WorldWideScience

Sample records for cw single-frequency operation

  1. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  2. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  3. A Stepped Frequency CW SAR for Lightweight UAV Operation

    National Research Council Canada - National Science Library

    Morrison, Keith

    2005-01-01

    A stepped-frequency continuous wave (SF-CW) synthetic aperture radar (SAR), with frequency-agile waveforms and real-time intelligent signal processing algorithms, is proposed for operation from a lightweight UAV platform...

  4. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  5. Development of a 100 W, single frequency, CW Nd:YAG Laser

    International Nuclear Information System (INIS)

    Veitch, P.J.; Mudge, D.; Munch, J.; Hamilton, M.W.; Ostermeyer, M.; Hosken, D.; Brooks, A.

    2002-01-01

    Full text: High power, diode-laser-pumped, continuous wave (cw) solid-state lasers with excellent beam quality, efficiency and reliability are required for demanding applications, including gravitational wave interferometry, where current additional requirements include single frequency, low noise and Nd:YAG. Our approach is a chain of injection locked laser oscillators, theoretically capable of achieving the lowest noise possible. We use a single-frequency (100 mW) master laser to injection lock a medium-power (10 W) laser that in turn injection locks a 100 W laser. Injection locking requires an optimized, single mode, power slave laser at each stage. We shall describe the nearly completed 10 W brass-board laser, which will also be deployed at the ACIGA Test Facility at Gingin. We shall also describe our 100 W laser using a scalable diode pumping scheme, an active control of thermal lensing and a stable-unstable resonator. Initial tests showed mode control to be limited by thermal focusing and thermally induced birefringence in the Nd:YAG medium at 70 W output. Recent efforts have identified the source of the thermal lens and significantly reduced its magnitude, leading to a modified design. We shall present our latest results from the experiments to demonstrate single mode, single frequency laser at 100 W

  6. Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2009-01-01

    for the tapered amplifier section. The specified maximum current values are 0.7 A and 4.0 A for Idfb and Iamp. Although the MOPA-SL has been proven capable of producing single-frequency CW output beam, stable operation at this spectral condition has also been known to highly depend on the drive currents...

  7. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2000-01-01

    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  8. CW operation of the FMIT RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    Experiences in attaining cw operation of the radio-frequency quadrupole for the Fusion Materials Irradiation Test facility are presented. Modifications of the vacuum system, changes in the rf structure, and operational experiences are discussed, as well as preliminary results of initial beam-characterization measurements. 4 references, 2 figures

  9. C-w operation of a 2-MeV RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1986-01-01

    We have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator and have accelerated 40 mA of H 2 + beam to an energy of 2 MeV. The technical considerations for future cw accelerator designs, based on our experience in achieving cw operation, will be presented. Also to be discussed are measurements of beam emittance, matching into the RFQ, and beam transmission through the accelerator. These measurements will be compared with results of theoretical simulations of the device. The diagnostics instrumentation developed for characterizing intense cw beams also will be discussed, as well as the performance of those devices

  10. Cw operation of the FMIT RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1985-01-01

    Recently, we have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator. In addition to the operational experiences in achieving this status, some of the modifications of the vacuum system, cooling system, and rf structure are discussed. Preliminary beam-characterization results are presented. 10 refs., 8 figs

  11. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...

  12. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  13. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    Science.gov (United States)

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  14. Cw RFQ development

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1985-01-01

    A review of research and development related to fabricating and operating radio-frequency quadrupole (RFQ) structures at 100% duty cycle [continuous wave (cw)] is presented, with emphasis on work at the Los Alamos National Laboratory, the Chalk River Nuclear Laboratories, and the University of Frankfurt. Activities in other areas that have an impact on operating cw RFQ systems will be highlighted. 27 refs

  15. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  16. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    Science.gov (United States)

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  17. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    International Nuclear Information System (INIS)

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L.

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE 15,2,1 interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs

  18. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    Science.gov (United States)

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  19. Two-wavelength, passive self-injection-controlled operation of diode-pumped cw Yb-doped crystal lasers.

    Science.gov (United States)

    Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin

    2003-09-20

    We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.

  20. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    Science.gov (United States)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  1. Cw rf operation of the FMIT RFQ

    International Nuclear Information System (INIS)

    Fazio, M.V.; Brandeberry, F.E.

    1985-01-01

    The 80-MHz RFQ for the Fusion Materials Irradiation Test Facility prototype accelerator has been rf conditioned for cw operation to the design field level of 17.5 MV/m (1.68 x Kilpatrick limit). Experimental results and operating experience will be discussed

  2. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  3. A single-frequency, ring cavity Tm-doped fiber laser based on a CMFBG filter

    International Nuclear Information System (INIS)

    Li, Qi; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Feng, Ting; Tan, Siyu; Liu, Peng

    2013-01-01

    A single-frequency (SF), continuous-wave (CW), ring cavity Tm-doped fiber laser has been proposed and demonstrated. A chirped moiré fiber grating (CMFBG) was used as an ultra-narrow filter in the laser cavity to ensure SF operation. When the launched pump power was fixed at 2 W, this proposed laser was in stable operation with a central wavelength, optical signal-to-noise ratio, and full width at half maximum of 1942.8140 nm, 47 dB, and 0.0522 nm, respectively, with a resolution of 0.05 nm. The maximum output power of this laser is 95 mW, a higher output power is restricted by the optical circulator that is used in the cavity. The SF operation of this laser was confirmed by the self-homodyne method. To the best of the authors’ knowledge, this is the first report on an SF, CW, ring cavity Tm-doped fiber laser with a CMFBG filter. (letter)

  4. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode

    Science.gov (United States)

    Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali

    2016-10-01

    We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.

  5. Mechanism of single-frequency operation of the hybrid-CO2 laser

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Heckenberg, N.R.; Holzhauer, E.

    1975-01-01

    The mechanism of a new method of obtaining high-power single-frequency pulses from a TEA-CO 2 laser is discussed. Measurements of the shape and monochromaticity of pulses from the hybrid laser which has both a TEA and a low-pressure gain section inside one resonator are presented. The mechanism of single-frequency operation of the hybrid laser is discussed with reference to numerical solutions of simplified rate equations. The low-pressure section provides gain only over a narrow range of frequencies so that a mode lying in that band-width builds up faster than neighboring modes to give a single-frequency pulse resembling in overall shape the normal TEA laser pulse. If the system is already lasing when the TEA discharge begins, the single-mode radiation already present rapidly grows to give a single-frequency pulse lacking a gain-switched peak. (U.S.)

  6. Single frequency Nd:YLF and Nd:YVO4 laser in the red emission

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2010-01-01

    All solid-state continuous-wave (cw) narrow emission linewidth and tunable red lasers are convenient alternative sources to bulky and expensive dye-lasers for high precision laser spectroscopy. Single-frequency operation of diode-pumped Nd:YLiF 4 and Nd:YVO 4 cw ring lasers were investigated in the 1.32 - 1.34μm range, together with their intracavity second-harmonic generation (SHG) to the red spectral range (0.65 - 0.67μm) using either BiB 3 O 6 (BiBO) or periodically-poled KTiOPO 4 (ppKTP) crystals. We report on such a single-end diode-pumped Nd:YVO 4 unidirectional red ring laser containing a type-I cut BiBO nonlinear crystal, yielding a record of 680 mW of single-longitudinal mode (SLM) red output power at 671.1nm without any intra-cavity etalon. For smooth SLM wavelength tuning over the full gain bandwidth (∼4 nm), a partially-coated (R = 40%) 100μm-thin etalon was found necessary, reducing the maximum SLM power (at 671.15 nm) to 380 mW. At 1342.5nm and with a T = 2% transmission output coupler, the laser provided an optimal 1.5W of single-frequency power. We demonstrate also optimal intracavity SHG of a Nd:YLF ring laser in the π- polarization (λ = 1321.5nm) using a ppKTP. The laser yielded 1.4 W of single frequency red power at 660.5 nm, as much as the maximum fundamental power that can be extracted from the resonator using an optimal output coupler. With a partially coated (R = 25%) thin etalon, the laser was tunable over Δλ∼ 1.6nm. (author)

  7. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    International Nuclear Information System (INIS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-01-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose

  8. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  9. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes

    International Nuclear Information System (INIS)

    Li, L J; Bai, Y F; Liu, Y W; He, Z L; Wang, J; Yao, B Q; Zhou, S; Xing, M N

    2013-01-01

    Continuous wave (CW) mode and acousto-optic (AO) Q-switched mode operation of a dual-crystal Tm, Ho:GdVO 4 laser is reported. The dual-crystal Tm, Ho:GdVO 4 laser with output wavelength of 2.05 μm was pumped by two laser diodes (LDs). The Tm, Ho:GdVO 4 crystals were cooled by liquid nitrogen and pumped by two fiber-coupled LDs with a center output wavelength of 801.0 nm. A 20.5 W output power was obtained at a 255 mm physical cavity length in CW mode operation, and a 19.6 W average power was obtained at a pulse repetition frequency (PRF) of 10 kHz with a 19 ns pulse duration. Also, the efficiency loss of the laser is not more than 4.4% from CW mode to Q-switch mode, and the M 2 factor, which is measured by the traveling knife-edge method, does not exceed 1.2. (paper)

  10. Processing Interband Cascade Laser for High Temperature CW Operation

    National Research Council Canada - National Science Library

    Tober, Richard

    2004-01-01

    A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSh heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K...

  11. Operation of a CW high power RFQ test cavity: The CRNL 'sparkers'

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Schriber, S.O.; Brown, J.C.; Clements, D.W.; Campbell, H.F.; McMichael, G.E.; De Jong, M.S.

    1984-01-01

    A 270 MHz RFQ structure with 365 mm long unmodulated vanes and a 2.5 mm minimum vane-to-vane gap was used to study cw operation at surface fields in excess of 30 MV/m. The brazed OFHC solid copper structure is flood cooled and couples rf power by a drive 100p at the centre of one quadrant. Surface electric fields equivalent to twice the Kilpatrick limit were obtained at 39 kW power. The structure was rapidly conditioned with alternating periods of pulsed and cw operation to levels above 45 kW. Bremsstrahlung end point energies were used as a measure of peak vane-to-vane voltage. Several interesting observations have been made. Glowing pinpoints of light were seen near the vane tips, some extinguishing with time, others appearing - but their number and intensity increasing with rf power. Microdischarges were seen, consisting of very small localized flashes of light between the vane tips, usually accompanied by a complete collapse and re-establishment of the structure rf field over a 20 μs interval. The frequency of field collapses varied with power but was independent of gas pressure and species up to 4x10 -3 Pa. As structure power was increased above the conditioned level, a rapid succession of microdischarges would occur, increasing the reflected power beyond the fast trip level. (orig.)

  12. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation

    International Nuclear Information System (INIS)

    Kananovich, A; Grabtchikov, A; Orlovich, V; Demidovich, A; Danailov, M

    2010-01-01

    Quasi continuous-wave (qCW) yellow emission (pulse duration 5 ms, repetition rate 20 Hz) at 559 nm is demonstrated through intracavity sum frequency generation (SFG) of Stokes and fundamental fields in Nd:YVO 4 diode pumped self-Raman laser for the first time. Average in pulse output power at 559 nm was 0.47 W for 22 W of pump power, which corresponds to 2.1% of diode-to-yellow efficiency. The pulsed mode of operation was due to diode pump modulation and was used to reduce thermal stress of the crystal

  13. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  14. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    Science.gov (United States)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  15. HLA-Cw Allele Frequency in Definite Meniere’s Disease Compared to Probable Meniere’s Disease and Healthy Controls in an Iranian Sample

    Directory of Open Access Journals (Sweden)

    Sasan Dabiri

    2016-05-01

    Full Text Available Introduction Several lines of evidence support the contribution of autoimmune mechanisms in the pathogenesis of Meniere’s disease. The aim of this study was determining the association between HLA-Cw Alleles in patients with definite Meniere’s disease and patients with probable Meniere’s disease and a control group.  Materials and Methods: HLA-Cw genotyping was performed in 23 patients with definite Meniere’s disease, 24 with probable Meniere’s disease, and 91 healthy normal subjects, using sequence specific primers polymerase chain reaction technique. The statistical analysis was performed using stata 8 software.  Results: There was a significant association between HLA-Cw*04 and HLA-Cw*16 in both definite and probable Meniere’s disease compared to normal healthy controls. We observed a significant difference in HLA-Cw*12 frequencies between patients with definite Meniere’s disease compared to patients with probable Meniere’s disease (P=0.04. The frequency of HLA-Cw*18 is significantly higher in healthy controls (P=0.002.  Conclusion: Our findings support the rule of HLA-Cw Alleles in both definite and probable Meniere’s disease. In addition, differences in HLA-Cw*12 frequency in definite and probable Meniere’s disease in our study’s population might indicate distinct immune and inflammatory mechanisms involved in each condition.

  16. 1 CW green self-frequency-doubled Yb:YAl3(BO3)4 laser

    International Nuclear Information System (INIS)

    Dekker, P.; Dawes, J.; Wang, P.; Piper, J.

    2000-01-01

    Full text: We report 1.1 W continuous wave (CW) green output from a 977nm diode-end-pumped self-frequency-doubled Yb:YAB laser, with a diode-to-green optical conversion efficiency of 10%. Wavelength tunability from 513-546nm has been demonstrated

  17. A replacement solvent for dimethylsulfoxide /DMSO/ in CW dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Herbelin, J.M.; McKay, J.A.

    1981-01-01

    The use of propylene glycol carbonate as a replacement solvent for dimethyl sulfoxide in a Coherent model 599-21 CW dye laser has been investigated. Up to 40 milliwatts of single frequency output was achieved at 875 nm.

  18. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  19. Feasibility study of the EU home team on a 170 GHz 1 MW CW gyrotron for ECH on ITER

    International Nuclear Information System (INIS)

    Iatrou, C.T.; Kern, S.; Thumm, M.; Moebius, A.; Nickel, H.U.; Horajitra, P.; Wien, A.; Tran, T.M.; Bon Mardion, G.; Pain, M.; Tonon, G.

    1995-03-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170 GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with ≥1 MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170 GHz, 1 MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints. (author) 18 figs., 6 tabs., 21 refs

  20. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  1. High-power and highly reliable 638-nm band BA-LD for CW operation

    Science.gov (United States)

    Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya

    2018-02-01

    High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.

  2. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    Science.gov (United States)

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  3. Two-frequency operation of a hybrid TEA CO2 laser and its application to two-frequency pulse injection locking

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Ohno, Hirotaka; Fujii, Takaharu; Tsukishima, Takashige.

    1990-10-01

    Simultaneous two-frequency oscillation of a hybrid TEA CO 2 laser is exhibited when the cw section is operated in a 'below threshold' state. The output of the hybrid laser thus obtained is injected into a main TEA CO 2 laser to obtain a power-modulated, long-pulse output with a well suppressed gain-switched spike. (author)

  4. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  5. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles

    Science.gov (United States)

    Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens

    2018-02-01

    Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical

  6. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  7. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  8. CW SRF systems with ingot niobium and their applications

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2011-01-01

    Continuous wave (CW) superconducting radio frequency (SRF) accelerator systems are needed not only for discovery science initiatives through out the world but they are also expected to find applications in a wide variety of programs including advanced reactor cycles using thorium as nuclear fuel, commercial and university compact linacs and FEL's. However these state of the art particle accelerator systems are very expensive to build and consume significant power in their operations. In the present world economic, energy sustainability and global warming concerns, we must improve the efficiency of the CW SRF accelerator systems considerably and in a cost effective manner. In this presentation I will review the current status of the CW SRF systems including the recent advances in improving the quality factor of the SRF cavities at very much reduced costs with simplified process procedures. (author)

  9. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  10. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-01

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  11. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-15

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  12. Diode-pumped CW frequency-doubled Nd:CNGG-BiBO blue laser at 468 nm

    International Nuclear Information System (INIS)

    Lü, Y F; Xia, J; Lin, J Q; Gao, X; Dong, Y; Xu, L J; Sun, G C; Zhao, Z M; Tan, Y; Chen, J F; Liu, Z X; Li, C L; Cai, H X; Liu, Z T; Ma, Z Y; Ning, G B

    2011-01-01

    Efficient and compact blue laser output at 468 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:CNGG laser at 935 nm. With 17.8 W of diode pump power and the frequency-doubling crystal BiB 3 O 6 (BiBO), a maximum output power of 490 mW in the blue spectral range at 468 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 2.8%; the output power stability over 4 h is better than 2.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:CNGG laser at 935 nm

  13. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  14. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  15. First 200 kW CW operation of a 60 GHz gyrotron

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Evans, S.; Felch, K.; Fox, L.; Huey, H.; Shively, J.; Spang, S.

    1983-01-01

    The gyrotron is a microwave tube which employs the electron cyclotron maser interaction to produce high power output at millimeter wavelengths. It has important and growing applications for heating of plasmas in controlled thermonuclear fusion experiments. The Varian 60 GHz gyrotron has recently generated microwave power in excess of 200 kW during CW operation, wth excellent dynamic range and operating stability. This is the highest average power ever produced by a microwave tube in the millimeter wave region. A description of the gyrotron design and test results are presented

  16. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.

    2016-10-11

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  17. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.; Farrell, R.M.; Cohen, D.A.; Becerra, D.L.; DenBaars, S.P.; Nakamura, S.

    2016-01-01

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  18. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  19. Initial operation of the CW 8X H- ion source discharge

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Allison, P.; Geisik, C.; Schmitt, D.R.; Schneider, J.D.; Stelzer, J.E.

    1993-01-01

    A pulsed 8Χ source was built and the H - beam current, emittance, and power efficiency were measured. These results were promising, so a cooled, dc version designed for operation at arc power levels up to 30 kW was built. Testing of the CW 8Χ source discharge is underway. The design dc power loading on the cathode surface is 900 W/cm 2 , considerably higher than achieved in any pervious Penning surface-plasma source (SPS). Thus, the electrode surfaces are cooled with pressurized, hot water. We describe the source and present the initial operating experience and arc test results

  20. Initial operation of the CW 8X H- ion source discharge

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Allison, P.; Geisik, C.; Schmitt, D.R.; Schneider, J.D.; Stelzer, J.E.

    1993-01-01

    A pulsed 8X source was built and the H - beam current, emittance, and power efficiency were measured. These results were promising, so a cooled, dc version designed for operation at arc power levels up to 30 kW was built. Testing of the CW 8X source discharge is underway. The design dc power loading on the cathode surface is 900 W/cm 2 , considerably higher than achieved in any previous Penning surface-plasma source (SPS). Thus, the electrode surfaces are cooled with pressurized, hot water. The authors describe the source and present the initial operating experience and arc test results

  1. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  2. CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.

    Science.gov (United States)

    Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P

    2010-03-15

    We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.

  3. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    International Nuclear Information System (INIS)

    Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2016-01-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment

  4. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Science.gov (United States)

    Peng, S. X.; Zhang, A. L.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  5. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Zhang, A. L.; Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  6. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  7. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Kostin, Yu O [Superlum Diodes Ltd., Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  8. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-01-01

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  9. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  10. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  11. SMES application for frequency control during islanded microgrid operation

    International Nuclear Information System (INIS)

    Kim, A-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail

  12. SMES application for frequency control during islanded microgrid operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A-Rong, E-mail: haven21c@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Gyeong-Hun; Heo, Serim; Park, Minwon [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Hak-Man [University of Incheon, Songdo-dong, Incheon 406-772 (Korea, Republic of)

    2013-01-15

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  13. A cw 4-rod RFQ linac

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi

    1994-01-01

    A cw 4-rod RFQ linac system has been designed, constructed, and tested as an accelerator section of a MeV-class ion implanter system. The tank diameter is only 60 cm for 34 MHz operating frequency. An equally spaced arrangement of the RFQ electrode supporting plates is proved to be suitable for a low resonant frequency 4-rod RFQ structure. The RFQ electrode cross section is not circular but rectangular to make the handling and maintenance of the electrodes easier. The machining of the electrode is done three dimensionally. Second order corrections in the analyzing magnet of the LEBT (Low Energy Beam Transport) section assure a better transmission through and the matching to the RFQ. A new approach is introduced to measure the rf characteristics of the 4-rod RFQ. This method requires only a few capacitors and a network analyzer. Both the rf and thermal stability of the 4-rod RFQ are tested up to cw 50 kW. Beam experiments with several ions confirm the acceleration of beams to the goal energy of 83 keV/u. The ion beam intensities obtained at the RFQ output for He + , N 2+ , and C + are 32, 13, and 220 pμA, respectively. The measured beam transmissions of >80% agree with the PARMTEQ calculations. The ion implantation method also gives definitive information on the energies of an RFQ output beam. ((orig.))

  14. Continuous anti-Stokes Raman laser operation

    International Nuclear Information System (INIS)

    Feitisch, A.; Muller, T.; Welling, H.; Wellegehausen, B.

    1988-01-01

    The anti-Stokes Raman laser (ASRL) process has proved to be a method that works well for frequency upconversion and for the generation of powerful tunable narrowband (pulsed) laser radiation in the UV and VUV spectral range. This conversion process allows large-frequency shifts in single step, high output energies, and high efficiencies. A basic requirement is population inversion on a two-photon transition, where, in general, the upper level of the transition should be metastable. Up to now the ASRL technique has only been demonstrated for the pulsed regime, where the necessary population inversion was generated by photodissociation or inner shell photoionization. These inversion techniques, however, cannot be transferred to cw operation of an ASRL, and, therefore, other inversion techniques have to be developed. Here a novel approach for the creation of the necessary population inversion is proposed, that uses well-known cw gas lasers as the active material for the conversion process. The basic idea is to use either existing two-photon population inversions in a cw laser material or to generate the necessary population inversion by applying a suitable population transfer process to the material. A natural two-photon inversion situation in a laser material is evident whenever a cascade laser can be operated. Cascade laser-based anti-Stokes schemes are possible in a He-Ne laser discharge, and investigations of these schemes are discussed

  15. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  16. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  17. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L. M.

    2016-01-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  18. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com [Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-03-09

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  19. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    Science.gov (United States)

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  20. Cavity design for single-frequency Yb:YAB microchip lasers

    International Nuclear Information System (INIS)

    Burns, P.; Dawes, J.M.; Piper, J.A.

    2000-01-01

    Full text: We have proposed a cavity configuration for compact, stable, single-frequency operation in Yb:YAB. Modelling of the cavity output in the infrared and green has shown that sufficient mode discrimination can be achieved within the tuning range of the crystal. Experiments are planned to demonstrate efficient single longitudinal mode infrared operation of the devices that can be extended to include the self-frequency-doubled output. Details of the modelling and preliminary results will be presented at the conference

  1. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    Science.gov (United States)

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  2. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    Science.gov (United States)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  3. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    Science.gov (United States)

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    Science.gov (United States)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  5. SMES application for frequency control during islanded microgrid operation

    Science.gov (United States)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  6. Diode pumped holmium, thulium and erbium lasers between 2 and 3μm operating CW at room temperature

    International Nuclear Information System (INIS)

    Esterowitz, L.

    1989-01-01

    Diode pumped CW lasers operating between 2 and 3 μm in the heavy rare earth activator ions are reviewed. In Ho, Tm:YAG the authors have demonstrated high efficiency using TM as the sensitizer ion which absorbed the pump radiation. This is followed by a cross relaxation process which allows nearly two excited Tm ions to be produced from one absorbed photon. There is rapid energy migration among the Tm ions followed by energy transfer to the Ho ion. The 2 μm laser action is to a level 460 cm -1 above the ground state. In Tm, Ho:YLF the authors have demonstrated CW cascade laser emission at 2.31 and 2.08 μm. Above threshold for both transitions, two infrared photons are produced for each absorbed pump photon. The theoretical slope efficiency of this system is 72.3% for pumping at 0.791 μm. In Er:YLF CW laser emission at 2.8 μm with a 10% slope efficiency is demonstrated

  7. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  8. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  9. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  10. Intermediate quality control tests in the development of a superconducting RF cryomodule for CW operation

    Science.gov (United States)

    Pattalwar, Shrikant; Jones, Thomas; Strachan, John; Bate, Robert; Davies, Phil; McIntosh, Peter

    2012-06-01

    Through an international cryomodule collaboration, ASTeC at Daresbury Laboratory has taken the primary responsibility in leading the development of an optimised Superconducting RF (SRF) cryomodule, operating in CW mode for energy recovery facilities and other high duty cycle accelerators. For high beam current operation, Higher Order Mode (HOM) absorbers are critical components of the SRF Cryomodule, ensuring excessive heating of the accelerating structures and beam instabilities are effectively managed. This paper describes some of the cold tests conducted on the HOM absorbers and other critical components during the construction phase, to ensure that the quality and reliable cryomodule performance is maintained.

  11. Adapting TESLA technology for future cw light sources using HoBiCaT

    Science.gov (United States)

    Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.

    2010-07-01

    The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.

  12. Resonance control for a CW accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    This paper describes a resonance-control technique that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  13. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  14. A reliable cw Lyman-{alpha} laser source for future cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel, E-mail: kolbed@uni-mainz.de; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen [Johannes Gutenberg-Universitaet, Institut fuer Physik (Germany)

    2012-12-15

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S-2 P transition in (anti)hydrogen at 121.56 nm (Lyman-{alpha}) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-{alpha} source and is well investigated.

  15. A reliable cw Lyman-α laser source for future cooling of antihydrogen

    International Nuclear Information System (INIS)

    Kolbe, Daniel; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen

    2012-01-01

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S–2 P transition in (anti)hydrogen at 121.56 nm (Lyman-α) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-α source and is well investigated.

  16. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber

    International Nuclear Information System (INIS)

    Li Qi; Yan Feng-Ping; Peng Wan-Jing; Feng Su-Chun; Feng Ting; Tan Si-Yu; Liu Peng

    2013-01-01

    A simple approach for stable single polarization, single frequency, and linear cavity erbium doped fiber laser is proposed and demonstrated. A Fabry—Pérot filter, polarizer and saturable absorber are used together to ensure stable single frequency, single polarization operation. The optical signal-to-noise ratio of the laser is approximately 57 dB, and the Lorentz linewidth is 13.9 kHz. The polarization state of the laser with good stability is confirmed and the degree of polarization is >99%

  17. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  18. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  19. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  20. Nitroxide free radical clearance in the live rat monitored by radio-frequency CW-EPR and PEDRI

    International Nuclear Information System (INIS)

    Alecci, Marcello; Seimenis, Ioannis; McCallum, Stephen J.; Lurie, David J.; Foster, Margaret A.

    1998-01-01

    The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration (4 mmol kg -1 b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (T 1/2 =26±4 min, mean±sd, n=10) and PEDRI (T 1/2 =29±4 min, mean±sd, n=4) techniques were not significantly different (p>0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions. (author)

  1. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  2. Operating experience and reliability improvements on the 5 kW CW klystron at Jefferson Lab

    International Nuclear Information System (INIS)

    Nelson, R.; Holben, S.

    1997-01-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of reporting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator

  3. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  4. 100 GHz, 1 MW, CW gyrotron study program. Final report

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  5. Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications

    Science.gov (United States)

    Garnache, A.; Laurain, A.; Myara, M.; Sellahi, M.; Cerutti, L.; Perez, J. P.; Michon, A.; Beaudoin, G.; Sagnes, I.; Cermak, P.; Romanini, D.

    2017-11-01

    We demonstrate high power (multiwatt) low noise single frequency operation of tunable compact verical-external- cavity surface-emitting-lasers exhibiting a low divergence high beam quality, of great interest for photonics applications. The quantum-well based lasers are operating in CW at RT at 1μm and 2.3μm exploiting GaAs and Sb technologies. For heat management purpose the VECSEL membranes were bonded on a SiC substrate. Both high power diode pumping (using GaAs commercial diode) at large incidence angle and electrical pumping are developed. The design and physical properties of the coherent wave are presented. We took advantage of thermal lens-based stability to develop a short (0.5-5mm) external cavity without any intracavity filter. We measured a low divergence circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB). The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (laser power and coherence will be discussed. These design/properties can be extended to other wavelengths.

  6. Heavy metal removal in an UASB-CW system treating municipal wastewater.

    Science.gov (United States)

    de la Varga, D; Díaz, M A; Ruiz, I; Soto, M

    2013-10-01

    The objective of the present study was to investigate for the first time the long-term removal of heavy metals (HMs) in a combined UASB-CW system treating municipal wastewater. The research was carried out in a field pilot plant constituted for an up-flow anaerobic sludge bed (UASB) digester as a pretreatment, followed by a surface flow constructed wetland (CW) and finally by a subsurface flow CW. While the UASB showed (pseudo) steady state operational conditions and generated a periodical purge of sludge, CWs were characterised by the progressive accumulation and mineralisation of retained solids. This paper analyses the evolution of HM removal from the water stream over time (over a period of 4.7 year of operation) and the accumulation of HMs in UASB sludge and CW sediments at two horizons of 2.7 and 4.0 year of operation. High removal efficiencies were found for some metals in the following order: Sn > Cr > Cu > Pb > Zn > Fe (63-94%). Medium removal efficiencies were registered for Ni (49%), Hg (42%), and Ag (40%), and finally Mn and As showed negative percentage removals. Removal efficiencies of total HMs were higher in UASB and SF units and lower in the last SSF unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    OpenAIRE

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  8. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  9. Resonance control for a cw [continuous wave] accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  10. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  11. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  12. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  13. A 2 MW, CW, 170 GHz gyrotron for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Alberti, S.

    2003-01-01

    A 140 GHz gyrotron for CW operation is under development for the stellarator W7-X. With a prototype tube a microwave output power of about 0.9 MW has been obtained in pulses up to 180 s, limited by the capability of the high voltage power supply. The development work on coaxial cavity gyrotrons has demonstrated the feasibility of manufacturing of a 2 MW, CW 170 GHz tube that could be used for ITER. The problems specific to the coaxial arrangement have been investigated and all relevant information needed for an industrial realization of a coaxial gyrotron have been obtained in short pulse experiments (up to 17 ms). The suitability of critical components for a 2 MW, CW coaxial gyrotron has been studied and a first integrated design has been done. (author)

  14. Experimental studies of radio frequency waves and confinement in the Auburn Torsatron. Progress report

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1985-01-01

    The first year of operation of the Auburn Torsatron has resulted in the majority of the basic operating systems becoming operational or nearly operational. The diagnostic systems now include two microwave interferometers, a monochrometer, several probes and photodiodes. The plasma is produced by any of three sources: electron cyclotron heating with a cw power of 1 kW, low frequency rf heating with power soon to come up to 10 kW cw, and a pulsed washer-stack gun. The magnetic field studies have mapped the field surfaces and several corrections have been made to center the plasma. The ion-cyclotron source and antenna are nearly ready for experiments to begin

  15. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  16. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  17. Blue and Orange Two-Color CW Laser Based on Single-Pass Second-Harmonic and Sum-Frequency Generation in MgO:PPLN

    Directory of Open Access Journals (Sweden)

    Dismas K. Choge

    2018-04-01

    Full Text Available We demonstrate a compact blue and orange-two color continuous wave laser source emitting at 487 nm and from 597.4 to 600.3 nm, respectively. The temperature tunable coherent orange radiation is achieved by frequency mixing 974 nm laser diode (LD and a C-band amplified spontaneous emission laser source while the temperature insensitive blue radiation is generated by second-order quasi-phase-matching frequency doubling of 974 nm LD. We implement the simultaneous nonlinear processes in a single magnesium oxide doped periodically poled lithium niobate bulk crystal without the need of an aperiodic design.

  18. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  19. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  20. Up to 30 mW of broadly tunable CW green-to-orange light, based on sum-frequency mixing of Cr4+:forsterite and Nd:YVO4 lasers

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; McWilliam, Allan; G. Leburn, Christopher

    2006-01-01

    Efficient generation of continuous-wave (CW) tunable light in the yellow region is reported. The method is based on sum-frequency mixing of a tunable Cr4+:forsterite laser with a Nd:YVO4 laser. A periodically poled lithium niobate crystal was placed intra-cavity in a Nd:YVO4 laser, and the Cr4...

  1. Ultrasound induced by CW laser cavitation bubbles

    International Nuclear Information System (INIS)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  2. Quasi-CW Laser Diode Bar Life Tests

    Science.gov (United States)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  3. Superconducting radio frequency technology: Expanding the horizons of physics and technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Leemann, C.W.; Sundelin, R.M.; Hartline, B.K.

    1986-01-01

    This paper describes a major new technology supporting the further evolution of accelerators: superconducting radio frequency (SRF) technology, which is today on the verge of large-scale application in accelerators. Originally foreseen in the early 1960s as a promising technology, SRF only recently has overcome several technological and practical hurdles. SRF accelerating structures promise low rf losses and high gradients under cw operation. High-quality, intense cw beams can be accelerated without risk of melting the structure and without requiring enormous amounts of input rf power

  4. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  5. A frequency controlled LCL - T resonant converter for H- ion source

    International Nuclear Information System (INIS)

    Gauttam, V.K.; Kasliwal, A.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.

    2013-01-01

    An H - ion source is being developed at Raja Ramanna Centre for Advanced Technology, Indore. An LCL-T resonant power converter with variable frequency control is proposed which is utilized to develop a -20 kV/100 mA high voltage (HV) power supply for extraction of H - ions. The LCL-T resonant topology offers many advantages like gainful utilization of the transformer parasitics as a part of resonant network and low circulating current. The power converter is operated with variable frequency control and above resonance to get well known zero-voltage switching (ZVS) advantages for full bridge semiconductor switches in full load range. The converter energizes the symmetrical Cockcroft-Walton (CW) based HV generator to achieve required high voltage. The CW circuit is an attractive solution for HV generation since it has features like low stored energy and low output ripple. The HV power supply is operated in constant current (CC) mode with closed loop control and soft start of the power supply is achieved by sweeping the switching frequency from 40 kHz to defined operating point. Design parameters, simulation results and experimental results of the power converter are presented in this paper. (author)

  6. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  7. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    Science.gov (United States)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  8. Advances in High Power Calorimetric Matched Loads for Short Pulses and CW Gyrotrons

    International Nuclear Information System (INIS)

    Bin, W.M.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Sozzi, C.; Spinicchia, N.

    2006-01-01

    The development of high power gyrotrons for plasma physics research needs proper matched and calorimetric loads able to absorb and measure the power, which nowadays is foreseen to be as high as 2 MW during CW operations. To this end IFP/CNR has developed a family of matched loads useful in the mm-wave frequency band for applications ranging from a few ms to CW in pulse length. The different loads in the family, made of an integrating sphere with a partially reflecting coating on the inner wall, are characterized by having the same absorbing geometry for the incoming beam and a different heat removal system for the specific application. Some important advances have been recently achieved from the point of view of the uniformity of power distribution on the absorbing wall and of the load construction. With high precision achieved in the coating thickness a better control of the heating power distribution is possible by proper shaping of the local reflectivity, in addition to the shaping of the mirror dispersing the input beam. A more sophisticated model describing the power distribution has been developed, taking into account a variable thickness of the absorbing coating, the proper shape of the spreading mirror, the frequency of the incoming radiation and the shape of the input beam. Lower coating thickness is shown to be preferable, at equal local reflectivity, from the point of view of a lower peak temperature and thermal stress. The paper describes a load with variable coating thickness along the meridian of the sphere, showing a uniform power deposition on the inner walls. The cooling pipe is completely electroformed on the spherical copper shell, ensuring the maintenance of the correct curvature of the inner surface and a fast heat conduction from the absorbing coating to the water through the thin copper body. For CW use all heated parts of the load must be cooled and this is achieved by 16 electroformed spiral channels. Both short pulse loads (0.1-1 s) and

  9. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  10. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  11. Double-heterostructure PbSnTe lasers grown by molecular-beam epitaxy with cw operation up to 114 K

    International Nuclear Information System (INIS)

    Walpole, J.N.; Calawa, A.R.; Harman, T.C.; Groves, S.H.

    1976-01-01

    Double-heterostructure Pb/sub 1-x/Sn/sub x/Te lasers with active regions of Pb 0 . 782 Sn 0 . 218 Te have been grown by molecular-beam epitaxy which operate cw up to heat-sink temperatures of 114 0 K. Temperature tuning of the emission from 15.9 to 8.54 μm wavelength is obtained, with emission at 77 0 K near 11.5 μm. The current-voltage characteristics show an abrupt change in slope at threshold, indicating high incremental internal quantum efficiency

  12. NBS-LASL cw microtron

    International Nuclear Information System (INIS)

    Penner, S.; Cutler, R.I.; Debenham, D.H.

    1980-01-01

    The NBS-LASL racetrack microtron (RIM) is a joint research project of the National Bureau of Standards and the Los Alamos Scientific Laboratory. The project goals are to determine the feasibility of, and develop the necessary technology for building high-energy, high-current, continuous-beam (cw) electron accelerators using beam recirculation and room-temperature rf accelerating structures. To achieve these goals, a demonstration accelerator will be designed, constructed, and tested. Parameters of the demonstration RIM are: injection energy - 5 MEV; energy gain per pass -12 MeV; number of passes - 15; final beam energy - 185 MeV; maximum current 550 μA. One 450 kW cw klystron operating at 2380 MHz will supply rf power to both the injector linac and the main accelerating section of the RTM. The disk and washer standing wave rf structure being developed at LASL will be used. SUPERFISH calculations indicate that an effective shunt impedance (ZT) of about 100 MΩ/m can be obtained. Thus, rf power dissipation of 25 kW/m results in an energy gain of more than 1.5 MeV/m. Accelerators of this type should be attractive for many applications. At beam energies above about 50 MeV, an RTM should be considerably cheaper to build and operate than a conventional pulsed rf linac of the same maximum energy and time-average beam power. In addition, the RTM provides superior beam quality and a continuous beam which is essential for nuclear physics experiments requiring time-coincidence measurements between emitted particles

  13. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  14. Diode-pumped CW Nd:SGG laser at 1070 nm

    International Nuclear Information System (INIS)

    Liang, W; Sun, G C; Yu, X; Li, B Z; Jin, G Y

    2011-01-01

    We report for the first time (to our knowledge) a diode-pumped Nd:SGG laser emitting at 1070 nm. A power of 1.23 W at 1070 nm has been achieved in continuous-wave (CW) operation with a fiber-coupled laser diode emitting 18.2 W at 806 nm. Intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 328 mW at 535 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. The green beam quality factor M 2 was less than 1.22. The green power stability was less 2.5% in 4 hour

  15. Maximum Available Accuracy of FM-CW Radars

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2009-12-01

    Full Text Available This article deals with the principles and above all with the maximum available measuring accuracy analyse of FM-CW (Frequency Modulated Continuous Wave radars, which are usually employed for distance and velocity measurements of moving objects in road traffic, as well as air traffic and in other applications. These radars often form an important part of the active safety equipment of high-end cars – the so-called anticollision systems. They usually work in the frequency bands of mm waves (24, 35, 77 GHz. Function principles and analyses of factors, that dominantly influence the distance measurement accuracy of these equipments especially in the modulation and demodulation part, are shown in the paper.

  16. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  17. Mathematical characterization of continuous wave infrared stimulated luminescence signals (CW-IRSL) from feldspars

    International Nuclear Information System (INIS)

    Pagonis, V.; Phan, Huy; Goodnow, Rebecca; Rosenfeld, Sara; Morthekai, P.

    2014-01-01

    Continuous-wave infrared stimulated luminescence signals (CW-IRSL) from feldspars have been the subject of many experimental studies, due to their importance in luminescence dating and dosimetry. Accurate mathematical characterization of the shape of these CW-IRSL signals in feldspars is of practical and theoretical importance, especially in connection with “anomalous fading” of luminescence signals in dating studies. These signals are known to decay in a non-exponential manner and their exact mathematical shape as a function of stimulation time is an open research question. At long stimulation times the IRSL decay has been shown experimentally to follow a power law of decay, and previous researchers have attempted to fit the overall shape of these signals empirically using the well known Becquerel function (or compressed hyperbola decay law). This paper investigates the possibility of fitting CW-IRSL curves using either the Becquerel decay law, or a recently developed analytical equation based on localized electronic recombination of donor–acceptor pairs in luminescent materials. It is shown that both mathematical approaches can give excellent fits to experimental CW-IRSL curves, and the precision of the fitting process is studied by analyzing a series of curves measured using a single aliquot of a feldspar sample. Both fitting equations are solutions of differential equations involving numerically similar time dependent recombination probabilities k(t). It is concluded that both fitting equations provide approximately equivalent mathematical descriptions of the CW-IRSL curves in feldspars, and can be used as mathematical representations of the shape of CW-IRSL signals. - Highlights: • Feldspar CW-IRSL curves fitted using Becquerel decay law and new analytical equation. • Both mathematical approaches give excellent fits to experimental CW-IRSL curves. • Series of experimental CW-IRSL curves analyzed using both fitting expressions. • The time

  18. Study of a CW, two-dimensional Thomson scattering diagnostic system

    International Nuclear Information System (INIS)

    Hsieh, C.L.; Bray, B.D.; Liu, C.

    2004-01-01

    We describe an approach to Thomson scattering diagnostic that relies upon a high power CW laser cavity and a rf signal detection technique, instead of the more usual pulsed high energy laser. The system has three major elements: an ultra long (∼150 m) laser resonance cavity that includes the plasma region; an array of CW diode lasers of high power and high modulation frequency that pumps and maintains the average cavity energy (∼10 mJ); and a lock-in detection system of narrow frequency bandwidth (∼2 kHz). The resonance cavity consists of a pumping chamber for power input from diode lasers, and many relay chambers (∼30) distributed across the plasma cross section for Thomson measurement. The cavity has a low energy loss (∼2% round trip) and zero output power. It is estimated that signal-to-noise of the system is ∼100 times better than the present pulsed system on DIII-D Tokamak due to the increase in usable laser energy and the improved background signal rejection

  19. Analytic random-walk model for the coherence of a frequency comb

    Science.gov (United States)

    Eramo, R.; Cancio Pastor, P.; Cavalieri, S.

    2018-03-01

    We present an analytical study of the frequency comb coherence due to random noise in the pulses phases. We derive a simple expression for the comb lineshape, which depends on a single parameter Neff with the physical meaning of number of coherent comb pulses, inversely proportional to the variance of the phase jumps between subsequent comb pulses. A comparison to the case of a cw-monomode laser with white noise frequency fluctuations is also presented.

  20. Performance improvement of 100 kW high frequency transmitter for CW operation

    International Nuclear Information System (INIS)

    Kwak, J. G.; Yoon, J. S.; Bae, Y. D.; Cho, C. G.; Wang, S. J.; Lee, K. D.

    2001-08-01

    For the plasma heating of KSTAR(Korea Superconducting Tokamak Advanced Research)by using ICH(Ion Cyclotron Heating), it is designed that the selective ion heating and current drive are performed by the transmitter with the rf power of 8 MW in the frequency range of 25-60 MHz. 100 kW HF transmitter was constructed for the high voltage/current test of ICH antenna and HF transmission components. The output power is about 100 kW around 30 MHz. Thomson 581 tetrode is used for the final amplifier whose cavity type is ground cathode. Overall gain is above 15 dB and the bandwidth is about 100 kHz

  1. Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor

    International Nuclear Information System (INIS)

    Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.

    2008-01-01

    The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor

  2. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    Science.gov (United States)

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  3. A high-power diode-laser-pumped CW Nd:YAG laser using a stable-unstable resonator

    International Nuclear Information System (INIS)

    Mudge, M.; Ostermeyer, P.; Veitch, J.; Munch, J.; Hamilton, M.W.

    2000-01-01

    Full text: The design and operation of a power-scalable diode-laser-pumped CW Nd:YAG zigzag slab laser that uses a stable-unstable resonator with a graded reflectivity mirror as an output coupler is described. We demonstrate control of the thermal lens strength in the unstable plane and weak thermal lensing in the stable plane that is independent of pump power, vital for efficient scalability. This enabled CW operation of the stable-unstable resonator with excellent near- and far-field beam quality

  4. Single, simultaneous and sequential applications of ultrasonic frequencies for the elimination of ibuprofen in water.

    Science.gov (United States)

    Ziylan-Yavas, Asu; Ince, Nilsun H

    2018-01-01

    The study is about the assessment of single and multi-frequency operations for the overall degradation of a widely consumed analgesic pharmaceutical-ibuprofen (IBP). The selected frequencies were in the range of 20-1130kHz emissions coming from probes, baths and piezo-electric transducers attached to plate-type devices. Multi-frequency operations were applied either simultaneously as "duals", or sequentially at fixed time intervals; and the total reaction time in all operations was 30-min. The work also covers evaluation of the effect of zero-valent iron (ZVI) on the efficiency of the degradation process and the performance of the reaction systems. It was found that low-frequency probe type devices especially at 20kHz were ineffective when applied singly and without ZVI, and relatively more effective in combined-frequency operations in the presence of ZVI. The power efficiencies of the reactors and/or reaction systems showed that 20-kHz probe was considerably more energy intensive than all others, and was therefore not used in multi-frequency operations. The most efficient reactor in terms of power consumption was the bath (200kHz), which however provided insufficient mineralization of the test chemical. The highest percentage of TOC decay (37%) was obtained in a dual-frequency operation (40/572kHz) with ZVI, in which the energy consumption was neither low nor exceptionally too high. A sequential operation (40+200kHz) in that respect was more efficient, because it required much less energy for a similar TOC decay performance (30%). In general, the degradation of IBP increased with increased power consumption, which in turn reduced the sonochemical yield. The study also showed that advanced Fenton reactions with ZVI were faster in the presence of ultrasound, and the metal was very effective in improving the performance of low-frequency operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  6. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers.

    Science.gov (United States)

    Gao, Rebecca W; Teraphongphom, Nutte; de Boer, Esther; van den Berg, Nynke S; Divi, Vasu; Kaplan, Michael J; Oberhelman, Nicholas J; Hong, Steven S; Capes, Elissa; Colevas, A Dimitrios; Warram, Jason M; Rosenthal, Eben L

    2018-01-01

    Purpose: To demonstrate the safety and feasibility of leveraging therapeutic antibodies for surgical imaging. Procedures: We conducted two phase I trials for anti-epidermal growth factor receptor antibodies cetuximab-IRDye800CW (n=12) and panitumumab-IRDye800CW (n=15). Adults with biopsy-confirmed head and neck squamous cell carcinoma scheduled for standard-of-care surgery were eligible. For cetuximab-IRDye800CW, cohort 1 was intravenously infused with 2.5 mg/m 2 , cohort 2 received 25 mg/m 2 , and cohort 3 received 62.5 mg/m 2 . For panitumumab-IRDye800CW, cohorts received 0.06 mg/kg, 0.5 mg/kg, and 1 mg/kg, respectively. Electrocardiograms and blood samples were obtained, and patients were followed for 30 days post-study drug infusion. Results: Both fluorescently labeled antibodies had similar pharmacodynamic properties and minimal toxicities. Two infusion reactions occurred with cetuximab and none with panitumumab. There were no grade 2 or higher toxicities attributable to cetuximab-IRDye800CW or panitumumab-IRDye800CW; fifteen grade 1 adverse events occurred with cetuximab-IRDye800CW, and one grade 1 occurred with panitumumab-IRDye800CW. There were no significant differences in QTc prolongation between the two trials (p=0.8). Conclusions: Panitumumab-IRDye800CW and cetuximab-IRDye800CW have toxicity and pharmacodynamic profiles that match the parent compound, suggesting that other therapeutic antibodies may be repurposed as imaging agents with limited preclinical toxicology data.

  7. SUPERCONDUCTING RADIO-FREQUENCY MODULES TEST FACILITY OPERATING EXPERIENCE

    International Nuclear Information System (INIS)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.

    2008-01-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R and D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service the SRF R and D needs. The project's first stage has been successfully completed, which allows for distribution of cryogens for a single-cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at Meson Detector Building (MDB) results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project

  8. GeV C.W. electron microtron design report

    International Nuclear Information System (INIS)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 μamps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries

  9. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    Science.gov (United States)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  10. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    Science.gov (United States)

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  11. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  12. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells

    Directory of Open Access Journals (Sweden)

    Suzana Sopčić

    2018-05-01

    Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.

  13. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  14. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging.

    Science.gov (United States)

    Kubota, Harue; Komarov, Denis A; Yasui, Hironobu; Matsumoto, Shingo; Inanami, Osamu; Kirilyuk, Igor A; Khramtsov, Valery V; Hirata, Hiroshi

    2017-06-01

    The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-(1- 15 N)-1-oxyl ( 2 H, 15 N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-1-oxyl ( 2 H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2 H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2 H, 15 N-DCP and 2 H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping. 2 H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2 H, 15 N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2 H, 15 N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2 H, 15 N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. EPR signals of 2 H, 15 N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.

  15. Four-channel surface coil array for sequential CW-EPR image acquisition

    Science.gov (United States)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  16. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser

    International Nuclear Information System (INIS)

    Xiao Yu; Li Can; Xu Shan-Hui; Feng Zhou-Ming; Yang Chang-Sheng; Zhao Qi-Lai; Yang Zhong-Min

    2015-01-01

    Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved. (paper)

  17. DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    The existence of HVDC (High Voltage Direct Current) transmission systems for remote offshore wind power plants allows devising novel wind plant concepts, which do not need to be synchronized with the main AC grid. This paper proposes an OWPP (offshore wind power plant) design based on variable speed wind turbines driven by DFIGs (doubly fed induction generators) with reduced power electronic converters connected to a single VSC-HVDC converter which operates at variable frequency and voltage within the collection grid. It is aimed to evaluate the influence of the power converter size and wind speed variability within the WPP on energy yield efficiency, as well as to develop a coordinated control between the VSC-HVDC converter and the individual back-to-back reduced power converters of each DFIG-based wind turbine in order to provide control capability for the wind power plant at a reduced cost. To maximise wind power generation by the OWPP, an optimum electrical frequency search algorithm for the VSC-HVDC converter is proposed. Both central wind power plant control level and local wind turbine control level are presented and the performance of the system is validated by means of simulations using MATLAB/Simulink ® . - Highlights: • Influence of converter size and wind speed variability on energy capture efficiency. • Coordinated control between a VSC-HVDC and DFIG WTs with reduced power converters. • Static and dynamic analysis of the performance of the implemented control scheme. • Optimal variable frequency operation to maximize WPP generation at a reduced cost

  18. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    Science.gov (United States)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  19. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  20. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

  1. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  2. Performance tests of the 600-kW cw, 80-MHz, radio-frequency systems for the FMIT accelerator

    International Nuclear Information System (INIS)

    Nylander, R.F.; Bacci, F.F.; Fazio, M.V.; Rodgers, J.D.

    1983-01-01

    The high-power rf system for the Fusion Materials Irradiation Test (FMIT) accelerator consists of 14 sets of equipment,** each of which can deliver up to 600 kW (cw) at 80 MHz into a load having a VSWR of 1.4 or less (any phase). The equipment was designed and constructed to FMIT specifications by Continental Electronics Mfg. Co. (CEMC) of Dallas, Texas. Four sets have been shipped to Los Alamos for use with the accelerator (two with the radio-frequency quadrupole (RFQ) and two with the drift-tube linac (DTL)). The first set was fully tested at CEMC; results are summarized. Further tests conducted at Los Alamos, both into a resistive (electrolytic) load and into a resonant cavity (Q about 21,000), have confirmed that this system meets, and in most cases far exceeds, the specified performance limits. The first of the 13 production sets also was tested at CEMC before shipping any of the rf equipment to the Hanford Engineering and Development Laboratory at Richland, Washington. Because of the differences in behavior observed when No. 1 was operated at Los Alamos with a different tube installed in the final power amplifier (FPA) cavity, CEMC agreed to test No. 5 with two tubes having widely differing characteristics (notably primary screen emission). As expected, behavior differed markedly, and some design modification was necessary to meet all specifications with either tube. Results of final performance tests on No. 5 are summarized. As noted in the table, detailed test results are presented in the CEMC Acceptance Test Reports (ATRs) dated April 7, 1982 and January 3, 1983. Discussion of the most significant aspects of CEMC's tests and of those performed at Los Alamos follows a brief description of the equipment

  3. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    Science.gov (United States)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  4. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  5. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  6. The Application of Time-Frequency Methods to HUMS

    Science.gov (United States)

    Pryor, Anna H.; Mosher, Marianne; Lewicki, David G.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper reports the study of four time-frequency transforms applied to vibration signals and presents a new metric for comparing them for fault detection. The four methods to be described and compared are the Short Time Frequency Transform (STFT), the Choi-Williams Distribution (WV-CW), the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels, are analyzed using these methods. The new metric for automatic fault detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the methods on this data set. Analysis with the CWT detects mechanical problems with the test rig not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic fault detection and to develop methods of setting the threshold for the metric.

  7. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  8. A new approach to model CW CO2 laser using rate equations

    Indian Academy of Sciences (India)

    2016-11-11

    Nov 11, 2016 ... Abstract. Two popular methods to analyse the operation of CW CO2 lasers use the temperature model and ... Grouping of the vibration levels helped in restrict- ..... [10] D C Tyte, Carbon dioxide lasers, in: Advances in quan-.

  9. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  10. New nonlinear-laser properties of ferroelectric Nd3+:Ba2NaNb5O15 - cw stimulated emission (4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 ), collinear and diffuse self-frequency doubling and summation

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Jaque, D; Garsia, Sole J; Capmany, J; Bagayev, S N; Ueda, Ken-ichi

    1999-01-01

    A new cw laser with self-frequency doubling and summation of 1-μm oscillation ( 4 F 3/2 → 4 I 11/2 ) was constructed on the basis of an orthorhombic Nd 3+ :Ba 2 NaNb 5 O 15 crystal. The 4 F 3/2 → 4 I 13/2 inter-Stark transition was used to excite cw 1.3-μm stimulated emission from this ferroelectric. (letters to the editor)

  11. Two frequency ICRF operation on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Majeski, R.; Wilson, J.R.; Hosea, J.C.; Schilling, G.; Stevens, J.; Phillips, C.K.

    1993-01-01

    Modifications have been made recently to allow two of the ICRF antennas (bays L and M) on TFTR to operate at either of two frequencies, 43 MHz or 64 MHz. This was accomplished by lengthening the resonant loops (2Λ at 43 MHz, 3Λ at 64 MHz) and replacing the conventional quarter wave impedance transformers with a tapered impedance design. The other two antennas (bays K and N) will operate at a fixed frequency, 43 MHz. The two frequency operation will allow a combination of 3 He-minority and H-minority heating at near full field on TFTR. The higher frequency, 64 MHz, may also be useful in direct electron heating and current drive experiments at lower toroidal fields. Models of the antenna, resonant loops and impedance matching system are presented

  12. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  13. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  14. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    Directory of Open Access Journals (Sweden)

    Xavier Fabregas

    2013-03-01

    Full Text Available This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller. Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory.

  15. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  16. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    Science.gov (United States)

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  17. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  18. Frequency stabilization of multiple lasers on a single medium-finesse cavity

    Science.gov (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye

    2018-04-01

    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  19. Status of the development of the EU 170 GHz/1 MW/CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pagonakis, Ioannis Gr., E-mail: ioannis.pagonakis@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Albajar, Ferran [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Alberti, Stefano [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Avramidis, Konstantinos [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bonicelli, Tullio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Braunmueller, Falk [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Bruschi, Alex [Plasma Physics Institute, National Research Council of Italy, Milano (Italy); Chelis, Ioannis [School of Electrical and Computer Engineering, National Technical University of Athens (Greece); Cismondi, Fabio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Gantenbein, Gerd [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hermann, Virgile [Thales Electron Devices (TED), Vélizy-Villacoublay (France); Hesch, Klaus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hogge, Jean-Philippe [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Jelonnek, John; Jin, Jianbo; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ioannidis, Zisis C. [Faculty of Physics, National and Kapodistrian University of Athens (Greece); Kobarg, Thorsten [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); and others

    2015-10-15

    The progress in the development of the European 170 GHz, 1 MW/CW gyrotron for electron cyclotron heating & current drive (ECH&CD) on ITER is reported. A continuous wave (CW) prototype is being manufactured by Thales Electron Devices (TED), France, while a short-pulse (SP) prototype gyrotron is in parallel under manufacture at Karlsruhe Institute of Technology (KIT), with the purpose of validating the design of the CW industrial prototype components. The fabrication of most of the sub-assemblies of the SP prototype has been completed. In a first step, an existing magnetron injection gun (MIG) available at KIT was used. Despite this non-ideal configuration, the experiments provided a validation of the design, substantiated by an excellent agreement with numerical simulations. The tube, operated without a depressed collector, is able to produce more than 1 MW of output power with efficiency in excess of 30%, as expected, and compatible with the ITER requirements.

  20. Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Chen, Yandong; Zhou, Leming

    2018-01-01

    storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...

  1. Intracavity doubling of CW Ti:sapphire laser to 392.5 nm using BiBO-crystal

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; Thorhauge, Morten; Tidemand-Lichtenberg, Peter

    2005-01-01

    In this work we present results obtained for intra-cavity frequency-doubling of a 785 nm CW Ti:sapphire laser utilising BiBO as the non-linear crystal. Intracavity doubling offers several advantages compared to extra-cavity doubling, such as no need to couple to an external resonance cavity...

  2. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  3. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  4. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  5. Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V A; Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2013-09-30

    The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth of 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)

  6. Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz

    Science.gov (United States)

    Mouret, G.; Matton, S.; Bocquet, R.; Hindle, F.; Peytavit, E.; Lampin, J. F.; Lippens, D.

    2004-10-01

    The generation of continuous coherent THz radiation by mixing two cw Ti:Sa laser beams with a well-controlled frequency separation for a new scheme of vertically integrated low temperature grown GaAs (LTG-GaAs) spiral photomixer is reported. For this new photomixer device used in THz emission, the LTG-GaAs active layer is sandwiched between the two parallel metal plates of a high-speed photodetector loaded by a broadband spiral antenna. We have exploited the advantage of a higher delivered power in the low part of the spectrum (<2000 GHz), while a low RC time constant planar interdigitated detector was used at the upper frequency. The performances of the spectroscopic setup in terms of spectral resolution (5 MHz), tunability and frequency capability are assessed by measurements of the pure rotational spectra of hydrogen sulfide (H2S) up to 3000 GHz.

  7. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  8. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    Science.gov (United States)

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  9. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.

  10. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  11. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. A CW 4-rod RFQ for deuterons; Ein Hochleistungs-RFQ-Beschleuniger fuer Deuteronen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.

    2007-06-15

    A four-rod RFQ accelerator has been built which operates in CW mode with a power consumption of 250 kW. The assembly of a high power RFQ structure requires a precise mechanical alignment and field tuning of the electrode field. The field distribution must be very flat to enable a proper operation with few losses. Adjusting of the field distribution is critical in long structures. (orig.)

  13. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  14. 3 μm CW lasers for myringotomy and microsurgery.

    Science.gov (United States)

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-08

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  15. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  16. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    International Nuclear Information System (INIS)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.; Singer, L. P.; Kutyrev, A.; Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H.; Quimby, R.; Frail, D. A.; Goldstein, A. M.; Connaughton, V.; Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A.; Fremling, C.; Taddia, F.

    2017-01-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  17. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  18. Cysteine reversal of the novel neuromuscular blocking drug CW002 in dogs: pharmacodynamics, acute cardiovascular effects, and preliminary toxicology.

    Science.gov (United States)

    Sunaga, Hiroshi; Malhotra, Jaideep K; Yoon, Edward; Savarese, John J; Heerdt, Paul M

    2010-04-01

    CW002 is a neuromuscular blocking drug that is inactivated by endogenous L-cysteine. This study determined the exogenous L-cysteine dose-response relationship for CW002 reversal along with acute cardiovascular effects and organ toxicity in dogs. Six dogs were each studied four times during isoflurane-nitrous oxide anesthesia and recording of muscle twitch, arterial pressure, and heart rate. CW002 (0.08 mg/kg or 9 x ED95) was injected, and the time to spontaneous muscle recovery was determined. CW002 was then administered again followed 1 min later by 10, 20, 50, or 100 mg/kg L-cysteine (1 dose/experiment). After twitch recovery, CW002 was given a third time to determine whether residual L-cysteine influenced duration. Preliminary toxicology was performed in an additional group of dogs that received CW002 followed by vehicle (n = 8) or 200 mg/kg L-cysteine (n = 8). Animals were awakened and observed for 2 or 14 days before sacrificing and anatomic, biochemical, and histopathologic analyses. L-cysteine at all doses accelerated recovery from CW002, with both 50 and 100 mg/kg decreasing median duration from more than 70 min to less than 5 min. After reversal, duration of a subsequent CW002 dose was also decreased in a dose-dependent manner. Over the studied dose range, L-cysteine had less than 10% effect on blood pressure and heart rate. Animals receiving a single 200-mg/kg dose of L-cysteine showed no clinical, anatomic, biochemical, or histologic evidence of organ toxicity. The optimal L-cysteine dose for rapidly reversing the neuromuscular blockade produced by a large dose of CW002 in dogs is approximately 50 mg/kg, which has no concomitant hemodynamic effect. A dose of 200 mg/kg had no evident organ toxicity.

  19. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  20. Design of diode electron gun for 250 kW CW klystron

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2005-01-01

    A 250 kW CW klystron at frequencies 350 MHz and 700 MHz is being developed at Centre for Advanced Technology. These klystrons are required for forthcoming project like 100 MeV proton Linac for Spallation Neutron Source (SNS) as a main rf sources. In order to develop klystrons, we have designed the diode electron gun, which delivers more than 10 A beam current at 50 kV. This paper describes the simulation results of electron gun with computer code EGUN. (author)

  1. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  2. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  3. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    International Nuclear Information System (INIS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-01-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb 3+ -doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained. (paper)

  4. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  5. High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.

    Science.gov (United States)

    Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K

    2014-06-15

    We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5  MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260  mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.

  6. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    Science.gov (United States)

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.

  7. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  8. Remote transfer of ultrastable frequency references via fiber networks

    International Nuclear Information System (INIS)

    Foreman, Seth M.; Holman, Kevin W.; Hudson, Darren D.; Jones, David J.; Ye, Jun

    2007-01-01

    Three distinct techniques exist for distributing an ultrastable frequency reference over optical fibers. For the distribution of a microwave frequency reference, an amplitude-modulated continuous wave (cw) laser can be used. Over kilometer-scale lengths this approach provides an instability at 1 s of ∼3x10 -14 without stabilization of the fiber-induced noise and ∼1x10 -14 with active noise cancellation. An optical frequency reference can be transferred by directly transmitting a stabilized cw laser over fiber and then disseminated to other optical and microwave regions using an optical frequency comb. This provides an instability at 1 s of 2x10 -14 without active noise cancellation and 3x10 -15 with active noise cancellation [Recent results reduce the instability at 1 s to 6x10 -18 .] Finally, microwave and optical frequency references can be simultaneously transmitted using an optical frequency comb, and we expect the optical transfer to be similar in performance to the cw optical frequency transfer. The instability at 1 s for transfer of a microwave frequency reference with the comb is ∼3x10 -14 without active noise cancellation and -15 with active stabilization. The comb can also distribute a microwave frequency reference with root-mean-square timing jitter below 16 fs integrated over the Nyquist bandwidth of the pulse train (∼50 MHz) when high-bandwidth active noise cancellation is employed, which is important for remote synchronization applications

  9. A high frequency test bench for rapid single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Engseth, H; Intiso, S; Rafique, M R; Tolkacheva, E; Kidiyarova-Shevchenko, A

    2006-01-01

    We have designed and experimentally verified a test bench for high frequency testing of rapid single-flux-quantum (RSFQ) circuits. This test bench uses an external tunable clock signal that is stable in amplitude, phase and frequency. The high frequency external clock reads out the clock pattern stored in a long shift register. The clock pattern is consequently shifted out at high speed and split to feed both the circuit under test and an additional shift register in the test bench for later verification at low speed. This method can be employed for reliable high speed verification of RSFQ circuit operation, with use of only low speed read-out electronics. The test bench consists of 158 Josephson junctions and the occupied area is 3300 x 660 μm 2 . It was experimentally verified up to 33 GHz with ± 21.7% margins on the global bias supply current

  10. Preliminary design of high-power wave-guide/transmission system for multimegawatt CW requirements of 100 MeV proton Linac

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.

    2002-01-01

    Development of a 100 MeV CW proton Linac has been planned at CAT. This Linac will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be produced by either 1 MW CW or 250 kW CW klystron/inductive output tubes (HOM IOTs). The power needed by respective feed points in the structure is max. 250 kW which will be powered by splitting the power from 1 MW klystron/klystrode into four channels by using a wave-guide system. In case of using 250 kW tubes the power to the structures will be provided directly from each tube. Two types of wave-guide transmission system have been considered, viz WR 2300 for 350 MHz rf needs and WR 1500 for 700 MHz rf needs. The typical wave-guide system has been designed using the 1 MW CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window. The circulator and each power divider is terminated into the isolated ports by high power CW loads. Out of the four channels three channels have phase shifters. Present paper describes the technological aspects and design specifications-considerations for these stringent requirements. (author)

  11. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  12. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  13. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  14. Frequency Control for Island Operation of Bornholm Power System

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Zhao, Haoran

    2014-01-01

    the primary frequency control and the DG units are used to provide the secondary frequency control. As such, the proposed control scheme can strike a balance of the frequency control speed and the energy used from the BESS for the frequency control support. The real-time model of the Bornholm power system......This paper presents a coordinated control strategy of a battery energy storage system (BESS) and distributed generation (DG) units for the island operation of the Danish island of Bornholm. The Bornholm power system is able to transit from the grid connected operation with the Nordic power system...... to the isolated island operation. In order to ensure the secure island operation, the coordinated control of the BESS and the DG has been proposed to stabilize the frequency of the system after the transition to the island operation. In the proposed coordinate control scheme, the BESS is used to provide...

  15. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  16. Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers

    International Nuclear Information System (INIS)

    Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Liang, Rui; Feng, Tao

    2017-01-01

    Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devices showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.

  17. PF-KO system for single bunch mode operation of a storage ring

    International Nuclear Information System (INIS)

    Ohgaki, H.; Sugiyama, S.; Mikado, T.; Chiwaki, M.; Yamada, K.; Suzuki, R.; Sei, N.; Noguchi, T.; Yamazaki, T.

    1994-01-01

    A new RF-KO (RF knockout) system for the single bunch mode operation of a storage ring has been developed. The knockout signal is modulated by the sum signal of the RF acceleration frequency of the storage ring and a bunch selection signal. We do not need any special device or a timing unit with this method. We obtain a high purity of bunch structure in a short knock out time. The single bunch impurity of 0.2% has been achieved. (author)

  18. Real time diagnostic for operation at a CW low voltage FEL

    Energy Technology Data Exchange (ETDEWEB)

    Balfour, C.; Shaw, A.; Mayhew, S.E. [and others

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  19. Study of Physical Properties of SiCw/Al Composites During Unloaded Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; TIAN zhi-gang; CHENG hua; ZHU Xiao-gang; CHEN Wen-li

    2004-01-01

    The thermal expansion coefficient of SiCw/Al composites squeeze cast during unloaded thermal cycling was determined and analyzed. The study had shown that the thermal expansion coefficient of SiCw/Al composites reduced greatly with temperature raising. The thermal expansion coefficient of artificial ageing treatment SiCw/Al composites during unloaded thermal cycling reduced gradually, while the thermal expansion coefficient of squeezing SiCw/Al composites increased gradually. In addition, the thermal expansion coefficient of SiCw/Al composites reduced drastically with fiber fraction increasing.

  20. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  1. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band.

    Science.gov (United States)

    Wang, Jiqiang

    2016-03-01

    Restricted sensing and actuation control represents an important area of research that has been overlooked in most of the design methodologies. In many practical control engineering problems, it is necessitated to implement the design through a single sensor and single actuator for multivariate performance variables. In this paper, a novel approach is proposed for the solution to the single sensor and single actuator control problem where performance over any prescribed frequency band can also be tailored. The results are obtained for the broad band control design based on the formulation for discrete frequency control. It is shown that the single sensor and single actuator control problem over a frequency band can be cast into a Nevanlinna-Pick interpolation problem. An optimal controller can then be obtained via the convex optimization over LMIs. Even remarkable is that robustness issues can also be tackled in this framework. A numerical example is provided for the broad band attenuation of rotor blade vibration to illustrate the proposed design procedures. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  3. Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper; Sørensen, Simon Toft; Noordegraaf, Danny

    2013-01-01

    Continuous wave (CW) pumped supercontinuum generation depends strongly on the zero-dispersion wavelength (ZDW) of the fiber due to the low peak power. Here we study several photonic crystal fibers by use of a gain-switched CW pump laser and investigate for what power level the supercontinuum...

  4. CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source

    Science.gov (United States)

    Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.

  5. Reliability aspects and facet damage in high-power emission from (AlGa)As cw laser diodes at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Ladany, I.

    1975-01-01

    Factors are described that limit the optical power output from (AlGa)As laser diodes (lambda = 8100 to 8300 A) operating cw at room temperature with uncoated facets. Rapid laser ''catastrophic'' degradation due to facet damage (in contrast to ''bulk'' phenomena previously considered) has been found to occur as a result of excessive optical flux density at the facets. The diodes studied are capable of initial cw power emission values of 25 to 100 mW from one facet depending on their dimensions. Data are presented showing long-term constant-current operation at power levels below these maximum values. Preliminary data are also presented on devices utilizing dielectric facet coatings to minimize facet damage. (U.S.)

  6. 1-W quasi-cw near-diffraction-limited semiconductor laser pumped optically by a fibre-coupled diode bar

    OpenAIRE

    Dhanjal, S.; Hoogland, S.; Roberts, J.S.; Hayward, R.A.; Clarkson, W.A.; Tropper, Anne

    2000-01-01

    We describe a diode-bar-pumped vertical-external-cavity surface-emitting semiconductor laser, which in quasi-cw operation emitted a peak power of >1 W at 1020 nm in a circular, near diffraction-limited beam.

  7. Invariant operator theory for the single-photon energy in time-varying media

    International Nuclear Information System (INIS)

    Jeong-Ryeol, Choi

    2010-01-01

    After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)

  8. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  9. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  10. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  11. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  12. Stable single-mode distributed feedback quantum cascade lasers at λ ∼ 4.25 μm with low power consumption

    Science.gov (United States)

    Jia, Zhiwei; Wang, Lijun; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Zhai, Shenqiang; Liu, Junqi; Wang, Zhanguo

    2016-10-01

    Short-wavelength (4.25 μm) distributed-feedback quantum cascade laser operating in continuous wave (cw) mode at room temperature with low power consumption was presented. Stable single-mode operation with a side-mode-suppression-ratio above 25 dB was maintained for the whole measured current and temperature range by enlarging gain difference and strong grating coupling. Because of the strong coupling, very low threshold current and power consumption were achieved. For a device of 9-μm-wide and 2-mm-long, the cw threshold current and power consumption at 293 K were as low as 126 mA and 1.45 W, respectively. All results above were from the device without using buried heterostructure geometry.

  13. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  14. The Impact of Proposed Radio Frequency Radiation Standards on Military Operations.

    Science.gov (United States)

    1985-03-01

    ocular imperfections are very prevalent in the population at large and often encountered during routine ophthalmological examinations. ".’. Detailed...females (FM) at audio) No significant germ-cell nmtagenesls In Rat 2.45 (CW) 50 4.7-0.9 106 X 240 75 weekly breedings No significant germ-cell...mutagenesls in Rat 2.45 (CU) 100 2 5 X 300 7S ". . weekly breedings , * SAM, except decrease in pregnancies, Rat 2.45 (CW) 280 5.6 20 X 240 7i s.U , Indilcating

  15. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  16. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  17. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    Science.gov (United States)

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  18. MIR-difference-frequency laser spectrometer for CO detection in combustions

    Directory of Open Access Journals (Sweden)

    A. Khorsandi

    2003-06-01

    Full Text Available  Two continuous-wave (cw single mode diode-lasers (Toshiba TOLD 9150 and Sharp LT024MDO are applied as pump and signal sources to obtain difference-frequency generation (DFG in the mid-infrared (MIR region by using an AgGaS2 crystal with a length of 30 mm for 90° type I phase-matching. Tuneable MIR laser radiation around 5 µm is obtained with an output power in the order of hundred nW while the diode lasers are operated at 20 and 30 mW around their centre wavelengths 789 and 681 nm, respectively. To demonstrate the applicability of this MIR-DFG laser spectrometer we recorded the absorption spectrum of CO for the P(21 rotational line at 2055.4 cm-1 in a 10 cm long cell and in the flame of a McKenna burner in order to estimate the self-broadening coefficient of CO, the collisional-broadening of CO with CO2, and the CO concentration distribution in the flame.

  19. Comparison of GSM Modulated and CW Radiofrequency Radiation on Cells

    International Nuclear Information System (INIS)

    Pavicic, I.; Marjanovic, A.M.; Trosic, I.

    2011-01-01

    The aim of our study was to evaluate and compare effect of global system of mobile (GSM) modulation and continuous wave (CW) radiofrequency radiation (RF) on proliferation ability and viability of V79 Chinese hamster lung cells. Previously prepared samples of cells in culture were exposed for 1, 2 and 3 hours both to 915 MHz GSM modulated and to 935 MHz CW RF field in gigahertz transversal electromagnetic mode cell (GTEM-cell). Electric field strength for cells exposed to GSM modulation was set at 10 V/m and for CW exposed cells was 8.2 V/m. Average specific absorption rate (SAR) was calculated to be for GSM 0.23 W/kg and for CW 0.12 W/kg. V79 samples were plated in concentration of 1x10 4 cells/mL. Cell proliferation was determined by cell counts for each hour of exposure during five post-exposure days. Trypan blue exclusion test was used to determine cell viability. In comparison to control cell samples, proliferation of GSM irradiated cells showed significant decrease after 3 hours of exposure on the second and third post-exposure day. CW exposed cell samples showed significant decrease after 3 hours of exposure on the third post-exposure day. Viability of GSM and CW exposed cells did not significantly differ from matched control cell samples. Both applied RF fields have shown similar effect on cell culture growth, and cell viability of V79 cell line. In addition, applied GSM modulated RF radiation demonstrate bigger influence on proliferation of cells. (author)

  20. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  1. Cw and Q-switched Nd:NaLa(MoO4)2 laser noncritical to the temperature drift of the diode pump laser wavelength

    International Nuclear Information System (INIS)

    Ushakov, S N; Lis, Denis A; Subbotin, Kirill A; Romanyuk, V A; Shestakov, A V; Ryabochkina, P A; Shestakova, I A; Zharikov, Evgeny V

    2010-01-01

    Lasing in Nd:NaLa(MoO 4 ) 2 crystals is obtained without stabilisation of the diode pump wavelength. A dependence of the cw laser power (at a wavelength of 1059 nm) on the pump diode temperature is found within a range of 10-458C. It is shown that the variations in the diode temperature within this region change the lasing efficiency no more than by 30%. In the passive Q-switching regime, the experiments were performed under both pulsed and cw pumping. Upon pulsed pumping, the laser energy was 16 μJ at the output pulse duration of 11 ns. The laser wavelength was 1059 nm, as well as in the case of cw operation. Upon cw pumping with a power of 1.5 W, laser pulses were obtained with an energy of 15 μJ. (lasers)

  2. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Skovgaard, P.M.W.

    2011-01-01

    We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W....... By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 m......W/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources. © 2011 Optical Society of America....

  3. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  4. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  5. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Science.gov (United States)

    Kiessling, J.; Breunig, I.; Schunemann, P. G.; Buse, K.; Vodopyanov, K. L.

    2013-10-01

    We report a diffraction-limited photonic terahertz (THz) source with linewidth OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near λ = 2 μm. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 μm was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved >25 μW of single-frequency tunable CW THz output power scalable to >1 mW with proper choice of pump laser wavelength.

  6. Experimental verification of the air kerma to absorbed dose conversion factor Cw,u.

    Science.gov (United States)

    Mijnheer, B J; Wittkämper, F W; Aalbers, A H; van Dijk, E

    1987-01-01

    In a recently published code of practice for the dosimetry of high-energy photon beams, the absorbed dose to water is determined using an ionization chamber having an air kerma calibration factor and applying the air kerma to absorbed dose conversion factor Cw,u. The consistency of these Cw,u values has been determined for four commonly employed types of ionization chambers in photon beams with quality varying between 60Co gamma-rays and 25 MV X-rays. Using a graphite calorimeter, Cw,u has been determined for a graphite-walled ionization chamber (NE 2561) for the same qualities. The values of Cw,u determined with the calorimeter are within the experimental uncertainty equal to Cw,u values determined according to any of the recent dosimetry protocols.

  7. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  8. Real-time multi-GNSS single-frequency precise point positioning

    NARCIS (Netherlands)

    de Bakker, P.F.; Tiberius, C.C.J.M.

    2017-01-01

    Precise Point Positioning (PPP) is a popular Global Positioning System (GPS) processing strategy, thanks to its high precision without requiring additional GPS infrastructure. Single-Frequency PPP (SF-PPP) takes this one step further by no longer relying on expensive dual-frequency GPS receivers,

  9. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  10. Frequency guided methods for demodulation of a single fringe pattern.

    Science.gov (United States)

    Wang, Haixia; Kemao, Qian

    2009-08-17

    Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America

  11. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  12. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  13. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  14. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-01-01

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current

  15. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  16. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  17. CW RFQ fabrication and engineering

    International Nuclear Information System (INIS)

    Schrage, D.; Young, L.; Roybal, P.

    1998-01-01

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology

  18. Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble

    OpenAIRE

    Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb

    2017-01-01

    To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...

  19. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  20. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K

    2000-07-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (autho000.

  1. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K.

    2000-01-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (author)

  2. 1.26 Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  3. 1.26 Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  4. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    Science.gov (United States)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  5. Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying

    Science.gov (United States)

    Elsobeiey, M.

    2017-10-01

    The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.

  6. Spin states of reduced fullerenes (C60 and C120O) by CW and pulsed EPR

    International Nuclear Information System (INIS)

    Boas, J.F.; Drew, S.C.; Pilbrow, J.R.; Boyd, P.D.W.; Paul, P.; Reed, C.A.; Sun, D.

    2003-01-01

    Full text: The ESTN (Electron Spin Transient Nutation) EPR (Electron Paramagnetic Resonance) experiments reported at Wagga 2002 showed that the spin states of the reduced fullerenes C 120 O (2-), C 120 O (3-) and C 120 O (4-) were S = 1, S = 1/2 and S = 1 respectively. Further experiments using CW (Continuous Wave) EPR have confirmed the results of Paul et al. and have now shown that these states are the ground states of these anions. In the case of C 60 (3-), the recent CW and ESTN EPR experiments have shown that the electronic ground state of this anion is S = 1/2. The observation of ground states of low multiplicity for these anions is contrary to expectations based on MO calculations and the application of Hund's rules. A series of CW EPR experiments on C 60 (3-) have shown that some previous results may need to be re-interpreted. This arises from the delineation of the effects of microwave power, modulation amplitude and frequency, sample temperature and freezing rate on the EPR spectrum which is the combination of a broad line, attributed to C 60 (3-), and a 'spike' attributed to C 120 O impurities and other oxygen related species. Our results cast doubt on the existence of Jahn-Teller effects at low temperatures and of a low-lying spin quartet excited state

  7. High-temperature CW and pulsed operation in constricted double-heterojunction AlGaAs diode lasers

    Science.gov (United States)

    Botez, D.; Connolly, J. C.; Gilbert, D. B.

    1981-01-01

    The behavior of constricted double-heterojunction (CDH) diode lasers has been investigated up to 170 C CW and 270 C pulsed. It is found that the temperature-dependent current concentration effect responsible for low threshold-current sensitivity and temperature-invariant external differential quantum efficiency in CDH lasers saturates at about 100 C. It is also found that over a wide temperature interval (180-280 C) the threshold current density has a To value of 40-50 C and that the spontaneous emission becomes increasingly sublinear above 220 C. Both effects are believed to reflect Auger recombination.

  8. Toward improved software security training using a cyber warfare opposing force (CW OPFOR): the knowledge base design

    Science.gov (United States)

    Stytz, Martin R.; Banks, Sheila B.

    2005-03-01

    "Train the way you will fight" has been a guiding principle for military training and has served the warfighter well as evidenced by numerous successful operations over the last decade. This need for realistic training for all combatants has been recognized and proven by the warfighter and continues to guide military training. However, to date, this key training principle has not been applied fully in the arena of cyberwarfare due to the lack of realistic, cost effective, reasonable, and formidable cyberwarfare opponents. Recent technological advances, improvements in the capability of computer-generated forces (CGFs) to emulate human behavior, and current results in research in information assurance and software protection, coupled with increasing dependence upon information superiority, indicate that the cyberbattlespace will be a key aspect of future conflict and that it is time to address the cyberwarfare training shortfall. To address the need for a cyberwarfare training and defensive testing capability, we propose research and development to yield a prototype computerized, semi-autonomous (SAF) red team capability. We term this capability the Cyber Warfare Opposing Force (CW OPFOR). There are several technologies that are now mature enough to enable, for the first time, the development of this powerful, effective, high fidelity CW OPFOR. These include improved knowledge about cyberwarfare attack and defense, improved techniques for assembling CGFs, improved techniques for capturing and expressing knowledge, software technologies that permit effective rapid prototyping to be effectively used on large projects, and the capability for effective hybrid reasoning systems. Our development approach for the CW OPFOR lays out several phases in order to address these requirements in an orderly manner and to enable us to test the capabilities of the CW OPFOR and exploit them as they are developed. We have completed the first phase of the research project, which

  9. Diseño y validación de un radar CW-FM a 94 GHz

    OpenAIRE

    Varela Agrelo, David

    2013-01-01

    Diseño y validación de un radar CW-FM a 9g GHz 94 GHz CW-FM radar design and mesurement campaign validation. Desarrollo de un radar CW-FM a 94GHz y verificación de los resultados obtenidos durante la etapa de medidas. Desevolupament d'un radar CW-FM a 94GHz i verificació dels resultat obteinguts durante l'etapa de mesures.

  10. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  11. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  12. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    Science.gov (United States)

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  13. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  14. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Science.gov (United States)

    Xu, Chen; Tantawi, Sami

    2016-02-01

    This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S(1 ,1 ) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  15. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: Solving a lineshape paradox

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4 × 10 19 spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S = 1/2, and centres with S = 0 ground state and thermally accessible triple state S = 1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and 13C nuclei indicates that IOM rad centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H ≈ 1.5 ± 0.5 × 10 -2 of the order of values existing in interstellar medium.

  16. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  17. Comparison of isolate dadih with yeast dadih in improving nutrition quality of Cassava Waste (CW)

    Science.gov (United States)

    Ginting, N.

    2018-03-01

    The cassava industry in North Sumatra Province was one of the most significant agricultural industries. Waste from the cassava industry which was called cassava waste/CW/Onggok was used as feed for ruminants such as cattle, sheep and monogastric such as pigs. The low nutrients in CW caused the need to find a way for improving the nutrients quality. This research was conducted with the aim to help livestockers to ferment their livestock feed. This study compared the ability of fermentation between dadih isolate with dadih yeast. Dadih is traditional food in Indonesia where milk is fermented in bamboo tube. Dadih yeast was made by mixing dadih and whey with flour, made in around shape and sun dried. The results showed that pH of CW by dadih isolate was the lowest while crude protein, crude fiber and fat in CW treated with dadih isolate were improved significantly compared either to control or to dadih starter while fermented CW was better than non-fermented CW. It was recommended livestockers to ferment CW by using either by dadih isolate or dadih starter.

  18. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  19. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    International Nuclear Information System (INIS)

    Fantini, S.; Franceschini, M.A.; Gratton, E.; Hueber, D.; Rosenfeld, W.; Maulik, D.; Stubblefield, P.G.; Stankovic, M.R.

    1999-01-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 μM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured

  20. Capabilities, performance, and future possibilities of high frequency polyphase resonant converters

    International Nuclear Information System (INIS)

    Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.

    2004-01-01

    High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse

  1. Frequency of wound infection in non-perforated appendicitis with use of single dose perforative antibiotics

    International Nuclear Information System (INIS)

    Ali, K.; Latif, H.; Ahmad, S.

    2015-01-01

    Antibiotics are used both pre and post-operatively in acute appendicitis for preventing wound infection. It has been observed that the routine use of post-operative antibiotics is not necessary in cases of non-perforated appendicitis as only prophylactic antibiotics are sufficient to prevent wound infection. The aim of this study was to see the frequency of wound infection in non-perforated appendicitis with single dose preoperative antibiotics only. Method: This observational study was conducted at the Department of Surgery, Ayub Medical College, Abbottabad from May to November 2014. A total of 121 patients with non-perforated appendicitis were included in the study. Only single dose preoperative antibiotics were used. The patients were followed for wound infection till 8th post-operative day. Results: 121 patients, 56(46.28%) male and 65(53.72%) female were included in the study. The mean age of patients was 27.41 ± 7.12 years with an age range of 18 to 45 years. In the entire series, 7(5.78%) patients developed wound infection. The infection was minor which settled with conservative therapy. Prophylactic antibiotics were found efficacious in 114(94.21%) patients. There was no significant association between wound infection and age and gender. Conclusion: Single dose preoperative antibiotics were found effective in controlling post-operative wound infection without the need of extending the antibiotics to post-operative period in cases of non-perforated appendicitis. (author)

  2. Super high-power AlGaInN-based laser diodes with a single broad-area stripe emitter fabricated on a GaN substrate

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Shu; Ohta, Makoto; Yabuki, Yoshifumi; Hoshina, Yukio; Hashizu, Toshihiro; Ikeda, Masao [Development Center, Sony Shiroishi Semiconductor, Inc., 3-53-2 Shiratori, Shiroishi, Miyagi, 989-0734 (Japan); Naganuma, Kaori; Tamamura, Koshi [Core Technology Development Group, Micro Systems Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi Kanagawa, 243-0041 (Japan)

    2003-11-01

    AlGaInN-based blue-violet laser diodes with a single broad-area stripe emitter were successfully fabricated on GaN substrates. Three stripe widths were examined; 10, 50, and 100 {mu}m, and the maximum light output power of 0.94 W under cw operation at 20 C was achieved for the sample with a stripe width of 10 {mu}m. A super high-power laser diode array was fabricated using 11 of these high-performance laser chips, with a resultant output power of 6.1 W under cw operation at 20 C. This result represents the highest reported output power for blue-violet laser diodes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Single Frequency Networks (SFN in Digital Terrestrial Broadcasting

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2007-12-01

    Full Text Available The paper deals with principles and properties of single frequency networks of digital television and radio transmitters. Basic definitions and contextual relationships (guard interval, area of SFN, influence of used modulation parameters etc. are explained.

  4. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  5. Circuits and systems for CW and pulsed high-field electron spin resonance

    OpenAIRE

    David Robert, Bolton

    2006-01-01

    This thesis is concerned with the design and realisation of components for a new state of the art 94GHz Electron Spin Resonance (ESR) spectrometer capable of operating in both pulsed and CW modes. The complete spectrometer is designed to provide phase coherent 1kW peak power sub-nanosecond π/2 pulses having variable duration and repetition rate. The mm-wave response of a paramagnetic sample to these pulses is detected with a superheterodyne detector. Such a system would offer a step change in...

  6. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  7. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  8. The hexatron, a six-sided 4-GeV 300-μA CW microtron

    International Nuclear Information System (INIS)

    Colton, E.P.; Crosbie, E.A.; Foss, M.

    1984-01-01

    The use of microtron accelerators to provide intense CW beams of electrons with energies in the 1-5 GeV range is discussed. Principles of operation are reviewed and a design is presented for a six-sided hexagonal microtron, a Hexatron, which is capable of furnishing 300 μA of electrons in 3 extracted beams whose energies can be varied individually from injection energy to 4.0 GeV. Results of prototype studies of the hexatron sector magnets are discussed. Two configurations of beam optics, are shown to provide good beam containment. Options for operating the Hexatron at energies above 4 GeV are also discussed. (author)

  9. Fast Hopping Frequency Generation in Digital CMOS

    CERN Document Server

    Farazian, Mohammad; Gudem, Prasad S

    2013-01-01

    Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio.   Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power s...

  10. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    International Nuclear Information System (INIS)

    Stappel, M; Steinborn, R; Kolbe, D; Walz, J

    2013-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO 3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity. (paper)

  11. Studies of calorimeter absorbers for CW and pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1975-01-01

    Solid and liquid absorbers, used in calorimeters to measure the power and energy of cw and pulsed CO 2 lasers, have been studied from 9.24 to 10.76 μm (cw) and near 10.588 μm (pulsed). The principal materials used were magnesium oxide, lithium fluoride, polystyrene, polytetrafluorethylene, carbon tetrachloride and kerosene. (U.S.)

  12. Improving Performance and Versatility of Systems Based on Single-Frequency DFT Detectors Such as AD5933

    Directory of Open Access Journals (Sweden)

    Leonid Matsiev

    2014-12-01

    Full Text Available Turning grand concepts such as the Internet of Things (IoT and Smart Cities into reality requires the development and deployment of a wide variety of computing devices incorporated into the Internet infrastructure. Unsupervised sensing is the cornerstone capability that these devices must have to perform useful functions, while also having low cost of acquisition and ownership, little energy consumption and a small footprint. Impedimetric sensing systems based on the so-called single-frequency DFT detectors possess many of these desirable attributes and are often introduced in remote monitoring and wearable devices. This study presents new methods of improving performance of such detectors. It demonstrates that the main source of systematic errors is the discontinuous test phasor causing the crosstalk between the in-phase and quadrature outputs and the leakage of the input signal. The study derives expressions for these errors as a function of the number of samples and operating frequency, and provides methods for correction. The proposed methods are applied to the operation of a practical device—a network analyzer integrated circuit AD5933—and discussed in detail. These methods achieve complete elimination of leakage errors and expansion of the low limit of the operation frequency range by nearly two decades without additional hardware.

  13. Results from the S-DALINAC: one year of operational experience from a superconducting electron accelerator

    International Nuclear Information System (INIS)

    Graef, H.D.; Horn, J.; Hummel, K.D.; Luettge, C.; Richter, A.; Riedorf, T.; Ruehl, K.; Schardt, P.; Spamer, E.; Stiller, A.; Thomas, F.; Titze, O.; Toepper, J.; Weise, H.; Winkler, T.

    1992-01-01

    Since August 1991 the superconducting cw-electron accelerator S-DALINAC at Darmstadt has produced single and multi pass beam which is used for different experiments. At energies below 10 MeV investigations of channeling radiation production and nuclear resonance fluorescence experiments are performed. Single pass operation yielding beam energies up to 40 MeV has been used for tests of the Free Electron Laser (FEL) beamline and for the investigation of spontaneous emission from the undulator. Two and three pass operation at higher energies produces beam for electron scattering experiments,(e,e') and (e,e'x), as well as for the production of channeling radiation. True cw operation allows for energies up to 84 MeV limited by the capacity of the He refrigerator. At higher energies the duty factor has to be reduced and pulse length is on the order of seconds. The successful operation of the entire accelerator was the result of several developments: six accelerating cavities fabricated from RRR = 280 niobium raised the average field gradient to 6 MV/m; the control systems for gun, rf, cavity tuners, and the beam transport system including beam diagnostics have been integrated into a reliable remote control of the S-DALINAC; and computer controlled path length adjustments for the two recirculating beamlines were installed for optimization of the reinjection phase. (Author) fig., tab., 10 refs

  14. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  15. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  16. Study of the field-sequential modulation of Nd:YVO4/MgO:PPLN based intra-cavity frequency doubling green laser

    Science.gov (United States)

    Zhang, Bin; Gan, Yi; Xu, Chang-Qing

    2018-06-01

    The field sequential modulation of a Nd:YVO4/MgO:PPLN intra-cavity, frequency doubling green laser was studied. The modulation frequency was set at 1 kHz and the duty cycle was changed from 20% to CW operation. It was shown that the quasi-phase matched (QPM) temperature decreases with an increase of the modulation duty cycle, and in turn causing the peak efficiency to rise. It was found that the temperature change in MgO:PPLN and the thermal lens effect in Nd:YVO4 crystal were the respective origins of these observed experimental phenomena.

  17. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  18. Canonical forms for single-qutrit Clifford+T operators

    OpenAIRE

    Glaudell, Andrew N.; Ross, Neil J.; Taylor, Jacob M.

    2018-01-01

    We introduce canonical forms for single qutrit Clifford+T circuits and prove that every single-qutrit Clifford+T operator admits a unique such canonical form. We show that our canonical forms are T-optimal in the sense that among all the single-qutrit Clifford+T circuits implementing a given operator our canonical form uses the least number of T gates. Finally, we provide an algorithm which inputs the description of an operator (as a matrix or a circuit) and constructs the canonical form for ...

  19. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  20. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    International Nuclear Information System (INIS)

    Ding Xueyong; Li Hongfan; Lv Zhensu

    2012-01-01

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Bragg structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.

  1. Low-frequency noise in single electron tunneling transistor

    DEFF Research Database (Denmark)

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz ..., we find the same input charge noise, typically QN = 5 × 10–4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends...... when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage. ©1998 American Institute of Physics....

  2. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  3. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  4. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  5. CW and pulsed operation of a diode-end-pumped Tm:GdVO4 laser at room temperature

    International Nuclear Information System (INIS)

    Wang, Z G; Song, C W; Li, Y F; Ju, Y L; Wang, Y Z

    2009-01-01

    A room-temperature diode-end-pumped acousto-optical (AO) Q-switched Tm:GdVO 4 laser was firstly reported. The minimum AO Q-switch pulse width was measured to be about 48 ns with output power of 2 W and repetition rate of 5 kHz. Continuous-wave output power of 2.8 W at 1912 nm was obtained under the absorbed pump power of 15 W. In addition, laser pulse widths and the ratio of QCW power/CW power at different repetition rates were discussed

  6. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  7. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  8. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    Science.gov (United States)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  9. Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber

    Science.gov (United States)

    Tamura, Shuhei; Ikeda, Kohei; Okamura, Kotaro; Yoshii, Kazumichi; Hong, Feng-Lei; Horikiri, Tomoyuki; Kosaka, Hideo

    2018-06-01

    Long-distance quantum communication requires entanglement between distant quantum memories. For this purpose, photon transmission is necessary to connect the distant memories. Here, for the first time, we develop a two-step frequency conversion process (from a visible wavelength to a telecommunication wavelength and back) involving the use of independent two-frequency conversion media where the target quantum memories are nitrogen-vacancy centers in diamonds (with an emission/absorption wavelength of 637.2 nm), and experimentally characterize the performance of this process acting on light from an attenuated CW laser. A total conversion efficiency of approximately 7% is achieved. The noise generated in the frequency conversion processes is measured, and the signal-to-noise ratio is estimated for a single photon signal emitted by a nitrogen-vacancy (NV) center. The developed frequency conversion system has future applications via transmission through a long optical fiber channel at a telecommunication wavelength for a quantum repeater network.

  10. Estimation of fire frequency from PWR operating experience

    International Nuclear Information System (INIS)

    Bertrand, R.; Bonneval, F.; Barrachin, G.; Bonino, F.

    1998-01-01

    In the framework of a fire probabilistic safety assessment (Fire PSA), the French Institute for Nuclear Safety and Protection (IPSN) has developed a method for estimating the frequency of fire in a nuclear power plant room. This method is based on the analysis of French Pressurized Water Reactors operating experience. The method adopted consists is carrying out an in-depth analysis of fire-related incidents. A database has been created including 202 fire events reported in 900 MWe and 1300 MWe reactors from the start of their commercial operation up to the first of March 1994, which represents a cumulated service life of 508 reactor-years. For each reported fire, several data were recorded among which: The operating state of the reactor in the stage preceding the fire, the building in which the fire broke out, the piece of equipment or the human intervention which caused the fire. Operating experience shows that most fires are initiated by electrical problems (short-circuits, arcing, faulty contacts, etc.) and that human intervention also plays an important role (grinding, cutting, welding, cleaning, etc.). A list of equipment and of human interventions which proved to be possible fire sources was therefore drawn up. the items of this list were distributed in 19 reference groups defined by taking into account the nature of the potential ignition source (transformers, electrical cabinets, pumps, fans, etc.). The fire frequency assigned to each reference group was figured out using the operating experience information of the database. The fire frequency in a room is considered to be made out of two contributions: one due to equipment which is proportional to the number of pieces of equipment from each reference group contained in the room, and a second one which is due to human interventions and assumed to be uniform throughout the reactor. Formulas to assess the fire frequencies in a room, the reactor being in a shutdown state or at power, are then proposed

  11. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  12. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  13. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    Science.gov (United States)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-07-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  14. Analysis of free electron laser performance utilizing the National Bureau of Standards' CW microtron

    International Nuclear Information System (INIS)

    Tang, C.M.; Sprangle, P.; Penner, S.; Maruyama, X.K.

    1987-01-01

    The National Bureau of Standards' (NBS) CW racetrack microtron (RTM) will be utilized as a driver for a free electron laser (FEL) oscillator. The NBS RTM possesses many exceptional properties of value for the FEL: i) CW operation, ii) energy from 20-185 MeV, iii) small energy spread and emittance, iv) excellent energy stability, and v) high average power. The 1-D FEL gain formula predicts that the FEL would oscillate at the fundamental approximately from 0.25 μm to 10 μm when up-grading the peak current to ≥ 2 A. In this paper, the authors present 3-D self-consistent numerical results including several realistic effects, such as emittance, betatron oscillations, diffraction and refraction. The results indicate that the design value of the transverse emittance is small enough that it does not degrade the FEL performance for intermediate to long wavelengths, and only slightly degrades the performance at the shortest wavelength under consideration. Due to the good emittance, the current density is high enough that focusing, or guiding, begins to manifest itself for wavelengths > 2.0 μm

  15. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-02-01

    Full Text Available This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S_{(1,1} varying from 0 to −30  db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  16. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  17. Operational characteristics of the VEC radio-frequency system

    Energy Technology Data Exchange (ETDEWEB)

    Khemka, P K; Basu Mallik, D N; Bhattacharya, D S; Mukherjee, A K; Mukherjee, B; Ramamurthy, S S [Bhabha Atomic Research Centre, Bombay (India). Variable Energy Cyclotron Project

    1979-01-01

    The operating characteristics of the 400 kW rf system of the VEC, based on the RCA 6949 oscillator tube, and covering a frequency range of 5.5 to 16.5 MHz, are described. The frequency stability of the system is measured to be 1 part in 10/sup 5/, and a dee voltage of 40 kV at 8 MHz has been achieved. The results of experimental adjustments of ratio capacitor for proper excitation and appropriate fixed dee voltage over the entire frequency range are discussed. An analysis of the multi-pactoring encountered during beam trials is presented.

  18. Operational characteristics of the VEC radio frequency system

    International Nuclear Information System (INIS)

    Khemka, P.K.; Basu Mallik, D.N.; Bhattacharya, D.S.; Mukherjee, A.K.; Mukherjee, B.; Ramamurthy, S.S.

    1979-01-01

    The operating characteristics of the 400 KW RF system of the VEC, based on the RCA 6949 oscillator tube, and covering a frequency range of 5.5 to 16.5 MHZ, are described. The frequency stability of the system is measured to be 1 part in 10 5 , and a dee voltage of 40 kV at 8 MHZ has been achieved. The results of experimental adjustments of ratio capacitor for proper excitation and appropriate fixed dee voltage over the entire frequency range are discussed. An analysis of the multi-pactoring encountered during beam trials is presented. (auth.)

  19. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  20. Comparison the treatment effects between simultaneous dual frequency and single frequency irradiation of ultrasound in a murine model of breast adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Mahboobeh Alamolhoda

    2010-12-01

    Full Text Available Introduction: Transient cavitations induced by low frequency irradiation of ultrasound can be used to treat tumors. Previous studies in in-vitro experiments have shown that induced cavitation by dual or multiple frequencies of ultrasound is greater than induced cavitation by single frequency irradiation. In this study, we compared and evaluated the treatment effects of dual frequency irradiation of ultrasound (1 MHz and 150 kHz and single frequency irradiation in in-vivo experiments on breast adenocarcinoma tumors. Material and Method: In this study, the tumor-bearing mice were divided into 5 groups: control, sham, treated group for 30 min with 150 kHz frequency in continuous mode, another group with 1 MHz frequency in pulse mode, and treated group with combined dual frequency ultrasound (150 kHz in continuous mode and 1 MHz in 80% pulse mode. To evaluate the effects of ultrasound irradiation on tumor growth delay, the volumes of the tumors were investigated for 30 days. Tumor growth delay parameters including relative volume, inhibition ratio percentage and the required times for the tumor volume to reach to two (T2 and five (T5 times its initial volume were calculated. Results: The results showed that the treated groups with single frequency irradiation of 150 kHz continuous mode and 1 MHz pulse mode and combined dual frequency had statistically significant differences in tumor relative volume percentage during the period of 3 to 24 days after treatment (p

  1. Investigation on Mechanical Properties and Microstructure of Hydroxyapatite-SiCw Composite Bioceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite-SiCw composite micropowder was synthesized using in-situ composite method,and hydroxyapatite-SiCw composite bioceramics with different content of SiCw were produced by hot pressing sintering method. The microstructures of the materials were analyzed by SEM, and the relative density, bending strength and fracture toughness of the materials were tested. The results show that the mechanical properties of composite material are best when the whisker content is 20-23.7% . The mechanical properties of the material are the best when the tensile stress acted on the composite material is parallel with the hot pressing plane, and they are the worst when the tensile stress acted on the composite material is normal to the hot pressing plane.

  2. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  3. Type 1,1-operators defined by vanishing frequency modulation

    DEFF Research Database (Denmark)

    Johnsen, Jon

    2009-01-01

    This paper presents a general definition of pseudo-differential operators of type 1,1; the definition is shown to be the largest one that is both compatible with negliible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching, Hörmander and Parenti...

  4. 200-W single frequency laser based on short active double clad tapered fiber

    Science.gov (United States)

    Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril

    2018-02-01

    High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.

  5. Type 1,1-operators defined by vanishing frequency modulation

    DEFF Research Database (Denmark)

    Johnsen, Jon

    This paper presents a general definition of pseudo-differential operators of type 1,1; the definition is shown to be the largest one that is both compatible with negligible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching andHörmander, type 1...

  6. CW/Pulsed H- ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    Science.gov (United States)

    Peng, S. X.; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, A. L.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Chen, J. E.

    2015-04-01

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H- beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H- source able to produce very intense H- beams with important variation of the duty factor[1]. Recently, a new version of 2.45 GHz microwave H- ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H- ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H- beam with rms emittance about 0.16 π.mm.mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H- ion beam at 35 keV with rms emittance about 0.2 π.mm.mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H- source body is ϕ116 mm × 124 mm, and the entire H- source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  7. Improved capacitance sensor with variable operating frequency for scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Kwon, Joonhyung; Kim, Joonhui; Jeong, Jong-Hwa; Lee, Euy-Kyu; Seok Kim, Yong; Kang, Chi Jung; Park, Sang-il

    2005-01-01

    Scanning capacitance microscopy (SCM) has been gaining attention for its capability to measure local electrical properties in doping profile, oxide thickness, trapped charges and charge dynamics. In many cases, stray capacitance produced by different samples and measurement conditions affects the resonance frequency of a capacitance sensor. The applications of conventional SCM are critically limited by the fixed operating frequency and lack of tunability in its SCM sensor. In order to widen SCM application to various samples, we have developed a novel SCM sensor with variable operating frequency. By performing variable frequency sweep over the band of 160 MHz, the SCM sensor is tuned to select the best and optimized resonance frequency and quality factor for each sample measurement. The fundamental advantage of the new variable frequency SCM sensor was demonstrated in the SCM imaging of silicon oxide nano-crystals. Typical sensitivity of the variable frequency SCM sensor was found to be 10 -19 F/V

  8. Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping

    Science.gov (United States)

    Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca

    2018-02-01

    Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.

  9. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.

    Science.gov (United States)

    Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa

    2017-11-01

    This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  11. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  12. Operating experience at CEBAF

    International Nuclear Information System (INIS)

    Legg, R.

    1996-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, is a 5-pass, recirculating, superconducting rf linac designed to provide exceptional beam quality at 4 GeV up to 200 μA CW. It is made up of an injector, two 400-MeV linacs, and 9 recirculation arcs having a total beamline length of more than 4.5 km. On Nov. 5, 1995, CEBAF delivered a 4 GeV, 25-μA CW electron beam to the first of 3 experimental halls and the experimental physics program was started 10 days later. Accelerator availability during the first month of the experimental run exceeded 75%. Beam properties measured in the experimental hall to date are a one sigma momentum spread of 5x10 -5 and an rms emittance of 0.2 nanometer-radians, better than design specification. CW beam has been provided from all 5 passes at 800 MeV intervals. Outstanding performance of the superconducting linacs suggests a machine energy upgrade to 6 GeV in the near term with eventual machine operation at 8-10 GeV. Results from commissioning and operations experience since the last conference are presented

  13. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  14. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  15. New high power CW klystrons at TED

    CERN Document Server

    Beunas, A; Marchesin, R

    2003-01-01

    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  16. Remote wind sensing with a CW diode laser lidar beyond the coherence regime

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical...... optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars...

  17. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  18. Bandwidth broadening effect in a traveling-wave-tube amplifier by using impulse electron beam

    International Nuclear Information System (INIS)

    Jung, Sang Wook; Choi, Jin Joo; Kim, Seon Joo

    2012-01-01

    This paper reports on a wideband amplification mechanism involving an impulse electron beam. To prove broadband amplification with the impulse beam, we perform 3-dimensional particle-in-cell (3D PIC) code simulation. An impulse electron beam with a pulse width of 1 ns with electric potential 17.2 kV is injected into an interaction circuit of a coupled-cavity traveling-wave-tube (CCTWT) driven by a continuous-wave (CW) signal of 29.1 GHz. The resulting output bandwidth was 2.96%, and the peak output power of 713 W was the same as that obtained with CW operation at a single frequency. The simulation yielded very similar results with ultra short impulse signal from the simulation.

  19. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  20. Research on cw electron accelerators using room-temperature rf structures: Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits

  1. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    Science.gov (United States)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.

  2. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Gyrocon radio-frequency generator for FY-80 and FY-81

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1982-09-01

    The gyrocon is a high-power, high-efficiency amplifier that operates by deflection modulation of an electron beam. The spatial bunching can be better than the temporal bunching in a klystron, especially for high output powers and uhf frequencies. Soviet gyrocons have produced over 40 MW of pulsed power at 430 MHz and 250-kW cw at 181 MHz. The progress on the construction and testing of a 450-MHz prototype gyrocon is discussed. The maximum pulsed output power that has been achieved in the reporting period is 1 kW. Although these powers are significantly below the design goal of 650 kW, there is a good chance that the experimental program in FY-82 will result in increased output power

  4. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    Science.gov (United States)

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  5. cw argon laser annealing of anodic oxide on GaAs

    International Nuclear Information System (INIS)

    Chakravarti, S.N.; Das, P.; Webster, R.T.; Bhat, K.N.

    1981-01-01

    Anodic oxide films (850 +- 50 A thick) grown on n + (100) bulk GaAs were subjected to selective area annealing using a cw argon laser operating at an output power of 1.2 W. Capacitance-voltage (C-V) measurements performed on Al-anodic oxide-GaAs MOS capacitor structures show that laser-annealed capacitor dots have greatly reduced field-induced hysteresis effects in their capacitance-voltage characteristics compared to the unannealed ones. The oxide leakage current also shows a significant improvement: the leakage current magnitude of MOS capacitors in laser-annealed oxide island is over four orders of magnitude less than the oxide region which was not exposed to the laser radiation. Dielectric breakdown measurement indicates that laser-annealed capacitors have considerably higher breakdown voltages, about a factor of 2 higher than the unannealed capacitors

  6. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    International Nuclear Information System (INIS)

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-01-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range. (paper)

  7. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm

    International Nuclear Information System (INIS)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh

    2009-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) are perfect light sources for spectroscopic applications, where properties such as continuous-wave (cw) operation, single-mode emission, high lifetime and often low power consumption are crucial. For applications such as tunable diode laser absorption spectroscopy (TDLAS), there is a growing interest in laser devices emitting in the near- to mid-infrared wavelength range, where many environmentally and technologically important gases show strong absorption lines. The (AlGaIn)(AsSb) material system based on GaSb is the material of choice for covering the 2.0-3.3 μm range. In this paper, we report on electrically pumped single-mode VCSELs with emission wavelengths of 2.4 and 2.6 μm, operating cw at room temperature and beyond. By (electro-) thermal tuning, the emission wavelength can be tuned mode-hop free over a range of several nanometers. In addition, low threshold currents of several milliamperes promise mobile application. In the devices, a structured buried tunnel junction with subsequent overgrowth has been used in order to achieve efficient current confinement, reduced optical losses and increased electrical conductivity. Furthermore, strong optical confinement is introduced in the lasers due to laterally differing cavity lengths.

  8. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  9. Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2015-06-01

    Full Text Available Enterovirus A71 (EV-A71 in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN-α/β receptor 1 (IFNAR1 to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 µM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 µM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease IC50 = 53.1 µM. Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2',5'-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection.

  10. CW Laser radar for combustion diagnostics

    Directory of Open Access Journals (Sweden)

    Malmqvist Elin

    2018-01-01

    Full Text Available A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.

  11. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Graziano, Joe; Chan, John

    2011-01-01

    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  12. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Fast frequency divider circuit using combinational logic

    Science.gov (United States)

    Helinski, Ryan

    2017-05-30

    The various technologies presented herein relate to performing on-chip frequency division of an operating frequency of a ring oscillator (RO). Per the various embodiments herein, a conflict between RO size versus operational frequency can be addressed by dividing the output frequency of the RO to a frequency that can be measured on-chip. A frequency divider circuit (comprising NOR gates and latches, for example) can be utilized in conjunction with the RO on the chip. In an embodiment, the frequency divider circuit can include a pair of latches coupled to the RO to facilitate dividing the oscillating frequency of the RO by 2. In another embodiment, the frequency divider circuit can include four latches (operating in pairs) coupled to the RO to facilitate dividing the oscillating frequency of the RO by 4. A plurality of ROs can be MUXed to the plurality of ROs by a single oscillation-counting circuit.

  14. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  15. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  16. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    Science.gov (United States)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  17. Small Displacement Detection of Biological Signals Using the Cyclic Frequency Method

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available A new signal processing method called the Cyclic Frequency method is proposed for small displacement detection of vital signals such as heart rate and respiration using the CW radar method. We have presented experimental results of small displacement detection to confirm the validity of the method. The displacement amplitude 2.5 mm can be detected with a propagation frequency of 24.15 GHz. We may increase the propagation frequency for smaller displacement amplitude or target velocity.

  18. The optimized advanced demonstrator for the SC CW heavy ion linac at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Basten, Markus; Busch, Marco; Dziuba, Florian; Podlech, Holger; Ratzinger, Ulrich; Tiede, Rudolf [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany); Gettmann, Viktor; Heilmann, Manuel [GSI Helmholtzzentrum, Darmstadt (Germany); Barth, Winfried; Mickat, Sascha [GSI Helmholtzzentrum, Darmstadt (Germany); HIM, Helmholtzinstitut, Mainz (Germany); Miski-Oglu, Maksym [HIM, Helmholtzinstitut, Mainz (Germany); Aulenbacher, Kurt [KPH, Johannes Gutenberg Universitaet, Mainz (Germany)

    2016-07-01

    For future experiments with heavy ions at the coulomb barrier within the SHE research project a multi-stage R and D program of GSI, HIM and IAP is currently under progress. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH-cavities as key components. As intermediate step towards the whole LINAC, the Optimized Advanced Demonstrator is proposed. Consisting of short CH-cavities and cryostats, it could provide several advantages regarding velocity acceptance, higher tolerance with respect to frequency and field deviation, easier mounting, handling and maintenance as well as a more robust longitudinal beam dynamic. The beam dynamics concept is based on EQUUS (Equidistant Multigap Structure) constant-beta cavities. The corresponding simulations for the proposed next extension stage - the Optimized Advanced Demonstrator - will be presented.

  19. High-speed single-photon signaling for daytime QKD

    Science.gov (United States)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  20. CW-FIT: Group Contingency Effects across the Day

    Science.gov (United States)

    Wills, Howard P.; Iwaszuk, Wendy M.; Kamps, Debra; Shumate, Emily

    2014-01-01

    This study explored the effects of a group-contingency intervention on student behavior across academic instructional periods. Research suggests group contingencies are evidence-based practices, yet calls for investigation to determine the best conditions and groups suited for this type of intervention. CW-FIT (Class-Wide Function-related…

  1. Reusable single-port access device shortens operative time and reduces operative costs.

    Science.gov (United States)

    Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav

    2014-06-01

    In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.

  2. Sea-dumped CW munitions - the European component

    International Nuclear Information System (INIS)

    Hart, J.; Stock, T.

    2009-01-01

    The purpose of this contribution is to outline the European magnitude of sea-dumped CW munitions. Hereby the paper attempts to provide an overview on historical dumping activities, both for conventional and chemical munitions. The potential dangers which might result from these dumping activities are discussed in brief. Among others the differences in deep sea dumping and dumping in shallow waters are evaluated. Further, the presentation will outline and discuss the different technology steps: (a) identification, (b) recovery, (c) transportation and (d) destruction (on- or off-shore), necessary for possible cleaning of dumping sites. Thereafter an evaluation of the different technologies available/applied is performed, in particular on the destruction part. Hereby the already practised experience is displayed. Based upon existing treaty regimes an actual judgment of possible application of treaty provisions for demanding cleaning up operations is discussed. The question if treaty obligations can be used to force cleaning operations is debated. A possible match of the technology package available with the scope/magnitude of the munitions dumping problem is discussed. Hereby the gaps between the size of the problem and the most suitable technologies for recovery and destruction are illustrated. The resulting answers should be regarded as possible technical guidelines for future development activities as well existing limitations to solve the problems. The papers will result in some general guidelines for future prospect on the issues of dumped munitions, in particular chemical munitions under the European context.(author)

  3. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  4. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  5. 330 mJ single-frequency Ho:YLF slab amplifier

    CSIR Research Space (South Africa)

    Strauss, HJ

    2013-04-01

    Full Text Available We report on a double-pass Ho:YLF slab amplifier which delivered 350 ns long single-frequency pulses of up to 330 mJ at 2064 nm, with a maximum M(sup2) of 1.5 at 50 Hz. It was end pumped with a diode-pumped Tm:YLF slab laser and seeded with up to 50...

  6. Production of High Intracavity UV Power From a CW Laser Source

    Science.gov (United States)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  7. Construction and operation costs of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2014-01-01

    Design data from nine constructed wetlands (CW) facilities of various capacities (population equivalent (PE)) are used to estimate construction and operation costs, and then to derive empirical equations relating the required facility land area and the construction cost to PE. In addition, comparisons between the costs of CW facilities based on various alternative construction materials, i.e., reinforced concrete and earth structures (covered with either high density polyethylene or clay), are presented in relation to the required area. The results show that earth structures are economically advantageous. The derived equations can be used for providing a preliminary cost estimate of CW facilities for domestic wastewater treatment.

  8. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  9. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    Science.gov (United States)

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  10. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However......, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET....

  11. Highly efficient F-19 heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation

    DEFF Research Database (Denmark)

    Equbal, Asif; Basse, Kristoffer; Nielsen, Niels Christian

    2016-01-01

    We present heteronuclear F-19 refocused CW (rCW) decoupling pulse sequences for solid-state magic-angle- spinning NMR applications. The decoupling sequences have been designed specifically to ensure suppression of the pertinent C-13-F-19 dipolar coupling interactions while simultaneously suppress...

  12. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  13. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  14. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  15. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  16. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  17. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5

  18. A compact, CW mid-infrared intra-cavity Nd:Lu0.5Y0.5VO4∖KTA-OPO at 3.5 μm

    International Nuclear Information System (INIS)

    Duan, Y M; Zhu, H Y; Feng, Z R; Xu, C W; Tang, D Y; Zhang, J; Wang, H Y

    2013-01-01

    We report a continuous-wave (CW) KTA (KTiOAsO 4 )-OPO (optical parametric oscillator) with a compact linear cavity utilizing an LD pumped mixed crystal Nd:Lu 0.5 Y 0.5 VO 4 laser as the pump source for the first time. A singly resonant oscillator with low signal light loss was designed to reduce the OPO’s threshold. Maximum output powers of 630 mW at 3475 nm and 190 mW at 1536 nm were obtained at a pump power of 13.2 W. A total conversion efficiency of 6.2% was achieved with respect to the incident diode pump power. The performance of this work demonstrates that a CW KTA-OPO derived by an LD pumped Nd 3+ doped solid laser can also produce efficient mid-infrared light. (letter)

  19. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  20. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  1. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    Science.gov (United States)

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  2. Two-photon transitions driven by a combination of diode and femtosecond lasers.

    Science.gov (United States)

    Moreno, Marco P; Nogueira, Giovana T; Felinto, Daniel; Vianna, Sandra S

    2012-10-15

    We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P(3/2) state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D(2) lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D(3/2) and 5D(5/2) states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.

  3. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  4. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated...

  5. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22  μm.

    Science.gov (United States)

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory

    2017-11-01

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1  cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.

  6. Diode-pumped continuous-wave blue laser operation of Nd:GGG at 467.0, 467.7, and 468.5 nm

    International Nuclear Information System (INIS)

    Xu, B; Camy, P; Doualan, J L; Braud, A; Moncorgé, R; Cai, Z P; Brenier, A

    2012-01-01

    Intra-cavity frequency doubling of continuous-wave (CW) laser emission on the quasi-three level ( 4 F 3/2 → 4 I 9/2 ) laser transition of Nd 3+ in Nd:GGG is reported by using a three-mirror folded resonator. The thermal lens experienced by the optically-pumped Nd:GGG laser crystal is measured as a function of the absorbed pump power and compared to that found, in the same conditions, in the case of Nd:YAG. Results are interpreted by using a simple model accounting for the absorbed pump power and the thermo-mechanical properties of each laser crystal. Diode-pumped blue laser operation is achieved, for the first time, at 467.0 and 468.5 nm with output powers of 230 and 450 mW, respectively. Simultaneous laser operation resulting both from frequency-doubling and frequency summing at the three 467.1, 467.7, and 468.1 nm laser wavelengths is also obtained with a total output power of 60 mW

  7. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-01

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  8. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal

    Directory of Open Access Journals (Sweden)

    Masato Takiguchi

    2017-04-01

    Full Text Available We demonstrated sub-wavelength (∼111 nm diameter single nanowire (NW continuous wave (CW lasers on silicon photonic crystal in the telecom-band with direct modulation at 10 Gb/s by optical pumping at cryogenic temperatures. To estimate the small signal response and pseudo-random bit sequence (PRBS modulation of our CW lasers, we employed a new signal detection technique that employs a superconducting single photon detector and a time-correlated single photon counting module. The results showed that our NW laser was unambiguously modulated at above 10 Gb/s and an open eye pattern was obtained. This is the first demonstration of a telecom-band CW NW laser with high-speed PRBS modulation.

  9. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  10. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  11. RCC-CW - Rules for design and construction of PWR nuclear civil works

    International Nuclear Information System (INIS)

    2016-01-01

    RCC-CW describes the rules for designing, building and testing civil engineering works in PWR reactors. It explains the principles and requirements for the safety, serviceability and durability of concrete and metal frame structures, based on Eurocode design principles (European standards for the structural design of construction works) combined with specific measures for safety-class buildings. The code is produced as part of the RCC-CW Subcommittee, which includes all the parties involved in civil engineering works in the nuclear sector: clients, contractors, general and specialized firms, consultancies and inspection offices. The code covers the following areas relating to the design and construction of civil engineering works that play an important safety role: geotechnical aspects, reinforced concrete structures and galleries, pre-stressed containments with metal liner, metal containment and pool liners, metal frames, anchors, concrete cylinder pipes, containment leak tests. The RCC-CW code is available as an ETC-C version specific to EPR projects (European pressurized reactor). Contents of the 2016 edition of the RCC-CW Code: Part G - General: scope, standards, notations, quality management, general principles; Part D - Design: actions and combinations of actions, geotechnical aspects, pre-stressed or reinforced concrete structures, metal containment liners, metal pool liners, metal frames, anchors; Part C - Construction: geotechnical aspects, concrete, surface finish and formwork, reinforcement for reinforced concrete, pre-stressing processes, prefabricated concrete elements, metal containment liners, metal pool liners, metal frames, anchors, embedded pipelines, joint sealing, survey networks and tolerances; Part M - Maintenance and monitoring: containment integrity and rate tests

  12. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  13. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    Science.gov (United States)

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  14. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    A. S. Plastun

    2018-03-01

    Full Text Available Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ. Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  15. A Kind of Single-frequency Precise Point Positioning Algorithm Based on the Raw Observations

    Directory of Open Access Journals (Sweden)

    WANG Li

    2015-01-01

    Full Text Available A kind of single-frequency precise point positioning (PPP algorithm based on the raw observations is presented in this paper. By this algorithm, the ionospheric delays were corrected efficiently by means of adding the ionospheric delay prior information and the virtual observation equations with the spatial and temporal constraints, and they were estimated as the unknown parameters simultaneously with other positioning parameters. Then, a dataset of 178 International GNSS Service (IGS stations at day 72 in 2012 was used to evaluate the convergence speed, the positioning accuracy and the accuracy of the retrieved ionospheric VTEC. The series of results have shown that the convergence speed and stability of the new algorithm are much better than the traditional PPP algorithm, and the positioning accuracy of about 2-3 cm and 2-3 dm can be achieved respectively for static and kinematic positioning with the single-frequency observations' daily solution. The average bias of ionospheric total electron content retrieved by the single-frequency PPP and dual-frequency PPP is less than 5 TECU. So the ionospheric total electron content can be used as a kind of auxiliary products in GPS positioning.

  16. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    fiber-based polarization controllers and a polarization beam splitter , and the output power is monitored with a sensitive photodiode. We use a...a single CW laser beam coupled to a microresonators can produce stabilized, octave-spanning combs through highly cascaded four-wave mixing (FWM...resonator designs , the resonator and the coupling waveguide are monolithically integrated. Thus, the entire on-chip configuration of CMOS-compatible

  17. RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants.

    Science.gov (United States)

    Hao, Yangyang; Xuei, Xiaoling; Li, Lang; Nakshatri, Harikrishna; Edenberg, Howard J; Liu, Yunlong

    2017-07-01

    Accurate identification of low-frequency somatic point mutations in tumor samples has important clinical utilities. Although high-throughput sequencing technology enables capturing such variants while sequencing primary tumor samples, our ability for accurate detection is compromised when the variant frequency is close to the sequencer error rate. Most current experimental and bioinformatic strategies target mutations with ≥5% allele frequency, which limits our ability to understand the cancer etiology and tumor evolution. We present an experimental and computational modeling framework, RareVar, to reliably identify low-frequency single-nucleotide variants from high-throughput sequencing data under standard experimental protocols. RareVar protocol includes a benchmark design by pooling DNAs from already sequenced individuals at various concentrations to target variants at desired frequencies, 0.5%-3% in our case. By applying a generalized, linear model-based, position-specific error model, followed by machine-learning-based variant calibration, our approach outperforms existing methods. Our method can be applied on most capture and sequencing platforms without modifying the experimental protocol.

  18. Model validity and frequency band selection in operational modal analysis

    Science.gov (United States)

    Au, Siu-Kui

    2016-12-01

    Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.

  19. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  20. Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm

    International Nuclear Information System (INIS)

    Wu, Z H; Sun, D L; Wang, S Z; Luo, J Q; Li, X L; Huang, L; Hu, A L; Tang, Y Q; Guo, Q

    2013-01-01

    We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance. (paper)

  1. 3.76 W of green light generated by intracavity frequency doubling of a 1081.5 nm Yb:GdYSiO2 laser with LiB3O5

    International Nuclear Information System (INIS)

    Zhang, D; Shao, Y; Liu, H P; Li, Y L; Tao, Z H; Ruan, Q R; Zhang, T Y

    2011-01-01

    Efficient continuous-wave (CW) intracavity frequency doubling of a diode-end-pumped Yb:GdYSiO 2 (Yb:GYSO) laser operating on 2 F 5/2 → 2 F 7/2 transitions at 1081.5 nm has been demonstrated. With 17.6 W of diode pump power and the frequency doubling crystal LiB 3 O 5 (LBO), a maximum output power of 3.76 W in the green spectral range at 541 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 21.4%; the output power stability over 30 min is better than 5%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Yb:GYSO laser at 1081.5 nm

  2. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  3. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  4. Single Frequency Network Based Distributed Passive Radar Technology

    Directory of Open Access Journals (Sweden)

    Wan Xian-rong

    2015-01-01

    Full Text Available The research and application of passive radar are heading from single transmitter-receiver pair to multiple transmitter-receiver pairs. As an important class of the illuminators of opportunity, most of modern digital broadcasting and television systems work on Single Frequency Network (SFN, which intrinsically determines that the passive radar based on such illuminators must be distributed and networked. In consideration of the remarkable working and processing mode of passive radar under SFN configuration, this paper proposes the concept of SFN-based Distributed Passive Radar (SDPR. The main characteristics and key problems of SDPR are first described. Then several potential solutions are discussed for part of the key technologies. The feasibility of SDPR is demonstrated by preliminary experimental results. Finally, the concept of four network convergence that includes the broadcast based passive radar network is conceived, and its application prospects are discussed.

  5. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Abstract

    Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  6. CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser.

    Science.gov (United States)

    Mateos, Xavier; Jambunathan, Venkatesan; Pujol, Maria Cinta; Carvajal, Joan Josep; Díaz, Francesc; Aguiló, Magdalena; Griebner, Uwe; Petrov, Valentin

    2010-09-27

    We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.

  7. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  8. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    International Nuclear Information System (INIS)

    Bianchetti, Laurent; Kieffer, David; Féderkeil, Rémi; Poch, Olivier

    2012-01-01

    Single Base Substitutions (SBS) that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE) and Tag-seq (a combination of L-SAGE and deep sequencing), and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT), i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP), catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST), i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC), healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic

  9. Side-pumped Nd:YVO4 cw laser with grazing-incidence small angle configuration

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2006-01-01

    Within the existing variety of laser cavity geometries and gain materials there is one combination that is particularly interesting because of its reduced complexity and high efficiency: the edge-pumped slab-laser using grazing-incidence geometry and a gain media with a very high pump absorption cross-section. In this work we studied a diode side-pumped Nd:YVO 4 cw laser. We describe a single and a multiple bounce laser configurations. We demonstrate 22 W of multimode output power for 35 watts of pump power with a single pass through the gain media. A high optical-to-optical conversion efficiency of 63% and a slope efficiency of 74% with a very compact and simple Nd:YVO 4 cavity that uses joint stability zones was achieved. The beam quality was M 2 = 26 x 11 in the horizontal and vertical direction, respectively. With a double pass configuration we achieved 17 watts with a better beam quality of M 2 = 3,4 x 3,7, in the horizontal and vertical direction, respectively. (author)

  10. Radio-frequency electrical design of the WEST long pulse and load-resilient ICRH launchers

    Energy Technology Data Exchange (ETDEWEB)

    Helou, Walid, E-mail: walid.helou@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Colas, Laurent; Hillairet, Julien [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Milanesio, Daniele [Department of Electronics, Politecnico di Torino, Torino (Italy); Mollard, Patrick [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Argouarch, Arnaud [CEA DAM/DIF/DP2I, Bruyère le Chatel (France); Berger-By, Gilles; Bernard, Jean-Michel [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Chen, Zhaoxi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Delaplanche, Jean-Marc [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Dumortier, Pierre; Durodié, Frédéric [Laboratoire de physique des plasmas de l’ERM, Laboratorium voor plasmafysica van de KMS – (LPP-ERM/KMS), Ecole royale militaire–Koninklijke militaire school, BE-1000 Brussels (Belgium); Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Jacquot, Jonathan [Max-Planck Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); and others

    2015-10-15

    Highlights: • Three new ion cyclotron resonance heating launchers designed for WEST. • Operation at 3 MW/launcher for 30 s and 1 MW/launcher for 1000 s on H-mode plasmas. • Unique combination of continuous-wave operation at high power and load tolerance. • International team led by the CEA/IRFM. • RF design performed using electromagnetic solvers and electric circuit calculations. - Abstract: Three new ion cyclotron resonance heating (ICRH) launchers have been designed for the WEST project (W-Tungsten Environment in Steady-state Tokamak) in order to operate at 3 MW/launcher for 30 s and 1 MW/launcher for 1000 s on H-mode plasmas. These new launchers will be to date the first ICRH launchers to offer the unique combination of continuous-wave (CW) operation at high power and load tolerance capabilities for coupling on H-mode edge. The radio-frequency (RF) design optimization process has been carried out using full-wave electromagnetic solvers combined with electric circuit calculations. Cavity modes occurring between the launchers structures and the vacuum vessel ports have been evaluated and cleared out.

  11. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  12. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  13. Continuous wave and AO Q-switch operation Tm,Ho:YAP laser pumped by a laser diode of 798 nm

    International Nuclear Information System (INIS)

    Li, L J; Yao, B Q; Song, C W; Wang, Y Z; Wang, Z G

    2009-01-01

    Continuous wave (CW) and acousto-optical (AO) Q-switch operation of Tm (5 at.%), Ho (0.3 at.%):YAP laser at 2.13 μm wavelength were reported in this paper. The Tm,Ho:YAP crystal was cooled by liquid nitrogen and double-end-pumped by a 14.2 W fiber-coupled laser diode at 798 nm. Different resonator lengths and output couplers for the pump power were tried. A maximum conversion efficiency of 31.3% and a maximum slope efficiency of 35.2% were acquired with CW output power of 4.45 W. Average power of 4.21 W was obtained at pulse repetition frequency (PRF) of 15 kHz, corresponding to an optical-to-optical conversion efficiency of 29.6% and a slope efficiency of 32.4%. The energy per pulse of 2.3 mJ in 64 ns was achieved at 1.5 kHz with the peak power of 35.8 kW

  14. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  15. Widely tunable THz synthesizer

    Science.gov (United States)

    Hindle, F.; Mouret, G.; Eliet, S.; Guinet, M.; Cuisset, A.; Bocquet, R.; Yasui, T.; Rovera, D.

    2011-09-01

    The generation of cw-THz radiation by photomixing is particularly suited to the high resolution spectroscopy of gases; nevertheless, until recently, it has suffered from a lack of frequency metrology. Frequency combs are a powerful tool that can transfer microwave frequency standards to optical frequencies and a single comb has permitted accurate (10-8) THz frequency synthesis with a limited tuning range. A THz synthesizer composed of three extended cavity laser diodes phase locked to a frequency comb has been constructed and its utility for high resolution gas phase spectroscopy demonstrated. The third laser diode allows a larger tuning range of up to 300 MHz to be achieved without the need for large frequency excursions, while the frequency comb provides a versatile link to be established from any traceable microwave frequency standard. The use of a single frequency comb as a reference for all of the cw-lasers eliminates the dependency of synthesized frequency on the carrier envelope offset frequency. This greatly simplifies the frequency comb stabilization requirements and leads to a reduced instrument complexity.

  16. Steady-state operation of spheromaks by inductive techniques

    International Nuclear Information System (INIS)

    Janos, A.

    1984-04-01

    A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation

  17. Forensic Application of FM-CW and Pulse Radar

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  18. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  19. Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2006-01-01

    Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.

  20. Palladium nanoparticles produced by CW and pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310 (Spain); Lusquiños, F. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Riveiro, A. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Palladium nanoparticles are receiving important interest due to its application as catalyst. In this work Pd nanoparticles have been obtained by ablating a Pd target submerged in de-ionized using both, pulsed as well as continuous wave (CW) laser. The influence of laser parameters involved in the formation in nanoparticles has been studied. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The obtained colloidal suspensions consisted of pure Pd nanoparticles showing spherical shape with diameters ranging from few nanometers to 5–60 nm. The moderate irradiance delivered by the CW laser favours high production of uniform nanoparticles.

  1. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  2. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  3. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  4. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  5. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  6. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Directory of Open Access Journals (Sweden)

    A. Castellano

    2017-06-01

    Full Text Available We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001 substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm−2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  7. Computer programme for operator support in primary frequency control of NPP Dukovany

    International Nuclear Information System (INIS)

    Kurka, J.; Petruzela, I.; Piroutek, Z.

    1996-01-01

    The computer programme for the control room operator support in the primary frequency control operation of the NPP Dukovany power unit is described. This operational mode has recently been implemented. Until now, the plant has been exclusively operated in the based-load mode at nominal power. The stability of the main unit parameters, unit power output and main steam header pressure, is the characteristic feature for this mode of operation of units with WWER 440 type of reactors. This does no more hold in the new mode in which these both principal parameters vary in dependency on the power network frequency changes. This fact, however, has an important impact on the activities of the control room operators. Therefore, to help them to adapt themselves easily and without unnecessary stresses to new conditions the regulatory body when licensing the new mode finally approved its implementation only if computerized operator support system would be installed in the control room. Such a computer program for the operator support has been recently developed in EGU Prague and has already been implemented into the unit information system on all four Dukovany units. (author). 3 refs, 7 figs

  8. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  9. Efficient generation of continuous-wave yellow-orange light using sum-frequency in periodically poled KTP

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    We present highly efficient sum-frequency generation between two CW 1064 and 1342 nm laser lines of two Nd:YVO4 lasers using periodically poled KTP. This is an all solid-state light source in the yellow-orange spectral range....

  10. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  11. A dual mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies

    DEFF Research Database (Denmark)

    Tang, Y.; Yao, W.; Blaabjerg, Frede

    2015-01-01

    In single-phase uninterruptible power supply (UPS) applications, it is well known that the AC side instantaneous power is not constant by nature. The resulting input current from the DC source side will inevitably contain low frequency ripple components that may largely deteriorate the system...... as active power conversion, while its CM operation is controlled in such a way that the low frequency ripple current on the DC side can be maintained in a minimum level. The proposed ripple current reduction method may not only work with linear loads, but also nonlinear loads, where more sophisticated...

  12. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint

    Directory of Open Access Journals (Sweden)

    Ang Gong

    2015-12-01

    Full Text Available For Global Navigation Satellite System (GNSS single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  13. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  14. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.

    Science.gov (United States)

    Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng

    2017-10-27

    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.

  15. Single shell tank sluicing history and failure frequency

    International Nuclear Information System (INIS)

    HERTZEL, J.S.

    1998-01-01

    This document assesses the potential for failure of the single-shell tanks (SSTs) that are presumably sound and helps to establish the retrieval priorities for these and the assumed leakers. Furthermore, this report examines probabilities of SST failure as a function of age and operational history, and provides a simple statistical summary of historical leak volumes, leak rates, and corrosion factor

  16. Fabrication and optimization of the copper halide Laser's comparison of the double-discharge (Cu Cl) with the single-pulse operation (Cu Br)

    International Nuclear Information System (INIS)

    Sajad, B.; Behrozinia, S.; Nikzad, P.; Bassam, M. A.

    2009-01-01

    In this paper, the fabrication of a double-pulse copper chloride laser was investigated to study the effect of various parameters such as buffer gas pressure, temperature, and the delay time between two electrical discharge pulses, on laser output power. Moreover, a single-pulse copper bromide laser was fabricated to optimize the laser output power versus temperature, buffer gas pressure, and electrical input power and discharge frequency. The comparison of the results in single-pulse and double-pulse excitation indicates that the former is easier in operation and more power stability can be achieved using single pulse excitation.

  17. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  18. Using Constraints from Satellite Gravimetry to Study Meteorological Excitations of the Chandler Wobble for an Earth Model with Frequency-dependent Responses

    Science.gov (United States)

    Chen, W.; Li, J.; Ray, J.; Cheng, M.; Chen, J.; Wilson, C. R.

    2015-12-01

    What maintain(s) the damping Chandler wobble (CW) is still under debate though meteorological excitations are now more preferred. However, controversial results have been obtained: Gross [2000] and Gross et al. [2003] suggested oceanic processes are more efficient to excite the CW than atmospheric ones during 1980 - 2000. Brzezinski and Nastula [2002] concluded that their contributions are almost the same, and they can only provide ~80% of the power needed to maintain the CW observed during 1985 - 1996. Polar motion excitations involve not only the perturbations within the Earth system (namely, mass redistributions and motions of relative to the mantle), but also the Earth's responses to those perturbations (namely, the rheology of the Earth). Chen et al. [2013a] developed an improved theory for polar motion excitation taking into account the Earth's frequency-dependent responses, of which the polar motion transfer functions are ~10% higher than those of previous theories around the CW band. Chen et al. [2013b] compared the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and found significant and broad-band discrepancies for models released by different institutes. In addition, the atmosphere, ocean and hydrology models are usually developed in a somewhat independent manner and thus the global (atmospheric, oceanic and hydrological) mass is not conserved [e.g., Yan and Chao, 2012]. Therefore, the matter-term excitations estimated from those models are problematic. In one word, it is unlikely to obtain reliable conclusions on meteorological excitations of CW on the basis of the original meteorological models. Satellite gravimetry can measure mass transportations caused by atmospheric, oceanic and hydrological processes much more accurately than those provided by the original meteorological models, and can force the global (atmospheric, oceanic and

  19. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  20. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  1. Structural rearrangements in the C/W(001) surface system

    International Nuclear Information System (INIS)

    Lyman, P.F.; Mullins, D.R.

    1995-01-01

    We have investigated the surface structure of the C/W(001) surface system at submonolayer C coverages using Auger-electron spectroscopy and high-resolution core-level photoelectron spectroscopy. Core-level spectroscopy is a sensitive probe of an atom's local electronic environment; by examining the core levels of the W atoms in the selvedge region, we monitored the response of the substrate to C adsorption. The average shift of the 4f core-level binding energy provided evidence for a heretofore unknown surface reconstruction that occurs upon submonolayer C adsorption. We also performed line-shape analysis on these core-level spectra, and have thereby elucidated the mechanism by which the low-coverage (√2 x √2 )R45 degree structure evolves to a c(3 √2 x √2 )R45 degree arrangement upon further C adsorption. The line-shape analysis also provides corroborating evidence for a proposed model of the saturated C/W(001)-(5x1) surface structure, and suggests that the first two or three atomic W layers are perturbed by the C adsorption and attendant reconstruction

  2. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  3. Canvas supports and grounds in paintings by C.W. Eckersberg

    DEFF Research Database (Denmark)

    Filtenborg, Troels; Andersen, Cecil Krarup

    2017-01-01

    The supports and grounds in 43 paintings on canvas by C.W. Eckersberg, dating from throughout his career, were investigated by visual examination, X-radiography, computer assisted automated thread counting and weave mapping, as well as by cross section analysis. The analytical data were complemen...

  4. Real-Time Analysis of an Active Distribution Network - Coordinated Frequency Control for Islanding Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae

    distribution networks makes it possible to operate the distribution networks independently which is called islanding operation. However, it is a challenge to ensure secure and reliable operation of the islanded system due to a num-ber of reasons, e.g. low inertia in the islanded system, intermittency of some...... of the DERs, etc. Particularly during islanding operation, with relatively few DG units, the frequency and voltage control of the islanded system is not straightforward. DG units, specially based on renewable energy sources (RESs), i.e. wind and solar, have an inter-mittent nature and intrinsic...... system (BESS) and two secondary frequency control scenarios with BESS and DG units. During the island-ing transition, the frequency is regulated by the fast-acting primary control of the BESS. The secondary control of the main management system (MMS) detects the status of the BESS and tries to return...

  5. CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode

    Science.gov (United States)

    Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.

    1995-01-01

    Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.

  6. Design of the 3.7 GHz, 500 kW CW circulator for the LHCD system of the SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Harish V., E-mail: hvdixit48@yahoo.com [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jadhav, Aviraj R. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jain, Yogesh M. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Cheeran, Alice N. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Gupta, Vikas [Vidyavardhini' s College of Engineering and Technology, Vasai, Maharashtra 401202 (India); Sharma, P.K. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India)

    2017-06-15

    Highlights: • Design of a 500 kW CW circulator for LHCD system at 3.7 GHz. • Mechanism for thermal management of ferrite tile. • Scheme for uniform magnetisation of the ferrite tiles. • Design of high CW power CW quadrature and 180 ° hybrid coupler. - Abstract: Circulators are used in high power microwave systems to protect the vacuum source against reflection. The Lower Hybrid Current Drive (LHCD) system of SST-1 tokamak commissioned at IPR, Gandhinagar in India comprises of four high power circulators to protect klystrons (supplying 500 kW CW each at 3.7 GHz) which power the system. This paper presents the design of a Differential Phase Shift Circulator (DPSC) capable of handling 500 kW CW power at 3.7 GHz so that four circulators can be used to protect the four available klystrons. As the DPSC is composed by three main components, viz., magic tee, ferrite phase shifter and 3 dB hybrid coupler, the designing of each of the proposed components is described. The design of these components is carried out factoring various multiphysics aspects of RF, heating due to high CW power and magnetic field requirement of the ferrite phase shifter. The primary objective of this paper is to present the complete RF, magnetic and thermal design of a high CW power circulator. All the simulations have been carried out in COMSOL Multiphysics. The designed circulator exhibits an insertion loss of 0.13 dB with a worst case VSWR of 1.08:1. The total length of the circulator is 3 m.

  7. Quantum mechanical features of optically pumped CW FIR lasers

    Science.gov (United States)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  8. Gain measurements in CO2 CW low pressure lasers

    International Nuclear Information System (INIS)

    Rodrigues, N.A.S.; Chanes Junior, J.B.; Jayaram, K.

    1983-01-01

    A series of gain measurements in low pressure CO 2 CW laser were performed in order to study the behaviour of a CO 2 laser ampliflier as a function of pressure and discharge current. A theoretical model, based on rate equations is also presented to describe the laser behaviour and the experimental procedure adopted. (C.L.B.) [pt

  9. Engineering design of 500KW CW collector

    International Nuclear Information System (INIS)

    Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.

    2006-01-01

    An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)

  10. Research on cw electron accelerators using room-temperature rf structures. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    Highlights reported include: measurement of the 100 keV chopped beam emittance, completion of installation of the entire 5 MeV injector linac system with all rf power and drive, extensive field mapping of one end magnet, completion of construction of the 12 MeV linac for the racetrack microtron (RTM), installation of most of the control system, and first acceleration of beam to 5 MeV. Plans for completion of the project are discussed. When the RTM is operating, it is expected to have many unique performance characteristics, including the cw nature of the beam, high current, easily variable energy over a wide range, excellent emittance, and small energy spread. Plans for future uses in the areas of nuclear physics, dosimetry research and standards, accelerator development, and free electron laser research are discussed. 19 refs

  11. An operational modal analysis method in frequency and spatial domain

    Science.gov (United States)

    Wang, Tong; Zhang, Lingmi; Tamura, Yukio

    2005-12-01

    A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.

  12. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    Science.gov (United States)

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  13. Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets

    Science.gov (United States)

    Lawrence, Jonathan D.

    This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.

  14. Frequency analysis for planned islanding operation in the Danish distribution system - Bornholm

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2008-01-01

    a planned islanding operation test. To evaluate the test and achieve useful experience for future similar operations in Bornholm or even in other similar systems, the frequency data before, during and after this period, were recorded by Phasor Measurement Units (PMUs), supplied by Centre for Electric...

  15. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  16. Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

    Science.gov (United States)

    2018-03-01

    to develop novel co-prime sampling and array design strategies that achieve high-resolution estimation of spectral power distributions and signal...by the array geometry and the frequency offset. We overcome this limitation by introducing a novel sparsity-based multi-target localization approach...estimation using a sparse uniform linear array with two CW signals of co-prime frequencies,” IEEE International Workshop on Computational Advances

  17. Caries like lesion initiation in sound enamel following CW CO2 laser irradiation: an in vitro study

    International Nuclear Information System (INIS)

    Nafie, A.; Issam, A.; Ali, M. S. R.

    2005-01-01

    This Study aimed to asses the caries - preventive potential of various CW CO 2 laser parameters, and to explore the effect of the laser power density, and the exposure time on the varies inhibition activity. Materials and Methods: Extracted human premolar teeth were irradiated with three different power densities (7.95, 15.9 and 31.8) W/Cm 2 for three different exposure times (0.2, 0.4 and 0.8) sec of 10.6 μm CW CO 2 laser. All teeth were subjected to caries like lesion formation by 3.5 pH lactic acid for 21 days. The teeth after that were sectioned into ground cross section and the lesion depths were measured using a graticule polarizing microscope. CW CO 2 laser preventive treatments inhibit caries like lesion progression up to 44%. This effect was improved with: (1) Increased power density for each of the three exposure times. (2) Decreased exposure time for each of the three power densities within the limits of the previously listed laser parameters. Conclusion: (1) short exposure time of CW CO 2 laser results in a significant inhibition of the enamel caries like lesion formation. (2) The inhibitory effect depends upon the power density and the exposure time of the laser beam. (3) The optimal CW CO 2 laser parameters used for caries inhibition purpose is achieved with approximately 30 W/Cm 2 power density and 0.2 sec exposure time. (author)

  18. Studies on Ytterbium-doped Fibre Laser Operating in Different Regimes

    International Nuclear Information System (INIS)

    Gan, Y; Xiang, W H; Zhang, G Z

    2006-01-01

    An ytterbium-doped fibre laser with a unidirectional ring cavity containing a polarizer placed between two in-line polarization controllers is presented. Depending on an equivalent saturable absorber, this laser operates in continuous, Q-switched mode-locked or CW mode-locked regimes. The passive method described here allowed us to choose the operating regime of the fibre laser by rotating the two polarization controllers and adjusting the pump power. Results of numerical simulations of pulse propagation in such a mode-locked fibre ring laser are presented, which reveals that the Q-switched mode-locked or CW modelocked regimes can be achieved by aligning the polarizer near the slow or the fast axes of the fibre

  19. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  20. Single-Layer, Dual-Port, Dual-Band, and Orthogonal-Circularly Polarized Microstrip Antenna Array with Low Frequency Ratio

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available A single-layer, dual-port, dual-band, and dual circularly polarized (CP microstrip array is designed for satellite communication in this paper. The operating frequencies are 8.2 and 8.6 GHz with a very low ratio of 1.05. First, a rectangular patch element is fed through microstrip lines at two orthogonal edges to excite two orthogonal dominant modes of TM01 and TM10. The very low frequency ratio can be realized with high polarization isolations. Then, a 2-by-2 dual-band dual-CP subarray is constructed by two independent sets of sequentially rotated (SR feed structures. An 8-by-8 array is designed on the single-layer thin substrate. Finally, by utilizing one-to-four power dividers and semirigid coaxial cables, a 16-by-16 array is developed to achieve higher gain. Measured results show that the 16-by-16 array has 15 dB return loss (RL bandwidths of 4.81% and 6.75% and 3 dB axial ratio (AR bandwidths of 2.84% and 1.57% in the lower and the upper bands, respectively. Isolations of 18.6 dB and 19.4 dB and peak gains of 25.1 dBic and 25.6 dBic are obtained at 8.2 and 8.6 GHz, respectively.

  1. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

  2. Frequency Distribution of Edentulous Posterior Mandibular Ridge Types using Cone Beam Computed Tomography in an Iranian Population

    Directory of Open Access Journals (Sweden)

    2016-07-01

    Full Text Available Introduction: The existing bone is regarded as an important criteria in dental implants. In this regard, the radiographic modality is of great significance in quantifying the remaining bone, and CBCT accurately represents height and width of the existing bone. Therefore, this study aimed to evaluate the frequency distribution of the edentulous posterior mandibular ridge types using cone beam computed tomography in an Iranian population. Methods: In this cross-sectional descriptive study, CBCT scans of 127 patients with full edentulous mandible with an average age of 61.15 were evaluated who referred to a radiology clinic in Tehran. The images were analyzed applying OnDemand3D application and bone height and width of each area were determined. To analyze the collected data, SPSS software (ver,17 was employed applying Fisher's exact test. Results: The ridges were classified in 4 different groups (A,B+,B-w,C-w. The frequency of ridge types A and B + in male and ridge types B-w and C-w in females were demonstrated to be higher. An increase in age led to a reduction in the frequency of type A and a rise in the frequency of type C-w. The mean bone height was higher in males in all areas. In addition, the mean bone width was higher in males in all areas except for the first molar area. Conclusions:  The study results indicated that as the age increases, the height of edentulous mandible reduces, while no significant relationship was detected between the bone width and aging. As a result, with aging the evolution of bone was held to be from type A to type C-W.

  3. Anisotropic optical feedback of single frequency intra-cavity He–Ne laser

    International Nuclear Information System (INIS)

    Lu-Fei, Zhou; Shu-Lian, Zhang; Yi-Dong, Tan; Wei-Xin, Liu; Bin, Zhang

    2009-01-01

    This paper presents the anisotropic optical feedback of a single frequency intra-cavity He–Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry–Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system. (fluids, plasmas and electric discharges)

  4. A perspective on single-channel frequency-domain speech enhancement

    CERN Document Server

    Benesty, Jacob

    2010-01-01

    This book focuses on a class of single-channel noise reduction methods that are performed in the frequency domain via the short-time Fourier transform (STFT). The simplicity and relative effectiveness of this class of approaches make them the dominant choice in practical systems. Even though many popular algorithms have been proposed through more than four decades of continuous research, there are a number of critical areas where our understanding and capabilities still remain quite rudimentary, especially with respect to the relationship between noise reduction and speech distortion. All exis

  5. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  6. PMU Frequency Data Processing for A Planned Islanding Operation in Bornholm

    DEFF Research Database (Denmark)

    (PMU) system in Bornholm during the planned islanding operation first, as it has high time resolution and it is synchronized to Global Position System (GPS). However, there were some problems with the PMU system during the islanding period, which made the data not as complete as expected. This paper...... describes the problems and provides proposals for a data processing procedure to ensure that the improved frequency data are acceptable for statistics analysis. The proposed data processing procedure is described and evaluated. Furthermore, this paper provides a reference for future PMU data acquisition...... and processing. Individually, section I in the paper generally describes the background for islanding operation and the Bornholm system. Section II introduces the installed PMU measurement system, followed by section III, which describes the PMU original frequency data, the problems during the acquisition...

  7. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2+1)-dimensi......Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2...

  8. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  9. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    Science.gov (United States)

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  10. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    Directory of Open Access Journals (Sweden)

    Keum-Won Ha

    2018-04-01

    Full Text Available Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs, the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  11. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    Science.gov (United States)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  12. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  13. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  14. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...

  15. Doppler-shift proton fraction measurement on a CW proton injector

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Sherman, J.D.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.

    1998-01-01

    A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 ± 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed

  16. First lasing of the Darmstadt cw free electron laser

    CERN Document Server

    Brunken, M; Eichhorn, R; Genz, H; Gräf, H D; Loos, H; Richter, A; Schweizer, B; Stascheck, A; Wesp, T

    1999-01-01

    The Darmstadt CW FEL designed for wavelengths between 3 and 10 mu m driven by the superconducting electron accelerator S-DALINAC first lased on December 1st, 1996 and has operated thereafter successfully in the wavelength region between 6.6 and 7.8 mu m. The pulsed electron beam employed had a micro pulse length of about 2ps, with a repetition rate of 10 MHz and a peak current of 2.7 A while its energy was varied between 29.6 and 31.5 MeV. A wedged pole hybrid undulator, with 80 periods each of 0.032 m length and a magnetic field strength of 0.15-0.4T, was located in between a 15.01 m long optical cavity equipped with two high reflectivity (99.8) mirrors of 0.05 m diameter. Due to the low beam current special care with respect to the electron and optical beam properties was necessary to meet the stringent conditions in order to reach a minute small signal gain of at least a few percent resulting in amplification. Saturation was obtained after about 2000 repetitions of the photon pulse inside the cavity. The D...

  17. Single, composite, and ceramic Nd:YAG 946-nm lasers

    Science.gov (United States)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  18. Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Directory of Open Access Journals (Sweden)

    V. Jenik

    2012-06-01

    Full Text Available Active defense represents an innovative way of protecting military vehicles. It is based on the employment of a set of radar sensors which detect an approaching threat missile and activate a suitable counter-measure. Since the radar sensors are supposed to detect flying missiles very fast and, at the same time, distinguish them from stationary or slow-moving objects, CW Doppler radar sensors can be employed with a benefit. The submitted article deals with a complex noise analysis of this type of sensors. The analysis considers the noise of linear and quasi-linear RF components, phase-noise of the local oscillator as well as the noise of low-frequency circuits. Since the incidence of the phase-noise depends strongly upon the time delay between the reference and the cross-talked signals, a new method of measuring noise parameters utilizing a reflecting wall has been developed and verified. The achieved results confirm potentially high influence of the phase-noise on the noise parameters of the mentioned type of radar sensors. Obtained results can be used for the analysis of noise parameters of the similar but even more complex sensors.

  19. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    Science.gov (United States)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  20. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  1. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  2. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  3. Detección de movimiento mediante técnicas radar CW-FM en banda W

    OpenAIRE

    Vargas González, Daniel

    2014-01-01

    Aplicació de diverses tècniques de detecció i localització per detectar moviments amb un radar C2-FM que opera en banda W. [ANGLÈS] Integration of a SAR adquisition system using a FM-CW 94 GHz radar and test the system by different measurement campaigns with the aim of detecting micrometic displacements using a phase analysis of the recived signal [CASTELLÀ[ Integración de un sistema de adquisición SAR mediante el uso de un radar FM-CW a 94 GHz y probar la validez del mencionado sistema...

  4. Design, Fabrication and Testing of Medium-Beta 650 MHz SRF Cavity Prototypes for Project-X

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Henry, J.; Kneisel, P.; Martin, R.; Rimmer, R.A.; Slack, G.; Turlington, L.; Williams, R.S.

    2011-01-01

    A new type of superconducting radio frequency (SRF) cavity shape with a shallow equator dome to reduce electron impact energies for suppressing multipacting barriers has been proposed. The shape is in consideration for the first time in the framework of Project-X to design a potential multi-cell cavity candidate for the medium-beta section of the SRF proton CW linac operating at 650 MHz. Rationales covering the design of the multi-cell cavity, the manufacture, post-processing and high power testing of two single-cell prototypes are presented.

  5. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    Science.gov (United States)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  6. Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3:C

    International Nuclear Information System (INIS)

    Rawat, N.S.; Dhabekar, B.; Kulkarni, M.S.; Muthe, K.P.; Mishra, D.R.; Soni, A.; Gupta, S.K.; Babu, D.A.R.

    2014-01-01

    Continuous wave optically stimulated luminescence (CW-OSL) is relatively a simple technique that offers good signal to noise ratio (SNR) and involves simple instrumentation. This study reports the influence and optimization of CW-OSL parameters on minimum detectable dose (MDD) using α-Al 2 O 3 :C phosphor. It is found that at a given stimulation intensity MDD in CW-OSL mode depends on signal integration time. At lower integration times MDD is inferior. It exhibits an improvement for intermediate values, shows a plateau region and deteriorates as integration time increases further. MDD is found to be ∼127 μGy at 4 mW/cm 2 stimulation intensity for integration time of 0.1 s, which improves to ∼10.5 μGy for 60 s. At stimulation intensity of 72 mW/cm 2 , MDD is 37 μGy for integration time of 60 s and improves significantly to 7 μGy for 1 s. - Highlights: • CW-OSL parameters are optimized to obtain best SNR and MDD in Al 2 O 3 :C. • MDD is found to depend on signal integration time and stimulation intensity. • With time, MDD initially improves, stabilizes then deteriorates. • At a given intensity, MDD is optimum for a certain range of integration time

  7. Racetrack microtron radio-frequency system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Mitra, A.K.

    1981-01-01

    The design and construction progress of a prototype rf system to drive the Los Alamos-NBS racetrack microtron (RTM) electron accelerator is described. The rf system requires 450-kW cw at 2380 MHz from a single klystron. The output from the klystron is split three ways to drive a capture section, a preaccelerator section, and the main accelerator section. The fields in each section are phase- and amplitude-controlled to tight tolerances. Temperature control of the accelerator sections also is linked to the amplitude-control system, because the system's average power is so high

  8. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  9. Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4 / KTP green laser with Cr4+:YAG

    International Nuclear Information System (INIS)

    Mukhopadhyay, P. K.; Ranganathan, K.; George, J.; Nathan, T. P. S.; Alsous, M. B.

    2007-01-01

    We report intracavity second harmonic (at 532 nm) generation in passively Q-switched mode-locked Nd: YVO4 laser. The width of a typical Q-switched envelope of the mode locked pulses for the green laser was around 65 ± 5 ns and the repetition rate for the mode locked pulses was 400 MHz. The intracavity frequency doubling significantly improves the depth of modulation of the mode locked pulses. The peak power of a single mode locked green pulse near the center of the Q-switched envelope was estimated to be more than 2kw and the average green power was 6 times higher than the CW green power at an incident diode pump power of 6W. (author)

  10. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  11. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  12. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers

    Science.gov (United States)

    Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca

    2014-06-01

    We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.

  13. Thermal-Mechanical Study of 3.9 GHz CW Coupler and Cavity for LCLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Gonin, Ivan [Fermilab; Harms, Elvin [Fermilab; Khabiboulline, Timergali [Fermilab; Solyak, Nikolay [Fermilab; Yakovlev, Vyacheslav [Fermilab

    2017-05-01

    Third harmonic system was originally developed by Fermilab for FLASH facility at DESY and then was adopted and modified by INFN for the XFEL project [1-3]. In contrast to XFEL project, all cryomodules in LCLS-II project will operate in CW regime with higher RF average power for 1.3 GHz and 3.9 GHz cavities and couplers. Design of the cavity and fundamental power coupler has been modified to satisfy LCLS-II requirements. In this paper we discuss the results of COMSOL thermal and mechanical analysis of the 3.9 GHz coupler and cavity to verify proposed modifica-tion of the design. For the dressed cavity we present simulations of Lorentz force detuning, helium pressure sensitivity df/dP and major mechanical resonances.

  14. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  15. Thermal lensing effects in cw-pumped Nd3: YAG laser rods

    International Nuclear Information System (INIS)

    Chang, C.

    Thermal lensing effects were investigated in cw-pumped Nd 3+ : YAG laser rods. For identically specified rods very different thermally induced focal lengths were measured. Thus compensation of thermal lensing by applying curved end faces should be done individually for each rod. (orig.) 891 HT/orig. 892 HIS

  16. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli

    International Nuclear Information System (INIS)

    Huang, C.-J.; Chen, C.-Y.

    2005-01-01

    Many chitinase genes have been cloned and sequenced from prokaryotes and eukaryotes but overexpression of chitinases in Escherichia coli cells was less reported. ChiCH and ChiCW of Bacillus cereus 28-9 belong to two distinct groups based on their amino acid sequences of catalytic domains, and in addition, domain structures of two enzymes are different. In this study, we established an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins using pGEX-6P-1 vector. Both ChiCH and ChiCW were successfully highly expressed in E. coli cells as soluble GST-chitinase fusion proteins, and recombinant native ChiCH and ChiCW could be purified after cleavage with PreScission protease to remove GST tag. Purified chitinases were used for biochemical characterization of kinetics, hydrolysis products, and binding activities. The results indicate that ChiCW is an endo-chitinase and effectively hydrolyzes chitin and chito-multimers to chito-oligomers and the end product chitobiose, and ChiCH is an exo-chitinase and degrades chito-oligomers to produce chitobiose. Furthermore, due to higher affinity of ChiCW toward colloidal chitin than Avicel, C-terminal domain of ChiCW should be classified as a chitin-binding domain not a cellulose-binding domain although that was revealed as a cellulose-binding domain by conserved domain analysis. Therefore, the method of high-level expression of chitinases is helpful to studies and applications of chitinases

  17. Approaches to single photon detection

    International Nuclear Information System (INIS)

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  18. Validation of the superconducting 3.9 GHz cavity package for the European X-ray Free Electron Laser

    Science.gov (United States)

    Maiano, C. G.; Branlard, J.; Hüning, M.; Jensch, K.; Kostin, D.; Matheisen, A.; Möller, W.-D.; Sulimov, A.; Vogel, E.; Bosotti, A.; Chen, J. F.; Moretti, M.; Paparella, R.; Pierini, P.; Sertore, D.

    2017-04-01

    A full test of the cavity package concept under realistic operating condition was a necessary step before the assembly of the European XFEL (EXFEL) 3.9 GHz superconducting system and its installation in the accelerator. One cavity, equipped with magnetic shielding, power coupler and frequency tuner has been tested in a specially designed single cavity cryostat in one of the test benches of the DESY Accelerator Module Test Facility (AMTF). The cavity was operated at high pulsed power up to an accelerating field of 24 MV /m , above the quench accelerating field of 21 MV /m achieved during the continuous wave (CW) vertical qualification test and with a large margin with respect to the EXFEL maximum operating specification of 15 MV /m for the 3.9 GHz system. All subsystems under test—coupler, tuner, waveguide tuners, low level radio-frequency (LLRF) system—were qualified to their design performances.

  19. Accuracy of Single Frequency GPS Observations Processing In Near Real-time With Use of Code Predicted Products

    Science.gov (United States)

    Wielgosz, P. A.

    In this year, the system of active geodetic GPS permanent stations is going to be estab- lished in Poland. This system should provide GPS observations for a wide spectrum of users, especially it will be a great opportunity for surveyors. Many of surveyors still use cheaper, single frequency receivers. This paper focuses on processing of single frequency GPS observations only. During processing of such observations the iono- sphere plays an important role, so we concentrated on the influence of the ionosphere on the positional coordinates. Twenty consecutive days of GPS data from 2001 year were processed to analyze the accuracy of a derived three-dimensional relative vec- tor position between GPS stations. Observations from two Polish EPN/IGS stations: BOGO and JOZE were used. In addition to, a new test station - IGIK was created. In this paper, the results of single frequency GPS observations processing in near real- time are presented. Baselines of 15, 27 and 42 kilometers and sessions of 1, 2, 3, 4, and 6 hours long were processed. While processing we used CODE (Centre for Orbit De- termination in Europe, Bern, Switzerland) predicted products: orbits and ionosphere info. These products are available in real-time and enable near real-time processing. Software Bernese v. 4.2 for Linux and BPE (Bernese Processing Engine) mode were used. These results are shown with a reference to dual frequency weekly solution (the best solution). Obtained GPS positional time and GPS baseline length dependency accuracy is presented for single frequency GPS observations.

  20. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.