitation, whereas the differences in soil chemistry were of lower importance.

  6. Effect of anolyte on growth and division of Chinese hamster cancerous cells

    Directory of Open Access Journals (Sweden)

    saeed Mohammadzadeh

    2009-04-01

    Full Text Available Background: At present, cancer can be controlled by chemotherapy, but unfortunately, this method has strong side effects and scientist try to reduce them using different substances. 2 kinds of activated water called anolyte and catholyte have electrochemical property and antibacterial and oxidative properties respectively. The aim of this research is to study the effect of anolyte on growth and division of cancerous cells. Materials and Methods: In this research, different concentration of anolyte, 1 . 7, 2, 5,8.3 and 10 percent of anolyte and control with 2 and 5 percent of serum physiologic were added on converted cell of Chinese hamster (line b11dii-FAF28 clone 237 in 12 plastic and 15 glass flasks. After adding, converted cell was counted with the help of hoemocytometer and microscope. Data of experiment analyzed and results compared by t test, as well as using Excell software their diagrams were drawn. Results: The results indicated that anolyte had significant effect on cancer cells. In concentration of 1.7% cell division was decreased but in concentration of 8.3 %, division of cancerous cells was blocked and cells were fixed. Conclusion: Considering the low amount of sodium chloride in anolyte, it seems that, this solution (Anolyte hasn’t side effects and advers effect on the cells body.

  7. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    International Nuclear Information System (INIS)

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  8. The simulation model of growth and cell divisions for the root apex with an apical cell in application to Azolla pinnata.

    Science.gov (United States)

    Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2013-12-01

    In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.

  9. Control of sporulation-specific cell division in Streptomyces coelicolor

    NARCIS (Netherlands)

    Noens, Elke

    2007-01-01

    During developmental cell division in sporulation-committed aerial hyphae of streptomycetes, up to a hundred septa are simultaneously produced, in close harmony with synchromous chromosome condensation and segregation. Several unique protein families are involved in the control of this process,

  10. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  11. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    Science.gov (United States)

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  12. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  13. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.

    Science.gov (United States)

    Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel

    2012-07-01

    Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.

  14. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Nathalie Fortin

    2015-05-01

    Full Text Available Missisquoi Bay (MB is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages.

  15. Investigation of roles for LRR-RLKs PNL1 and PNL2 in asymmetric cell division in Arabidopsis thaliana

    OpenAIRE

    Rodriguez, Maiti Celina

    2008-01-01

    Asymmetric cell division is a vital component of plant development. It enables cell differentiation and cell diversity. A key component of asymmetric cell division is cell signaling. Signals are believed to control polarization and orientation of asymmetric divisions during stomatal development. The findings of this report suggest that PNL1 and PNL2, two LRR-RLKs found in Arabidopsis and closely related to maize PAN1 LRR-RLK, are possibly involved in the signaling events occurring during the ...

  16. Structural studies of cyanobacterial PSII

    International Nuclear Information System (INIS)

    Da Fonseca, Paula Cristina Alves

    2001-01-01

    Photosystem II (PSII) is the photosynthetic transmembrane protein-pigment complex which utilises light energy to drive the splitting of water and release of oxygen, a unique reaction in biological systems. The determination of the structure of PSII at high resolution is required in order to understand its mechanisms of reaction. For this reason, methods have been developed to purify highly active PSII complexes from the thermophilic cyanobacterium Synechococcus elongate These complexes have been studied by high resolution electron microscopy, using both single particle analysis and electron crystallography. A 30A three-dimensional map of the cyanobacterial PSII complex was obtained by single particle analysis. The comparison of this map with structural data from the spinach PSII core dimer revealed that both complexes share similar overall size and shape. These data also allowed a discussion on the organisation and positioning of the extrinsic lumenal proteins within the cyanobacterial PSII complex. A Synechococcus elongatus PSII projection map, at a resolution of 20A, was determined by image processing of two-dimensional crystals formed by the in vitro reconstitution method. This was the first projection map obtained by electron crystallography of a cyanobacterial highly active PSII complex, with all the extrinsic subunits retained. The analysis of this map and its comparison with a 10A three-dimensional map recently obtained from the spinach PSII core dimer revealed a similar organisation of the main transmembrane subunits. Moreover, at the level of resolution of the present data it is possible to identify differences which can be related to the content and organisation of the small subunits forming the PSII complex from both organisms. Cytochrome b559, an important but incompletely understood PSII subunit, was purified and subjected to crystallisation trials in order to aid the interpretation of intermediate resolution PSII structural data. Small crystals were

  17. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  18. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance

    Directory of Open Access Journals (Sweden)

    Dempwolff Felix

    2012-12-01

    Full Text Available Abstract Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB, indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at

  19. Effect of gamma-irradiation and colchicine on cell division and differentiation of xylem elements in citrus limon juice vesicle cultures

    International Nuclear Information System (INIS)

    Khan, Aysha; Chauhan, Y.S.

    1999-01-01

    The effects of varying doses of gamma irradiation on cell division and cytodifferentiation of tracheary elements in cultured juice vesicles of Citrus limon (L) Burmann var. Assam lemon were investigated. Low radiation doses stimulated cell division and differentiation of xylem fibres, sclereids and tracheids in explants given up to 10 Gy of gamma rays. Although cell division and cytodifferentiation of fibers and sclereids occurred in explants exposed to 150 dose of Gy radiation, the intensity of differentiation was much less than that induced by 10 Gy radiation dose. Amongst the differential elements, tracheids were more sensitive to radiation than fibres and sclereids. The requirement of cell division for differentiation of xylem cells was also studied by using different concentrations of colchicine in Citrus limon juice vesicle cultures. It was found that the low concentrations of colchicine permitted normal cell division and also resulted in normal differentiation of xylem cells; higher colchicine concentration, however, inhibited cell division as well as differentiation and resulted in an abnormal differentiation of tracheary element. A positive correlation between intensity of nucleic acid staining and cell division in both the above-mentioned experiments was qualitatively confirmed by Azur B staining test of nucleic acid. Thus, it was concluded that juice vesicle parenchyma cells go through nucleic acid synthesis, followed by cell division before differentiation. (author)

  20. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    Science.gov (United States)

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  1. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    Science.gov (United States)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  3. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  4. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  5. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    ,c) reminiscent of common sheaths (glycocalix), typical for coccoidal colonial (pseudoparenchymatous) entophysalidacean or pleurocapsalean cyanobacteria (Fig. 2d-f). The remains of the coccoid sheaths and capsules are visible as a system of rimmed subglobular or irregularly polygonal pits separated from adjacent pits by 2-3 μm thick walls. Microprobe analyses show that the interiors of the pits are composed of almost pure calcium carbonate whereas the rims and walls of calcium carbonate with high admixture of silicates (mostly Al-Fe clay-like silicates) and dolomite. High magnification images of rims and walls confirm the microprobe data indicating authigenic character of the minerals forming both the carbonate infilling the pits interiors (CaCO3) and their rims and walls (CaCO3 + Al-Fe silicates + dolomite). EPSC Abstracts, Vol. 3, EPSC2008-A-00493, 2008 European Planetary Science Congress, Author(s) 2008 It seems that carbonates were the first mineral phase filling the spaces remained after the plasmolysis of the cyanobacterial cell contents, whereas the formation of silicates within the exopolysaccharides forming the bulk of the sheaths and capsules was a later diagenetic process. Microprobe analyses of mineralised modern coccoid cyanobacterial mats forming tower-like structures in the highly alkaline Lake Van, Turkey [3,4] display a set of elements indicative for the presence of authigenic carbonate and silicate minerals which are almost identical with that occurring in the studied Neoarchean samples. Also the optical and SEM images of polished and etched platelets of permineralised Lake Van microbialites are strikingly similar (Fig. 2d-f). Similarly as in modern cyanobacterial and other microbial mats, the process of early post mortem mineralisation, in the case of the Nauga Formation, was most probably associated with the action of heterotrophic bacteria upon the dead cyanobacterial biomass. Heterotrophic bacteria occupying EPS layers of living and dead cyanobacterial

  6. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  7. Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape

    NARCIS (Netherlands)

    Soibelmann Glock Lorenzoni, André; Dantas, Giordanni; Bergsma, Tessa; Ferreira, Henrique; Scheffers, Dirk

    2017-01-01

    Xanthomonas citri (Xac) is the causal agent of citrus canker, a disease that affects citrus crops and causes economic impact worldwide. To further characterize cell division in this plant pathogen, we investigated the role of the protein MinC in cell division, chromosome segregation, and

  8. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    OpenAIRE

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The...

  9. Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo

    Directory of Open Access Journals (Sweden)

    Andrea Ziková

    2008-01-01

    Full Text Available Cyanobacterial water blooms became a global problem/issue because beside a dramatic deterioration of water quality parameters they also produce cyanobacterial toxins being harmful for animals and humans. Cyanotoxins especially the most prominent one, microcystin-LR (MC-LR, are of major concern and they have been reported to cause even death of mammals following ingestion or ingurgitation due to hepatotoxic modes of action. The aim of the recent study is to summarize briefly the impacts of microcystin on laboratory rodents, mice and rats, being used as models for other mammals including human beings. Most experimental approaches used intraperitoneal rather than oral and intratracheal application of microcystins, especially MC-LR, being the most efficient way to induce adverse impacts on different target organs. However, no matter how the exposure of rodents was performed, microcystins induced severe harmful impacts on the different target organs, preferentially the liver, for instances hemorrhages and apoptosis in liver, liver tumours, adverse effects on gut, kidney, testis and epididymis including spermatogenesis, on lung, on serum parameters and on progeny. In addition to these histological findings, microcystin was found to affect specifically biochemical parameters of target organs such as enzymes e.g. GST, CAT, GR, GPX, SOD, AST, ALT, γ-GT, protein phosphatases, SDH, SoDH and LDH or stress proteins such as HSP-70 and further parameters such as hepatic sulfhydryl content, GSH depletion, total bilirubin, urea nitrogen, and creatinine. Gene array analyses revealed that microcystin affects genes related to actin organization, cell cycle, apoptosis, cellular redox potential, cell signalling, albumin metabolism, glucose homeostasis pathway and organic anion transport polypeptide system. In combination with a further proteomics approach the proteomic analyses indicate that liver apoptosis induced by microcystin can be induced by two pathways: the

  10. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    Science.gov (United States)

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  11. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities.

    Science.gov (United States)

    Lan, Shubin; Zhang, Qingyi; Wu, Li; Liu, Yongding; Zhang, Delu; Hu, Chunxiang

    2014-01-01

    Desertification has been recognized as a global environmental problem, and one region experiencing ongoing desertification is the eastern edge of Qubqi Desert (Inner Mongolia). To investigate the facilitating effects of cyanobacterial inoculation technology on the desertification control along this steppe-desert transition region, artificial cyanobacterial crusts were constructed with two filamentous cyanobacteria 3 and 8 years ago combined with Salix planting. The results showed that no crusts formed after 3 years of fixation only with Salix planting, whereas after cyanobacterial inoculation, the crusts formed quickly and gradually succeed to moss crusts. During that course, topsoil environments were gradually improved, providing the necessary material basis for the regeneration of vascular plants. In this investigation, total 27 species of vascular plants had regenerated in the experimental region, mainly belonging to Asteraceae, Poaceae, Chenopodiaceae and Leguminosae. Using space time substitution, the dominant species along with the application of cyanobacterial inoculation technology succeeded from Agriophyllum squarrosum ultimately to Leymus chinensis. In addition, it was found that the shady side of the dunes is more conducive to crust development and succession of vegetation communities. Conclusively, our results indicate artificial cyanobacterial inoculation technology is an effective and desirable path for desertification control.

  12. Potential use of cyanobacterial species in bioremediation of ...

    African Journals Online (AJOL)

    Potential use of cyanobacterial species in bioremediation of industrial effluents. ... African Journal of Biotechnology ... Abstract. This study investigated the potential degradation of industrial effluents by environmental species of cyanobacteria.

  13. Tetracycline hypersensitivity of an ezrA mutant links GalE and TseB (YpmB to cell division

    Directory of Open Access Journals (Sweden)

    Pamela eGamba

    2015-04-01

    Full Text Available Cell division in bacteria is initiated by the polymerization of FtsZ into a ring-like structure at midcell that functions as a scaffold for the other cell division proteins. In Bacillus subtilis, the conserved cell division protein EzrA is involved in modulation of Z-ring formation and coordination of septal peptidoglycan synthesis. Here, we show that an ezrA mutant is hypersensitive to tetracycline, even when the tetracycline efflux pump TetA is present. This effect is not related to the protein translation inhibiting activity of tetracycline. Overexpression of FtsL suppresses this phenotype, which appears to be related to the intrinsic low FtsL levels in an ezrA mutant background. A transposon screen indicated that the tetracycline effect can also be suppressed by overproduction of the cell division protein ZapA. In addition, tetracycline sensitivity could be suppressed by transposon insertions in galE and the unknown gene ypmB, which was renamed tseB (tetracycline sensitivity suppressor of ezrA. GalE is an epimerase using UDP-glucose and UDP-N-acetylglucosamine as substrate. Deletion of this protein bypasses the synthetic lethality of zapA ezrA and sepF ezrA double mutations, indicating that GalE influences cell division. The transmembrane protein TseB contains an extracytoplasmic peptidase domain, and a GFP fusion shows that the protein is enriched at cell division sites. A tseB deletion causes a shorter cell phenotype, indicating that TseB plays a role in cell division. Why a deletion of ezrA renders B. subtilis cells hypersensitive for tetracycline remains unclear. We speculate that this phenomenon is related to the tendency of tetracycline analogues to accumulate into the lipid bilayer, which may destabilize certain membrane proteins.

  14. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    Science.gov (United States)

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  15. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    Science.gov (United States)

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  16. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  17. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  18. LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi

    2018-05-17

    Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.

  19. Individuality and universality in the growth-division laws of single E. coli cells

    Science.gov (United States)

    Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  20. Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and Sonic hedgehog response

    Directory of Open Access Journals (Sweden)

    Piotrowska-Nitsche Karolina

    2012-05-01

    Full Text Available Abstract Background Primary cilia are microtubule-based sensory organelles that play important roles in developmental signaling pathways. Recent work demonstrated that, in cell culture, the daughter cell that inherits the older mother centriole generates a primary cilium and responds to external stimuli prior to its sister cell. This asynchrony in timing of cilia formation could be especially critical during development as cell divisions are required for both differentiation and maintenance of progenitor cell niches. Methods Here we integrate several fluorescent markers and use ex vivo live imaging of a single cell division within the mouse E8.5 neuroepithelium to reveal both the formation of a primary cilium and the transcriptional response to Sonic hedgehog in the daughter cells. Results We show that, upon cell division, cilia formation and the Sonic hedgehog response are asynchronous between the daughter cells. Conclusions Our results demonstrate that we can directly observe single cell divisions within the developing neuroepithelium and concomitantly monitor cilium formation or Sonic hedgehog response. We expect this method to be especially powerful in examining whether cellular behavior can lead to both differentiation and maintenance of cells in a progenitor niche.

  1. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Wang Jiangxin

    2012-12-01

    Full Text Available Abstract Background Fermentation production of biofuel ethanol consumes agricultural crops, which will compete directly with the food supply. As an alternative, photosynthetic cyanobacteria have been proposed as microbial factories to produce ethanol directly from solar energy and CO2. However, the ethanol productivity from photoautotrophic cyanobacteria is still very low, mostly due to the low tolerance of cyanobacterial systems to ethanol stress. Results To build a foundation necessary to engineer robust ethanol-producing cyanobacterial hosts, in this study we applied a quantitative transcriptomics approach with a next-generation sequencing technology, combined with quantitative reverse-transcript PCR (RT-PCR analysis, to reveal the global metabolic responses to ethanol in model cyanobacterial Synechocystis sp. PCC 6803. The results showed that ethanol exposure induced genes involved in common stress responses, transporting and cell envelope modification. In addition, the cells can also utilize enhanced polyhydroxyalkanoates (PHA accumulation and glyoxalase detoxication pathway as means against ethanol stress. The up-regulation of photosynthesis by ethanol was also further confirmed at transcriptional level. Finally, we used gene knockout strains to validate the potential target genes related to ethanol tolerance. Conclusion RNA-Seq based global transcriptomic analysis provided a comprehensive view of cellular response to ethanol exposure. The analysis provided a list of gene targets for engineering ethanol tolerance in cyanobacterium Synechocystis.

  2. Activation of cell divisions in legume nodulation

    DEFF Research Database (Denmark)

    Nadzieja, Marcin

    organogenesis. Coordination of these two interdependent processes results in formation of nodules - bacterial accommodating structures where fixation of atmospheric nitrogen takes place. Plant hormones such as auxin and cytokinin play important roles in nodulation. In some legumes the infection process...... of auxin transport inhibitors or cytokinin alone was shown to induce cortical cell divisions in the absence of rhizobia in certain legume species. While the roles of auxin and cytokinin in nodulation have been studied extensively, the precise timing, location and means of molecular crosstalk between...

  3. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  4. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  5. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    Science.gov (United States)

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  6. Combined exposure of carps (Cyprinus carpio L.) to cyanobacterial biomass and white spot disease.

    Science.gov (United States)

    Palikova, Miroslava; Navratil, Stanislav; Papezikova, Ivana; Ambroz, Petr; Vesely, Tomas; Pokorova, Dagmar; Mares, Jan; Adamovsky, Ondrej; Navratil, Lukas; Kopp, Radovan

    2012-01-01

    Under environmental conditions, fish can be exposed to multiple stressors including natural toxins and infectious agents at the same time. This study brings new knowledge on the effects of controlled exposure to multiple stressors in fish. The aim of this study was to test the hypothesis that influence of cyanobacterial biomass and an infection agent represented by the white spot disease can combine to enhance the effects on fish. Common carps were divided into four groups, each with 40 specimens for 20 days: control group, cyanobacterial biomass exposed group, Ichthyophthirius multifiliis-infected fish (Ich) and cyanobacterial biomass-exposed fish + Ichthyophthirius multifiliis-infected fish. During the experiment we evaluated the clinical signs, mortality, selected haematological parameters, immune parameters and toxin accumulation. There was no mortality in control fish and cyanobacterial biomass-exposed fish. One specimen died in Ichthyophthirius multifiliis-infected fish and the combined exposure resulted in the death of 13 specimens. The whole leukocyte counts (WBC) of the control group did not show any significant differences. Cyanobacteria alone caused a significant increase of the WBC on day 13 (p≤0.05) and on day 20 (p≤0.01). Also, I. multifiliis caused a significant elevation of WBC (p≤0.01) on day 20. Co-exposition resulted in WBC increased on day 13 and decrease on day 20, but the changes were not significant. It is evident from the differential leukocyte counts that while the increase of WBC in the group exposed to cyanobacteria was caused by elevation of lymphocytes, the increase in the group infected by I. multifiliis was due to the increase of myeloid cells. It well corresponds with the integral of chemiluminescence in the group infected by I. multifiliis, which is significantly elevated on day 20 in comparison with all other groups. We can confirm additive action of different agents on the immune system of fish. While single agents seemed to

  7. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem

    NARCIS (Netherlands)

    Kinoshita, A.; Hove, ten C.A.; Tabata, R.; Yamada, M.; Shimizu, N.; Ishida, T.; Yamaguchi, K.; Shigenobu, S.; Takebayashi, Y.; Luchies, J.; Kobayashi, M.; Kurata, T.; Wada, T.; Seo, M.; Hasebe, M.; Blilou, I.; Fukuda, H.; Scheres, B.; Heidstra, R.; Kamiya, Y.; Sawa, S.

    2015-01-01

    The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis

  8. Cell division genes promote asymmetric interaction between Numb and Notch in the Drosophila CNS.

    Science.gov (United States)

    Wai, P; Truong, B; Bhat, K M

    1999-06-01

    Cell intrinsic and cell extrinsic factors mediate asymmetric cell divisions during neurogenesis in the Drosophila embryo. In the NB4-2->GMC-1->RP2/sib lineage, one of the well-studied neuronal lineages in the ventral nerve cord, the Notch (N) signaling interacts with the asymmetrically localized Numb (Nb) to specify sibling neuronal fates to daughter cells of GMC-1. In this current study, we have investigated asymmetric cell fate specifications by N and Nb in the context of cell cycle. We have used loss-of-function mutations in N and nb, cell division mutants cyclinA (cycA), regulator of cyclin A1 (rca1) and string/cdc25 phosphatase (stg), and the microtubule destabilizing agent, nocodazole, to investigate this issue. We report that the loss of cycA, rca1 or stg leads to a block in the division of GMC-1, however, this GMC-1 exclusively adopts an RP2 identity. While the loss of N leads to the specification of RP2 fates to both progeny of GMC-1 and loss of nb results in the specification of sib fates to these daughter cells, the GMC-1 in the double mutant between nb and cycA assumes a sib fate. These epistasis results indicate that both N and nb function downstream of cell division genes and that progression through cell cycle is required for the asymmetric localization of Nb. In the absence of entry to metaphase, the Nb protein prevents the N signaling from specifying sib fate to the RP2/sib precursor. These results are also consistent with our finding that the sib cell is specified as RP2 in N; nb double mutants. Finally, our results show that nocodazole-arrested GMC-1 in wild-type embryos randomly assumes either an RP2 fate or a sib fate. This suggests that microtubules are involved in mediating the antagonistic interaction between Nb and N during RP2 and sib fate specification.

  9. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  10. Cell division in Escherichia coli BS-12 is hypersensitive to deoxyribonucleic acid damage by ultraviolet light

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.; Green, M.H.

    1977-01-01

    Escherichia coli BS-12 uvrA lon is hypersensitive to ultraviolet light. On minimal agar plates at densities in excess of about 10(7) bacteria per plate, as few as one or two photoreversible pyrimidine dimers in the entire genome are sufficient to cause inhibition of cell division. Most of the resulting filaments are unable to divide or form a viable colony. Inhibition of cell division appears to be a rapid consequence of replication of deoxyribonucleic acid containing a pyrimidine dimer. Photoreversibility of the inhibition of cell division persists indefinitely, indicating that the continued presence of the pyrimidine dimers (or the continued generation of daughter strand gaps) is necessary to maintain the division-inhibited state. In view of the kinetics for the production of filamentation by ultraviolet light and the extremely low average inducing fluence (0.03 J/m2), it is concluded that the initiating signal is not the same as that causing other inducible phenomena such as prophage induction or Weigle reactivation

  11. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  12. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  13. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.

    Science.gov (United States)

    Baumann, P; Jackson, S P

    1996-06-25

    Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.

  14. Amoebiasis and its effect on cell division in the midgut of the African ...

    African Journals Online (AJOL)

    cells was noted in the nidi of the ventricular regions of locusts in- fected with parasites. ... migratoria and as these tissues undergo cell division the. R eprod u ced ..... repair or possibly could have completed DNA synthesis, divi- sion and ...

  15. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos

    Science.gov (United States)

    Duranthon, Véronique

    2018-01-01

    ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671

  16. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review

    NARCIS (Netherlands)

    Ibelings, B.W.; Chorus, I.

    2007-01-01

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in “seafood” collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and

  17. The Geographic Distribution of Liver Cancer in Canada Does Not Associate with Cyanobacterial Toxin Exposure

    Directory of Open Access Journals (Sweden)

    Meaghan A. Labine

    2015-11-01

    Full Text Available Background: The incidence of liver cancer has been increasing in Canada over the past decade, as has cyanobacterial contamination of Canadian freshwater lakes and drinking water sources. Cyanotoxins released by cyanobacteria have been implicated in the pathogenesis of liver cancer. Objective: To determine whether a geographic association exists between liver cancer and surrogate markers of cyanobacterial contamination of freshwater lakes in Canada. Methods: A negative binomial regression model was employed based on previously identified risk factors for liver cancer. Results: No association existed between the geographic distribution of liver cancer and surrogate markers of cyanobacterial contamination. As predicted, significant associations existed in areas with a high prevalence of hepatitis B virus infection, large immigrant populations and urban residences. Discussion and Conclusions: The results of this study suggest that cyanobacterial contamination of freshwater lakes does not play an important role in the increasing incidence of liver cancer in Canada.

  18. Transmission of persistent ionizing radiation-induced foci through cell division in human primary cells

    Energy Technology Data Exchange (ETDEWEB)

    Vaurijoux, Aurelie, E-mail: aurelie.vaurijoux@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire de Dosimétrie Biologique, BP 17, 92262 Fontenay aux roses cedex (France); Voisin, Pascale; Freneau, Amelie [Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire de Dosimétrie Biologique, BP 17, 92262 Fontenay aux roses cedex (France); Barquinero, Joan Francesc [Universitat Autònoma de Barcelona, Faculty of Biosciences, 08193 Cerdanyola del Vallès (Spain); Gruel, Gaetan [Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire de Dosimétrie Biologique, BP 17, 92262 Fontenay aux roses cedex (France)

    2017-03-15

    Highlights: • Persistent IRIF do not permanently block cell proliferation. • Persistent IRIF are transmitted in part and sometimes asymmetrically to daughter cells. • IRIF differ in their nature before and after the first cell division. - Abstract: Unrepaired DNA double-strand breaks (DSBs) induced by ionizing radiation are associated with lethal effects and genomic instability. After the initial breaks and chromatin destabilization, a set of post-translational modifications of histones occurs, including phosphorylation of serine 139 of histone H2AX (γH2AX), which leads to the formation of ionizing radiation-induced foci (IRIF). DSB repair results in the disappearance of most IRIF within hours after exposure, although some remain 24 h after irradiation. Their relation to unrepaired DSBs is generally accepted but still controversial. This study evaluates the frequency and kinetics of persistent IRIF and analyzes their impact on cell proliferation. We observed persistent IRIF up to 7 days postirradiation, and more than 70% of cells exposed to 5 Gy had at least one of these persistent IRIF 24 h after exposure. Moreover we demonstrated that persistent IRIF did not block cell proliferation definitively. The frequency of IRIF was lower in daughter cells, due to asymmetric distribution of IRIF between some of them. We report a positive association between the presence of IRIF and the likelihood of DNA missegregation. Hence, the structure formed after the passage of a persistent IRI focus across the S and G2 phases may impede the correct segregation of the affected chromosome's sister chromatids. The ensuing abnormal resolution of anaphase might therefore cause the nature of IRIF in daughter-cell nuclei to differ before and after the first cell division. The resulting atypical chromosomal assembly may be lethal or result in a gene dosage imbalance and possibly enhanced genomic instability, in particular in the daughter cells.

  19. Transmission of persistent ionizing radiation-induced foci through cell division in human primary cells

    International Nuclear Information System (INIS)

    Vaurijoux, Aurelie; Voisin, Pascale; Freneau, Amelie; Barquinero, Joan Francesc; Gruel, Gaetan

    2017-01-01

    Highlights: • Persistent IRIF do not permanently block cell proliferation. • Persistent IRIF are transmitted in part and sometimes asymmetrically to daughter cells. • IRIF differ in their nature before and after the first cell division. - Abstract: Unrepaired DNA double-strand breaks (DSBs) induced by ionizing radiation are associated with lethal effects and genomic instability. After the initial breaks and chromatin destabilization, a set of post-translational modifications of histones occurs, including phosphorylation of serine 139 of histone H2AX (γH2AX), which leads to the formation of ionizing radiation-induced foci (IRIF). DSB repair results in the disappearance of most IRIF within hours after exposure, although some remain 24 h after irradiation. Their relation to unrepaired DSBs is generally accepted but still controversial. This study evaluates the frequency and kinetics of persistent IRIF and analyzes their impact on cell proliferation. We observed persistent IRIF up to 7 days postirradiation, and more than 70% of cells exposed to 5 Gy had at least one of these persistent IRIF 24 h after exposure. Moreover we demonstrated that persistent IRIF did not block cell proliferation definitively. The frequency of IRIF was lower in daughter cells, due to asymmetric distribution of IRIF between some of them. We report a positive association between the presence of IRIF and the likelihood of DNA missegregation. Hence, the structure formed after the passage of a persistent IRI focus across the S and G2 phases may impede the correct segregation of the affected chromosome's sister chromatids. The ensuing abnormal resolution of anaphase might therefore cause the nature of IRIF in daughter-cell nuclei to differ before and after the first cell division. The resulting atypical chromosomal assembly may be lethal or result in a gene dosage imbalance and possibly enhanced genomic instability, in particular in the daughter cells.

  20. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  1. A novel earth observation based ecological indicator for cyanobacterial blooms

    Science.gov (United States)

    Anttila, Saku; Fleming-Lehtinen, Vivi; Attila, Jenni; Junttila, Sofia; Alasalmi, Hanna; Hällfors, Heidi; Kervinen, Mikko; Koponen, Sampsa

    2018-02-01

    Cyanobacteria form spectacular mass occurrences almost annually in the Baltic Sea. These harmful algal blooms are the most visible consequences of marine eutrophication, driven by a surplus of nutrients from anthropogenic sources and internal processes of the ecosystem. We present a novel Cyanobacterial Bloom Indicator (CyaBI) targeted for the ecosystem assessment of eutrophication in marine areas. The method measures the current cyanobacterial bloom situation (an average condition of recent 5 years) and compares this to the estimated target level for 'good environmental status' (GES). The current status is derived with an index combining indicative bloom event variables. As such we used seasonal information from the duration, volume and severity of algal blooms derived from earth observation (EO) data. The target level for GES was set by using a remote sensing based data set named Fraction with Cyanobacterial Accumulations (FCA; Kahru & Elmgren, 2014) covering years 1979-2014. Here a shift-detection algorithm for time series was applied to detect time-periods in the FCA data where the level of blooms remained low several consecutive years. The average conditions from these time periods were transformed into respective CyaBI target values to represent target level for GES. The indicator is shown to pass the three critical factors set for marine indicator development, namely it measures the current status accurately, the target setting can be scientifically proven and it can be connected to the ecosystem management goal. An advantage of the CyaBI method is that it's not restricted to the data used in the development work, but can be complemented, or fully applied, by using different types of data sources providing information on cyanobacterial accumulations.

  2. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    Science.gov (United States)

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  3. Close Link Between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Iame A. Guedes

    2018-03-01

    Full Text Available Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic

  4. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes

    International Nuclear Information System (INIS)

    Wang Zhicong; Li Dunhai; Qin Hongjie; Li Yinxia

    2012-01-01

    As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H 2 O 2 . We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. - Graphical abstract: The mechanism for the removal of cyanobacterial blooms by using H 2 O 2 , polymeric ferric sulfate (PFS) and lake sediment clay. Display Omitted Highlights: ► We combined algaecide and flocculants together to control cyanobacterial blooms. ► H 2 O 2 was used to irreversibly inactivate the photosynthesis of cyanobacteria. ► Lake sediment clay and polymeric ferric sulfate were used to deposit cyanobacteria. ► Removal rate was very high and re-suspension rate was very low under disturbance. ► The inactivated cyanobacteria could not serve as a seed source for the next bloom. - Inactivation by H 2 O 2 and sedimentation using polymeric ferric sulfate and sediment clay demonstrated high integrated efficiency in removal of cyanobacterial blooms.

  5. EzrA: a spectrin-like scaffold in the bacterial cell division machinery

    Directory of Open Access Journals (Sweden)

    Robert M Cleverley

    2015-01-01

    Full Text Available Much progress has been made in identifying the components of the divisome, the assembly of proteins that undertakes the vital process of cell division in bacteria. However, how the highly interdependent processes on either side of the membrane are coordinated during division is a major unresolved question. How is the degradation and synthesis of the cell wall on the outside of the cell coordinated with cytokinesis and membrane fission, which are driven from the inside of the cell by the tubulin homologue FtsZ? A possible key mediator of such coordination is the membrane protein EzrA, as it interacts both with FtsZ and the penicillin binding proteins (PBPs that synthesize peptidoglycan. Cleverley et al. [Nature Communications (2014 5, 5421] have recently solved the crystal structure of the cytoplasmic domain of B. subtilis EzrA, which points to an important scaffolding role for EzrA in the divisome. The structure resembles the eukaryotic, cytoskeletal spectrin proteins, which link actin filaments in the cytoskeleton and also connect the actin cytoskeleton to membrane-bound integrin proteins.

  6. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts.

    Directory of Open Access Journals (Sweden)

    Susanna López-Legentil

    Full Text Available Symbiotic interactions between ascidians (sea-squirts and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS and by examining symbiont morphology with transmission electron (TEM and confocal microscopy (CM. As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d and phycobiliproteins (PBPs within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

  7. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    >IMPORTANCECyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.

  8. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  9. A census of nuclear cyanobacterial recruits in the plant kingdom.

    Directory of Open Access Journals (Sweden)

    Szabolcs Makai

    Full Text Available The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.

  10. Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins.

    Science.gov (United States)

    Sieroslawska, Anna

    2013-11-01

    The aim of the study was to assess the mutagenic potential of extracts obtained from the cyanobacterial bloom-forming cells harvested from the water body located in Lubelszczyzna region of southeastern Poland. Three cyanotoxins, microcystin-LR, cylindrospermopsin and anatoxin-a were detected in some of the studied samples in different concentrations. All extracts were assessed for their potential mutagenic effects with the use of a short-term bacterial assay, the Ames test. Mutagenic activity was observed in four of all ten studied extracts, mainly toward the Salmonella typhimurium TA100 strain. On the contrary, the cyanotoxins in purified forms occurred not to be mutagenic or cytotoxic towards S. typhimurium TA98, TA100, TA1535, TA1537 and Escherichia coli WP2 uvrA and WP2 [pKM101] up to a concentration of 10 μg/ml. Similarly, there were no effects after bacteria exposure to the mixture of purified toxins. It has been also detected that after fractionation, genotoxic impact of previously mutagenic extracts was weaker and the highest potency in revertant induction possessed fractions containing very hydrophilic compounds. The results indicate, that while tested cyanotoxins were not directly responsible for the observed mutagenicity of the extracts analysed, some synergistic interactions with other unidentified cyanobacterial-derived factors involved in the process are possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division.

    Science.gov (United States)

    Riley, Bruce B; Sweet, Elly M; Heck, Rebecca; Evans, Adrienne; McFarland, Karen N; Warga, Rachel M; Kane, Donald A

    2010-03-01

    We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division. Copyright (c) 2010 Wiley-Liss, Inc.

  12. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.

    Science.gov (United States)

    Zhang, Bingchang; Li, Renhui; Xiao, Peng; Su, Yangui; Zhang, Yuanming

    2016-03-01

    Cyanobacteria are the primary colonizers and form a dominant component of soil photosynthetic communities in biological soil crusts. They are crucial in improving soil environments, namely accumulating soil carbon and nitrogen. Many classical studies have examined cyanobacterial diversity in desert crusts, but relatively few comprehensive molecular surveys have been conducted. We used 454 pyrosequencing of 16S rRNA to investigate cyanobacterial composition and distribution on regional scales in the Gurbantunggut Desert. The relationship between cyanobacterial distribution and environmental factors was also explored. A total of 24,973 cyanobacteria partial 16S rRNA gene sequences were obtained, and 507OTUs were selected, as most OTUs had very few reads. Among these, 347 OTU sequences were of cyanobacteria origin, belonging to Oscillatoriales, Nostocales, Chroococcales, and uncultured cyanobacterium clone, respectively. Microcoleus vaginatus, Chroococcidiopsis spp. and M. steenstrupii were the dominant species in most areas of the Gurbantunggut Desert. Compared with other desert, the Gurbantunggut Desert differed in the prominence of Chroococcidiopsis spp. and lack of Pseudanabaenales. Species composition and abundance of cyanobacteria also showed distinct variations. Soil texture, precipitation, and nutrients and salt levels affected cyanobacterial distribution. Increased precipitation was helpful in improving cyanobacterial diversity. A higher content of coarse sand promoted the colonization and growth of Oscillatoriales and some phylotypes of Chroococcales. The fine-textured soil with higher nutrients and salts supported more varied populations of cyanobacteria, namely some heterocystous cyanobacteria. The results suggested that the Gurbantunggut Desert was rich in cyanobacteria and that precipitation was a primary regulating factor for cyanobacterial composition on a regional scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The anhydrobiotic cyanobacterial cell

    International Nuclear Information System (INIS)

    Potts, M.

    1996-01-01

    The cyanobacterium Nostoc commune has been developed as the prokaryotic model for the anhydrobiotic cell and it provides the means to answer fundamental questions about desiccation tolerance. The anhydrobiotic cell is characterized by its singular lack of water — with contents as low as 0.02 g H 2 O g -1 dry weight. These levels are orders of magnitude lower than those found either in bacterial spores or in cells subjected to acute salt (osmotic) stress. Mechanisms that contribute to the desiccation tolerance of N. commune include the selective stabilization of anhydrous proteins, the secretion of water- and lipid-soluble UV-absorbing pigments, and the secretion of a complex glycan that immobilizes the cells, immobilizes water stress proteins and the UV-absorbing pigments, and which may confer the properties of a mechanical glass upon colonies. Rehydration of desiccated cells induces an instantaneous resumption of metabolic activities, including membrane transport and global lipid biosynthesis. These initial recoveries may not follow classical Arrhenius-based kinetics. The rehydrating cell exhibits a stringent, stepwise recovery of physiological capacities beginning with respiration, then photosynthesis and finally nitrogen fixation. Protein turnover, de novo protein synthesis and a rapid rise in the intracellular ATP pool accompany these recoveries. During the early stages of rehydration, the de novo transcription of one gene set (rpoC1C2) is achieved using an extant DNA-dependent RNA polymerase holoenzyme that remains stable in desiccated cells. These properties of desiccation-tolerant cyanobacleria, present in extant forms such as N. commune and Chroococcidiopsis spp., may have been utilized by the eoanhydrobiotes. However, it is the desiccation-tolerant cyanobacterium as a whole, and not some collection of disparate properties, that must be considered as the primary strategy for the achievement of desiccation tolerance. (author)

  14. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Science.gov (United States)

    Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T

    2016-05-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  15. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  16. The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement

    Directory of Open Access Journals (Sweden)

    Shelley Rogers

    2015-03-01

    Full Text Available Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures and with biomass enrichment (by centrifugation or GF/C filtration. After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

  17. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies

    OpenAIRE

    Ramos, Vitor; Morais, Jo?o; Vasconcelos, Vitor M.

    2017-01-01

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes st...

  19. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China.

    Science.gov (United States)

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Luo, Liancong; Ding, Yanqing; Bian, Geya

    2013-12-01

    Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.

  20. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

    Science.gov (United States)

    Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann

    2017-09-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

  1. Fatty Acid Composition of Six Freshwater Wild Cyanobacterial Species

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dor, I.; Prell, Aleš; Dembitský, V. M.

    2003-01-01

    Roč. 48, č. 1 (2003), s. 71-75 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacterial spcies * freshwater wild Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  2. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  3. From centriole biogenesis to cellular function: centrioles are essential for cell division at critical developmental stages.

    Science.gov (United States)

    Rodrigues-Martins, Ana; Riparbelli, Maria; Callaini, Giuliano; Glover, David M; Bettencourt-Dias, Monica

    2008-01-01

    Centrioles are essential for the formation of cilia, flagella and centrosome organization. Abnormalities in centrosome structure and number in many cancers can be associated with aberrant cell division and genomic instability.(1,2) Canonical centriole duplication occurs in coordination with the cell division cycle, such that a single new "daughter" centriole arises next to each "mother" centriole. If destroyed, or eliminated during development, centrioles can form de novo.(3-5) Here we discuss our recent data demonstrating a molecular pathway that operates in both de novo and canonical centriole biogenesis involving SAK/PLK4, SAS-6 and SAS-4.(6) We showed that centriole biogenesis is a self-assembly process locally triggered by high SAK/PLK4 activity that may or not be associated with an existing centriole. SAS-6 acts downstream of SAK/PLK4 to organize nine precentriolar units, which we call here enatosomes, fitting together laterally and longitudinally, specifying a tube-like centriole precursor.(7,8) The identification of mutants impaired in centriole biogenesis has permitted the study of the physiological consequences of their absence in the whole organism. In Drosophila, centrioles are not necessary for somatic cell divisions.(9,10) However, we show here that mitotic abnormalities arise in syncytial SAK/PLK4-derived mutant embryos resulting in lethality. Moreover male meiosis fails in both SAK/PLK4 and DSAS-4 mutant spermatids that have no centrioles. These results show diversity in the need for centrioles in cell division. This suggests that tissue specific constraints selected for different contributions of centrosome-independent and dependent mechanisms in spindle function. This heterogeneity should be taken into account both in reaching an understanding of spindle function and when designing drugs that target cell division.

  4. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  5. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    Science.gov (United States)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  6. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    Science.gov (United States)

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur

  7. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    Science.gov (United States)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  8. Cyanobacterial diversity and halotolerance in a variable hypersaline environment.

    Science.gov (United States)

    Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J

    2008-04-01

    The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.

  9. Nutrient control of cyanobacterial blooms in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Staal, M.J.; Villbrandt, M.

    1999-01-01

    Cyanobacterial blooms in the Baltic Sea were investigated with respect to growth Limitation and nitrogen fixation. The community was composed predominantly of Synechococcus spp., and large, heterocystous, nitrogen-fixing cyanobacteria (Aphanizomenon spp, and Nodularia spp.), that usually formed

  10. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803

    Science.gov (United States)

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander

    2015-01-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  11. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.

    OpenAIRE

    Baumann, P; Jackson, S P

    1996-01-01

    Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell d...

  12. Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel - effects of local conditions and disturbance.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Berkowicz, Simon M; Raanan, Hagai; Pade, Nadin; Felix-Henningsen, Peter; Kaplan, Aaron

    2016-11-02

    Biological soil crusts (BSCs) fulfill numerous ecological functions in arid and semiarid areas. Cyanobacteria are important BSC organisms, which are responsible for carbon fixation, N 2 -fixation, and binding of soil via extracellular polysaccharides. The cyanobacterial populations were characterized in different sampling plots established in three experimental stations along a rainfall gradient within NW Negev Desert, Israel. Cyanobacterial crust thickness and osmolyte accumulation therein decreased in plots with lower moisture. The cyanobacterial population structure also changed in different plots. We observed an increase of subsection III cyanobacteria such as Microcoleus spp. and Leptolyngbya sp. and a decreasing proportion of strains belonging to subsections I and IV in drier areas on the rainfall gradient. This population shift was also observed in the sampling plots, which were situated at various relief positions within the sand dune experimental sites. We also characterized the cyanobacterial populations within mechanically disturbed plots. After four years, they reached between 80 and 50% of the control populations in the northern-most and southern stations, respectively. Our results suggest that the cyanobacterial population is sensitive not only to macroscale factors but may also be subject to local climate variations and that four years were insufficient for complete recovery of the cyanobacterial population. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Attempt to stimulate cell division in Saccharomyces cerevisiae with weak ultraviolet light

    International Nuclear Information System (INIS)

    Quickenden, T.I.; Matich, A.J.; Pung, S.H.; Tilbury, R.N.

    1989-01-01

    Liquid cultures of the yeast Saccharomyces cerevisiae were irradiated with weak light having irradiances ranging from ca. 1 X 10(2) to 5 X 10(9) photons cm-2 s-1 and at wavelengths ranging from 200 to 700 nm. When particular care was taken to control the temperature of the cultures and the flow rate of oxygen, no evidence was obtained for stimulation of either yeast growth or division by the incident light. These results do not support the claims of early workers that very low intensity uv light can stimulate cell division in living organisms

  14. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation.

    Science.gov (United States)

    McGregor, Glenn B; Rasmussen, J Paul

    2008-01-01

    Cyanobacterial composition of microbial mats from an alkaline thermal spring issuing at 43-71 degrees C from tropical north-eastern Australia are described using a polyphasic approach. Eight genera and 10 species from three cyanobacterial orders were identified based on morphological characters. These represented taxa previously known as thermophilic from other continents. Ultrastructural analysis of the tower mats revealed two filamentous morphotypes contributed the majority of the biomass. Both types had ultrastructural characteristics of the family Pseudanabaenaceae. DNA extracts were made from sections of the tentaculiform towers and the microbial community analysed by 16S cyanobacteria-specific PCR and denaturing-gradient gel electrophoresis. Five significant bands were identified and sequenced. Two bands clustered closely with Oscillatoria amphigranulata isolated from New Zealand hot springs; one unique phylotype had only moderate similarity to a range of Leptolyngbya species; and one phylotype was closely related to a number of Geitlerinema species. Generally the approaches yielded complementary information, however the results suggest that species designation based on morphological and ultrastructural criteria alone often fails to recognize their true phylogenetic position. Conversely some molecular techniques may fail to detect rare taxa suggesting that the widest possible suite of techniques be applied when conducting analyses of cyanobacterial diversity of natural populations. This is the first polyphasic evaluation of thermophilic cyanobacterial communities from the Australian continent.

  15. Dido3 PHD Modulates Cell Differentiation and Division

    Directory of Open Access Journals (Sweden)

    Jovylyn Gatchalian

    2013-07-01

    Full Text Available Death Inducer Obliterator 3 (Dido3 is implicated in the maintenance of stem cell genomic stability and tumorigenesis. Here, we show that Dido3 regulates the expression of stemness genes in embryonic stem cells through its plant homeodomain (PHD finger. Binding of Dido3 PHD to histone H3K4me3 is disrupted by threonine phosphorylation that triggers Dido3 translocation from chromatin to the mitotic spindle. The crystal structure of Dido3 PHD in complex with H3K4me3 reveals an atypical aromatic-cage-like binding site that contains a histidine residue. Biochemical, structural, and mutational analyses of the binding mechanism identified the determinants of specificity and affinity and explained the inability of homologous PHF3 to bind H3K4me3. Together, our findings reveal a link between the transcriptional control in embryonic development and regulation of cell division.

  16. Cyanobacterial crusts linked to soil productivity under different grazing management practices in Northern Australia

    Science.gov (United States)

    Alchin, Bruce; Williams, Wendy

    2015-04-01

    In arid and semi-arid Australia, the central role of healthy soil ecosystems in broad-acre grazing lands may be attributed to the widespread presence of cyanobacterial crusts. In terms of soil nutrient cycling and stability their role is particularly crucial in a climate dominated by annual dry seasons and variable wet seasons. In this study, we aimed to measure the contribution of cyanobacteria to soil nutrient cycling under contrasting levels of disturbance associated with grazing management. Field sampling was carried out on six paired sites (twelve properties) located across an east-west 3,000 km transect that covered different rangeland types on grazing properties in northern Australia (Queensland, Northern Territory and Western Australia). At each location paired sites were established and two different management systems were assessed, cell-paddock rotations (25-400 ha) and continuous grazing (200-2,000 ha). Cyanobacterial soil crusts were recorded from all of the twelve sites and cyanobacteria with the capacity to fix nitrogen were found at ten of the twelve sites. The overall diversity of cyanobacteria varied from three to ten species under any type of grazing system. As field work was conducted in the dry season, it is likely that the diversity may be greater in the wet season than the initial data may indicate. The average cyanobacterial soil crust cover across soil surfaces, between grass tussocks, during the dry season was estimated to be 50.9% and, 42.6% in the early wet season. This reflected longer established crust cover (dry season) versus newly established crusts. There was a high level of variability in the biomass of cyanobacteria however; the grazing system did not have any marked effect on the biomass for any one rangeland type. The grazing system differences did not appear to significantly influence the diversity at any location except on a floodplain in the Pilbara (WA). Biological nitrogen fixation by cyanobacteria was recorded at all

  17. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    NARCIS (Netherlands)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García-García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and

  18. The presence of the cyanobacterial toxin microcystin in black band disease of corals.

    Science.gov (United States)

    Richardson, Laurie L; Sekar, Raju; Myers, Jamie L; Gantar, Miroslav; Voss, Joshua D; Kaczmarsky, Longin; Remily, Elizabeth R; Boyer, Gregory L; Zimba, Paul V

    2007-07-01

    Black band disease (BBD) is a migrating, cyanobacterial dominated, sulfide-rich microbial mat that moves across coral colonies lysing coral tissue. While it is known that BBD sulfate-reducing bacteria contribute to BBD pathogenicity by production of sulfide, additional mechanisms of toxicity may be involved. Using HPLC/MS, the cyanotoxin microcystin was detected in 22 field samples of BBD collected from five coral species on nine reefs of the wider Caribbean (Florida Keys and Bahamas). Two cyanobacterial cultures isolated from BBD, Geitlerinema and Leptolyngbya sp. contained microcystin based on HPLC/MS, with toxic activity confirmed using the protein phosphatase inhibition assay. The gene mcyA from the microcystin synthesis complex was detected in two field samples and from both BBD cyanobacterial cultures. Microcystin was not detected in six BBD samples from a different area of the Caribbean (St Croix, USVI) and the Philippines, suggesting regional specificity for BBD microcystin. This is the first report of the presence of microcystin in a coral disease.

  19. Production of anatoxin-a by cyanobacterial strains isolated from Portuguese fresh water systems.

    Science.gov (United States)

    Osswald, Joana; Rellán, Sandra; Gago-Martinez, Ana; Vasconcelos, Vítor

    2009-11-01

    The occurrence of anatoxin-a in several freshwater systems in Portugal and its production by Portuguese cyanobacterial strains, after cultivation in laboratory, were studied. Surface water samples from 9 water bodies, for recreational and human consumption usage, were surveyed for anatoxin-a presence and for obtaining cultures of pure cyanobacterial strains. Anatoxin-a analysis was performed by high performance liquid chromatography (HPLC) with fluorescence detection (FLD) followed by Mass Spectrometry (MS) confirmation. No anatoxin-a was detected in all the natural water samples (limit of detection (LOD) = 25 ng l(-1)) but among the 22 isolated cyanobacterial strains, 13 could produce anatoxin-a in laboratory conditions (LOD = 3 ng g(-1) dw). This proportion of anatoxin-a producing strains (59.1%) in laboratory is discussed considering the hypothesis that anatoxin-a is a more frequent metabolite in cyanobacteria than it was thought before and making its occurrence in Portuguese freshwaters almost certain. Therefore, health and ecological risks caused by anatoxin-a in Portugal, should be seriously considered.

  20. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  1. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis.

    Science.gov (United States)

    Zheng, Weiwen; Bergman, Birgitta; Chen, Bin; Zheng, Siping; Guan, Xiong; Xiang, Guan; Rasmussen, Ulla

    2009-01-01

    The nitrogen-fixing symbiosis between cyanobacteria and the water fern Azolla microphylla is, in contrast to other cyanobacteria-plant symbioses, the only one of a perpetual nature. The cyanobacterium is vertically transmitted between the plant generations, via vegetative fragmentation of the host or sexually within megasporocarps. In the latter process, subsets of the cyanobacterial population living endophytically in the Azolla leaves function as inocula for the new plant generations. Using electron microscopy and immunogold-labeling, the fate of the cyanobacterium during colonization and development of the megasporocarp was revealed. On entering the indusium chamber of the megasporocarps as small-celled motile cyanobacterial filaments (hormogonia), these differentiated into large thick-walled akinetes (spores) in a synchronized manner. This process was accompanied by cytoplasmic reorganizations and the release of numerous membrane vesicles, most of which contained DNA, and the formation of a highly structured biofilm. Taken together the data revealed complex adaptations in the cyanobacterium during its transition between plant generations.

  2. Patterns of oriented cell division during the steady-state morphogenesis of the body column in hydra.

    Science.gov (United States)

    Shimizu, H; Bode, P M; Bode, H R

    1995-12-01

    In an adult hydra, the tissue of the body column is in a dynamic state. The epithelial cells of both layers are constantly in the mitotic cycle. As the tissue expands, it is continuously displaced along the body axis in either an apical or basal direction, but not in a circumferential direction. Using a modified whole mount method we examined the orientation of mitotic spindles to determine what role the direction of cell division plays in axial displacement. Surprisingly, the direction of cell division was found to differ in the two epithelial layers. In the ectoderm it was somewhat biased in an axial direction. In the endoderm it was strongly biased in a circumferential direction. For both layers, the directional biases occurred throughout the length of the body column, with some regional variation in its extent. As buds developed into adults, the bias in each layer increased from an almost random distribution to the distinctly different orientations of the adult. Thus, to maintain the observed axial direction of tissue displacement, rearrangement of the epithelial cells of both layers must occur continuously in the adult as well as in developing animals. How the locomotory and contractile behavior of the muscle processes of the epithelial cells may effect changes in cell shape, and thereby influence the direction of cell division in each layer, is discussed.

  3. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  4. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  5. Rapid development of cyanobacterial crust in the field for combating desertification.

    Science.gov (United States)

    Park, Chan-Ho; Li, Xin Rong; Zhao, Yang; Jia, Rong Liang; Hur, Jae-Seoun

    2017-01-01

    Desertification is currently a major concern, and vast regions have already been devastated in the arid zones of many countries. Combined application of cyanobacteria with soil fixing chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcangeli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7), which consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition, superabsorbent polymer (SAP) was applied to the soil as a water-holding material and nutrient supplement. Application of cyanobacteria with superabsorbent polymer and TKS7 (CST) remarkably improved macro-aggregate stability against water and erodibility against wind after 12 months of inoculation when compared to the control soil. The mean weight diameter and threshold friction velocity of the CST treated soil were found to be 75% and 88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC), respectively, while these values were 68% and 73% of those of the N-BSC soil after a single treatment of cyanobacteria alone (CY). Interestingly, biological activities of CST were similar to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass, soil respiration, carbon fixation and effective quantum yield of CST treated soil were enhanced by 50-100% of the N-BSC, while those of control soil were negligible. Our results suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly develop cyanobacterial crust formation in the field within 12 months. The physical properties and biological activities of the inoculated cyanobacterial crust were stable during the study period. The novel method presented herein serves as another approach for combating desertification in arid regions.

  6. Rapid development of cyanobacterial crust in the field for combating desertification.

    Directory of Open Access Journals (Sweden)

    Chan-Ho Park

    Full Text Available Desertification is currently a major concern, and vast regions have already been devastated in the arid zones of many countries. Combined application of cyanobacteria with soil fixing chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcangeli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7, which consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition, superabsorbent polymer (SAP was applied to the soil as a water-holding material and nutrient supplement. Application of cyanobacteria with superabsorbent polymer and TKS7 (CST remarkably improved macro-aggregate stability against water and erodibility against wind after 12 months of inoculation when compared to the control soil. The mean weight diameter and threshold friction velocity of the CST treated soil were found to be 75% and 88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC, respectively, while these values were 68% and 73% of those of the N-BSC soil after a single treatment of cyanobacteria alone (CY. Interestingly, biological activities of CST were similar to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass, soil respiration, carbon fixation and effective quantum yield of CST treated soil were enhanced by 50-100% of the N-BSC, while those of control soil were negligible. Our results suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly develop cyanobacterial crust formation in the field within 12 months. The physical properties and biological activities of the inoculated cyanobacterial crust were stable during the study period. The novel method presented herein serves as another approach for combating desertification in arid regions.

  7. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, N., E-mail: touzet.nicolas@itsligo.ie [Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo (Ireland); McCarthy, D.; Gill, A.; Fleming, G.T.A. [Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway (Ireland)

    2016-05-15

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  8. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    International Nuclear Information System (INIS)

    Touzet, N.; McCarthy, D.; Gill, A.; Fleming, G.T.A.

    2016-01-01

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  9. Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells.

    Science.gov (United States)

    Shinin, Vasily; Gayraud-Morel, Barbara; Tajbakhsh, Shahragim

    2009-01-01

    Stem cells are present in all tissues and organs, and are crucial for normal regulated growth. How the pool size of stem cells and their progeny is regulated to establish the tissue prenatally, then maintain it throughout life, is a key question in biology and medicine. The ability to precisely locate stem and progenitors requires defining lineage progression from stem to differentiated cells, assessing the mode of cell expansion and self-renewal and identifying markers to assess the different cell states within the lineage. We have shown that during lineage progression from a quiescent adult muscle satellite cell to a differentiated myofibre, both symmetric and asymmetric divisions take place. Furthermore, we provide evidence that a sub-population of label retaining satellite cells co-segregate template DNA strands to one daughter cell. These findings provide a means of identifying presumed stem and progenitor cells within the lineage. In addition, asymmetric segregation of template DNA and the cytoplasmic protein Numb provides a landmark to define cell behaviour as self-renewal and differentiation decisions are being executed.

  10. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  11. Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms.

    Science.gov (United States)

    Trampe, Erik; Kühl, Michael

    2016-12-01

    Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent. © 2016 Phycological Society of America.

  12. A single phosphorus treatment doubles growth of cyanobacterial lichen transplants.

    Science.gov (United States)

    McCune, Bruce; Caldwell, Bruce A

    2009-02-01

    Lichens are reputedly slow growing and become unhealthy or die in response to supplements of the usual limiting resources, such as water and nitrogen. We found, however, that the tripartite cyanobacterial lichen Lobaria pulmonaria doubled in annual biomass growth after a single 20-minute immersion in a phosphorus solution (K2HPO4), as compared to controls receiving no supplemental phosphorus. This stimulation of cyanolichens by phosphorus has direct relevance to community and population ecology of lichens, including improving models of lichen performance in relation to air quality, improving forest management practices affecting old-growth associated cyanolichens, and understanding the distribution and abundance of cyanolichens on the landscape. Phosphorus may be as important a stimulant to cyanobacterial-rich lichen communities as it is to cyanobacteria in aquatic ecosystems.

  13. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts

    Science.gov (United States)

    Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L.

    2002-01-01

    Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield (Fv/Fm) were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to spring. The less-pigmented cyanobacterium Microcoleus vaginatus showed significant mortality when not in the presence of Nostoc spp. and Scytonema myochrous (Dillw.) Agardh. (both synthesizers of UV radiation-linked pigments) but had little or no mortality when these species were abundant. We hypothesize that the sunscreen pigments produced by Nostoc and Scytonema in the surface of crusts protect other, less-pigmented taxa. When fall and spring samples were compared, overall cyanobacterial frequency was lower in fall, while sunscreen pigment concentrations, chlorophyll a concentration, and Fv/Fm were higher in fall. The ratio of cyanobacterial frequency/chlorophyll a concentrations was 2-3 times lower in fall than spring. Because chlorophyll a is commonly used as a surrogate measure of soil cyanobacterial biomass, these results indicate that seasonality needs to be taken into consideration. In the fall sample, most pigments associated with UV radiation protection or repair were at their highest concentrations on pedicel tops and WSW microaspects, and at their lowest concentrations on ENE microaspects. We suggest that differential pigment concentrations between microaspects are induced by varying UV radiation dosage at the soil surface on these different

  14. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    Science.gov (United States)

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability.

    Science.gov (United States)

    Chien, An-Chun; Zareh, Shannon Kian Gharabiklou; Wang, Yan Mei; Levin, Petra Anne

    2012-11-01

    How cells co-ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient-rich conditions. In nutrient-rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient-poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient-dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co-ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high-affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP-glc-dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP•UgtP and UgtP•FtsZ, fine-tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size. © 2012 Blackwell Publishing Ltd.

  16. A general framework for modeling growth and division of mammalian cells.

    Science.gov (United States)

    Gauthier, John H; Pohl, Phillip I

    2011-01-06

    Modeling the cell-division cycle has been practiced for many years. As time has progressed, this work has gone from understanding the basic principles to addressing distinct biological problems, e.g., the nature of the restriction point, how checkpoints operate, the nonlinear dynamics of the cell cycle, the effect of localization, etc. Most models consist of coupled ordinary differential equations developed by the researchers, restricted to deal with the interactions of a limited number of molecules. In the future, cell-cycle modeling--and indeed all modeling of complex biologic processes--will increase in scope and detail. A framework for modeling complex cell-biologic processes is proposed here. The framework is based on two constructs: one describing the entire lifecycle of a molecule and the second describing the basic cellular machinery. Use of these constructs allows complex models to be built in a straightforward manner that fosters rigor and completeness. To demonstrate the framework, an example model of the mammalian cell cycle is presented that consists of several hundred differential equations of simple mass action kinetics. The model calculates energy usage, amino acid and nucleotide usage, membrane transport, RNA synthesis and destruction, and protein synthesis and destruction for 33 proteins to give an in-depth look at the cell cycle. The framework presented here addresses how to develop increasingly descriptive models of complex cell-biologic processes. The example model of cellular growth and division constructed with the framework demonstrates that large structured models can be created with the framework, and these models can generate non-trivial descriptions of cellular processes. Predictions from the example model include those at both the molecular level--e.g., Wee1 spontaneously reactivates--and at the system level--e.g., pathways for timing-critical processes must shut down redundant pathways. A future effort is to automatically estimate

  17. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture

    International Nuclear Information System (INIS)

    Chou, F.I.; Tan, S.T.

    1990-01-01

    Addition of Mn(II) at 2.5 microM or higher to stationary-phase cultures of Deinococcus radiodurans IR was found to trigger at least three rounds of cell division. This Mn(II)-induced cell division (Mn-CD) did not occur when the culture was in the exponential or death phase. The Mn-CD effect produced daughter cells proportionally reduced in size, pigmentation, and radioresistance but proportionally increased in activity and amount of the oxygen toxicity defense enzymes superoxide dismutase and catalase. In addition, the concentration of an Mn-CD-induced protein was found to remain high throughout the entire Mn-CD phase. It was also found that an untreated culture exhibited a growth curve characterized by a very rapid exponential-stationary transition and that cells which had just reached the early stationary phase were synchronous. Our results suggest the presence of an Mn(II)-sensitive mechanism for controlling cell division. The Mn-CD effect appears to be specific to the cation Mn(II) and the radioresistant bacteria, deinococci

  18. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  19. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  20. Division of labour in the yeast

    DEFF Research Database (Denmark)

    Wloch-Salamon, Dominika M.; Fisher, Roberta May; Regenberg, Birgitte

    2017-01-01

    . Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic...... variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic...... mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour....

  1. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  2. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

    Directory of Open Access Journals (Sweden)

    Pia H. Moisander

    2017-09-01

    Full Text Available Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2 fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1. Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

  3. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming

    2014-04-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge\\'s mild intercellular environment. 2014 Gao et al.

  4. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Bajic, Vladimir B.; Qian, Pei-Yuan

    2014-01-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge's mild intercellular environment. 2014 Gao et al.

  5. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  6. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  7. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition....

  8. Prophage induction and cell division in E. coli. Pt. 3

    International Nuclear Information System (INIS)

    George, J.; Castellazzi, M.; Buttin, G.

    1975-01-01

    In E. coli K12, cell filamentation promoted by tif is enhanced by the lon mutation; in contrast, prophage induction and repair of UV-irradiated phage lambda, also promoted by tif, are not affected by lon. From a tif lon double mutant, 'revertants' having recovered the ability to divide at 41 0 were isolated, among which most (95%) had also lost heir Lon filamentous phenotype after ultraviolet (UV) irradiation. From these 95% of revertants 94% are suppressed for the whole Tif phenotype, by additional mutations that render them deficient in DNA repair, as judged from their high UV sensitivity; some have been characterized as recA mutants. 1% have recovered a control on cell division at 41% or after UV irradiation by means of secondary mutations altering neither the other phenotypic properties of tif and lon, nor the repair and recombination ability of the cells: in particular, this class of 'revertants' remains thermoinducible upon lysogenisation; the mutations which specifically supress filamentation have been mapped at two loci, sfiA and sfiB, cotransducible respectively with pyrD and leu. In the remaining 5% of revertants that still exhibit an UV-induced filamentous growth, 3% can be tentatively classified as true tif + revertants; 2% behave as tif thermodependent revertants, showing suppression of Tif (and Lon) phenotype only at 41 0 : 2 recAts have been identified in this class. Non-lysogenic tif lon sfi and tif sfi strains remain viable during prolonged growth at 41 0 . Under these conditions, tif expresses mutator properties, which can be conveniently analyzed in this sfi background. The action of tif, lon and sfi mutations is tentatively interpreted on the basis of a negative control of cell division specifically associated with DNA repair. (orig.) [de

  9. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats.

    Science.gov (United States)

    Pessi, Igor Stelmach; Maalouf, Pedro De Carvalho; Laughinghouse, Haywood Dail; Baurain, Denis; Wilmotte, Annick

    2016-06-01

    The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High-throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline-dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub-Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub-Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity-dependent community structure at the phylotype level. © 2016 Phycological Society of America.

  10. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Microbial mutagenesis and cell division

    International Nuclear Information System (INIS)

    Adler, H.I.; Carrasco, A.; Nagel, R.; Gill, J.S.; Crow, W.D.

    1982-01-01

    Our group has been pursuing three related objectives. The first of these is a study of a mechanism by which the bacterium Escherichia coli repairs radiation-induced damage. In particular, we have observed that cells of certain strains of this bacterium, mutant at the lon locus, can be restored to viability after exposure to ionizing radiation if they are incubated in a nutrient medium to which a preparation of partially purified bacterial membranes has been added. These preparations stimulate division by producing chemical alterations in the nutrient medium and simultaneously creating a highly anaerobic environment. A second objective of the group was to make use of lon mutants for a rapid, sensitive, and inexpensive assay for chemical mutagens. Cells of lon mutants form long multinucleate filaments if exposed to a variety of agents that react with DNA. These filaments can readily be observed microscopically 2 to 3 h after exposure to the suspect agent. A third objective of our group has been to make use of the oxygen reducing properties of bacterial membrane preparations to stimulate the growth of anaerobic bacteria. Our general goal is to develop basic microbiological techniques that will facilitate the application of genetic manipulation methods to important anaerobic species. To this end, we have developed a method, based on the use of membranes, that allows us to grow liquid cultures of Clostridium acetobutylicum from very small inocula to high titers without elaborate chemical or physical methods for excluding oxygen. We have also developed efficient methods for plating this bacterium that do not require the use of anaerobic incubators

  12. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP.

    Science.gov (United States)

    Kohlmaier, Gregor; Loncarek, Jadranka; Meng, Xing; McEwen, Bruce F; Mogensen, Mette M; Spektor, Alexander; Dynlacht, Brian D; Khodjakov, Alexey; Gönczy, Pierre

    2009-06-23

    The centrosome is the principal microtubule organizing center (MTOC) of animal cells. Accurate centrosome duplication is fundamental for genome integrity and entails the formation of one procentriole next to each existing centriole, once per cell cycle. The procentriole then elongates to eventually reach the same size as the centriole. The mechanisms that govern elongation of the centriolar cylinder and their potential relevance for cell division are not known. Here, we show that the SAS-4-related protein CPAP is required for centrosome duplication in cycling human cells. Furthermore, we demonstrate that CPAP overexpression results in the formation of abnormally long centrioles. This also promotes formation of more than one procentriole in the vicinity of such overly long centrioles, eventually resulting in the presence of supernumerary MTOCs. This in turn leads to multipolar spindle assembly and cytokinesis defects. Overall, our findings suggest that centriole length must be carefully regulated to restrict procentriole number and thus ensure accurate cell division.

  13. A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.

    Science.gov (United States)

    Pazos, Manuel; Natale, Paolo; Vicente, Miguel

    2013-02-01

    In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.

  14. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  15. The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That Induces Filament Assembly and Condensation*

    OpenAIRE

    Andreu, José M.; Schaffner-Barbero, Claudia; Huecas, Sonia; Alonso, Dulce; Lopez-Rodriguez, María L.; Ruiz-Avila, Laura B.; Núñez-Ramírez, Rafael; Llorca, Oscar; Martín-Galiano, Antonio J.

    2010-01-01

    Cell division protein FtsZ can form single-stranded filaments with a cooperative behavior by self-switching assembly. Subsequent condensation and bending of FtsZ filaments are important for the formation and constriction of the cytokinetic ring. PC190723 is an effective bactericidal cell division inhibitor that targets FtsZ in the pathogen Staphylococcus aureus and Bacillus subtilis and does not affect Escherichia coli cells, which apparently binds to a zone equivalent to the binding site of ...

  16. Book review: Handbook of cyanobacterial monitoring and cyanotoxin analysis

    Science.gov (United States)

    Graham, Jennifer L.; Loftin, Keith A.

    2018-01-01

    Review of Meriluoto, Jussi, Lisa Spoof, and GeoffreyA. Codd [eds.]. 2017. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, ISBN 978‐1‐119‐06868‐6 (978‐1‐119‐06876‐1 eBook), DOI 10.1002/9781119068761.

  17. Insights from Cyanobacterial Genomes for the Development of Extraterrestrial Photoautotrophic Biotechnologies

    Science.gov (United States)

    Brown, I. I.; Bryant, D. A.; Tringe, S. G.; Malley, K.; Sosa, O.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-04-01

    Using genomic and metagenomic analysis, Fe-tolerant cyanobacterial species with a large and diverse set of stress-tolerant genes, were identified as prime candidates for in situ resource utilization in a biogeoreactor at extraterrestrial outposts.

  18. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.

    Science.gov (United States)

    Duan, Hongtao; Tao, Min; Loiselle, Steven Arthur; Zhao, Wei; Cao, Zhigang; Ma, Ronghua; Tang, Xiaoxian

    2017-10-01

    The occurrence and related risks from cyanobacterial blooms have increased world-wide over the past 40 years. Information on the abundance and distribution of cyanobacteria is fundamental to support risk assessment and management activities. In the present study, an approach based on Empirical Orthogonal Function (EOF) analysis was used to estimate the concentrations of chlorophyll a (Chla) and the cyanobacterial biomarker pigment phycocyanin (PC) using data from the MODerate resolution Imaging Spectroradiometer (MODIS) in Lake Chaohu (China's fifth largest freshwater lake). The approach was developed and tested using fourteen years (2000-2014) of MODIS images, which showed significant spatial and temporal variability of the PC:Chla ratio, an indicator of cyanobacterial dominance. The results had unbiased RMS uncertainties of MODIS Chla and PC products were then used for cyanobacterial risk mapping with a decision tree classification model. The resulting Water Quality Decision Matrix (WQDM) was designed to assist authorities in the identification of possible intake areas, as well as specific months when higher frequency monitoring and more intense water treatment would be required if the location of the present intake area remained the same. Remote sensing cyanobacterial risk mapping provides a new tool for reservoir and lake management programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Two Marine Cyanobacterial Aplysiatoxin Polyketides, Neo-debromoaplysiatoxin A and B, with K+ Channel Inhibition Activity.

    Science.gov (United States)

    Han, Bing-Nan; Liang, Ting-Ting; Keen, Lawrence Jordan; Fan, Ting-Ting; Zhang, Xiao-Dan; Xu, Lin; Zhao, Qi; Wang, Shu-Ping; Lin, Hou-Wen

    2018-02-02

    The isolation and structure elucidation of two cyanobacterial debromoaplysiatoxin (DAT) analogues, neo-debromoaplysiatoxin A (1) and neo-debromoaplysiatoxin B (2), were reported and found to possess 6/10/6 and 6/6/6 fused-ring systems, respectively, which are rarely seen among aplysiatoxins. Both compounds exhibited potent blocking activity against Kv1.5 with IC 50 values of 6.94 ± 0.26 and 0.30 ± 0.05 μM, respectively. These findings suggest the potential of aplysiatoxin analogues in modulating ionic channels and also provide links between the DAT target, protein kinase C, and cell regulation.

  20. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms.

    Directory of Open Access Journals (Sweden)

    Mélanie Gerphagnon

    Full Text Available Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids. However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes, spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by "mechanistic fragmentation" following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.

  1. Response of cyanobacterial mats to nutrient and salinity changes

    Czech Academy of Sciences Publication Activity Database

    Rejmánková, E.; Komárková, Jaroslava

    2005-01-01

    Roč. 83, č. 2 (2005), s. 87-107 ISSN 0304-3770. [INTECOL International Wetlands Conference /7./. Utrecht, 25.07.2004-30.7.2004] Grant - others:NSF(US) 0089211 Institutional research plan: CEZ:AV0Z60170517 Keywords : cyanobacterial mats * Belize * P-N impact Subject RIV: EH - Ecology, Behaviour Impact factor: 1.344, year: 2005

  2. Evolutionary transition towards permanent chloroplasts? - Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Pernille Møller Rusterholz

    Full Text Available Species within the marine toxic dinoflagellate genus Dinophysis are phagotrophic organisms that exploit chloroplasts (kleptochloroplasts from other protists to perform photosynthesis. Dinophysis spp. acquire the kleptochloroplasts from the ciliate Mesodinium rubrum, which in turn acquires the chloroplasts from a unique clade of cryptophytes. Dinophysis spp. digest the prey nuclei and all other cell organelles upon ingestion (except the kleptochloroplasts and they are therefore believed to constantly acquire new chloroplasts as the populations grow. Previous studies have, however, indicated that Dinophysis can keep the kleptochloroplasts active during long term starvation and are able to produce photosynthetic pigments when exposed to prey starvation. This indicates a considerable control over the kleptochloroplasts and the ability of Dinophysis to replicate its kleptochloroplasts was therefore re-investigated in detail in this study. The kleptochloroplasts of Dinophysis acuta and Dinophysis acuminata were analyzed using confocal microscopy and 3D bioimaging software during long term starvation experiments. The cell concentrations were monitored to confirm cell divisions and samples were withdrawn each time a doubling had occurred. The results show direct evidence of kleptochloroplastidic division and that the decreases in total kleptochloroplast volume, number of kleptochloroplasts and number of kleptochloroplast centers were not caused by dilution due to cell divisions. This is the first report of division of kleptochloroplasts in any protist without the associated prey nuclei. This indicates that Dinophysis spp. may be in a transitional phase towards possessing permanent chloroplasts, which thereby potentially makes it a key organism to understand the evolution of phototrophic protists.

  3. Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis.

    Science.gov (United States)

    Howery, Kristen E; Clemmer, Katy M; Şimşek, Emrah; Kim, Minsu; Rather, Philip N

    2015-08-01

    A key regulator of swarming in Proteus mirabilis is the Rcs phosphorelay, which represses flhDC, encoding the master flagellar regulator FlhD4C2. Mutants in rcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified, minC and minD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene, minE, was shown to be part of an operon with minCD. To examine minCDE regulation, the min promoter was identified by 5' rapid amplification of cDNA ends (5'-RACE), and both transcriptional lacZ fusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that the minCDE operon was RcsB activated. Purified RcsB was capable of directly binding the minC promoter region. To determine the role of RcsB-mediated activation of minCDE in swarmer cell differentiation, a polar minC mutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility. This work describes the regulation and role of the MinCDE cell division system in P. mirabilis swarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon in P. mirabilis. Taken together, the data presented in this study begin to address how P. mirabilis elongates upon contact with a solid surface. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.

    Directory of Open Access Journals (Sweden)

    Mattias K Ekvall

    Full Text Available Eutrophication has been one of the largest environmental problems in aquatic ecosystems during the past decades, leading to dense, and often toxic, cyanobacterial blooms. In a way to counteract these problems many lakes have been subject to restoration through biomanipulation. Here we combine 13 years of monitoring data with experimental assessment of grazing efficiency of a naturally occurring zooplankton community and a, from a human perspective, desired community of large Daphnia to assess the effects of an altered trophic cascade associated with biomanipulation. Lake monitoring data show that the relative proportion of Daphnia spp. grazers in June has increased following years of biomanipulation and that this increase coincides with a drop in cyanobacterial biomass and lowered microcystin concentrations compared to before the biomanipulation. In June, the proportion of Daphnia spp. (on a biomass basis went from around 3% in 2005 (the first year of biomanipulation up to around 58% in 2012. During months when the proportion of Daphnia spp. remained unchanged (July and August no effect on lower trophic levels was observed. Our field grazing experiment revealed that Daphnia were more efficient in controlling the standing biomass of cyanobacteria, as grazing by the natural zooplankton community never even compensated for the algal growth during the experiment and sometimes even promoted cyanobacterial growth. Furthermore, although the total cyanobacterial toxin levels remained unaffected by both grazer communities in the experimental study, the Daphnia dominated community promoted the transfer of toxins to the extracellular, dissolved phase, likely through feeding on cyanobacteria. Our results show that biomanipulation by fish removal is a useful tool for lake management, leading to a top-down mediated trophic cascade, through alterations in the grazer community, to reduced cyanobacterial biomass and lowered cyanobacterial toxin levels. This

  5. A specific role of iron in promoting meristematic cell division during adventitious root formation.

    Science.gov (United States)

    Hilo, Alexander; Shahinnia, Fahimeh; Druege, Uwe; Franken, Philipp; Melzer, Michael; Rutten, Twan; von Wirén, Nicolaus; Hajirezaei, Mohammad-Reza

    2017-07-10

    Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli

    NARCIS (Netherlands)

    Ploeg, van der R.; Verheul, J.; Vischer, N.O.E.; Alexeeva, S.V.; Hoogendoorn, E.; Postma, M.; Banzhaf, M.; Vollmer, W.; Blaauwen, den T.

    2013-01-01

    The rod-shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome,

  7. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    Science.gov (United States)

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Accumulation of cyanobacterial toxins in freshwater 'seafood' and its consequences for public health: A review

    International Nuclear Information System (INIS)

    Ibelings, Bas W.; Chorus, Ingrid

    2007-01-01

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in 'seafood' collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances. - Accumulation of cyanobacterial toxins in freshwater 'seafood'

  9. Colonic stem cell data are consistent with the immortal model of stem cell division under non-random strand segregation.

    Science.gov (United States)

    Walters, K

    2009-06-01

    Colonic stem cells are thought to reside towards the base of crypts of the colon, but their numbers and proliferation mechanisms are not well characterized. A defining property of stem cells is that they are able to divide asymmetrically, but it is not known whether they always divide asymmetrically (immortal model) or whether there are occasional symmetrical divisions (stochastic model). By measuring diversity of methylation patterns in colon crypt samples, a recent study found evidence in favour of the stochastic model, assuming random segregation of stem cell DNA strands during cell division. Here, the effect of preferential segregation of the template strand is considered to be consistent with the 'immortal strand hypothesis', and explore the effect on conclusions of previously published results. For a sample of crypts, it is shown how, under the immortal model, to calculate mean and variance of the number of unique methylation patterns allowing for non-random strand segregation and compare them with those observed. The calculated mean and variance are consistent with an immortal model that incorporates non-random strand segregation for a range of stem cell numbers and levels of preferential strand segregation. Allowing for preferential strand segregation considerably alters previously published conclusions relating to stem cell numbers and turnover mechanisms. Evidence in favour of the stochastic model may not be as strong as previously thought.

  10. Progesterone Receptor Membrane Component 1 (PGRMC1 in cell division: its role in bovine granulosa cells mitosis

    Directory of Open Access Journals (Sweden)

    Laura Terzaghi

    2015-07-01

    Full Text Available The present studies were aimed to assess Progesterone Receptor Membrane Component-1 (PGRMC1 role in regulating bovine granulosa cells (bGC mitosis. First, we performed immunofluorescence studies on in vitro cultured bGC collected from antral follicles, which showed that PGRMC1 localizes to the spindle apparatus in mitotic cells. Then, to evaluate PGRMC1 effect on cell proliferation we silenced its expression with RNA interference technique (RNAi. Quantitative RT-PCR and immunoblotting confirmed down-regulation of PGRMC1 expression, when compared to CTRL-RNAi treated bGC (p<0.05. After 72h of culture, PGRMC1 silencing determined a lower growth rate (p<0.05 and a higher percentage of cells arrested at G2/M phase as assessed by flowcytometry (p<0.05. Accordingly, live imaging studies revealed more aberrant mitosis and a delayed M-phase in PGRMC1-RNAi treated cells compared to CTRL-RNAi group (p<0.05. These data confirmed that PGRMC1 is directly involved in bGC mitosis and ongoing preliminary studies are aimed to elucidate its putative mechanisms of action. Since PGRMC1 is a membrane protein, we hypothesize its possible involvement in vesicular trafficking and endocytosis, which is in turn an important process to assure proper cell division. To assess this hypothesis, we have preliminarily conducted immunofluorescence and in situ proximity ligation assay experiments that showed PGRMC1 co-localization and direct interaction with clathrin. This is important since clathrin is an essential protein for both endosomes formation, and cell division acting directly on the spindle apparatus. Thus our studies set the stage for analysis aimed to further characterize PGRMC1’s mechanism of action in mitotic cell.

  11. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  12. Cell cycle related /sup 125/IUDR-induced-division delay

    International Nuclear Information System (INIS)

    Scheniderman, M.H.; Hofer, K.G.

    1987-01-01

    A series of experiments were run to determine if /sup 125/I-decays, in /sup 125/IUdR labeled DNA, specifically accumulated at 1, 3, 5, 7 and 9 hours after plating labeled mitotic cells caused a change in the rate or time of cell entry into mitosis. To accomplish this, a pool of labeled mitotic cells was selected in mitosis and plated in replicate flasks. /sup 125/I decays were accumulated in groups of cells by cooling (4 0 C) for 2 hours starting at the designated times. After rewarding, colcemid was added to arrest cells in mitosis. The rate of cell progression into mitosis for each cell cycle time of accumulation was determined by scoring the mitotic index of cells sampled as a function of time after addition of the colcemid. The results are summarized: (1) Decays from /sup 125/I in /sup 125/I(UdR) labeled DNA reduced the rate of cell progression into mitosis and delayed the time of initiation of mitosis. (2) The reduced rate of progression and the delayed time of initiation of mitosis were independent of the cell cycle time that /sup 125/I-decays were accumulated. (3) The reduced rate of progression after cell cycle accumulation of /sup 125/I decay was statistically indistinguishable from the corresponding controls. (4) The delayed initiation of mitosis after specific cell cycle accumulation of /sup 125/I- decays was greater than the corresponding control. The relationship of these data to DNA and non-DNA division delay target(s) is emphasized

  13. From HeLa cell division to infectious diarrhoea

    International Nuclear Information System (INIS)

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A.

    1990-01-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases [Na] and [Cl] increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular [Na]. Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references

  14. From HeLa cell division to infectious diarrhoea

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. (Univ. of Birmingham (England))

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  15. Translational Control of Cell Division by Elongator

    Directory of Open Access Journals (Sweden)

    Fanelie Bauer

    2012-05-01

    Full Text Available Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.

  16. Application of first order rate kinetics to explain changes in bloom toxicity—the importance of understanding cell toxin quotas

    Science.gov (United States)

    Orr, Philip T.; Willis, Anusuya; Burford, Michele A.

    2018-04-01

    Cyanobacteria are oxygenic photosynthetic Gram-negative bacteria that can form potentially toxic blooms in eutrophic and slow flowing aquatic ecosystems. Bloom toxicity varies spatially and temporally, but understanding the mechanisms that drive these changes remains largely a mystery. Changes in bloom toxicity may result from changes in intracellular toxin pool sizes of cyanotoxins with differing molecular toxicities, and/or from changes in the cell concentrations of toxic and non-toxic cyanobacterial species or strains within bloom populations. We show here how first-order rate kinetics at the cellular level can be used to explain how environmental conditions drive changes in bloom toxicity at the ecological level. First order rate constants can be calculated for changes in cell concentration (μ c: specific cell division rate) or the volumetric biomass concentration (μ g: specific growth rate) between short time intervals throughout the cell cycle. Similar first order rate constants can be calculated for changes in nett volumetric cyanotoxin concentration (μ tox: specific cyanotoxin production rate) over similar time intervals. How μ c (or μ g ) covaries with μ tox over the cell cycle shows conclusively when cyanotoxins are being produced and metabolised, and how the toxicity of cells change in response to environment stressors. When μ tox/μ c>1, cyanotoxin cell quotas increase and individual cells become more toxic because the nett cyanotoxin production rate is higher than the cell division rate. When μ tox/μ c=1, cell cyanotoxin quotas remains fixed because the nett cyanotoxin production rate matches the cell division rate. When μ tox/μ ccyanotoxin cell quota decreases because either the nett cyanotoxin production rate is lower than the cell division rate, or metabolic breakdown and/or secretion of cyanotoxins is occurring. These fundamental equations describe cyanotoxin metabolism dynamics at the cellular level and provide the necessary

  17. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.

    Science.gov (United States)

    Zhou, Yan-Li; Jiang, He-Long; Cai, Hai-Yuan

    2015-04-28

    Settlement of cyanobacterial bloom biomass (CBB) into sediments in eutrophic lakes often induced the occurrence of black water agglomerate and then water quality deterioration. This study investigated the effect of sediment microbial fuel cell (SMFC) on CBB removal in sediments and related water pollution. Sediment bulking and subsequent black water from decomposition of settled CBB happened without SMFC, but were not observed over 100-day experiments with SMFC employment. While CBB in sediments improved power production from SMFC, the removal efficiency of organic matters in CBB-amended sediments with SMFC was significantly lower than that without SMFC. Pyrosequencing analysis showed higher abundances of the fermentative Clostridium and acetoclastic methanogen in CBB-amended bulk sediments without SMFC than with SMFC at the end of experiments. Obviously, SMFC operation changed the microbial community in CBB-amended sediments, and delayed the CBB degradation against sediment bulking. Thus, SMFC could be potentially applied as pollution prevention in CBB-settled and sensitive zones in shallow lakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Advances in cyanobacterial polyhydroxyalkanoates production.

    Science.gov (United States)

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  20. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    Czech Academy of Sciences Publication Activity Database

    Tóth, T. N.; Chukhutsina, V.; Knoppová, Jana; Komenda, Josef; Kis, M.; Lenart, Z.; Garab, G.; Kovács, L.; Gombos, Z.; van Amerongen, H.

    2015-01-01

    Roč. 1847, č. 10 (2015), s. 1153-1165 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Carotenoid deficiency * Cyanobacterial photosynthesis * Phycobilisome Subject RIV: CE - Biochemistry Impact factor: 4.864, year: 2015

  1. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    Science.gov (United States)

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  2. Mechanical Regulation in Cell Division and in Neurotransmitter Release

    Science.gov (United States)

    Thiyagarajan, Sathish

    During their lifecycle, cells must produce forces which play important roles in several subcellular processes. Force-producing components are organized into macromolecular assemblies of proteins that are often dynamic, and are constructed or disassembled in response to various signals. The forces themselves may directly be involved in subcellular mechanics, or they may influence mechanosensing proteins either within or outside these structures. These proteins play different roles: they may ensure the stability of the force-producing structure, or they may send signals to a coupled process. The generation and sensing of subcellular forces is an active research topic, and this thesis focusses on the roles of these forces in two key areas: cell division and neurotransmitter release. The first part of the thesis deals with the effect of force on cell wall growth regulation during division in the fission yeast Schizosaccharomyces pombe, a cigar-shaped, unicellular organism. During cytokinesis, the last stage of cell division in which the cell physically divides into two, a tense cytokinetic ring anchored to the cellular membrane assembles and constricts, accompanied by the inward centripetal growth of new cell wall, called septum, in the wake of the inward-moving membrane. The contour of the septum hole maintains its circularity as it reduces in size--an indication of regulated growth. To characterize the cell wall growth process, we performed image analysis on contours of the leading edge of the septum obtained via fluorescence microscopy in the labs of our collaborators. We quantified the deviations from circularity using the edge roughness. The roughness was spatially correlated, suggestive of regulated growth. We hypothesized that the cell wall growers are mechanosensitive and respond to the force exerted by the ring. A mathematical model based on this hypothesis then showed that this leads to corrections of roughness in a curvature-dependent fashion. Thus, one of

  3. Role of cell division and self-propulsion in self-organization of 2D cell co-cultures

    Science.gov (United States)

    Das, Moumita; Dey, Supravat; Wu, Mingming; Ma, Minglin

    Self-organization of cells is a key process in developmental and cancer biology. The differential adhesion hypothesis (DAH), which assumes cells as equilibrium liquid droplets and relates the self-assembly of cells to differences in inter-cellular adhesiveness, has been very successful in explaining cellular organization during morphogenesis where neighboring cells have the same non-equilibrium properties (motility, proliferation rate). However, recently it has been experimentally shown that for a co-culture of two different cell types proliferating at different rates, the resulting spatial morphologies cannot be explained using the DAH alone. Motivated by this, we develop and study a two-dimensional model of a cell co-culture that includes cell division and self-propulsion in addition to cell-cell adhesion, and systemically study how cells with significantly different adhesion, motility, and proliferation rate dynamically organize themselves in a spatiotemporal and context-dependent manner. Our results may help to understand how differential equilibrium and non-equilibrium properties cooperate and compete leading to different morphologies during tumor development, with important consequences for invasion and metastasis

  4. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  6. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    Science.gov (United States)

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-06-15

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.

  7. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom.

    Science.gov (United States)

    Guo, Yunyan; Liu, Min; Liu, Lemian; Liu, Xuan; Chen, Huihuang; Yang, Jun

    2018-05-04

    In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom

  8. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Science.gov (United States)

    Williams, Wendy; Büdel, Burkhard; Williams, Stephen

    2018-04-01

    The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0-1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be ˜ 5.2 kg ha-1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018) provide important contributions to multifunctional microprocesses and soil fertility.

  9. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  10. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Science.gov (United States)

    Li, Shenghua; Brazhnik, Paul; Sobral, Bruno; Tyson, John J

    2009-08-01

    The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).

  11. Exposure of Human CD8+ T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization

    Directory of Open Access Journals (Sweden)

    Annette Fox

    2018-05-01

    Full Text Available Effector CD8+ T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8+ cells (Tc2 are detected in type-2 (T2 cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8+ T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8+ T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8+ naïve T cells (TN in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of TN in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes, and lowered expression of type-1 cytokines, Prf1, Gzmb, T-BET, and Prdm1. However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of TN in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28 and lymph-node homing receptors (CCR7 and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8+ central memory T cells (TCM were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8+ TN. In summary, while activation of TN in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and division

  12. THE MECHANISM OF 5-AMINOURACIL-INDUCED SYNCHRONY OF CELL DIVISION IN VI CIA FABA ROOT MERISTEMS

    Science.gov (United States)

    Prensky, Wolf; Smith, Harold H.

    1965-01-01

    Cessation of mitosis was brought about in Vicia faba roots incubated for 24 hours in the thymine analogue, 5-aminouracil. Recovery of mitotic activity began 8 hours after removal from 5-aminouracil and reached a peak at 15 hours. If colchicine was added 4 hours before the peak of mitoses, up to 80 per cent of all cells accumulated in mitotic division stages. By use of single and double labeling techniques, it was shown that synchrony of cell divisions resulted from depression in the rate of DNA synthesis by 5-aminouracil, which brought about an accumulation of cells in the S phase of the cell cycle. Treatment with 5-aminouracil may have also caused a delay in the rate of exit of cells from the G2 period. It appeared to have no effect on the duration of the G1 period. When roots were removed from 5-aminouracil, DNA synthesis resumed in all cells in the S phase. Although thymidine antagonized the effects of 5-aminouracil, an exogenous supply of it was not necessary for the resumption of DNA synthesis, as shown by incorporation studies with tritiated deoxycytidine. PMID:19866644

  13. Characterization of dependencies between growth and division in budding yeast.

    Science.gov (United States)

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  14. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade.

    Science.gov (United States)

    Ndlela, L L; Oberholster, P J; Van Wyk, J H; Cheng, P H

    2016-12-01

    Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa's delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12°C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the

  15. Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms

    Science.gov (United States)

    Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis

    2015-01-01

    Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510

  16. Exploring Middle School Students' Conceptions of the Relationship between Genetic Inheritance and Cell Division

    Science.gov (United States)

    Williams, Michelle; DeBarger, Angela Haydel; Montgomery, Beronda L.; Zhou, Xuechun; Tate, Erika

    2012-01-01

    This study examines students' understanding of the normative connections between key concepts of cell division, including both mitosis and meiosis, and underlying biological principles that are critical for an in-depth understanding of genetic inheritance. Using a structural equation modeling method, we examine middle school students'…

  17. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  18. The history of cyanobacterial blooms in the Baltic Sea.

    Science.gov (United States)

    Finni, T; Kononen, K; Olsonen, R; Wallström, K

    2001-08-01

    Long-term information on possible changes in cyanobacterial blooms in the Baltic Sea, formed mainly by Nodularia spumigena and Aphanizomenon sp., was sought in published records in historical (years 1887-1938) and modern (years 1974-1998) phytoplankton data sets. Old and new sampling methods and fixatives were tested to improve the comparison of data that had been collected and analyzed in different ways. A hundred years ago, plankton was mainly of interest as a source of fish food; eutrophication problems were only locally reported from the coast, mainly in southern haffs and the receiving waters of larger cities. There were few recordings of open-sea blooms before World War II. Abundances of Nodularia spumigena and Aphanizomenon sp. were low in the old material, and 137 summer samples from 1887-1938 showed no peak abundance. High abundances are common in the new material, and the range of the numbers of both taxa has increased markedly relative to the old material. Since the 1960s, cyanobacterial blooms have been common in the open sea in both the Baltic proper and the Gulf of Finland, indicating high availability of nutrients.

  19. An experimental and computational framework to build a dynamic protein atlas of human cell division

    OpenAIRE

    Kavur, Marina; Kavur, Marina; Kavur, Marina; Ellenberg, Jan; Peters, Jan-Michael; Ladurner, Rene; Martinic, Marina; Kueblbeck, Moritz; Nijmeijer, Bianca; Wachsmuth, Malte; Koch, Birgit; Walther, Nike; Politi, Antonio; Heriche, Jean-Karim; Hossain, M.

    2017-01-01

    Essential biological functions of human cells, such as division, require the tight coordination of the activity of hundreds of proteins in space and time. While live cell imaging is a powerful tool to study the distribution and dynamics of individual proteins after fluorescence tagging, it has not yet been used to map protein networks due to the lack of systematic and quantitative experimental and computational approaches. Using the cell and nuclear boundaries as landmarks, we generated a 4D ...

  20. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  1. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  2. Temperature effects explain continental scale distribution of cyanobacterial toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  3. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  4. Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD.

    Science.gov (United States)

    Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P

    2018-05-09

    Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.

  5. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Directory of Open Access Journals (Sweden)

    W. Williams

    2018-04-01

    Full Text Available The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0–1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be  ∼  5.2 kg ha−1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018 provide important contributions to multifunctional microprocesses and soil fertility.

  6. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  7. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.; Coluccio, Alison; Jensen, Sarah; Rydlizky, Katarina; Coffman, James A.

    2013-01-01

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  8. Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts

    Czech Academy of Sciences Publication Activity Database

    Kubečková, Klára; Johansen, J. R.; Warren, S. D.; Sparks, R.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 341-362 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research/15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : cyanobacteria * cyanobacterial amendments * desert soil Subject RIV: EF - Botanics

  9. Characterization of the cyanobacterial biocenosis of a freshwater reservoir in Italy

    Czech Academy of Sciences Publication Activity Database

    Mugnai, M. A.; Turicchia, S.; Margheri, M. C.; Sili, C.; Gugger, M.; Tedioli, G.; Komárek, Jiří; Ventura, S.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 403-419 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research /15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : freshwater reservoir * cyanobacterial diversity * morphology Subject RIV: EF - Botanics

  10. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    Science.gov (United States)

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  11. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    Science.gov (United States)

    Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.

    2016-10-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.

  12. Estimates of global cyanobacterial biomass and its distribution

    Science.gov (United States)

    Garcia-Pichel, Ferran; Belnap, Jayne; Neuer, Susanne; Schanz, Ferdinand

    2003-01-01

    We estimated global cyanobacterial biomass in the main reservoirs of cyanobacteria on Earth: marine and freshwater plankton, arid land soil crusts, and endoliths. Estimates were based on typical population density values as measured during our research, or as obtained from literature surveys, which were then coupled with data on global geographical area coverage. Among the marine plankton, the global biomass of Prochlorococcus reaches 120 × 1012 grams of carbon (g C), and that of Synechoccus some 43 × 1012 g C. This makes Prochlorococcus and Synechococcus, in that order, the most abundant cyanobacteria on Earth. Tropical marine blooms of Trichodesmium account for an additional 10 × 1012 g C worldwide. In terrestrial environments, the mass of cyanobacteria in arid land soil crusts is estimated to reach 54 × 1012 g C and that of arid land endolithic communities an additional 14 × 1012 g C. The global biomass of planktic cyanobacteria in lakes is estimated to be around 3 × 1012 g C. Our conservative estimates, which did not include some potentially significant biomass reservoirs such as polar and subarctic areas, topsoils in subhumid climates, and shallow marine and freshwater benthos, indicate that the total global cyanobacterial biomass is in the order of 3 × 1014 g C, surpassing a thousand million metric tons (1015 g) of wet biomass.

  13. Catchment-fed cyanobacterial blooms in brownified temperate lakes

    Science.gov (United States)

    Senar, O.; Creed, I. F.

    2017-12-01

    One of the most significant impacts of global atmospheric change is the alteration of hydrological regimes and the associated disruption of hydrological connectivity within watersheds. We show how changes in the frequency, magnitude, and duration of hydrological connectivity and disconnectivity is compromising the capacity of forest soils to store organic carbon, and increasing its export to both aquatic and atmospheric systems. Increases in dissolved organic matter (DOM) loads from forested landscapes to aquatic systems and the shift of the DOM pool to a more refractory mixture of organic compounds, a process known as brownification, alters the physical and chemical characteristics of lake environments. Furthermore, by characterizing the stages of brownification (from low to high concentrations of refractory DOM), we show a shift in the limiting factors for phytoplankton growth from macronutrients (nitrogen -N- and phosphorus -P) to micronutrients (iron -Fe) and light availability. This shift is driven by the low concentrations of DOM supplying N and P in early stages of brownification, to the strong Fe-binding capacity of refractory DOM in brownified lakes. As lakes undergo brownification, cyanobacteria adapted to scavenge Fe from DOM-Fe complexes have a competitive advantage leading to the formation of cyanobacterial blooms. Our findings provide evidence that brownification is a driving force leading to cyanobacterial blooms in lakes on forested landscapes, with expected cascading consequences to lake food webs.

  14. Cyanobacterial pigments as natural anti-hyperglycemic agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    Tonmoy Ghosh

    2016-08-01

    Full Text Available Traditional medicines for controlling postprandial hyperglycemia includes herbs and plant extracts as well as synthetic drugs like acarbose. Synthetic drug molecules frequently have side effects such as flatulence and diarrhea. Cyanobacterial pigments have excellent anti-oxidant and free radical scavenging properties. Thus, α-amylase and α-glucosidase inhibiting activities of purified pigments and crude extracts from three cyanobacterial species, Lyngbya, Microcoleus and Synechocystis sp., were investigated. Lyngbya extract had the highest total anti-oxidant activity (TAC before digestion (48.26 ± 0.04 µg AAE ml-1 while purified lycopene had the highest TAC after digestion (154.16 ± 0.96 µg AAE ml-1. The Microcoleus extract had the highest ABTS scavenging activity before digestion (98.23 ± 0.25 % while purified C-phycocyanin (C-PC had the highest ABTS scavenging after digestion (99.69 ±0.04 %. None of the digested or undigested extracts performed better than acarbose in inhibiting α-amylase but the digested Microcoleus extract was able to inhibit its activity by ~35 %. The purified pigments gave inhibitory activities ranging from ~ 8 – 16 %. The Lyngbya extract had the highest inhibitory activity against α-glucosidase both before and after digestion (62.22 ± 0.02 and 97.82 ± 0.03 % respectively. Purified C-phycoerythrin (C-PE, C-PC, lycopene and myxoxanthophyll could inhibit α-glucosidase in a range of ~83 – 96 %. Considering the potent inhibitory activities of purified pigments against both α-amylase and α-glucosidase, cyanobacterial pigments could be used as food additives for their dual advantage of anti-oxidant and anti-hyperglycemic activities.

  15. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis.

    Science.gov (United States)

    Sassine, Jad; Xu, Meizhu; Sidiq, Karzan R; Emmins, Robyn; Errington, Jeff; Daniel, Richard A

    2017-10-01

    Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β-lactams. © 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  16. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    Science.gov (United States)

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  17. Accumulation of cyanobacterial toxins in freshwater 'seafood' and its consequences for public health: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ibelings, Bas W. [Eawag, Swiss Federal Institute of Aquatic Sciences and Technology, Centre of Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047 Kastanienbaum (Switzerland); Netherlands Institute of Ecology, Centre for Limnology, Rijksstraatweg 6, 3631 AC, Nieuwersluis (Netherlands)], E-mail: bas.ibelings@eawag.ch; Chorus, Ingrid [German Federal Environment Agency, Corrensplatz 1, 14195 Berlin (Germany)], E-mail: ingrid.chorus@uba.de

    2007-11-15

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in 'seafood' collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances. - Accumulation of cyanobacterial toxins in freshwater 'seafood'.

  18. Review of 130 years of research on cyanobacteria in aquatic ecosystems in Serbia presented in a Serbian Cyanobacterial Database

    Directory of Open Access Journals (Sweden)

    Zorica Svirčev

    2017-05-01

    Full Text Available The presence of toxic cyanobacteria in aquatic ecosystems in the territory of the Republic of Serbia was surveyed over a period of several decades. Increasing attention is being paid to some negative consequences that may be caused by these microorganisms. Information from available literary sources regarding the distribution and frequency of cyanobacteria and their toxins over a period of 130 years, together with the effects on humans and wildlife in aquatic ecosystems, were gathered and incorporated into a Serbian Cyanobacterial Database created for the CYANOCOST Action. This database encompasses information on 65 aquatic ecosystems, including rivers, lakes, ponds, canals, irrigation reservoirs, reservoirs used for drinking water supply and reservoirs used for other purposes. Cyanobacterial blooms were found in almost 80% of the investigated aquatic ecosystems. The analysis of the research showed the presence of more than 70 species, including blooms of 24 species from 13 genera. Five species of cyanobacteria: Microcystis aeruginosa, Aphanizomenon flos-aquae, Planktothrix agardhii, Microcystis flos-aquae and Planktothrix rubescens frequently formed blooms in the investigated waterbodies and cyanotoxins were also detected in some of them, which had certain negative effects. Here, we present an overview of data contained in the Serbian Cyanobacterial Database, concerning cyanobacterial distribution, cyanotoxin production and associated biological effects in different types of water bodies from the Republic of Serbia. Also, recent important and major cases of cyanobacterial blooming in reservoirs used for drinking water supply: at Vrutci and Ćelije, the Aleksandrovac irrigation reservoir, the Ponjavica River and Lake Palić, including systematic research on the Lake Ludoš and few fishponds are further described. It can be concluded that cyanobacteria and cyanotoxins are omnipresent in different water bodies throughout the Republic of Serbia

  19. Robustness of the division symmetry in Escherichia coli and functional consequences of symmetry breaking

    International Nuclear Information System (INIS)

    Gupta, Abhishekh; Lloyd-Price, Jason; Oliveira, Samuel M D; Yli-Harja, Olli; Muthukrishnan, Anantha-Barathi; Ribeiro, Andre S

    2014-01-01

    The morphological symmetry of the division process of Escherichia coli is well-known. Recent studies verified that, in optimal growth conditions, most divisions are symmetric, although there are exceptions. We investigate whether such morphological asymmetries in division introduce functional asymmetries between sister cells, and assess the robustness of the symmetry in division to mild chemical stresses and sub-optimal temperatures. First, we show that the difference in size between daughter cells at birth is positively correlated to the difference between the numbers of fluorescent protein complexes inherited from the parent cell. Next, we show that the degree of symmetry in division observed in optimal conditions is robust to mild acidic shift and to mild oxidative stress, but not to sub-optimal temperatures, in that the variance of the difference between the sizes of sister cells at birth is minimized at 37 °C. This increased variance affects the functionality of the cells in that, at sub-optimal temperatures, larger/smaller cells arising from asymmetric divisions exhibit faster/slower division times than the mean population division time, respectively. On the other hand, cells dividing faster do not do so at the cost of morphological symmetry in division. Finally we show that at suboptimal temperatures the mean distance between the nucleoids increases, explaining the increased variance in division. We conclude that the functionality of E. coli cells is not immune to morphological asymmetries at birth, and that the effectiveness of the mechanism responsible for ensuring the symmetry in division weakens at sub-optimal temperatures. (paper)

  20. Observations of volatile organic compounds over the North Atlantic Ocean: relationships to dominant cyanobacterial populations.

    Science.gov (United States)

    Swarthout, R.; Rossell, R.; Sive, B. C.; Zhou, Y.; Reddy, C. M.; Valentine, D. L.; Cox, D.

    2017-12-01

    Marine cyanobacteria are abundant primary producers that can have a major influence on the oceanic biogeochemical cycles. In particular, the prominent cyanobacterial genera Prochlorococcus, Synechococcus, and Trichodesmium can impact the air-sea flux of volatile organic compounds (VOCs) including reactive compounds, such as isoprene, that control the oxidative capacity of the atmosphere and climate-relevant compounds, such as dimethyl sulfide. These groups of cyanobacteria have been estimated to increase in abundance by up to 29% by the end of the century as a result of rising sea surface temperatures and dissolved carbon dioxide concentrations. Given their current and predicted future abundance, understanding the role of different cyanobacterial populations on VOC emissions from the ocean is critical in understanding the future oxidative capacity of the remote atmosphere and climate feedback cycles. During the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics cruise aboard the R/V Neil Armstrong, 160 whole air canister samples were collected along a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24-hour stops at nine stations encompassing different nutrient regimes and cyanobacterial populations. At each station, a diurnal time series of samples was collected and higher frequency sampling was conducted during transits of the north wall. Canister samples were analyzed on a five-detector gas chromatography system for over 80 individual VOCs including biogenics, aromatics, chlorinated and brominated compounds, and sulfur containing compounds. Trends in reactive and climate-relevant VOCs will be discussed as a function of the predominant cyanobacterial populations at each sample location. These data provide increased information on the spatial and diurnal variability of trace gases associated with these globally important photosynthetic cyanobacteria.

  1. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  2. Cyanobacterial diversity in extreme environments in Baja California, Mexico: a polyphasic study.

    Science.gov (United States)

    López-Cortés, A; García-Pichel, F; Nübel, U; Vázquez-Juárez, R

    2001-12-01

    Cyanobacterial diversity from two geographical areas of Baja California Sur, Mexico, were studied: Bahia Concepcion, and Ensenada de Aripez. The sites included hypersaline ecosystems, sea bottom, hydrothermal springs, and a shrimp farm. In this report we describe four new morphotypes, two are marine epilithic from Bahia Concepcion, Dermocarpa sp. and Hyella sp. The third, Geitlerinema sp., occurs in thermal springs and in shrimp ponds, and the fourth, Tychonema sp., is from a shrimp pond. The partial sequences of the 16S rRNA genes and the phylogenetic relationship of four cyanobacterial strains (Synechococcus cf. elongatus, Leptolyngbya cf. thermalis, Leptolyngbya sp., and Geitlerinema sp.) are also presented. Polyphasic studies that include the combination of light microscopy, cultures and the comparative analysis of 16S rRNA gene sequences provide the most powerful approach currently available to establish the diversity of these oxygenic photosynthetic microorganisms in culture and in nature.

  3. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  4. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Feasibility study on production of a matrix reference material for cyanobacterial toxins.

    Science.gov (United States)

    Hollingdale, Christie; Thomas, Krista; Lewis, Nancy; Békri, Khalida; McCarron, Pearse; Quilliam, Michael A

    2015-07-01

    The worldwide increase in cyanobacterial contamination of freshwater lakes and rivers is of great concern as many cyanobacteria produce potent hepatotoxins and neurotoxins (cyanotoxins). Such toxins pose a threat to aquatic ecosystems, livestock, and drinking water supplies. In addition, dietary supplements prepared from cyanobacteria can pose a risk to consumers if they contain toxins. Analytical monitoring for toxins in the environment and in consumer products is essential for the protection of public health. Reference materials (RMs) are an essential tool for the development and validation of analytical methods and are necessary for ongoing quality control of monitoring operations. Since the availability of appropriate RMs for cyanotoxins has been very limited, the present study was undertaken to examine the feasibility of producing a cyanobacterial matrix RM containing various cyanotoxins. The first step was large-scale culturing of various cyanobacterial cultures that produce anatoxins, microcystins, and cylindrospermopsins. After harvesting, the biomass was lyophilized, blended, homogenized, milled, and bottled. The moisture content and physical characteristics were assessed in order to evaluate the effectiveness of the production process. Toxin levels were measured by liquid chromatography with tandem mass spectrometry and ultraviolet detection. The reference material was found to be homogeneous for toxin content. Stability studies showed no significant degradation of target toxins over a period of 310 days at temperatures up to +40 °C except for the anatoxin-a, which showed some degradation at +40 °C. These results show that a fit-for-purpose matrix RM for cyanotoxins can be prepared using the processes and techniques applied in this work.

  6. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    Science.gov (United States)

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  7. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA......Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain...... largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion...

  8. Organic matter degradation drives benthic cyanobacterial mat abundance on caribbean coral reefs

    NARCIS (Netherlands)

    Brocke, Hannah J.; Polerecky, Lubos; De Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised

  9. The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division.

    Science.gov (United States)

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2017-07-15

    Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.

  10. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    Science.gov (United States)

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  11. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  12. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  13. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  14. Correlations between cyanobacterial density and bacterial transformation to the viable but nonculturable (VBNC) state in four freshwater water bodies.

    Science.gov (United States)

    Chen, Huirong; Shen, Ju; Pan, Gaoshan; Liu, Jing; Li, Jiancheng; Hu, Zhangli

    2015-10-01

    Nutrient concentrations, phytoplankton density and community composition, and the viable but nonculturable (VBNC) state of heterotrophic bacteria were investigated in three connected reservoirs and a small isolated lake in South China to study the relationship between biotic and abiotic factors and the VBNC state in bacteria. Nutrient concentrations in the reservoirs increased in the direction of water flow, whereas Wenshan Lake was more eutrophic. Cyanobacterial blooms occurred in all four water bodies, with differing seasonal trends and dominant species. In Xili and Tiegang Reservoirs, the VBNC ratio (percent of VBNC state bacteria over total viable bacteria) was high for most of the year and negatively correlated with cyanobacterial density. Laboratory co-culture experiments were performed with four heterotrophic bacterial species isolated from Wenshan Lake (Escherichia coli, Klebsiella peneumoniae, Bacillus megaterium and Bacillus cereus) and the dominant cyanobacterial species (Microcystis aeruginosa). For the first three bacterial species, the presence of M. aeruginosa induced the VBNC state and the VBNC ratio was positively correlated with M. aeruginosa density. However, B. cereus inhibited M. aeruginosa growth. These results demonstrate that cyanobacteria could potentially regulate the transformation to the VBNC state of waterborne bacteria, and suggest a role for bacteria in cyanobacterial bloom initiation and termination.

  15. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA in Shark Fins

    Directory of Open Access Journals (Sweden)

    John Pablo

    2012-02-01

    Full Text Available Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.

  16. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  17. THE TRPV1 RECEPTOR: THE INTERAGENCY, INTERNATION SYMPOSIUM ON CYANOBACTERIAL HARMFUL ALGAL BLOOMS.

    Science.gov (United States)

    Background and Significance Evidence indicates that the frequency of occurrence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial and temporal extent in the US and worldwide. Cyanotoxins are among the most potent toxins known, causing death through ...

  18. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  19. Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy.

    Science.gov (United States)

    Xiong, Wei; Tang, Yiming; Shao, Changyu; Zhao, Yueqi; Jin, Biao; Huang, Tingting; Miao, Ya'nan; Shu, Lei; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2017-11-07

    Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO 2 complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms.

  20. Emerging health issues of cyanobacterial blooms

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    2012-12-01

    Full Text Available This paper describes emerging issue related to cyanobacterial dynamics and toxicity and human health risks. Data show an increasing cyanobacteria expansion and dominance in many environments. However there are still few information on the toxic species fitness, or on the effects of specific drivers on toxin production. Open research fields are related to new exposure scenario (cyanotoxins in water used for haemodialysis and in food supplements; to new patterns of co-exposure between cyanotoxins and algal toxins and/or anthropogenic chemicals; to dynamics affecting toxicity and production of different cyanotoxin variants under environmental stress; to the accumulation of cyanotoxins in the food web. In addition, many data gaps exist in the characterization of the toxicological profiles, especially about long term effects.

  1. Frequency of inhibitors of daphnid trypsin in the widely distributed cyanobacterial genus Planktothrix

    DEFF Research Database (Denmark)

    Rohrlack, T.; Christoffersen, K.; Friberg-Jensen, U.

    2005-01-01

    on the frequency of such compounds in the widely distributed cyanobacterial genus Planktothrix. Of the 89 Planktothrix strains analysed, about 70% produced inhibitors of daphnid trypsin. The strains tested positive represented three common Planktothrix species and were isolated from diverse localities...

  2. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins.

    Science.gov (United States)

    Testai, Emanuela; Scardala, Simona; Vichi, Susanna; Buratti, Franca M; Funari, Enzo

    2016-01-01

    Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.

  3. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.

    OpenAIRE

    Merel , Sylvain; Walker , David; Chicana , Ruth; Snyder , Shane; Baurès , Estelle; Thomas , Olivier

    2013-01-01

    International audience; Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surf...

  4. BioClips of symmetric and asymmetric cell division.

    Science.gov (United States)

    Lu, Fong-Mei; Eliceiri, Kevin W; White, John G

    2007-05-01

    Animations have long been used as tools to illustrate complex processes in such diverse fields as mechanical engineering, astronomy, bacteriology and physics. Animations in biology hold particular educational promise for depicting complex dynamic processes, such as photosynthesis, motility, viral replication and cellular respiration, which cannot be easily explained using static two-dimensional images. However, these animations have often been restrictive in scope, having been created for a specific classroom or research audience. In recent years, a new type of animation has emerged called the BioClip (http://www.bioclips.com) that strives to present science in an interactive multimedia format, which is, at once, informative and entertaining, by combining animations, text descriptions and music in one portable cross-platform document. In the present article, we illustrate the educational value of this new electronic resource by reviewing in depth two BioClips our group has created which describe the processes of symmetric and asymmetric cell division (http://www.wormclassroom.org/cb/bioclip).

  5. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    Science.gov (United States)

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  6. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism.

    Science.gov (United States)

    Steinhauser, Matthew L; Bailey, Andrew P; Senyo, Samuel E; Guillermier, Christelle; Perlstein, Todd S; Gould, Alex P; Lee, Richard T; Lechene, Claude P

    2012-01-15

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.

  7. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'.

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-11-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  8. (1) The Relationship of Protein Expression and Cell Division, (2) 3D Imaging of Cells Using Digital Holography, and (3) General Chemistry Enrollment at University of Michigan

    Science.gov (United States)

    Matz, Rebecca L.

    2012-01-01

    Chapter 1: The role of cell division in protein expression is important to understand in order to guide the development of better nonviral gene delivery materials that can transport DNA to the nucleus with high efficiency for a variety of cell types, particularly when nondividing cells are targets of gene therapy. We evaluated the relationship…

  9. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    Science.gov (United States)

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  10. Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Heizir F. De Castro

    2013-07-01

    Full Text Available Five non-toxin producing cyanobacterial isolates from the genera Synechococcus, Trichormus, Microcystis, Leptolyngbya and Chlorogloea were examined in terms of quantity and quality as lipid feedstock for biofuel production. Under the conditions used in this study, the biomass productivity ranged from 3.7 to 52.7 mg·L−1·day−1 in relation to dry biomass, while the lipid productivity varied between 0.8 and 14.2 mg·L−1·day−1. All cyanobacterial strains evaluated yielded lipids with similar fatty acid composition to those present in the seed oils successfully used for biodiesel synthesis. However, by combining biomass and lipid productivity parameters, the greatest potential was found for Synechococcus sp. PCC7942, M. aeruginosa NPCD-1 and Trichormus sp. CENA77. The chosen lipid samples were further characterized using Fourier Transform Infrared spectroscopy (FTIR, viscosity and thermogravimetry and used as lipid feedstock for biodiesel synthesis by heterogeneous catalysis.

  11. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies.

    Science.gov (United States)

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M

    2017-04-25

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.

  12. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae

    Czech Academy of Sciences Publication Activity Database

    Holečková, Nela; Doubravová, Linda; Massidda, Orietta; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2015-01-01

    Roč. 6, č. 1 (2015), s. 1-13 ISSN 2150-7511 R&D Projects: GA ČR GAP207/12/1568; GA ČR GAP302/12/0256 Institutional support: RVO:61388971 Keywords : cell division * septum placement * Streptococcus pneumoniae Subject RIV: EE - Microbiology, Virology Impact factor: 6.975, year: 2015

  13. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study

    Directory of Open Access Journals (Sweden)

    Vitor M. C. Ramos

    2017-06-01

    Full Text Available Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil, we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99% with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as “loner” sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

  14. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study.

    Science.gov (United States)

    Ramos, Vitor M C; Castelo-Branco, Raquel; Leão, Pedro N; Martins, Joana; Carvalhal-Gomes, Sinda; Sobrinho da Silva, Frederico; Mendonça Filho, João G; Vasconcelos, Vitor M

    2017-01-01

    Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

  15. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  16. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony

    DEFF Research Database (Denmark)

    Arnot, David E; Ronander, Elena; Bengtsson, Dominique C

    2011-01-01

    The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of paras......The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases...... of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard...

  17. SecA is required for membrane targeting of the cell division protein DivIVA in vivo

    Directory of Open Access Journals (Sweden)

    Sven eHalbedel

    2014-02-01

    Full Text Available The conserved protein DivIVA is involved in different morphogenetic processes in Gram-positive bacteria. In Bacillus subtilis, the protein localises to the cell division site and cell poles, and functions as a scaffold for proteins that regulate division site selection, and for proteins that are required for sporulation. To identify other proteins that bind to DivIVA, we performed an in vivo cross-linking experiment. A possible candidate that emerged was the secretion motor ATPase SecA. SecA mutants have been described that inhibit sporulation, and since DivIVA is necessary for sporulation, we examined the localisation of DivIVA in these mutants. Surprisingly, DivIVA was delocalised, suggesting that SecA is required for DivIVA targeting. To further corroborate this, we performed SecA depletion and inhibition experiments, which provided further indications that DivIVA localisation depends on SecA. Cell fractionation experiments showed that SecA is important for binding of DivIVA to the cell membrane. This was unexpected since DivIVA does not contain a signal sequence, and is able to bind to artificial lipid membranes in vitro without support of other proteins. SecA is required for protein secretion and membrane insertion, and therefore its role in DivIVA localisation is likely indirect. Possible alternative roles of SecA in DivIVA folding and/or targeting are discussed.

  18. Stochastic modeling of cell growth with symmetric or asymmetric division

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  19. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-01-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The ∼108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  1. Brief Report: Interleukin-17A-Dependent Asymmetric Stem Cell Divisions Are Increased in Human Psoriasis: A Mechanism Underlying Benign Hyperproliferation.

    Science.gov (United States)

    Charruyer, Alexandra; Fong, Stephen; Vitcov, Giselle G; Sklar, Samuel; Tabernik, Leah; Taneja, Monica; Caputo, Melinda; Soeung, Catherine; Yue, Lili; Uchida, Yoshi; Arron, Sarah T; Horton, Karen M; Foster, Robert D; Sano, Shigetoshi; North, Jeffrey P; Ghadially, Ruby

    2017-08-01

    The balance between asymmetric and symmetric stem cell (SC) divisions is key to tissue homeostasis, and dysregulation of this balance has been shown in cancers. We hypothesized that the balance between asymmetric cell divisions (ACDs) and symmetric cell divisions (SCDs) would be dysregulated in the benign hyperproliferation of psoriasis. We found that, while SCDs were increased in squamous cell carcinoma (SCC) (human and murine), ACDs were increased in the benign hyperproliferation of psoriasis (human and murine). Furthermore, while sonic hedgehog (linked to human cancer) and pifithrinα (p53 inhibitor) promoted SCDs, interleukin (IL)-1α and amphiregulin (associated with benign epidermal hyperproliferation) promoted ACDs. While there was dysregulation of the ACD:SCD ratio, no change in SC frequency was detected in epidermis from psoriasis patients, or in human keratinocytes treated with IL-1α or amphiregulin. We investigated the mechanism whereby immune alterations of psoriasis result in ACDs. IL17 inhibitors are effective new therapies for psoriasis. We found that IL17A increased ACDs in human keratinocytes. Additionally, studies in the imiquimod-induced psoriasis-like mouse model revealed that ACDs in psoriasis are IL17A-dependent. In summary, our studies suggest an association between benign hyperproliferation and increased ACDs. This work begins to elucidate the mechanisms by which immune alteration can induce keratinocyte hyperproliferation. Altogether, this work affirms that a finely tuned balance of ACDs and SCDs is important and that manipulating this balance may constitute an effective treatment strategy for hyperproliferative diseases. Stem Cells 2017;35:2001-2007. © 2017 AlphaMed Press.

  2. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    Science.gov (United States)

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms

    Czech Academy of Sciences Publication Activity Database

    Jančula, Daniel; Maršálek, Blahoslav

    2011-01-01

    Roč. 85, č. 9 (2011), s. 1415-1422 ISSN 0045-6535 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algicide * bloom management * cyanobacterial blooms Subject RIV: EF - Botanics Impact factor: 3.206, year: 2011

  4. Bioreactor Study Employing Bacteria with Enhanced Activity toward Cyanobacterial Toxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2014-08-01

    Full Text Available An important aim of white (grey biotechnology is bioremediation, where microbes are employed to remove unwanted chemicals. Microcystins (MCs and other cyanobacterial toxins are not industrial or agricultural pollutants; however, their occurrence as a consequence of human activity and water reservoir eutrophication is regarded as anthropogenic. Microbial degradation of microcystins is suggested as an alternative to chemical and physical methods of their elimination. This paper describes a possible technique of the practical application of the biodegradation process. The idea relies on the utilization of bacteria with a significantly enhanced MC-degradation ability (in comparison with wild strains. The cells of an Escherichia coli laboratory strain expressing microcystinase (MlrA responsible for the detoxification of MCs were immobilized in alginate beads. The degradation potency of the tested bioreactors was monitored by HPLC detection of linear microcystin LR (MC-LR as the MlrA degradation product. An open system based on a column filled with alginate-entrapped cells was shown to operate more efficiently than a closed system (alginate beads shaken in a glass container. The maximal degradation rate calculated per one liter of carrier was 219.9 µg h−1 of degraded MC-LR. A comparison of the efficiency of the described system with other biological and chemo-physical proposals suggests that this new idea presents several advantages and is worth investigating in future studies.

  5. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    Science.gov (United States)

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana

    Science.gov (United States)

    Mei, Yuzhen; Yang, Xiuling; Huang, Changjun

    2018-01-01

    The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689

  7. Insights into the Mechanisms of Chloroplast Division

    Directory of Open Access Journals (Sweden)

    Yamato Yoshida

    2018-03-01

    Full Text Available The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.

  8. Mode division multiplexing over 19-cell hollow-core photonic bandgap fibre by employing integrated mode multiplexer

    NARCIS (Netherlands)

    Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Jung, Y.; Wheeler, N.V.; Fokoua, E.N.; Baddela, N.; Petrovich, M.N.; Poletti, F.; Richardson, D.J.; Raz, O.; Waardt, de H.; Koonen, A.M.J.

    2014-01-01

    A photonic integrated mode coupler based on silicon-on-insulator is employed for mode division multiplexing (MDM) over a 193 m 19-cell hollow-core photonic bandgap fibre (HC-PBGF) with a -3 dB bandwidth >120 nm. Robust MDM transmissions using LP01 and LP11 modes, and two degenerate LP11 modes (LP11a

  9. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.

    Science.gov (United States)

    Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan

    2018-01-01

    The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cell division arrest by gamma-irradiation in photoautotrophic suspension culture of Euphorbia characias: maintenance of photosynthetic capacity and overaccumulation of sucrose

    International Nuclear Information System (INIS)

    Chagvardieff, P.; Dimon, B.; Carrier, P.; Triantaphylides, C.

    1989-01-01

    Gamma-irradiation (250 Gy) applied to photoautotrophic cell suspensions of Euphorbia characias L. in the exponential growth phase led to the arrest of cell division and to a subsequent overaccumulation of sucrose and dry matter. From the fourth day of culture, the chlorophyll content and gross photosynthesis were not depressed by gamma-treatment nor by sugar accumulation. In both cultures, no difference was observed between oxygen uptake in the light at CO 2 saturating concentration and in the dark, suggesting that no change in energy-dissipative reactions took place after irradiation. A slight increase in oxygen uptake in both light and dark was observed in irradiated cells during the first four days. However, in the absence of limiting factors, the photosynthetic capacities of the dividing and irradiated non-dividing photoautotrophic cells were identical but higher than that of the non-dividing cells in the stationary growth phase. This suggests that gamma-irradiation arrests cell division by a mechanism different to that occurring in stationary-phase cultures. This may be of value in investigating the metabolism of secondary products. (author)

  11. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  13. Nuclear and cell division in Bacillus subtilis. Antibiotic-induced morphological changes

    NARCIS (Netherlands)

    van Iterson, W.; Aten, J. A.

    1976-01-01

    Incubation of Bacillus subtilis after outgrowth from spores in the presence of four different antibiotics in two different concentrations, showed that septation can occur without termination of nuclear division. Septation is then only partially uncoupled from the normal division cycle. Observations

  14. Composition and Dynamics of the Nucleolinus, a Link between the Nucleolus and Cell Division Apparatus in Surf Clam (Spisula) Oocytes*

    Science.gov (United States)

    Alliegro, Mark C.; Hartson, Steven; Alliegro, Mary Anne

    2012-01-01

    The nucleolinus is a little-known cellular structure, discovered over 150 years ago (Agassiz, L. (1857) Contributions to the Natural History of the United States of America, First Monograph, Part IIL, Little, Brown and Co., Boston) and thought by some investigators in the late 19th to mid-20th century to function in the formation of the centrosomes or spindle. A role for the nucleolinus in formation of the cell division apparatus has recently been confirmed in oocytes of the surf clam, Spisula solidissima (Alliegro, M. A., Henry, J. J., and Alliegro, M. C. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 13718–13723). However, we know so little about the composition and dynamics of this compartment, it is difficult to construct mechanistic hypotheses or even to be sure that prior reports were describing analogous structures in the cells of mammals, amphibians, plants, and other organisms where it was observed. Surf clam oocytes are an attractive model to approach this problem because the nucleolinus is easily visible by light microscopy, making it accessible by laser microsurgery as well as isolation by common cell fractionation techniques. In this report, we analyze the macromolecular composition of isolated Spisula nucleolini and examine the relationship of this structure to the nucleolus and cell division apparatus. Analysis of nucleolinar RNA and protein revealed a set of molecules that overlaps with but is nevertheless distinct from the nucleolus. The proteins identified were primarily ones involved in nucleic acid metabolism and cell cycle regulation. Monoclonal antibodies generated against isolated nucleolini revealed centrosomal forerunners in the oocyte cytoplasm. Finally, induction of damage to the nucleolinus by laser microsurgery altered the trafficking of α- and γ-tubulin after fertilization. These observations strongly support a role for the nucleolinus in cell division and represent our first clues regarding mechanism. PMID:22219192

  15. Composition and dynamics of the nucleolinus, a link between the nucleolus and cell division apparatus in surf clam (Spisula) oocytes.

    Science.gov (United States)

    Alliegro, Mark C; Hartson, Steven; Alliegro, Mary Anne

    2012-02-24

    The nucleolinus is a little-known cellular structure, discovered over 150 years ago (Agassiz, L. (1857) Contributions to the Natural History of the United States of America, First Monograph, Part IIL, Little, Brown and Co., Boston) and thought by some investigators in the late 19th to mid-20th century to function in the formation of the centrosomes or spindle. A role for the nucleolinus in formation of the cell division apparatus has recently been confirmed in oocytes of the surf clam, Spisula solidissima (Alliegro, M. A., Henry, J. J., and Alliegro, M. C. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 13718-13723). However, we know so little about the composition and dynamics of this compartment, it is difficult to construct mechanistic hypotheses or even to be sure that prior reports were describing analogous structures in the cells of mammals, amphibians, plants, and other organisms where it was observed. Surf clam oocytes are an attractive model to approach this problem because the nucleolinus is easily visible by light microscopy, making it accessible by laser microsurgery as well as isolation by common cell fractionation techniques. In this report, we analyze the macromolecular composition of isolated Spisula nucleolini and examine the relationship of this structure to the nucleolus and cell division apparatus. Analysis of nucleolinar RNA and protein revealed a set of molecules that overlaps with but is nevertheless distinct from the nucleolus. The proteins identified were primarily ones involved in nucleic acid metabolism and cell cycle regulation. Monoclonal antibodies generated against isolated nucleolini revealed centrosomal forerunners in the oocyte cytoplasm. Finally, induction of damage to the nucleolinus by laser microsurgery altered the trafficking of α- and γ-tubulin after fertilization. These observations strongly support a role for the nucleolinus in cell division and represent our first clues regarding mechanism.

  16. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division

    International Nuclear Information System (INIS)

    Bala, Shashi; Kumar, Ajay; Soni, Shivani; Sinha, Sudha; Hanspal, Manjit

    2006-01-01

    Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division

  17. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

    Czech Academy of Sciences Publication Activity Database

    Bormans, M.; Maršálek, Blahoslav; Jančula, Daniel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 407-422 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : internal P loading * cyanobacterial control * physical in-lake restoration methods * adverse impacts on biota Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  18. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...

  19. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation

    Directory of Open Access Journals (Sweden)

    M. Sollai

    2017-12-01

    Full Text Available Heterocyst glycolipids (HGs are lipids exclusively produced by heterocystous dinitrogen-fixing cyanobacteria. The Baltic Sea is an ideal environment to study the distribution of HGs and test their potential as biomarkers because of its recurring summer phytoplankton blooms, dominated by a few heterocystous cyanobacterial species of the genera Nodularia and Aphanizomenon. A multi-core and a gravity core from the Gotland Basin were analyzed to determine the abundance and distribution of a suite of selected HGs at a high resolution to investigate the changes in past cyanobacterial communities during the Holocene. The HG distribution of the sediments deposited during the Modern Warm Period (MoWP was compared with those of cultivated heterocystous cyanobacteria, including those isolated from Baltic Sea waters, revealing high similarity. However, the abundance of HGs dropped substantially with depth, and this may be caused by either a decrease in the occurrence of the cyanobacterial blooms or diagenesis, resulting in partial destruction of the HGs. The record also shows that the HG distribution has remained stable since the Baltic turned into a brackish semi-enclosed basin ∼ 7200 cal. yr BP. This suggests that the heterocystous cyanobacterial species composition remained relatively stable as well. During the earlier freshwater phase of the Baltic (i.e., the Ancylus Lake and Yoldia Sea phases, the distribution of the HGs varied much more than in the subsequent brackish phase, and the absolute abundance of HGs was much lower than during the brackish phase. This suggests that the cyanobacterial community adjusted to the different environmental conditions in the basin. Our results confirm the potential of HGs as a specific biomarker of heterocystous cyanobacteria in paleo-environmental studies.

  20. Asymmetric T lymphocyte division in the initiation of adaptive immune responses.

    Science.gov (United States)

    Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L

    2007-03-23

    A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.

  1. Synthetic biology of cyanobacterial cell factories

    NARCIS (Netherlands)

    Angermayr, S.A.

    2014-01-01

    In the field of microbial biotechnology rational design approaches are employed for the generation of microbial cells with desired functions, such as the ability to produce precursor molecules for biofuels or bioplastics. In essence, that is the introduction of a (new) biosynthetic pathway into a

  2. Cyanobacterial Polyhydroxybutyrate (PHB: Screening, Optimization and Characterization.

    Directory of Open Access Journals (Sweden)

    Sabbir Ansari

    Full Text Available In modern life petroleum-based plastic has become indispensable due to its frequent use as an easily available and a low cost packaging and moulding material. However, its rapidly growing use is causing aquatic and terrestrial pollution. Under these circumstances, research and development for biodegradable plastic (bioplastics is inevitable. Polyhydroxybutyrate (PHB, a type of microbial polyester that accumulates as a carbon/energy storage material in various microorganisms can be a good alternative. In this study, 23 cyanobacterial strains (15 heterocystous and 8 non-heterocystous were screened for PHB production. The highest PHB (6.44% w/w of dry cells was detected in Nostoc muscorum NCCU- 442 and the lowest in Spirulina platensis NCCU-S5 (0.51% w/w of dry cells, whereas no PHB was found in Cylindrospermum sp., Oscillatoria sp. and Plectonema sp. Presence of PHB granules in Nostoc muscorum NCCU- 442 was confirmed microscopically with Sudan black B and Nile red A staining. Pretreatment of biomass with methanol: acetone: water: dimethylformamide [40: 40: 18: 2 (MAD-I] with 2 h magnetic bar stirring followed by 30 h continuous chloroform soxhlet extraction acted as optimal extraction conditions. Optimized physicochemical conditions viz. 7.5 pH, 30°C temperature, 10:14 h light:dark periods with 0.4% glucose (as additional carbon source, 1.0 gl-1 sodium chloride and phosphorus deficiency yielded 26.37% PHB on 7th day instead of 21st day. Using FTIR, 1H NMR and GC-MS, extracted polymer was identified as PHB. Thermal properties (melting temperature, decomposition temperatures etc. of the extracted polymer were determined by TGA and DSC. Further, the polymer showed good tensile strength and young's modulus with a low extension to break ratio comparable to petrochemical plastic. Biodegradability potential tested as weight loss percentage showed efficient degradation (24.58% of PHB within 60 days by mixed microbial culture in comparison to

  3. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization

    Science.gov (United States)

    Ansari, Sabbir; Fatma, Tasneem

    2016-01-01

    In modern life petroleum-based plastic has become indispensable due to its frequent use as an easily available and a low cost packaging and moulding material. However, its rapidly growing use is causing aquatic and terrestrial pollution. Under these circumstances, research and development for biodegradable plastic (bioplastics) is inevitable. Polyhydroxybutyrate (PHB), a type of microbial polyester that accumulates as a carbon/energy storage material in various microorganisms can be a good alternative. In this study, 23 cyanobacterial strains (15 heterocystous and 8 non-heterocystous) were screened for PHB production. The highest PHB (6.44% w/w of dry cells) was detected in Nostoc muscorum NCCU- 442 and the lowest in Spirulina platensis NCCU-S5 (0.51% w/w of dry cells), whereas no PHB was found in Cylindrospermum sp., Oscillatoria sp. and Plectonema sp. Presence of PHB granules in Nostoc muscorum NCCU- 442 was confirmed microscopically with Sudan black B and Nile red A staining. Pretreatment of biomass with methanol: acetone: water: dimethylformamide [40: 40: 18: 2 (MAD-I)] with 2 h magnetic bar stirring followed by 30 h continuous chloroform soxhlet extraction acted as optimal extraction conditions. Optimized physicochemical conditions viz. 7.5 pH, 30°C temperature, 10:14 h light:dark periods with 0.4% glucose (as additional carbon source), 1.0 gl-1 sodium chloride and phosphorus deficiency yielded 26.37% PHB on 7th day instead of 21st day. Using FTIR, 1H NMR and GC-MS, extracted polymer was identified as PHB. Thermal properties (melting temperature, decomposition temperatures etc.) of the extracted polymer were determined by TGA and DSC. Further, the polymer showed good tensile strength and young’s modulus with a low extension to break ratio comparable to petrochemical plastic. Biodegradability potential tested as weight loss percentage showed efficient degradation (24.58%) of PHB within 60 days by mixed microbial culture in comparison to petrochemical plastic

  4. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization.

    Science.gov (United States)

    Ansari, Sabbir; Fatma, Tasneem

    2016-01-01

    In modern life petroleum-based plastic has become indispensable due to its frequent use as an easily available and a low cost packaging and moulding material. However, its rapidly growing use is causing aquatic and terrestrial pollution. Under these circumstances, research and development for biodegradable plastic (bioplastics) is inevitable. Polyhydroxybutyrate (PHB), a type of microbial polyester that accumulates as a carbon/energy storage material in various microorganisms can be a good alternative. In this study, 23 cyanobacterial strains (15 heterocystous and 8 non-heterocystous) were screened for PHB production. The highest PHB (6.44% w/w of dry cells) was detected in Nostoc muscorum NCCU- 442 and the lowest in Spirulina platensis NCCU-S5 (0.51% w/w of dry cells), whereas no PHB was found in Cylindrospermum sp., Oscillatoria sp. and Plectonema sp. Presence of PHB granules in Nostoc muscorum NCCU- 442 was confirmed microscopically with Sudan black B and Nile red A staining. Pretreatment of biomass with methanol: acetone: water: dimethylformamide [40: 40: 18: 2 (MAD-I)] with 2 h magnetic bar stirring followed by 30 h continuous chloroform soxhlet extraction acted as optimal extraction conditions. Optimized physicochemical conditions viz. 7.5 pH, 30°C temperature, 10:14 h light:dark periods with 0.4% glucose (as additional carbon source), 1.0 gl-1 sodium chloride and phosphorus deficiency yielded 26.37% PHB on 7th day instead of 21st day. Using FTIR, 1H NMR and GC-MS, extracted polymer was identified as PHB. Thermal properties (melting temperature, decomposition temperatures etc.) of the extracted polymer were determined by TGA and DSC. Further, the polymer showed good tensile strength and young's modulus with a low extension to break ratio comparable to petrochemical plastic. Biodegradability potential tested as weight loss percentage showed efficient degradation (24.58%) of PHB within 60 days by mixed microbial culture in comparison to petrochemical plastic.

  5. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    2011-11-01

    Full Text Available The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286.

  6. Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics

    Directory of Open Access Journals (Sweden)

    Carlo Berg

    2018-02-01

    Full Text Available Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 μm in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.

  7. Experimental additions of aluminum sulfate and ammonium nitrate to in situ mesocosms to reduce cyanobacterial biovolume and microcystin concentration

    Science.gov (United States)

    Harris, Ted D.; Wilhelm, Frank M.; Graham, Jennifer L.; Loftin, Keith A.

    2014-01-01

    Recent studies suggest that nitrogen additions to increase the total nitrogen:total phosphorus (TN:TP) ratio may reduce cyanobacterial biovolume and microcystin concentration in reservoirs. In systems where TP is >100 μg/L, however, nitrogen additions to increase the TN:TP ratio could cause ammonia, nitrate, or nitrite toxicity to terrestrial and aquatic organisms. Reducing phosphorus via aluminum sulfate (alum) may be needed prior to nitrogen additions aimed at increasing the TN:TP ratio. We experimentally tested this sequential management approach in large in situ mesocosms (70.7 m3) to examine effects on cyanobacteria and microcystin concentration. Because alum removes nutrients and most seston from the water column, alum treatment reduced both TN and TP, leaving post-treatment TN:TP ratios similar to pre-treatment ratios. Cyanobacterial biovolume was reduced after alum addition, but the percent composition (i.e., relative) cyanobacterial abundance remained unchanged. A single ammonium nitrate (nitrogen) addition increased the TN:TP ratio 7-fold. After the TN:TP ratio was >50 (by weight), cyanobacterial biovolume and abundance were reduced, and chrysophyte and cryptophyte biovolume and abundance increased compared to the alum treatment. Microcystin was not detectable until the TN:TP ratio was <50. Although both treatments reduced cyanobacteria, only the nitrogen treatment seemed to stimulate energy flow from primary producers to zooplankton, which suggests that combining alum and nitrogen treatments may be a viable in-lake management strategy to reduce cyanobacteria and possibly microcystin concentrations in high-phosphorus systems. Additional studies are needed to define best management practices before combined alum and nitrogen additions are implemented as a reservoir management strategy.

  8. Division of Labor

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2014-01-01

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  9. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  10. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.

    Science.gov (United States)

    Groendahl, Sophie; Fink, Patrick

    2017-05-18

    Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.

  11. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  12. A Resistance-Nodulation-Cell Division Family Xenobiotic Efflux Pump in an Obligate Anaerobe, Porphyromonas gingivalis

    OpenAIRE

    Ikeda, Takeshi; Yoshimura, Fuminobu

    2002-01-01

    Porphyromonas gingivalis, a gram-negative obligate anaerobe, contains two homologs of an Escherichia coli resistance-nodulation-cell division-type multidrug exporter gene, acrB, in putative operons, together with homologs of membrane fusion protein gene acrA and outer membrane channel gene tolC. MIC determination and accumulation assays with mutants with disruptions of one or more genes showed that one cluster, named xepCAB, pumped out multiple agents including rifampin, puromycin, and ethidi...

  13. Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans.

    Science.gov (United States)

    De, Arpan; Liao, Sumei; Bitoun, Jacob P; Roth, Randy; Beatty, Wandy L; Wu, Hui; Wen, Zezhang T

    2017-09-01

    Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG , encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation ( P cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically ( P cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope. IMPORTANCE Streptococcus mutans , a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S. mutans , indicative of a significant role of RGP in cell division and biofilm formation in S. mutans These results are novel not only in S. mutans , but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr in S. mutans are involved in attachment of RGP and probably

  14. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen*

    Science.gov (United States)

    Sharma, Aditya K.; Arora, Divya; Singh, Lalit K.; Gangwal, Aakriti; Sajid, Andaleeb; Molle, Virginie; Singh, Yogendra; Nandicoori, Vinay Kumar

    2016-01-01

    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events. PMID:27758870

  15. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs

    Science.gov (United States)

    Schatten, Heide; Schatten, Gerald; Balczon, Ron; Simerly, Calvin; Mazia, Daniel

    1986-01-01

    The behavior of centrosomes during the stages of fertilization and cell division in mouse oocytes and in sea urchin eggs was monitored in an immunofluorescence microscope, using autoimmune centrosomal antiserum derived from a patient with scleroderma to label the centrosomal material. These observations showed that centrosomes reproduce during the interphase and aggregate and separate during cell mitosis. Results supported the hypothesis of Mazia (1984), who proposed that centrosomes are 'flexible bodies'. It was also found that, while the sea urchin centrosomes are paternally inherited as was initially proposed by Bovery (1904), the mouse centrosomes are of maternal origin.

  16. Division delay after low x-ray doses and treatment with cyclohexionide

    International Nuclear Information System (INIS)

    Schneiderman, M.H.; Braby, L.A.; Roesch, W.C.

    1977-01-01

    Radiation-induced division delay of Chinese hamster ovary cells located in G 2 , and in G 2 between the cycloheximide and x-ray transition points, was measured by the mitotic cell selection technique. The mitotic yield (number of mitotic cells after treatment expressed as a fraction of the control) decreased with increasing radiation dose (4.5 to 34 rad). However, either because some cells were not delayed or because delayed cells recovered rapidly, the mitotic yield did not fall to zero. When cycloheximide was combined with radiation to prevent repair of the radiation damage, only cells which were past the cycloheximide transition point and not delayed by the radiation were selected. The location of the transition points determined from the combined drug plus low-dose radiation (4.5 to 34 rad) experiments indicate a dose-dependent relationship, with more cells delayed as the dose was increased. In addition, the transition point for cells treated with cycloheximide plus 150 rad of x rays was closer to division than the 150 rad of x rays alone. These results are discussed in light of a recent model for radiation-induced division delay proposed by Dewey and Highfield

  17. Transfer of unstable chromosomal aberrations in human peripheral lymphocytes at cell division and their significance for the aberration frequency

    International Nuclear Information System (INIS)

    Stephan, G.; Chang Tsangpi.

    1986-04-01

    In 48 h cultures, the fraction of human lymphocytes in 2nd mitosis was found to be between 0 and 42.5% (mean value 8.7%). The X-ray exposure from irradiating with 2 Gy resulted in a cell cycle delay which varied from donor to donor. A loss of nearly 50% of dicentric chromosomes and acentric fragments from unstable chromosomes occurred at cell division, while centric rings were not impeded. When dicentric chromosomes, or acentric fragments are found in 2nd mitosis, they show a characteristic differential staining, which means that chromatides at cell division fall free and are replicated in daughter cells. When plotting dose effect curves of dicentric chromosomes, up to 20% of 2nd mitosis fractions have little influence on the aberration rate. This may be additionally verified as part of the 'biological dosimetry' in a person with 24% of 2nd mitosis. When the rates of dicentric chromosomes exclusively evaluated from 1st mitosis after irradiation with 2.0 Gy were related to the donors age, no age-dependent sensitivity to radiation could be observed. Aberration rates which deviate from person to person are comparable to the results achieved by conventional staining methods. (orig./MG) [de

  18. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  19. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  20. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes.

    Science.gov (United States)

    Xu, Qingping; Traag, Bjørn A; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Grzechnik, Slawomir K; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A Mieke; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A; van Wezel, Gilles P

    2009-09-11

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.

  1. Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes*

    Science.gov (United States)

    Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.

    2009-01-01

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners. PMID:19567872

  2. Effect of chronic fractionated low-dose gamma irradiation on division potential of human embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami; Suzuki, Masao; Suzuki, Keiji; Watanabe, Kimiko (Yokohama City Univ. (Japan). Faculty of Medicine); Nakano, Kazushiro

    1991-12-01

    We investigated the in vitro phenotypic transformation of human embryo (HE) cells that were repeatedly irradiated (7.5 cGy once a week) throughout their life-span. Irradiation was repeated until the cells had accumulated 195 cGy (equivalent to the 26th passage). Samples of cells were assayed for survival by colony formation, as well as for mutation at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus and for transformation by focus formation. The life-span (mean number of population doublings) of multiply irradiated cells with a total dose of 97.5 cGy was slightly but significantly prolonged over that of controls. After HE cells had accumulated 195 cGy, the maximum number of divisions increased to 130-160% of the number in non-irradiated control cells. Transformed foci were not observed until cells had accumulated 97.5 cGy, and then increased with the increasing accumulation of radiation. However, no cells showed immortality or expressed a malignant phenotype in vitro. (author).

  3. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  4. Comparative effects of 60Co γ-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study

    International Nuclear Information System (INIS)

    Collyn-d'Hooghe, M.; Hemon, D.; Gilet, R.

    1981-01-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60 Co γ-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60 Co γ-rays was 3.3 +- 0.2 while for helium ions it was 1.2 +- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60 Co γ-rays. (author)

  5. Comparative effects of 60Co gamma-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study.

    Science.gov (United States)

    Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P

    1981-03-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.

  6. The role of genes controlling the replication and cell division in the repair of radiation damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zhestyanikov, V D; Svetlova, M P; Tomilin, N V; Savel' eva, G E [AN SSSR, Leningrad. Inst. Tsitologii

    1975-01-01

    Mutations in genes controlling the replication (dnaEsup(ts), dnaBsup(ts), dnaGsup(ts) and cell division (lon) in Escherichia coli prevent the rejoining of the gamma radiation-induced single-strand breaks (dnaE in combination with polA1 mutation and dnaG at the restrictive temperature) and effective postreplication DNA repair in UV-irradiated cells (dnaG at the non-permissive temperature and lon mutation) and decrease the survival of UV- and gamma-irradiated bacteria.

  7. Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo

    International Nuclear Information System (INIS)

    Rubin, N.A.

    1980-01-01

    All mitotically active normal tissues in mammals investigated to date demonstrate a circadian rhythm in cell division. The murine corneal epithelium is a practical and advantageous tissue model for studying this phenomenon. In animals synchronized to a light-dark (LD) schedule, one sees predictably reproducible occurrences of peaks and troughs in the mitotic index (MI) within each 24-hour (h) period. One of the harmful effects of ionizing radiation on dividing cells is mitotic delay, reported to be a G 2 block in cells approaching mitosis. Affected cells are not killed but are inhibited from entering mitosis and are delayed for a span of time reported to be dose and cell cycle dependent. In the classical description of mitotic delay, MI of irradiated cells begins to drop in relation to the control, which is plotted as a straight line, uniform throughout the experiment. After the damage is repaired, delayed cells can enter mitosis along with other cells in the pool unaffected by the radiation, resulting in a MI higher than control levels. The span of delay and the occurrence of recovery are assumed to be constant for a given dose and tissue under similar experimental conditions. First described in asynchronously-dividing tissue culture cells, this concept is also extrapolated to the in vivo situation

  8. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  9. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    Energy Technology Data Exchange (ETDEWEB)

    Adnalizawati, A. Siti Noor; Nazlina, I. [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yaacob, W. A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  10. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    International Nuclear Information System (INIS)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-01-01

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division

  11. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    Science.gov (United States)

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  12. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.

    Directory of Open Access Journals (Sweden)

    Mo Chen

    Full Text Available Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC, we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.

  13. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  14. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  15. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  16. Is Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis?

    Directory of Open Access Journals (Sweden)

    Tanneke den Blaauwen

    2018-05-01

    Full Text Available The morphology of bacterial species shows a wealth of variation from star-shaped to spherical and rod- to spiral-shaped, to mention a few. Their mode of growth and division is also very diverse and flexible ranging from polar growth and lateral surface increase to midcell expansion and from perpendicular to longitudinal asymmetric division. Gammaproteobacterial rod-shaped species such as Escherchia coli divide perpendicularly and grow in length, whereas the genetically very similar rod-shaped symbiotic Thiosymbion divide longitudinally, and some species even divide asynchronously while growing in width. The ovococcal Streptococcus pneumoniae also lengthens and divides perpendicularly, yet it is genetically very different from E. coli. Are these differences as dramatic as is suggested by visual inspection, or can they all be achieved by subtle variation in the regulation of the same protein complexes that synthesize the cell envelope? Most bacteria rely on the cytoskeletal polymer FtsZ to organize cell division, but only a subset of species use the actin homolog MreB for length growth, although some of them are morphologically not that different. Poles are usually negative determinant for cell division. Curved cell poles can be inert or active with respect to peptidoglycan synthesis, can localize chemotaxis and other sensing proteins or other bacterial equipment, such as pili, depending on the species. But what is actually the definition of a pole? This review discusses the possible common denominators for growth and division of distinct and similar bacterial species.

  17. Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation

    NARCIS (Netherlands)

    Ekvall, M.K.; Faassen, E.J.; Gustafsson, J.A.; Lurling, M.; Hansson, L.

    2013-01-01

    Cyanobacterial blooms are a worldwide phenomenon in both marine and freshwater ecosystems and are predicted to occur more frequently due to global climate change. However, our future water resources may also simultaneously suffer from other environmental threats such as elevated amounts of humic

  18. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    Science.gov (United States)

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  19. Contribution of the Pmra Promoter to Expression of Genes in the Escherichia coli mra Cluster of Cell Envelope Biosynthesis and Cell Division Genes

    Science.gov (United States)

    Mengin-Lecreulx, Dominique; Ayala, Juan; Bouhss, Ahmed; van Heijenoort, Jean; Parquet, Claudine; Hara, Hiroshi

    1998-01-01

    Recently, a promoter for the essential gene ftsI, which encodes penicillin-binding protein 3 of Escherichia coli, was precisely localized 1.9 kb upstream from this gene, at the beginning of the mra cluster of cell division and cell envelope biosynthesis genes (H. Hara, S. Yasuda, K. Horiuchi, and J. T. Park, J. Bacteriol. 179:5802–5811, 1997). Disruption of this promoter (Pmra) on the chromosome and its replacement by the lac promoter (Pmra::Plac) led to isopropyl-β-d-thiogalactopyranoside (IPTG)-dependent cells that lysed in the absence of inducer, a defect which was complemented only when the whole region from Pmra to ftsW, the fifth gene downstream from ftsI, was provided in trans on a plasmid. In the present work, the levels of various proteins involved in peptidoglycan synthesis and cell division were precisely determined in cells in which Pmra::Plac promoter expression was repressed or fully induced. It was confirmed that the Pmra promoter is required for expression of the first nine genes of the mra cluster: mraZ (orfC), mraW (orfB), ftsL (mraR), ftsI, murE, murF, mraY, murD, and ftsW. Interestingly, three- to sixfold-decreased levels of MurG and MurC enzymes were observed in uninduced Pmra::Plac cells. This was correlated with an accumulation of the nucleotide precursors UDP–N-acetylglucosamine and UDP–N-acetylmuramic acid, substrates of these enzymes, and with a depletion of the pool of UDP–N-acetylmuramyl pentapeptide, resulting in decreased cell wall peptidoglycan synthesis. Moreover, the expression of ftsZ, the penultimate gene from this cluster, was significantly reduced when Pmra expression was repressed. It was concluded that the transcription of the genes located downstream from ftsW in the mra cluster, from murG to ftsZ, is also mainly (but not exclusively) dependent on the Pmra promoter. PMID:9721276

  20. Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya.

    Czech Academy of Sciences Publication Activity Database

    Čapková, K.; Hauer, T.; Řeháková, Klára; Doležal, J.

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : soil crusts * cyanobacterial diversity * Western Himalayas * high-elevation * desert * phosphorus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  1. Modulation of Biochemical and Haematological Indices of Silver Carp (Hypophthalmichthys molitrix Val.) Exposed to Toxic Cyanobacterial Water Bloom

    Czech Academy of Sciences Publication Activity Database

    Kopp, Radovan; Palíková, M.; Navrátil, S.; Kubíček, Z.; Ziková, A.; Mareš, J.

    2010-01-01

    Roč. 79, č. 1 (2010), s. 135-146 ISSN 0001-7213 Institutional research plan: CEZ:AV0Z60050516 Keywords : silver carp * cyanobacterial water blooms * haematological indices Subject RIV: EF - Botanics Impact factor: 0.534, year: 2010

  2. Thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, K; Some, H; Tamura, G

    1976-01-01

    Thermonsensitive division mutants were derived from Bacillus subtilis Marburg 168 thy trp/sub 2/ by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48/sup 0/C was investigated. In the absence of uracil, the mutant cells grew normally at 37/sup 0/C and stopped dividing after temperature shift to 48/sup 0/C resulting in filaments of two to four times length of normal rods. The total cell number after the temperature shift increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48/sup 0/C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48/sup 0/C or when uracil was introduced to the culture at 48/sup 0/C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48/sup 0/C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature. No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.

  3. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Míriam R. García

    2018-01-01

    Full Text Available A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  4. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  5. Radiation effects on cultured mouse embryos in relation to cell division cycle

    International Nuclear Information System (INIS)

    Domon, M.

    1982-01-01

    The authors have worked with mouse embryos in vitro asking first, what are the suitable parameters to define the radiation sensitivity of embryos, and second what is a major factor determining it. The LD 50 was adopted as a parameter of the radiation sensitivity of a population in a mouse embryo system in culture. The fertilized ova were collected into Whitten's medium at various times during the pronuclear and 2-cell stages of development. They were irradiated in chambers with X-rays at doses of 0 to 800 rads. After the embryos were cultured, a set of the lethal fractions for various X-ray doses were obtained. Regarding the radiation sensitivity variation of the embryos, the LD 50 varied from 100 to 200 rads during the pronuclear stage and from 100 to 600 rads during the 2-cell stage. The embryos during the pronuclear stage were most radioresistant at early G 2 phase, followed by an increase in the sensitivity. The embryos during the 2-cell stage were also most radioresistant at early G 2 phase and were more sensitive when they got close to either the first or the second cleavage division. Furthermore, it seems that the factor 6 of the large variation was due to the extremely long G 2 period, 14 hrs for the 2-cell embryos. That is, the pooled 2-cell embryos were in a relative sense well synchronized with G 2 phase. In contrast, the synchrony was poor during the pronuclear stage, which led to less variation of the LD 50 for the pronuclear embryos. It is concluded that during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo. (Namekawa, K.)

  6. Observations of the first postirradiation division of HeLa cells following continuous or fractionated exposure to γ rays

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The first postirradiation division of synchronized S3 HeLa cells was studied using both continuous and fractionated irradiation treatments. Synchronized HeLa cells continuously irradiated at a dose rate of 37 rad/hr eventually accumulate in mitosis. If the continuous irradiation is stopped before the cells enter G2 or even after they have progressed for a limited time into the G2 arrest that develops, very little subsequent accumulation of cells in mitosis occurs. If they progress for a longer time into the G2 arrest, then some mitotic accumulation does occur after the irradiation is stopped. When synchronized cells were allowed to progress through G1 and S before the irradiation was started, very little cell division occurred during subsequent continuous irradiation and extensive mitotic accumulation was observed. Thus, for continuous irradiation of HeLa cells, the dose received by a cell during G2 or a G2 delay apparently determines whether it will be able to divide if it reaches mitosis. Arguing against the notion that continuous irradiation during G2 is required to produce a mitotic accumulation was the result of an expriment which showed that a similar effect was obtained using two acute doses: the first to produce a G2 delay and the second to give the necessary dose during the delay. The first dose alone resulted in little mitotic accumulation. The time of delivery of the second dose during the G2 delay affected the extent of mitotic accumulation observed. There was less mitotic accumulation when second acute doses were given early or at intermediate times during the delay than when they were given late during the G2 delay. An accumulation of cells in mitosis was also observed by using a combination of low-dose-rate irradiation to induce a G2 delay, followed immediately by an acute dose of either 500 or 1000 rad. The low-dose-rate treatment alone resulted in no mitotic accumulation

  7. CDKL5 localizes at the centrosome and midbody and is required for faithful cell division.

    Science.gov (United States)

    Barbiero, Isabella; Valente, Davide; Chandola, Chetan; Magi, Fiorenza; Bergo, Anna; Monteonofrio, Laura; Tramarin, Marco; Fazzari, Maria; Soddu, Silvia; Landsberger, Nicoletta; Rinaldo, Cinzia; Kilstrup-Nielsen, Charlotte

    2017-07-24

    The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental disorders characterized by the early onset of seizures and intellectual disability. The CDKL5 protein is widely expressed in most tissues and cells with both nuclear and cytoplasmic localization. In post-mitotic neurons CDKL5 is mainly involved in dendritic arborization, axon outgrowth, and spine formation while in proliferating cells its function is still largely unknown. Here, we report that CDKL5 localizes at the centrosome and at the midbody in proliferating cells. Acute inactivation of CDKL5 by RNA interference (RNAi) leads to multipolar spindle formation, cytokinesis failure and centrosome accumulation. At the molecular level, we observed that, among the several midbody components we analyzed, midbodies of CDKL5-depleted cells were devoid of HIPK2 and its cytokinesis target, the extrachromosomal histone H2B phosphorylated at S14. Of relevance, expression of the phosphomimetic mutant H2B-S14D, which is capable of overcoming cytokinesis failure in HIPK2-defective cells, was sufficient to rescue spindle multipolarity in CDKL5-depleted cells. Taken together, these results highlight a hitherto unknown role of CDKL5 in regulating faithful cell division by guaranteeing proper HIPK2/H2B functions at the midbody.

  8. The cyanobacterial nitrogen fixation paradox in natural waters [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hans Paerl

    2017-03-01

    Full Text Available Nitrogen fixation, the enzymatic conversion of atmospheric N (N2 to ammonia (NH3, is a microbially mediated process by which “new” N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth biochemical process is inhibited by another. N2-fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the “oxygen problem”; however, none of these allows N2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of “new” N by N2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N2 to ammonia (NH3 is a  microbially-mediated process by which “new” nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce

  9. Utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Baker, B.S.; Carpenter, A.T.C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by uv and x rays. Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells

  10. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    International Nuclear Information System (INIS)

    Gerard, Claudia; Poullain, Virginie

    2005-01-01

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor

  11. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Claudia [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)]. E-mail: claudia.gerard@univ-rennes1.fr; Poullain, Virginie [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)

    2005-11-15

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor.

  12. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc

    International Nuclear Information System (INIS)

    Xu, Kui; Juneau, Philippe

    2016-01-01

    Highlights: • The response mechanisms to high zinc was investigated among three cyanobacterial strains grown under two light regimes. • Photosystem II is more sensitive to high zinc compared to Photosystem I in the three studied strains. • High light increases the zinc uptake in two Microcystis aeruginosa strains, but not in Synechocystis sp.. • Combined high light and high zinc treatment is lethal for the toxic M. aeruginosa CPCC299. - Abstract: Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate—suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (Φ_M) and operational (Φ'_M) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299 > CPCC632 > FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios decreased with high

  13. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kuroda

    Full Text Available Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC located in the left upper division.We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako's method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station.We enrolled 417 patients (237 men, 180 women. Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC.Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC.

  14. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation.

    Science.gov (United States)

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P

    2011-07-01

    'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.

  15. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  16. Effect of crude extracts from cyanobacterial blooms in Lake Texcoco (Mexico) on the population growth of Brachionus calyciflorus (Rotifera).

    Science.gov (United States)

    Barrios, Cesar Alejandro Zamora; Nandini, S; Sarma, S S S

    2017-12-01

    Unlike temperate regions, tropical ecosystems are characterized by high temperatures (>18 °C) all year, promoting blooms of cyanobacteria which often produce secondary metabolites toxic to zooplankton. Nabor Carillo and the Recreational Lake are part of the saline, Lake Texcoco, in Central Mexico which is filled nowadays with treated waste water. Both water bodies are dominated by Planktothrix, Anabaenopsis, Spirulina and Microcystis. In this study we present the concentration of microcystins in these waterbodies over an annual cycle. We also evaluated the chronic effects of cyanobacterial crude extracts from both lakes on two clones of the rotifer Brachionus calyciflorus, one from Nabor Carrillo Lake and the other from a canal in the shallow, Lake Xochimilco. The experiments on population growth were performed, beginning with 10 individuals per container for each of the following treatments: control (no crude extract), concentrated crude extract, and diluted crude extract (50:50) with moderately hard water and Chlorella vulgaris in a concentration of 0.5 × 10 6  cells ml -1 . The cyanotoxin levels were measured using an ELISA test and ranged between 0.20 and 2.4 μg L -1 in the lake water. The results showed that the Recreational Lake extracts were more toxic, killing the rotifers in less than five days. The r values ranged from -1.74 to 0.48 in the presence of the crude extracts and 0.16 and 0.24 in the controls. The results have been discussed with emphasis on the importance of conducting regular studies to test ecotoxicological impacts of cyanobacterial blooms in tropical waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    Science.gov (United States)

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  18. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles

    Science.gov (United States)

    Shih, Yu-Ling; Le, Trung; Rothfield, Lawrence

    2003-06-01

    The MinCDE proteins of Escherichia coli are required for proper placement of the division septum at midcell. The site selection process requires the rapid oscillatory redistribution of the proteins from pole to pole. We report that the three Min proteins are organized into extended membrane-associated coiled structures that wind around the cell between the two poles. The pole-to-pole oscillation of the proteins reflects oscillatory changes in their distribution within the coiled structure. We also report that the E. coli MreB protein, which is required for maintaining the rod shape of the cell, also forms extended coiled structures, which are similar to the MreB structures that have previously been reported in Bacillus subtilis. The MreB and MinCDE coiled arrays do not appear identical. The results suggest that at least two functionally distinct cytoskeletal-like elements are present in E. coli and that structures of this type can undergo dynamic changes that play important roles in division site placement and possibly other aspects of the life of the cell.

  19. Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats

    Directory of Open Access Journals (Sweden)

    Amanda K. Ford

    2018-02-01

    Full Text Available Benthic cyanobacteria have commonly been a small but integral component of coral reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an inherently oligotrophic environment. Though surveys may have previously neglected benthic cyanobacteria, or grouped them with more conspicuous benthic groups, emerging evidence strongly indicates that they are becoming increasingly prevalent on reefs worldwide. Some species can form mats comprised by a diverse microbial consortium which allows them to exist across a wide range of environmental conditions. This review evaluates the putative driving factors of increasing benthic cyanobacterial mats, including climate change, declining coastal water quality, iron input, and overexploitation of key consumer and ecosystem engineer species. Ongoing global environmental change can increase growth rates and toxin production of physiologically plastic benthic cyanobacterial mats, placing them at a considerable competitive advantage against reef-building corals. Once established, strong ecological feedbacks [e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC] reinforce reef degradation. The review also highlights previously overlooked implications of mat proliferation, which can extend beyond reef health and affect human health and welfare. Though identifying (opportunistic consumers of mats remains a priority, their perceived low palatability implies that herbivore management alone may be insufficient to control their proliferation and must be accompanied by local measures to improve water quality and watershed management.

  20. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India.

    Science.gov (United States)

    Singh, Y; Khattar, Jis; Singh, D P; Rahi, P; Gulati, A

    2014-09-01

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

  1. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern united states

    Science.gov (United States)

    Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C.

    2010-01-01

    The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (rs = 0.76, p cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  2. In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms.

    Directory of Open Access Journals (Sweden)

    Mireia Burnat

    Full Text Available BACKGROUND: Biomass has been studied as biomarker to evaluate the effect of heavy metals on microbial communities. Nevertheless, the most important methodological problem when working with natural and artificial microbial mats is the difficulty to evaluate changes produced on microorganism populations that are found in thicknesses of just a few mm depth. METHODOLOGY/PRINCIPAL FINDINGS: Here, we applied for first time a recently published new method based on confocal laser scanning microscopy and image-program analysis to determine in situ the effect of Pb and Cu stress in cyanobacterial populations. CONCLUSIONS/SIGNIFICANCE: The results showed that both in the microcosm polluted by Cu and by Pb, a drastic reduction in total biomass for cyanobacterial and Microcoleus sp. (the dominant filamentous cyanobacterium in microbial mats was detected within a week. According to the data presented in this report, this biomass inspection has a main advantage: besides total biomass, diversity, individual biomass of each population and their position can be analysed at microscale level. CLSM-IA could be a good method for analyzing changes in microbial biomass as a response to the addition of heavy metals and also to other kind of pollutants.

  3. In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms.

    Science.gov (United States)

    Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio

    2009-07-10

    Biomass has been studied as biomarker to evaluate the effect of heavy metals on microbial communities. Nevertheless, the most important methodological problem when working with natural and artificial microbial mats is the difficulty to evaluate changes produced on microorganism populations that are found in thicknesses of just a few mm depth. Here, we applied for first time a recently published new method based on confocal laser scanning microscopy and image-program analysis to determine in situ the effect of Pb and Cu stress in cyanobacterial populations. The results showed that both in the microcosm polluted by Cu and by Pb, a drastic reduction in total biomass for cyanobacterial and Microcoleus sp. (the dominant filamentous cyanobacterium in microbial mats) was detected within a week. According to the data presented in this report, this biomass inspection has a main advantage: besides total biomass, diversity, individual biomass of each population and their position can be analysed at microscale level. CLSM-IA could be a good method for analyzing changes in microbial biomass as a response to the addition of heavy metals and also to other kind of pollutants.

  4. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  5. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  6. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  7. Simulation of E. coli gene regulation including overlapping cell cycles, growth, division, time delays and noise.

    Directory of Open Access Journals (Sweden)

    Ruoyu Luo

    Full Text Available Due to the complexity of biological systems, simulation of biological networks is necessary but sometimes complicated. The classic stochastic simulation algorithm (SSA by Gillespie and its modified versions are widely used to simulate the stochastic dynamics of biochemical reaction systems. However, it has remained a challenge to implement accurate and efficient simulation algorithms for general reaction schemes in growing cells. Here, we present a modeling and simulation tool, called 'GeneCircuits', which is specifically developed to simulate gene-regulation in exponentially growing bacterial cells (such as E. coli with overlapping cell cycles. Our tool integrates three specific features of these cells that are not generally included in SSA tools: 1 the time delay between the regulation and synthesis of proteins that is due to transcription and translation processes; 2 cell cycle-dependent periodic changes of gene dosage; and 3 variations in the propensities of chemical reactions that have time-dependent reaction rates as a consequence of volume expansion and cell division. We give three biologically relevant examples to illustrate the use of our simulation tool in quantitative studies of systems biology and synthetic biology.

  8. Importance of climate change-physical forcing on the increase of cyanobacterial blooms in a small, stratified lake

    Directory of Open Access Journals (Sweden)

    Dolores Planas

    2016-03-01

    Full Text Available The community structure of planktonic cyanobacteria was studied in a dimictic lake in which recurrent summer surface algal blooms have frequently occurred since the beginning of this millennium. In eutrophic-hypereutrophic lakes, epilimnetic cyanobacterial blooms are promoted by increased ambient temperatures and water column thermal stability, which favour the vertical migration of buoyancy-regulating cyanobacteria. Here we propose that intensified external energy (wind that alters thermocline stability could explain the occurence of heavy blooms in the surface of lakes with low external nutrient loading. Specifically, we hypothesized that: i in small stratified lakes with low external nutrient sources, cyanobacterial growth primarily occurs near the lake bottom, where phosphorus is more abundant and light is available; ii we additionally hypothesized that turbulence induced by strong winds increases the amplitude and energy of metalimnetic internal waves and entrains meta- and hypolimnetic water,  rich in nutrients and cyanobacteria, into the epilimnion. The study was done in a small lake (45 Ha, maximum and mean depth 7.2 m and 4.3 m, respectively with mean epilimnetic dissolved phosphorus concentrations ≈ 4 μg L-1 and chlorophyll α ≈ 8 μg L-1.  Vertical temperature profiles during the open season were continuously registered using thermistors.  Weekly vertical profiles of light transmission, phytoplankton distribution and water chemistry were also taken. On one occasion, these variables were measured throughout a continuous 24 h cycle. Results demonstrated that summer cyanobacterial blooms were dominated by Plankthotrix spp., which began their cycle in late spring at the bottom of the lake, and grew to form dense metalimnetic biomass peaks. Time series analysis of isotherms and the Lake number indicated that internal metalimnetic waves (seiches were present through the summer. During the diel sampling cycle, we found that medium to

  9. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  10. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya

    Czech Academy of Sciences Publication Activity Database

    Čapková, Kateřina; Hauer, Tomáš; Řeháková, Klára; Doležal, Jiří

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : Soil crusts * Cyanobacterial diversity * Western Himalayas Subject RIV: EH - Ecology , Behaviour Impact factor: 3.630, year: 2016

  11. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  12. Unraveling the Primary Isomerization Dynamics in Cyanobacterial Phytochrome Cph1 with Multi-pulse Manipulations

    OpenAIRE

    Kim, Peter W.; Rockwell, Nathan C.; Freer, Lucy H.; Chang, Che-Wei; Martin, Shelley S.; Lagarias, J. Clark; Larsen, Delmar S.

    2013-01-01

    The ultrafast mechanisms underlying the initial photoisomerization (Pr → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-...

  13. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

    Directory of Open Access Journals (Sweden)

    Francisco eVelazquez Escobar

    2015-07-01

    Full Text Available Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerisation of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PB and a phycocyanobilin (PCB, respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e. Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr. The present study aimed to improve our understanding of the specific reactivity of various PB- and PCB-binding phytochromes in the Pfr state by analyzing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II forming a temperature-dependent conformational equilibrium. The two sub-states - found in all phytochromes studied, albeit with different relative contributions - differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10o compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.

  14. Induction of prophage lambda during the division cycle of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Worsey, M J; Wilkins, B M [Leicester Univ. (UK). Dept. of Genetics

    1975-01-01

    When synchronous populations of Escherichia coli B/r (lambda) were exposed to low doses of ultraviolet light, the yield of infective centres varied with cell age. The yield was highest if the lysogenic bacteria were irradiated at a time which coincides approximately with the termination of rounds of DNA replication and it was lowest when dividing cells were irradiated. No such variation was detected following either irradiation of excision-defective lysogenic cells or thermal induction of lambda cI857 prophage in irradiated bacteria. It is suggested that the variation reflects a relationship between prophage induction and inhibition of cell division. This hypothesis is supported by data showing that irradiation-promoted induction and curtailed division in E. coli K12 dnaA mutants which were dividing in the absence of DNA replication.

  15. Induction of prophage lambda during the division cycle of Escherichia coli

    International Nuclear Information System (INIS)

    Worsey, M.J.; Wilkins, B.M.

    1975-01-01

    When synchronous populations of Escherichia coli B/r (lambda) were exposed to low doses of ultraviolet light, the yield of infective centres varied with cell age. The yield was highest if the lysogenic bacteria were irradiated at a time which coincides approximately with the termination of rounds of DNA replication and it was lowest when dividing cells were irradiated. No such variation was detected following either irradiation of excision-defective lysogenic cells or thermal induction of lambda cI857 prophage in irradiated bacteria. It is suggested that the variation reflects a relationship between prophage induction and inhibition of cell division. This hypothesis is supported by data showing that irradiation-promoted induction and curtailed division in E. coli K12 dnaA mutants which were dividing in the absence of DNA replication. (orig.) [de

  16. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

    Science.gov (United States)

    Jogler, Christian; Waldmann, Jost; Huang, Xiaoluo; Jogler, Mareike; Glöckner, Frank Oliver; Mascher, Thorsten; Kolter, Roberto

    2012-12-01

    Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.

  17. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Directory of Open Access Journals (Sweden)

    Åsmund H Eikenes

    2015-01-01

    Full Text Available Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  18. Applied Chemistry Division progress report for the period 1990-1992

    International Nuclear Information System (INIS)

    Bharadwaj, S.R.; Kishore, K.; Ramshesh, V.

    1993-01-01

    The report covers the research and development (R and D) activities of the Applied Chemistry Division for the period January 1990 to December, 1992. R and D programmes of the Division are formulated to study the chemical aspects related to nuclear power plants and heavy water plants. The Division also gives consultancy to DAE units and outside agencies on water chemistry problems. The thrust areas of the Division's R and D programmes are : decontamination of nuclear facilities, metal water interaction of the materials used in PHT system, chemistry of soluble poisons, biofouling and its control in cooling water circuits, and treatment of cooling waters. Other major R and D activities are in the areas of: solid state reactions and high temperature thermodynamics, primary coolant water chemistry, speciation studies in metal amine systems, high temperature aqueous radiation chemistry. The Division was engaged in studies in novel areas such as dental implants, remote sealing of pipes in MS pipes, and cold fusion. The Division also designed and fabricated instruments like the Knudsen cell mass spectrometer, calorimeters and developed required software. All these R and D activities are reported in the form of individual summaries. A list of publications from the Division and a list of the staff members of the Division are given at the end of the report. (author). tabs., figs., appendices

  19. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  20. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division

    Directory of Open Access Journals (Sweden)

    Teruki Dainichi

    2016-05-01

    Full Text Available Asymmetric cell division (ACD in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1 plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3 is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC and partitioning defective (PAR 3 is impaired in PDK1 conditional knockout (CKO epidermis. PDK1CKO keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1CKO epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.

  1. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters

    CSIR Research Space (South Africa)

    Matthews, MW

    2012-09-01

    Full Text Available A novel algorithm is presented for detecting trophic status (chlorophyll-a), cyanobacterial blooms (cyano-blooms), surface scum and floating vegetation in coastal and inland waters using top-ofatmosphere data from the Medium Resolution Imaging...

  2. Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Montoya, H.; Komárek, J.

    2016-01-01

    Roč. 764, č. 1 (2016), s. 249-258 ISSN 0018-8158. [Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP) /17./. Kastoria, 14.09.2014-21.09.2014] Institutional support: RVO:60077344 Keywords : Titicaca Lake * cyanobacterial water bloom * Limnoraphis robusta * Diazocytes * Atitlán Lake * N:P ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.056, year: 2016

  3. Eco-epidemiological and pathological features of wildlife mortality events related to cyanobacterial bio-intoxication in the Kruger National Park, South Africa

    Directory of Open Access Journals (Sweden)

    Roy Bengis

    2016-10-01

    Full Text Available Over the past decade, several clustered, multispecies, wildlife mortality events occurred in the vicinity of two man-made earthen dams in the southern and south central regions of the Kruger National Park, South Africa. On field investigation, heavy cyanobacterial blooms were visible in these impoundments and analysis of water samples showed the dominance of Microcystis spp. (probably Microcystis aeruginosa. Macroscopic lesions seen at necropsy and histopathological lesions were compatible with a diagnosis of cyanobacterial intoxication. Laboratory toxicity tests and assays also confirmed the presence of significant levels of microcystins in water from the two dams. These outbreaks occurred during the dry autumn and early winter seasons when water levels in these dams were dropping, and a common feature was that all the affected dams were supporting a large number of hippopotamuses (Hippopotamus amphibius. It is hypothesised that hippopotamus’ urine and faeces, together with agitation of the sediments, significantly contributed to internal loading of phosphates and nitrogen – leading to eutrophication of the water in these impoundments and subsequent cyanobacterial blooms. A major cause for concern was that a number of white rhinoceros (Ceratotherium simum were amongst the victims of these bio-intoxication events. This publication discusses the eco-epidemiology and pathology of these clustered mortalities, as well as the management options considered and eventually used to address the problem.

  4. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  5. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division.

    Science.gov (United States)

    Varlet, Alice Anaïs; Fuchs, Margit; Luthold, Carole; Lambert, Herman; Landry, Jacques; Lavoie, Josée N

    2017-07-01

    The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.

  6. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Hilscherová, Klára; Babica, Pavel; Vršková, D.; Maršálek, Blahoslav; Bláha, Luděk

    2006-01-01

    Roč. 80, č. 4 (2006), s. 346-354 ISSN 0166-445X R&D Projects: GA MŠk 1M0571; GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : FETAX * Xenopus laevis * malformations * cyanobacterial fractions * biomarkers Subject RIV: EF - Botanics Impact factor: 2.964, year: 2006

  7. Kinetics of human lymphocyte division and chromosomal radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, N O; Bianchi, M S; Larramendy, M [Instituto Multidisciplinario de Biologia Celular, La Plata (Argentinia)

    1979-12-01

    Human blood from normal donors was irradiated with 200 R during the G/sub 0/ phase, and the X-ray sensitivity of early and late dividing lymphocytes in culture was expressed as percentage of induced dicentrics. Cells in first or subsequent divisions were individualized by BrdU-Giemsa techniques. Lymphocytes in the first division at 40, 44 and 72 h after the start of culture had a lower sensitivity to radiation than lymphocytes making their first division at 48, 52 and 56 h. It was observed that: (a) the combination of radiation followed by BrdU did not increase the clastoyenic action of X-rays, (b)X-rays in the dose and duration used in our cultures did not increase the frequency of SCEs, and (c) minor changes in culture conditions probably influenced the frequency of SCEs.

  8. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis

    Science.gov (United States)

    Kuroda, Hiroaki; Sakao, Yukinori; Mun, Mingyon; Uehara, Hirofumi; Nakao, Masayuki; Matsuura, Yousuke; Mizuno, Tetsuya; Sakakura, Noriaki; Motoi, Noriko; Ishikawa, Yuichi; Yatabe, Yasushi; Nakagawa, Ken; Okumura, Sakae

    2015-01-01

    Background Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC) located in the left upper division. Methods We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy) with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako’s method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station. Results We enrolled 417 patients (237 men, 180 women). Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC. Conclusions Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC. PMID:26247881

  9. Microcystin in cyanobacterial blooms in a Chilean lake.

    Science.gov (United States)

    Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Wirsing, B; Neumann, U; Weckesser, J

    1999-05-01

    Cyanobacterial blooms dominated by Microcystis sp. occurred in lake Rocuant ("marisma", near Concepción/Chile) in February 1995 and 1996. In the bloom samples collected in both years the hepatotoxin microcystin was detected by RP-HPLC in both samples and in the sample of 1995 also by a toxicity assay using primary rat hepatocytes. In the bloom of 1995, the microcystin content of the dry bloom biomass was determined to be 130 micrograms/g on the basis of the RP-HPLC peak area and 800 micrograms/g on the basis of the rat hepatotoxicity assay, respectively. In the bloom of 1996, RP-HPLC analysis revealed a microcystin content of 8.13 micrograms/g bloom material dry weight. In this year no hepatotoxicity was measured using a concentration range up to 0.8 mg (d. w.) of bloom material per ml in the rat hepatotoxicity assay. This is the first report on the detection of microcystins in Chilean water bodies.

  10. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  11. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  12. Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors

    Directory of Open Access Journals (Sweden)

    Delphine Delaunay

    2014-01-01

    Full Text Available The regulation of asymmetric cell division (ACD during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.

  13. Final Technical Report - Use of Systems Biology Approaches to Develop Advanced Biofuel-Synthesizing Cyanobacterial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Pakrasi, Himadri [Washington Univ., St. Louis, MO (United States)

    2016-09-01

    The overall objective of this project was to use a systems biology approach to evaluate the potentials of a number of cyanobacterial strains for photobiological production of advanced biofuels and/or their chemical precursors. Cyanobacteria are oxygen evolving photosynthetic prokaryotes. Among them, certain unicellular species such as Cyanothece can also fix N2, a process that is exquisitely sensitive to oxygen. To accommodate such incompatible processes in a single cell, Cyanothece produces oxygen during the day, and creates an O2-limited intracellular environment during the night to perform O2-sensitive processes such as N2-fixation. Thus, Cyanothece cells are natural bioreactors for the storage of captured solar energy with subsequent utilization at a different time during a diurnal cycle. Our studies include the identification of a novel, fast-growing, mixotrophic, transformable cyanobacterium. This strain has been sequenced and will be made available to the community. In addition, we have developed genome-scale models for a family of cyanobacteria to assess their metabolic repertoire. Furthermore, we developed a method for rapid construction of metabolic models using multiple annotation sources and a metabolic model of a related organism. This method will allow rapid annotation and screening of potential phenotypes based on the newly available genome sequences of many organisms.

  14. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kui; Juneau, Philippe, E-mail: juneau.philippe@uqam.ca

    2016-01-15

    Highlights: • The response mechanisms to high zinc was investigated among three cyanobacterial strains grown under two light regimes. • Photosystem II is more sensitive to high zinc compared to Photosystem I in the three studied strains. • High light increases the zinc uptake in two Microcystis aeruginosa strains, but not in Synechocystis sp.. • Combined high light and high zinc treatment is lethal for the toxic M. aeruginosa CPCC299. - Abstract: Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate—suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (Φ{sub M}) and operational (Φ'{sub M}) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299 > CPCC632 > FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios

  15. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.

    Science.gov (United States)

    Voorhies, A A; Biddanda, B A; Kendall, S T; Jain, S; Marcus, D N; Nold, S C; Sheldon, N D; Dick, G J

    2012-05-01

    Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.

  16. USE OF PHOSPHOLIPID FATTY ACID PROFILES TO STUDY THE MICROBIAL COMPOSITION OF CYANOBACTERIAL MATS IN CABO ROJO SOLAR SALTERNS

    Science.gov (United States)

    The Cabo Rojo Saltern located in the West side of Puerto Rico is a hypersaline ecosystem that consists of crystallizer ponds surrounded by series of cyanobacterial mats. Although this ecosystem harbors a variety of microorganisms not much is known about their identity and relati...

  17. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.

    Science.gov (United States)

    Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M

    2015-06-05

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.

  18. Effects of the Scientific Argumentation Based Learning Process on Teaching the Unit of Cell Division and Inheritance to Eighth Grade Students

    Science.gov (United States)

    Balci, Ceyda; Yenice, Nilgun

    2016-01-01

    The aim of this study is to analyse the effects of scientific argumentation based learning process on the eighth grade students' achievement in the unit of "cell division and inheritance". It also deals with the effects of this process on their comprehension about the nature of scientific knowledge, their willingness to take part in…

  19. How cells grow and divide: mathematical analysis confirms demand for the cell cycle

    International Nuclear Information System (INIS)

    Kwon, Hyun Woong; Choi, M Y

    2012-01-01

    Eukaryotes usually grow through cell growth and division. How cells grow and divide is essential to life because too small or too large cells cannot function well. In order for an organism to survive even under a condition where cell growth and division processes are independent of each other, cells must have an appropriate growth factor, growth rate and division rate. To determine them, we derive a time evolution equation for the size distribution of cells from the master equation describing changes in the cell size due to growth and in the total number of cells due to division. It is found that long-time behaviors of moments of the size distribution divide the parameter space, consisting of the growth factor and the ratio of the division rate to the growth rate, into infinitely many regions. Examining the properties of each region, we conclude that growth with a small growth factor may be disastrous; this demonstrates the demand for the cell cycle consisting of coordinated growth and division processes. (paper)

  20. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation.

    Science.gov (United States)

    Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav

    2017-05-01

    The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division.

    Directory of Open Access Journals (Sweden)

    Dagmar Zweytick

    Full Text Available Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill

  2. Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity.

    Science.gov (United States)

    Ayed, Saud H; Cloutier, Adam D; McLeod, Laura J; Foo, Alexander C Y; Damry, Adam M; Goto, Natalie K

    2017-12-15

    The bacterial cell division regulators MinD and MinE together with the division inhibitor MinC localize to the membrane in concentrated zones undergoing coordinated pole-to-pole oscillation to help ensure that the cytokinetic division septum forms only at the mid-cell position. This dynamic localization is driven by MinD-catalyzed ATP hydrolysis, stimulated by interactions with MinE's anti-MinCD domain. This domain is buried in the 6-β-stranded MinE "closed" structure, but is liberated for interactions with MinD, giving rise to a 4-β-stranded "open" structure through an unknown mechanism. Here we show that MinE-membrane interactions induce a structural change into a state resembling the open conformation. However, MinE mutants lacking the MinE membrane-targeting sequence stimulated higher ATP hydrolysis rates than the full-length protein, indicating that binding to MinD is sufficient to trigger this conformational transition in MinE. In contrast, conformational change between the open and closed states did not affect stimulation of ATP hydrolysis rates in the absence of membrane binding, although the MinD-binding residue Ile-25 is critical for this conformational transition. We therefore propose an updated model where MinE is brought to the membrane through interactions with MinD. After stimulation of ATP hydrolysis, MinE remains bound to the membrane in a state that does not catalyze additional rounds of ATP hydrolysis. Although the molecular basis for this inhibited state is unknown, previous observations of higher-order MinE self-association may explain this inhibition. Overall, our findings have general implications for Min protein oscillation cycles, including those that regulate cell division in bacterial pathogens. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  4. Simultaneous elimination of cyanotoxins and PCBs via mechanical collection of cyanobacterial blooms: An application of "green-bioadsorption concept".

    Science.gov (United States)

    Chen, Wei; Jia, Yunlu; Liu, Anyue; Zhou, Qichao; Song, Lirong

    2017-07-01

    In this study, the distribution, transfer and fate of both polychlorinated biphenyls (PCBs) and cyanotoxins via phytoplankton routes were systematically investigated in two Chinese lakes. Results indicated that PCB adsorption/bioaccumulation dynamics has significantly positive correlations with the biomass of green alga and diatoms. Total lipid content of phytoplankton is the major factor that influences PCB adsorption/bioaccumulation. Cyanobacterial blooms with relatively lower lipid content could also absorb high amount of PCBs due to their high cell density in the water columns, and this process was proposed as major route for the transfer of PCBs in Chinese eutrophic freshwater. According to these findings, a novel route on fates of PCBs via phytoplankton and a green bioadsorption concept were proposed and confirmed. In the practice of mechanical collections of bloom biomass from Lake Taihu, cyanotoxin/cyanobacteria and PCBs were found to be removed simultaneously very efficiently followed this theory. Copyright © 2016. Published by Elsevier B.V.

  5. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    Science.gov (United States)

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  6. Occurrence and origin of mono-, di- and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kenig, F.; Kock-van Dalen, A.C.; Rijpstra, W.I.C.; Huc, A.Y.; Leeuw, J.W. de

    1995-01-01

    n-Alkanes, highly branched isoprenoids, monomethylalkanes (MMAs), dimethylalkanes (DMAs), and trimethylalkanes (TMAs) are the most abundant components in the hydrocarbon fractions of extracts of four modern and two Holocene cyanobacterial mats (1500 and 5110 ± 170 y ) collected in Abu Dhabi (United

  7. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts....... The first part tackles the cake cutting problem, where the cake is a metaphor for a heterogeneous divisible resource such as land, time, mineral deposits, and computer memory. We study the equilibria of classical protocols and design an algorithmic framework for reasoning about their game theoretic...

  8. The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That Induces Filament Assembly and Condensation*

    Science.gov (United States)

    Andreu, José M.; Schaffner-Barbero, Claudia; Huecas, Sonia; Alonso, Dulce; Lopez-Rodriguez, María L.; Ruiz-Avila, Laura B.; Núñez-Ramírez, Rafael; Llorca, Oscar; Martín-Galiano, Antonio J.

    2010-01-01

    Cell division protein FtsZ can form single-stranded filaments with a cooperative behavior by self-switching assembly. Subsequent condensation and bending of FtsZ filaments are important for the formation and constriction of the cytokinetic ring. PC190723 is an effective bactericidal cell division inhibitor that targets FtsZ in the pathogen Staphylococcus aureus and Bacillus subtilis and does not affect Escherichia coli cells, which apparently binds to a zone equivalent to the binding site of the antitumor drug taxol in tubulin (Haydon, D. J., Stokes, N. R., Ure, R., Galbraith, G., Bennett, J. M., Brown, D. R., Baker, P. J., Barynin, V. V., Rice, D. W., Sedelnikova, S. E., Heal, J. R., Sheridan, J. M., Aiwale, S. T., Chauhan, P. K., Srivastava, A., Taneja, A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 312, 1673–1675). We have found that the benzamide derivative PC190723 is an FtsZ polymer-stabilizing agent. PC190723 induced nucleated assembly of Bs-FtsZ into single-stranded coiled protofilaments and polymorphic condensates, including bundles, coils, and toroids, whose formation could be modulated with different solution conditions. Under conditions for reversible assembly of Bs-FtsZ, PC190723 binding reduced the GTPase activity and induced the formation of straight bundles and ribbons, which was also observed with Sa-FtsZ but not with nonsusceptible Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide also induced Bs-FtsZ bundling. We propose that polymer stabilization by PC190723 suppresses in vivo FtsZ polymer dynamics and bacterial division. The biochemical action of PC190723 on FtsZ parallels that of the microtubule-stabilizing agent taxol on the eukaryotic structural homologue tubulin. Both taxol and PC190723 stabilize polymers against disassembly by preferential binding to each assembled protein. It is yet to be investigated whether both ligands target structurally related assembly switches. PMID:20212044

  9. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division.

    Science.gov (United States)

    Oshikawa, Mio; Okada, Kei; Tabata, Hidenori; Nagata, Koh-Ichi; Ajioka, Itsuki

    2017-09-15

    Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance. © 2017. Published by The Company of Biologists Ltd.

  10. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  11. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya.

    Science.gov (United States)

    Čapková, Kateřina; Hauer, Tomáš; Řeháková, Klára; Doležal, Jiří

    2016-01-01

    The environment of high-altitudinal cold deserts of Western Himalaya is characterized by extensive development of biological soil crusts, with cyanobacteria as dominant component. The knowledge of their taxonomic composition and dependency on soil chemistry and elevation is still fragmentary. We studied the abundance and the phylogenetic diversity of the culturable cyanobacteria and eukaryotic microalgae in soil crusts along altitudinal gradients (4600-5900 m) at two sites in the dry mountains of Ladakh (SW Tibetan Plateau and Eastern Karakoram), using both microscopic and molecular approaches. The effects of environmental factors (altitude, mountain range, and soil physico-chemical parameters) on the composition and biovolume of phototrophs were tested by multivariate redundancy analysis and variance partitioning. Both phylogenetic diversity and composition of morphotypes were similar between Karakorum and Tibetan Plateau. Phylogenetic analysis of 16S rRNA gene revealed strains belonging to at least five genera. Besides clusters of common soil genera, e.g., Microcoleus, Nodosilinea, or Nostoc, two distinct clades of simple trichal taxa were newly discovered. The most abundant cyanobacterial orders were Oscillatoriales and Nostacales, whose biovolume increased with increasing elevation, while that of Chroococales decreased. Cyanobacterial species richness was low in that only 15 morphotypes were detected. The environmental factors accounted for 52 % of the total variability in microbial data, 38.7 % of which was explained solely by soil chemical properties, 14.5 % by altitude, and 8.4 % by mountain range. The elevation, soil phosphate, and magnesium were the most important predictors of soil phototrophic communities in both mountain ranges despite their different bedrocks and origin. The present investigation represents a first record on phylogenetic diversity of the cyanobacterial community of biological soil crusts from Western Himalayas and first record

  12. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    to non Gaussian infinitely divisible processes. First we show that the class of infinitely divisible semimartingales is so large that the natural analog of Stricker's theorem fails to hold. Then, as the main result, we prove that an infinitely divisible semimartingale relative to the filtration generated...... by a random measure admits a unique decomposition into an independent increment process and an infinitely divisible process of finite variation. Consequently, the natural analog of Stricker's theorem holds for all strictly representable processes (as defined in this paper). Since Gaussian processes...... are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  13. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea.

    Science.gov (United States)

    Moradi, Masoud

    2014-10-15

    Medium Resolution Imaging Spectrometer (MERIS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and hydro-biological measurements were used to detect two very severe blooms in the southern Caspian Sea in 2005 and 2010. The MERIS Cyanobacteria Index (CIMERIS) was more reliable for detecting cyanobacterial blooms. The CIMERIS and MODIS cyanobacteria indices (CIMODIS) were compared in an effort to find a reliable method for detecting future blooms, as MERIS data were not available after April 2012. The CIMODIS had a linear relationship with and similar spatial patterns to the CIMERIS. On the CIMODIS images, extremely high biomass cyanobacteria patches were masked. A comparison of classified in situ data with the CIMODIS and Floating Algal Index (FAI) from four images of a severe bloom event in 2005 showed that the FAI is a reliable index for bloom detection over extremely dense patches. The corrected CIMODIS, the MODIS FAI and in situ data are adequate tools for cyanobacterial bloom monitoring in the southern Caspian Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes

    DEFF Research Database (Denmark)

    Hunding, Axel; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2003-01-01

    in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.......Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about...

  15. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; Schneiderman, M.H. (Thomas Jefferson Univ., Philadelphia, PA (USA). Hospital)

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 ..mu..g/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 ..mu..g/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 ..mu..g/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 ..mu..g/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered.

  16. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    International Nuclear Information System (INIS)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; SChneiderman, M.H.

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 μg/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 μg/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 μg/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 μg/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered. (author)

  17. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  18. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  19. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie

    Directory of Open Access Journals (Sweden)

    Rose M. Cory

    2016-04-01

    Full Text Available Hydrogen peroxide (H2O2 has been suggested to influence cyanobacterial community structure and toxicity. However, no study has investigated H2O2 concentrations in freshwaters relative to cyanobacterial blooms when sources and sinks of H2O2 may be highly variable. For example, photochemical production of H2O2 from chromophoric dissolved organic matter (CDOM may vary over the course of the bloom with changing CDOM and UV light in the water column, while microbial sources and sinks of H2O2 may change with community biomass and composition. To assess relationships between H2O2 and harmful algal blooms dominated by toxic cyanobacteria in the western basin of Lake Erie, we measured H2O2 weekly at six stations from June – November, 2014 and 2015, with supporting physical, chemical, and biological water quality data. Nine additional stations across the western, eastern, and central basins of Lake Erie were sampled during August and October, 2015. CDOM sources were quantified from the fluorescence fraction of CDOM using parallel factor analysis (PARAFAC. CDOM concentration and source were significantly correlated with specific conductivity, demonstrating that discharge of terrestrially-derived CDOM from rivers can be tracked in the lake. Autochthonous sources of CDOM in the lake increased over the course of the blooms. Concentrations of H2O2 in Lake Erie ranged from 47 ± 16 nM to 1570 ± 16 nM (average of 371 ± 17 nM; n = 225, and were not correlated to CDOM concentration or source, UV light, or estimates of photochemical production of H2O2 by CDOM. Temporal patterns in H2O2 were more closely aligned with bloom dynamics in the lake. In 2014 and 2015, maximum concentrations of H2O2 were observed prior to peak water column respiration and chlorophyll a, coinciding with the onset of the widespread Microcystis blooms in late July. The spatial and temporal patterns in H2O2 concentrations suggested that production and decay of H2O2 from aquatic

  20. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.)

    Czech Academy of Sciences Publication Activity Database

    Palíková, M.; Krejčí, R.; Hilscherová, Klára; Babica, Pavel; Navrátil, S.; Kopp, R.; Bláha, Luděk

    2007-01-01

    Roč. 81, č. 3 (2007), s. 312-318 ISSN 0166-445X R&D Projects: GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : cyanobacterial biomass * embryonal development * common carp Subject RIV: EF - Botanics Impact factor: 2.975, year: 2007