WorldWideScience

Sample records for cvd diamond coated

  1. CVD diamond coatings on titanium : Characterisation by XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cappuccio, G [CNR, Frascati, Rome (Italy). Istituto di Strutturistica Chimica; [INFN-LNF, Frascati, Rome (Italy). Laboratorio Dafne Luce

    1996-09-01

    Here, the authors report an analysis carried out on diamond coatings on titanium substrates to show the potentially of x-ray diffraction techniques in the structural characterisation both of diamond thin films and of the other phases (TiC and TiH{sub 2}) present in the interfacial layer. It should be noted that the composition and microstructure of the interface layers strongly affect the characteristics of the diamond films, particularly adhesion, which is one of the most important elements determining the final quality of the coating.

  2. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    Science.gov (United States)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  3. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  4. The study on diamond-coated insert by DC plasma jet CVD

    International Nuclear Information System (INIS)

    Zhou Kesong; Dai Mingjiang; Song Jinbing; Kuang Tongchun; Liu Zhengyi

    2001-01-01

    Diamond coating were deposited on cemented carbide inserts by DC plasma jet CVD. The cemented carbide inserts were pretreated by methods including chemical etching of Co, Ar/H 2 plasma etching. The characteristics of diamond film, interface structure, adhesion strength and film stress were analysized by different methods such as SEM, XRD, Raman spectrum etc. A comparing experiment of cutting Al - 22 % Si alloy was carried out with diamond-coated cemented carbide inserts and uncoated cemented carbide inserts. The results show that the diamond-coated cemented carbide insert has a great advantage for cutting abrasive high content Al - Si alloy. (author)

  5. Tribosystems based on multilayered micro/nanocrystalline CVD diamond coatings =

    Science.gov (United States)

    Shabani, Mohammadmehdi

    A combinacao das caracteristicas do diamante microcristalino (MCD) e nanocristalino (NCD), tais como elevada adesao do MCD e a baixa rugosidade superficial e baixo coeficiente de atrito do NCD, e ideal para aplicacoes tribologicas exigentes. Deste modo, o presente trabalho centrou-se no desenvolvimento de revestimentos em multicamada MCD/NCD. Filmes com dez camadas foram depositados em amostras de cerâmicos de Si3N4 pela tecnica de deposicao quimica em fase vapor assistida por filamento quente (HFCVD). A microestrutura, qualidade do diamante e adesao foram investigadas usando tecnicas como SEM, AFM, espectroscopia Raman, DRX, indentacao Brale e perfilometria otica 3D. Diversas geometrias para aplicacoes distintas foram revestidas: discos e esferas para testes tribologicos a escala laboratorial, e para testes em servico, aneis de empanques mecânicos e pastilhas de corte para torneamento. Nos ensaios tribologicos esfera-sobre-plano em movimento reciproco, sob 10-90% de humidade relativa (RH), os valores medios dos coeficientes de atrito maximo e em estado estacionario sao de 0,32 e 0,09, respetivamente. Em relacao aos coeficientes de desgaste, observou-se um valor minimo de cerca de 5,2x10-8 mm3N-1m-1 para valores intermedios de 20-25% de RH. A humidade relativa tem um forte efeito sobre o valor da carga critica que triplica a partir de 40 N a 10% RH para 120 N a 90% de RH. No intervalo de temperaturas 50-100 °C, as cargas criticas sao semelhantes as obtidas em condicoes de baixa RH ( 10-25%). A vida util das ferramentas com revestimento de dez camadas alternadas MCD/NCD e 24 mum de espessura total no torneamento de um composito de matriz metalica Al- 15 vol% Al2O3 (Al-MMC) e melhor do que a maioria das ferramentas de diamante CVD encontradas na literatura, e semelhante a maioria das ferramentas de diamante policristalino (PCD). A formacao de cratera ocorre por desgaste sucessivo das varias camadas, atrasando a delaminacao total do revestimento de diamante do

  6. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  7. Multilayer CVD Diamond Coatings in the Machining of an Al6061-15 Vol % Al2O3 Composite

    Directory of Open Access Journals (Sweden)

    Mohammadmehdi Shabani

    2017-10-01

    Full Text Available Ceramic cutting inserts coated with ten-fold alternating micro- and nanocrystalline diamond (MCD/NCD layers grown by hot filament chemical vapor deposition (CVD were tested in the machining of an Al based metallic matrix composite (MMC containing 15 vol % Al2O3 particles. Inserts with total coating thicknesses of approximately 12 µm and 24 µm were produced and used in turning: cutting speed (v of 250 to 1000 m·min−1; depth of cut (DOC from 0.5 to 3 mm and feed (f between 0.1 and 0.4 mm·rev−1. The main cutting force increases linearly with DOC (ca. 294 N per mm and with feed (ca. 640 N per mm·rev−1. The thicker coatings work within the following limits: DOC up to 1.5 mm and maximum speeds of 750 m·min−1 for feeds up to 0.4 mm·rev−1. Flank wear is predominant but crater wear is also observed due to the negative tool normal rake. Layer-by-layer wear of the tool rake, and not total delamination from the substrate, evidenced one of the advantages of using a multilayer design. The MCD/NCD multilayer diamond coated indexable inserts have longer tool life than most CVD diamond systems and behave as well as most polycrystalline diamond (PCD tools.

  8. Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining

    Science.gov (United States)

    Lei, X. L.; He, Y.; Sun, F. H.

    2016-12-01

    The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.

  9. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  10. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  11. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  12. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  13. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  14. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  15. Recent results on CVD diamond radiation sensors

    Science.gov (United States)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  16. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  17. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  18. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  19. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  20. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  1. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  2. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  3. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  4. Development of diamond coated tool and its performance in ...

    Indian Academy of Sciences (India)

    Unknown

    Mechanical Engineering Department, Indian Institute of Technology, Kharagpur 721 302, India ... chemical inertness of diamond coating towards the work material, did not show any .... CVD diamond coated carbide tools, Ph D Thesis, Indian.

  5. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  6. Nucleation of microwave plasma CVD diamond on molybdenum (Mo) substrate

    International Nuclear Information System (INIS)

    Inderjeet, K.; Ramesh, S.

    2000-01-01

    Molybdenum is a metal, which is gaining increasing significance in industrial applications. The main use of Mo is as all alloying element added in small amounts to steel, irons and non- ferrous alloys in order to enhance the strength, toughness and wear resistance. Mo is also vastly being employed in the automotive and aircraft industries, mainly due to its low coefficient of friction. Diamond, on be other hand, is a unique material for innumerable applications because of its usual combination of physical and chemical properties. Several potential applications can be anticipated for diamond in many sectors including electronics, optics, as protective corrosion resistant coatings, cutting tools, etc. With the enhancement in science and technology, diamond microcrystals and thin films are now being produced from the vapour phase by a variety of chemical vapour deposition (CVD) techniques; such as microwave plasma CVD. With such technology being made available, it is envisage that diamond-coated molybdenum would further enhance the performance and to open up new avenue for Mo in various industries. Therefore, it is the aim of the present work to study the nucleation and growth of diamond particles on Mo surface by employing microwave plasma CVD (MAPCVD). In the present work, diamond deposition was carried out in several stages by varying the deposition distance. The nucleation and growth rate were studied using scanning electron microscopy (SEM). In addition, the existence of diamond was verified by X-ray diffraction (XRD) analysis. It has been found that the nucleation and growth rate of diamond particles were influenced by the deposition height between the substrate and plasma. Under the optimum condition, well defined diamond crystallites distributed homogeneously throughout the surface, could be obtained. Some of the important parameters controlling the deposition and growth of diamond particles on Mo surface are discussed. (author)

  7. Electrochemical applications of CVD diamond

    International Nuclear Information System (INIS)

    Pastor-Moreno, Gustavo

    2002-01-01

    Diamond technology has claimed an important role in industry since non-expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc. As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the

  8. CVD diamond metallization and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fraimovitch, D., E-mail: dimitryf@mail.tau.ac.il [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Adelberd, A.; Marunko, S. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Lefeuvre, G. [Micron Semiconductor Ltd. Royal Buildings, Marlborough Road, Lancing Business Park, BN15 8SJ (United Kingdom); Ruzin, A. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2017-02-11

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  9. CVD diamond metallization and characterization

    International Nuclear Information System (INIS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-01-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  10. CVD diamond substrates for electronic devices

    International Nuclear Information System (INIS)

    Holzer, H.

    1996-03-01

    In this study the applicability of chemical vapor deposition (CVD) diamond as a material for heat spreaders was investigated. Economical evaluations on the production of heat spreaders were also performed. For the diamond synthesis the hot-filament and microwave method were used respectively. The deposition parameters were varied in a way that free standing diamond layers with a thickness of 80 to 750 microns and different qualities were obtained. The influence of the deposition parameters on the relevant film properties was investigated and discussed. With both the hot-filament and microwave method it was possible to deposit diamond layers having a thermal conductivity exceeding 1200 W/mK and therefore to reach the quality level for commercial uses. The electrical resistivity was greater than 10 12 Ωcm. The investigation of the optical properties was done by Raman-, IR- and cathodoluminescence spectroscopy. Because of future applications of diamond-aluminium nitride composites as highly efficient heat spreaders diamond deposition an AIN was investigated. An improved substrate pretreatment prior to diamond deposition showed promising results for better performance of such composite heat spreaders. Both free standing layers and diamond-AIN composites could be cut by a CO2 Laser in Order to get an exact size geometry. A reduction of the diamond surface roughness was achieved by etching with manganese powder or cerium. (author)

  11. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  12. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  13. Effect of pretreatment and deposition parameters on diamond nucleation in CVD

    International Nuclear Information System (INIS)

    Nazim, E.; Izman, S.; Ourdjini, A.; Shaharoun, A.M.

    2007-01-01

    Chemical vapour deposition (CVD) of diamond films on cemented carbide (WC) has aroused great interest in recent years. The combination of toughness from the WC and the high hardness of diamond results in outstanding wear resistance. This will increase the lifetime and better technical performance of the components made of diamond coated carbide. One of the important steps in the growth of diamond film is the nucleation of diamond as its density strongly influences the diamond growth process, film quality and morphology. In this paper the various effects of surface pretreatment and diamond deposition conditions on the diamond nucleation density are reviewed. (author)

  14. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  15. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  16. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  17. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  18. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  19. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  20. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    Zhou Haiyang; Zhu Xiaodong; Zhan Rujuan

    2005-01-01

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  1. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  2. TSC response of irradiated CVD diamond films

    CERN Document Server

    Borchi, E; Bucciolini, M; Guasti, A; Mazzocchi, S; Pirollo, S; Sciortino, S

    1999-01-01

    CVD diamond films have been irradiated with electrons, sup 6 sup 0 Co photons and protons in order to study the dose response to exposure to different particles and energies and to investigate linearity with dose. The Thermally Stimulated Current (TSC) has been studied as a function of the dose delivered to polymethilmetacrilate (PMMA) in the range from 1 to 12 Gy with 20 MeV electrons from a linear accelerator. The TSC spectrum has revealed the presence of two components with peak temperatures of about 470 and 520 K, corresponding to levels lying in the diamond band gap with activation energies of the order of 0.7 - 1 eV. After the subtraction of the exponential background the charge emitted during the heating scan has been evaluated and has been found to depend linearly on the dose. The thermally emitted charge of the CVD diamond films has also been studied using different particles. The samples have been irradiated with the same PMMA dose of about 2 Gy with 6 and 20 MeV electrons from a Linac, sup 6 sup 0 ...

  3. High collection efficiency CVD diamond alpha detectors

    International Nuclear Information System (INIS)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A.; McKeag, R.D.; Jackman, R.B.

    1998-01-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used

  4. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    Science.gov (United States)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  5. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  6. New developments in CVD diamond for detector applications

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented.

  7. New developments in CVD diamond for detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W. [HEPHY, Vienna (Austria); Berdermann, E. [GSI, Darmstadt (Germany); Bergonzo, P.; Brambilla, A. [LETI/DEIN/SPE/CEA Saclay (France); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M. [University of Florence (Italy); Colledani, C.; Dulinski, W. [LEPSI, IN2P3/CNRS-ULP, Strasbourg (France); Conway, J.; Doroshenko, J. [Rutgers University, Piscataway (United States); D' Angelo, P.; Furetta, C. [INFN, Milano (Italy); Dabrowski, W. [UMM, Cracow (Poland); Delpierre, P.; Fallou, A. [CPPM, Marseille (France); Eijk, B. van [NIKHEF, Amsterdam (Netherlands); Fischer, P. [Universitaet Bonn, Bonn (Germany); Fizzotti, F. [University of Torino (Italy); Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-07-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  8. New developments in CVD diamond for detector applications

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Brambilla, A.; Boer, W. de; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Dulinski, W.; Conway, J.; Doroshenko, J.; D'Angelo, P.; Furetta, C.; Dabrowski, W.; Delpierre, P.; Fallou, A.; Eijk, B. van; Fischer, P.; Fizzotti, F.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-01-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  9. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  10. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  11. Micro-strip sensors based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D. E-mail: dirk.meier@cern.ch; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M

    2000-10-11

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  12. Micro-strip sensors based on CVD Diamond

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zoeller, M M

    2000-01-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  13. Micro-strip sensors based on CVD diamond

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.

    2000-01-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation

  14. Micro-strip sensors based on CVD diamond

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2000-10-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  15. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    Science.gov (United States)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  16. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  17. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  18. Investigation of defects in CVD diamond: Influence for radiotherapy applications

    International Nuclear Information System (INIS)

    Guerrero, M.J.; Tromson, D.; Bergonzo, P.; Barrett, R.

    2005-01-01

    In this study we present the potentialities of CVD diamond as an ionisation chamber for radiotherapy applications. Trapping levels present in CVD diamond are characterised using Thermally Stimulated Current (TSC) method with X-ray sources. The influence of the corresponding defects on the detector response is investigated and compared to those observed in natural diamond. Also, their spatial distribution across a large area polycrystalline diamond ionisation chamber is discussed. Results show the relative influence of two different populations of trapping levels in CVD diamond whose effect is crucial for radiotherapy applications. To partially overcome the defect detrimental effects, we propose to use CVD diamond ionisation chambers at moderate temperatures from 70 to 100 deg. C that could be provided by self heating of the device, for a dramatically improved stability and reproducibility

  19. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    Science.gov (United States)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  20. CVD diamond sensors for charged particle detection

    CERN Document Server

    Krammer, Manfred; Berdermann, E; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dencuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2001-01-01

    CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two- dimensional coordinate measurement. Strip detectors 2*4 cm/sup 2/ in size with a strip distance of 50 mu m were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 10/sup 15/ particles/cm/sup 2/. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies. (8 refs).

  1. CVD of alternated microcrystalline (MCD) and nanocrystalline (NCD) diamond films on WC-TIC-CO substrates

    International Nuclear Information System (INIS)

    Campos, Raonei Alves; Contin, Andre; Trava-Airoldi, Vladimir J.; Corat, Evaldo Jose; Barquete, Danilo Maciel

    2010-01-01

    CVD Diamond coating of WC-TiC-Co cutting tools has been an alternative to increase tool lifetime. Experiments have shown that residual stresses produced during films growth on WC-TiC-Co substrates significantly increases with increasing film thickness up to 20 μm and usually leads to film delamination. In this work alternated micro- and nanocrystalline CVD diamond films have been used to relax interface stresses and to increase diamond coatings performance. WC-TiC-Co substrates have been submitted to a boronizing thermal diffusion treatment prior to CVD diamond films growth. After reactive heat treatment samples were submitted to chemical etching in acid and alkaline solution. The diamond films deposition was performed using HFCVD reactor with different gas concentrations for microcrystalline (MCD) and nano-crystalline (NCD) films growth. As a result, we present the improvement of diamond films adherence on WC-TiC-Co, evaluated by indentation and machining tests. Samples were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) for qualitative analysis of diamond films. X-ray Diffraction (XRD) was used for phases identification after boronizing process. Diamond film compressive residual stresses were analyzed by Raman Scattering Spectroscopy (RSS). (author)

  2. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  3. Mechanical pretreatment for improved adhesion of diamond coatings

    International Nuclear Information System (INIS)

    Toenshoff, H.K.; Mohlfeld, A.; Gey, C.; Winkler, J.

    1999-01-01

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  4. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  5. Crystal growth of CVD diamond and some of its peculiarities

    CERN Document Server

    Piekarczyk, W

    1999-01-01

    Experiments demonstrate that CVD diamond can form in gas environments that are carbon undersaturated with respect to diamond. This fact is, among others, the most serious violation of principles of chemical thermodynamics. In this $9 paper it is shown that none of the principles is broken when CVD diamond formation is considered not a physical process consisting in growth of crystals but a chemical process consisting in accretion of macro-molecules of polycyclic $9 saturated hydrocarbons belonging to the family of organic compounds the smallest representatives of which are adamantane, diamantane, triamantane and so forth. Since the polymantane macro-molecules are in every respect identical with $9 diamond single crystals with hydrogen-terminated surfaces, the accretion of polymantane macro- molecules is a process completely equivalent to the growth of diamond crystals. However, the accretion of macro-molecules must be $9 described in a way different from that used to describe the growth of crystals because so...

  6. Stress analysis of CVD diamond window for ECH system

    International Nuclear Information System (INIS)

    Takahashi, Koji

    2001-03-01

    The stress analysis of a chemical vapor deposition (CVD) diamond window for Electron Cyclotron Heating and Current Drive (ECH/ECCD) system of fusion reactors is described. It was found that the real size diamond window (φ aper =70mm, t=2.25mm) withstood 14.5 atm. (1.45 MPa). The calculation results of the diamond window by ABAQUS code agree well with the results of the pressure test. The design parameters of the torus diamond window for a vacuum and a safety barrier were also obtained. (author)

  7. Nanocrystalline diamond coatings for cutting operations; Nanokristalline Diamantschichten fuer die Zerspanung

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany). Technology

    2006-06-15

    The history of the CVD diamond synthesis goes back into the fifties. However, the scientific and economical potential was only gradually recognized. In the eighties intensive world-wide research on CVD diamond synthesis and applications were launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. The article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  8. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Petitfils, A.

    2007-09-01

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  9. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  10. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  11. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-01-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte-Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometer for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. Also other neutron related applications have been suggested. (author)

  12. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-07-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation-hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometry for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. (author)

  13. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  14. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  15. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  16. Assessment of CVD diamond as a thermoluminescence dosemeter material

    International Nuclear Information System (INIS)

    Borchi, E.; Furetta, C.; Leroy, C.

    1996-01-01

    Diamond has a low atomic number (Z = 6) and is therefore essentially soft tissue (Z = 7.4) equivalent. As such, diamond is an attractive material for applications in dosimetry in which the radiation absorption in the sensor material should be as close as possible to that of soft tissue. Synthetic diamond prepared by chemical vapour deposition (CVD) offers an attractive option for this application. The aim of the present work is to report results on the thermoluminescence (TL) properties of CVD diamond samples. The annealing procedures, the linearity of the TL response as a function of dose, a short-term fading experiment and some kinetic properties have been investigated and are reported here. (Author)

  17. Radiation tolerance of CVD diamond detectors for pions and protons

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F. E-mail: f.hartjes@nikhef.nl; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M

    2002-01-11

    The paper gives new results on the radiation tolerance of CVD diamond for irradiation with 300 MeV/c pions and 24 GeV/c protons. The measured charge signal spectrum is compared at several irradiation levels with the spectrum calculated by a model. Irradiation by particles causes damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model show that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.

  18. Radiation tolerance of CVD diamond detectors for pions and protons

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.

    2002-01-01

    The paper gives new results on the radiation tolerance of CVD diamond for irradiation with 300 MeV/ c pions and 24 GeV/ c protons. The measured charge signal spectrum is compared at several irradiation levels with the spectrum calculated by a model. Irradiation by particles causes damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model show that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.

  19. Radiation tolerance of CVD diamond detectors for pions and protons

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.

    2002-01-01

    The paper gives new results on the radiation tolerance of CVD diamond for irradiation with 300 MeV/c pions and 24 GeV/c protons. The measured charge signal spectrum is compared at several irradiation levels with the spectrum calculated by a model. Irradiation by particles causes damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model show that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal

  20. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  1. Response of CVD diamond detectors to alpha radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souw, E.-K. [Brookhaven National Lab., Upton, NY (United States); Meilunas, R.J. [Northrop-Grumman Corporation, Bethpage, NY 11714-3582 (United States)

    1997-11-21

    This article describes some results from an experiment with CVD diamond films used as {alpha} particle detectors. It demonstrates that bulk polarization can be effectively stopped within a reasonable time interval. This will enable detector calibration and quantitative measurement. A possible mechanism for the observed polarization quenching is discussed. It involves two types of carrier traps and a tentative band-gap model derived from the results of photoconductive current measurements. The experiment was set up mainly to investigate {alpha} detection properties of polycrystalline diamond films grown by the technique of microwave plasma enhanced chemical vapor deposition. For comparison, two commercially purchased diamond wafers were also investigated, i.e., one grown by the DC arc jet method, and the other, a type-IIa natural diamond wafer (not preselected). The best response to {alpha} particles was obtained using diamond thin-films grown by the microwave PECVD method, followed by the type-IIa natural diamond, and finally, the CVD diamond grown by the DC arc jet technique. (orig.). 43 refs.

  2. CVD diamonds as thermoluminescent detectors for medical applications

    International Nuclear Information System (INIS)

    Marczewska, B.; Olko, P.; Nesladek, M.; Waligorski, M.P.R.; Kerremans, Y.

    2002-01-01

    Diamond is believed to be a promising material for medical dosimetry due to its tissue equivalence, mechanical and radiation hardness, and lack of solubility in water or in disinfecting agents. A number of diamond samples, obtained under different growth conditions at Limburg University, using the chemical vapour deposition (CVD) technique, was tested as thermoluminescence dosemeters. Their TL glow curve, TL response after doses of gamma rays, fading, and so on were studied at dose levels and for radiation modalities typical for radiotherapy. The investigated CVD diamonds displayed sensitivity comparable with that of MTS-N (Li:Mg,Ti) detectors, signal stability (reproducibility after several readouts) below 10% (1 SD) and no fading was found four days after irradiation. A dedicated CVD diamond plate was grown, cut into 20 detector chips (3x3x0.5 mm) and used for measuring the dose-depth distribution at different depths in a water phantom, for 60 Co and six MV X ray radiotherapy beams. Due to the sensitivity of diamond to ambient light, it was difficult to achieve reproducibility comparable with that of standard LiF detectors. (author)

  3. Performance of irradiated CVD diamond micro-strip sensors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15 /cm 2 ) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10 15 p/cm 2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10 15 π/cm 2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations

  4. Performance of irradiated CVD diamond micro-strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D. E-mail: dirk.meier@cern.ch; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S.V.; Thomson, G.B

    2002-01-11

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a {beta}-source and the performance before and after intense (>10{sup 15}/cm{sup 2}) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2x10{sup 15} p/cm{sup 2} lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9x10{sup 15} {pi}/cm{sup 2} lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  5. Performance of irradiated CVD diamond micro-strip sensors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a $\\beta$-source and the performance before and after intense ($>10^{15}/{\\rm cm^2}$) proton- and pion-irradiations. We find that low dose irradiations increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiations with protons ($2.2\\times 10^{15}~p/{\\rm cm^2}$) lowers the signal-to-noise ratio slightly. Intense irradiation with pions ($2.9\\times 10^{15}~\\pi/{\\rm cm^2}$) lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  6. Performance of irradiated CVD diamond micro-strip sensors

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  7. Investigation of laser ablation of CVD diamond film

    Science.gov (United States)

    Chao, Choung-Lii; Chou, W. C.; Ma, Kung-Jen; Chen, Ta-Tung; Liu, Y. M.; Kuo, Y. S.; Chen, Ying-Tung

    2005-04-01

    Diamond, having many advanced physical and mechanical properties, is one of the most important materials used in the mechanical, telecommunication and optoelectronic industry. However, high hardness value and extreme brittleness have made diamond extremely difficult to be machined by conventional mechanical grinding and polishing. In the present study, the microwave CVD method was employed to produce epitaxial diamond films on silicon single crystal. Laser ablation experiments were then conducted on the obtained diamond films. The underlying material removal mechanisms, microstructure of the machined surface and related machining conditions were also investigated. It was found that during the laser ablation, peaks of the diamond grains were removed mainly by the photo-thermal effects introduced by excimer laser. The diamond structures of the protruded diamond grains were transformed by the laser photonic energy into graphite, amorphous diamond and amorphous carbon which were removed by the subsequent laser shots. As the protruding peaks gradually removed from the surface the removal rate decreased. Surface roughness (Ra) was improved from above 1μm to around 0.1μm in few minutes time in this study. However, a scanning technique would be required if a large area was to be polished by laser and, as a consequence, it could be very time consuming.

  8. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  9. Studies of mono-crystalline CVD diamond pixel detectors

    CERN Document Server

    Bartz, E; Atramentov, O; Yang, Z; Hall-Wilton, R; Schnetzer, S; Patel, R; Bugg, W; Hebda, P; Halyo, V; Hunt, A; Marlow, D; Steininger, H; Ryjov, V; Hits, D; Spanier, S; Pernicka, M; Johns, W; Doroshenko, J; Hollingsworth, M; Harrop, B; Farrow, C; Stone, R

    2011-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLTs mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope. Published by Elsevier B.V.

  10. Studies of mono-crystalline CVD diamond pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W. [University of Tennessee, Knoxville (United States); Hollingsworth, M., E-mail: mhollin3@utk.edu [University of Tennessee, Knoxville (United States); Spanier, S.; Yang, Z. [University of Tennessee, Knoxville (United States); Bartz, E.; Doroshenko, J.; Hits, D.; Schnetzer, S.; Stone, R.; Atramentov, O.; Patel, R.; Barker, A. [Rutgers University, Piscataway (United States); Hall-Wilton, R.; Ryjov, V.; Farrow, C. [CERN, Geneva (Switzerland); Pernicka, M.; Steininger, H. [HEPHY, Vienna (Austria); Johns, W. [Vanderbilt University, Nashville (United States); Halyo, V.; Harrop, B. [Princeton University, Princeton (United States); and others

    2011-09-11

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLT's mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope.

  11. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  12. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  13. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  14. Pulse height distribution and radiation tolerance of CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dangelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F. E-mail: f.hartjes@nikhef.nl; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; D.Tromson,; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.; Fenyvesi, A.; Molnar, J.; Sohler, D

    2000-06-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.

  15. Pulse height distribution and radiation tolerance of CVD diamond detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal. (11 refs).

  16. Pulse height distribution and radiation tolerance of CVD diamond detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dangelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; D.Tromson,; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.; Fenyvesi, A.; Molnar, J.; Sohler, D.

    2000-01-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal

  17. Parameterisation of radiation effects on CVD diamond for proton irradiation

    International Nuclear Information System (INIS)

    Hartjes, F.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.

    1999-01-01

    The paper reviews measurements of the radiation hardness of CVD diamond for 24 GeV/c proton irradiation at fluences up to 5 * 10 15 protons/cm 2 . The results not only show radiation damage but also an annealing effect that is dominant at levels around 10 15 protons/cm 2 . A model describing both effects is introduced, enabling a prediction of the distribution curve of the charge signal for other levels

  18. Parameterisation of radiation effects on CVD diamond for proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hartjes, F.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M

    1999-08-01

    The paper reviews measurements of the radiation hardness of CVD diamond for 24 GeV/c proton irradiation at fluences up to 5{sup *}10{sup 15} protons/cm{sup 2}. The results not only show radiation damage but also an annealing effect that is dominant at levels around 10{sup 15} protons/cm{sup 2}. A model describing both effects is introduced, enabling a prediction of the distribution curve of the charge signal for other levels.

  19. Origin, state of the art and some prospects of the diamond CVD

    CERN Document Server

    Spitsyn, B V; Alexenko, A E

    2000-01-01

    A short review on the diamond CVD origin, together with its state of the art and some prospects was given. New hybrid methods of the diamond CVD permit to gain 1.2 to 6 times of growth rate in comparison with ordinary diamond CVD's. Recent results on n-type diamond film synthesis through phosphorus doping in the course of the CVD process are briefly discussed. In comparison with high-pressure diamond synthesis, the CVD processes open new facets of the diamond as ultimate crystal for science and technology evolution. It was stressed that, mainly on the basis of new CVDs of diamond, the properties of natural diamond are not only reproduced, but can be surpassed. As examples, mechanical (fracture resistance), physical (thermal conductivity), and chemical (oxidation stability) properties are mentioned. Some present issues in the field are considered.

  20. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  1. Thermoluminescence in CVD diamond films: application to actinometric dosimetry

    International Nuclear Information System (INIS)

    Barboza-Flores, M.; Melendrez, R.; Chernov, V.; Castaneda, B.; Pedroza-Montero, M.; Gan, B.; Ahn, J.; Zhang, Q.; Yoon, S.F.

    2002-01-01

    Diamond is considered a tissue-equivalent material since its atomic number (Z=6) is close to the effective atomic number of biological tissue (Z=7.42). Such a situation makes it suitable for radiation detection purposes in medical applications. In the present work the analysis is reported of the thermoluminescence (TL) and dosimetric features of chemically vapour deposited (CVD) diamond film samples subjected to ultraviolet (UV) irradiation in the actinometric region. The TL glow curve shows peaks at 120, 220, 320 and 370 deg. C. The 120 and 370 deg. C peaks are too weak and the first one fades away in a few seconds after exposure. The overall room temperature fading shows a 50% TL decay 30 min after exposure. The 320 deg. C glow peak is considered to be the most adequate for dosimetric applications due to its low fading and linear TL behaviour as a function of UV dose in the 180-260 nm range. The TL excitation spectrum presents a broad band with at least two overlapped components around 205 and 220 nm. The results indicate that the TL behaviour of CVD diamond film can be a good alternative to the currently available dosemeter and detector in the actinometric region as well as in clinical and medical applications. (author)

  2. CVD diamond sensor for UV-photon detection

    CERN Document Server

    Periale, L; Gervino, G; Lamarina, A M; Palmisano, C; Periale, R; Picchi, P

    2012-01-01

    A new generation of UV photosensors, based on single crystal Chemical Vapour Deposition (CVD) diamonds to work optically coupled with large volume two-phase liquid-Ar (LAr) or liquid-Xe (LXe) detectors nowadays under design for the next generation of WIMPs experiments, is under development. Preliminary tests and first calibrations show these devices can have better performance than the existing UV sensitive detectors (higher photosensitivity and better signal-to-noise ratio). I-V characteristics, dark current measurements, linearity response to X-ray irradiation, and alpha-particle energy resolution are reported and discussed. (C) 2011 Elsevier B.V. All rights reserved.

  3. Experimental studies of N~+ implantation into CVD diamond thin films

    Institute of Scientific and Technical Information of China (English)

    辛火平; 林成鲁; 王建新; 邹世昌; 石晓红; 林梓鑫; 周祖尧; 刘祖刚

    1997-01-01

    The effects of N+ implantation under various conditions on CVD diamond films were analyzed with Raman spectroscopy, four-point probe method, X-ray diffraction (XRD), Rutherford backseattering spectroscopy (RBS), ultraviolet photoluminescence spectroscopy (UV-PL), Fourier transformation infrared absorption spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the N+ implantation doping without any graphitization has been successfully realized when 100 keV N+ ions at a dosage of 2 × 1016 cm-2 were implanted into diamond films at 550℃ . UV-PL spectra indicate that the implanted N+ ions formed an electrically inactive deep-level impurity in diamond films. So the sheet resistance of the sample after N+ implantation changed little. Carbon nitride containing C≡N covalent bond has been successfully synthesized by 100 keV, 1.2×1018 N/cm2 N+ implantation into diamond films. Most of the implanted N+ ions formed C≡N covalent bonds with C atoms. The others were free state nitroge

  4. CVD diamond Brewster window: feasibility study by FEM analyses

    Directory of Open Access Journals (Sweden)

    Vaccaro A.

    2012-09-01

    Full Text Available Chemical vapor deposition (CVD diamond windows are a crucial component in heating and current drive (H&CD applications. In order to minimize the amount of reflected power from the diamond disc, its thickness must match the desired beam wavelength, thus proper targeting of the plasma requires movable beam reflectors. This is the case, for instance, of the ITER electron cyclotron H&CD system. However, looking at DEMO, the higher heat loads and neutron fluxes could make the use of movable parts close to the plasma difficult. The issue might be solved by using gyrotrons able to tune the beam frequency to the desired resonance, but this concept requires transmission windows that work in a given frequency range, such as the Brewster window. It consists of a CVD diamond disc brazed to two copper cuffs at the Brewster angle. The brazing process is carried out at about 800°C and then the temperature is decreased down to room temperature. Diamond and copper have very different thermal expansion coefficients, therefore high stresses build up during the cool down phase that might lead to failure of the disc. Considering also the complex geometry of the window with the skewed position of the disc, analyses are required in the first place to check its feasibility. The cool down phase was simulated by FEM structural analyses for several geometric and constraint configurations of the window. A study of indirect cooling of the window by water was also performed considering a HE11 mode beam. The results are here reported.

  5. A study of the thermoluminescent properties of CVD diamond detectors

    International Nuclear Information System (INIS)

    Marczewska, B.; Bilski, P.; Olko, P.; Rebisz, M.; Nesladek, M.; Waligorski, M.P.R.

    2002-01-01

    A batch of 20 diamond detectors obtained by the chemical vapour deposition (CVD) method at the Institute for Materials Research at the Limburg University, Belgium, was investigated with respect to their thermoluminescent (TL) properties. The investigated detectors demonstrate TL sensitivity similar to that of the standard LiF:Mg, Ti (MTS) thermoluminescent detectors, lack of fading after two weeks from irradiation and apparent linearity of dose response. In spite of the persistent fluctuation of individual detector sensitivity observed in this batch, a new annealing procedure improved the stability of the TL signal. It has been concluded that 1 h annealing at 350 C assures the highest reproducibility for this set of detectors. A 30% discrepancy of the value of the TL signal between individual detectors from the batch may be caused by non-uniform distribution of dopants in the volume of the CVD diamond. A prototype of a planar TL reader equipped with a CCD camera was employed in this investigation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  7. Bone repair after osteotomy with diamond burs and CVD ultrasonic tips – histological study in rats

    OpenAIRE

    Matuda, Fábio S.; Pagani, Clovis; Miranda, Carolina B.; Crema, Aline A. S.; Brentel, Aline S.; Carvalho, Yasmin R.

    2010-01-01

    This study histologically evaluated the behavior of bone tissue of rats submitted to osteotomy with conventional diamond burs in high speed and a new ultrasonic diamond tips system (CVD – Chemical Vapor Deposition), at different study periods. The study was conducted on 24 Wistar rats. Osteotomy was performed on the posterior paws of each rat, with utilization of diamond burs in high speed under thorough water cooling at the right paw, and CVD tips at the left paw. Animals were killed a...

  8. Comparative study of dlc coatings by pvd against cvd technique on textile dents

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Iftikhar, F.

    2007-01-01

    Diamond like Carbon (DLC) film is a hard amorphous carbon hydride film formed by Physical or Chemical vapor deposition (PVD or CVD) techniques. Due to its unique properties especially high hardness, lower coefficient of friction and lubricious nature, these coatings are not only used to extend the life of cutting tools but also for non cutting applications such as for forming dies, molds and on many functional parts of textile. In the present work two techniques were employed i.e. PVD and CVD for deposition of diamond like carbon film on textile dents. These dents are used as thread guider in high speed weaving machine. The measurement of coating thickness, adhesion, hardness and roughness values indicates that overall properties of DLC coating developed by PVD LARC technology reduces abrasion and increases the workability and durability of textile dents as well as suppress the need of lubricants. (author)

  9. Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates

    International Nuclear Information System (INIS)

    Zhang Dongcan; Shen Bin; Sun Fanghong

    2010-01-01

    The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si 3 N 4 ) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.

  10. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  11. Diamond coating in accelerator structure

    International Nuclear Information System (INIS)

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  12. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  13. SiC interlayer by laser-cladding on WC-Co substrates for CVD diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Fraga, Mariana Amorim; Vieira, Jose; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Belem, PA (Brazil); Vasconcelos, Getulio [Instituto de Estudos Avancados (IEA), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Despite their huge industrial potential and commercial interest, the direct diamond coating on cemented carbide (WC-Co) is limited, mainly because of the catalytic effect of Cobalt (Co) and the high difference in thermal expansion coefficient [1]. This results in poor adherence between diamond and WC-Co. In addition, the low diamond film adhesion to the cemented carbide useless for machining applications. Removal of Co binder from the substrate surface by superficial etching is one of the techniques used to improve the adhesion between diamond and WC-Co. For the present study, diamond films were deposited on WC-Co substrates with an intermediate barrier to block the Co diffusion to the surface substrate. The laser cladding process produced the SiC barrier, in which a powder layer is melted by a laser irradiation to create the coating on the substrate. The use of laser cladding is the novel method for an intermediate barrier for cemented carbides. The advantages of laser cladding include a faster processing speed, precision, versatility. We reported the application of pretreatment method called ESND (Electrostatic self-assembly seeding of nanocrystalline diamond). The nucleation density was around 10{sup 11}part/cm{sup 2}. Diamond films were grown by Hot Filament Chemical Vapor Deposition. Characterization of samples included Field Emission Gun-Scanning Electron Microscopy (FEG-SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Raman Scattering Spectroscopy. Results showed that laser irradiation formed stable Co compounds in the interfacial barrier. It is because nucleation and good quality of diamond film since the cobalt are no longer free to migrate to the surface during the CVD diamond deposition. Reference: [1] Y. X. Cui, B. Shen, F. H. Sun. Diamond deposition on WC–Co substrate with amorphous SiC interlayer, Surface Engineering, 30, (2014) 237-243. (author)

  14. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  15. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  16. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  17. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    Science.gov (United States)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  18. Effect of pulse biasing on the morphology of diamond films grown by hot filament CVD

    International Nuclear Information System (INIS)

    Beake, B.D.; Hussain, I.U.; Rego, C.; Ahmed, W.

    1999-01-01

    There has been considerable interest in the chemical vapour deposition (CVD) of diamond due to its unique mechanical, optical and electronic properties, which make it useful for many applications. For use in optical and electronic applications further developments in the CVD process are required to control the surface morphology and crystal size of the diamond films. These will require a detailed understanding of both the nucleation and growth processes that effect the properties. The technique of bias enhanced nucleation (BEN) of diamond offers better reproducibility than conventional pre-treatment methods such as mechanical abrasion. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used study the surface modification of diamond films on silicon substrates during pulse biased growth in a hot filament CVD reactor. Pre-abraded silicon substrates were subjected to a three-step sequential growth process: (i) diamond deposition under standard CVD conditions, (ii) bias pre-treatment and (iii) deposition under standard conditions. The results show that the bias pre-treatment time is a critical parameter controlling the surface morphology and roughness of the diamond films deposited. Biasing reduces the surface roughness from 152 nm for standard CVD diamond to 68 nm for the 2.5 minutes pulse biased film. Further increase in the bias time results in an increase in surface roughness and crystallite size. (author)

  19. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  20. Recent Results from Beam Tests of 3D and Pad pCVD Diamond Detectors

    CERN Document Server

    Wallny, Rainer

    2017-01-01

    Results from prototypes of a detector using chemical vapor deposited (CVD) diamond with embedded resistive electrodes in the bulk forming a 3D diamond device are presented. A detector system consisting of 3D devices based on poly-crystalline CVD (pCVD) diamond was connected to a multi-channel readout and successfully tested in a 120 GeV/c proton beam at CERN proving for the first time the feasibility of the 3D detector concept in pCVD for particle tracking applications. We also present beam test results on the dependence of signal size on incident particle rate in charged particle detectors based on poly-crystalline CVD diamond. The detectors were tested in a 260 MeV/c pion beam over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2 . The pulse height of the sensors was measured with pad readout electronics at a peaking time of 7 ns. Our data from the 2015 beam tests at PSI indicate that the pulse height of poly-crystalline CVD diamond sensor irradiated to 5×1014 neq/cm2 is independent of particle flux...

  1. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); Jory, H. [Communications and Power Industries, Palo Alto, CA (United States); Vikharov, A. L. [Russian Academy of Sciences (RAS), Moscow (Russian Federation)

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this project uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)

  2. Experiment and equipment of depositing diamond films with CVD system

    International Nuclear Information System (INIS)

    Xie Erqing; Song Chang'an

    2002-01-01

    CVD (chemical vapor deposition) emerged in recent years is a new technique for thin film deposition, which play a key role in development of modern physics. It is important to predominate the principle and technology of CVD for studying modern physics. In this paper, a suit of CVD experimental equipment for teaching in college physics is presented, which has simple design and low cost. The good result was gained in past teaching practices

  3. OSL and TL dosimeter characterization of boron doped CVD diamond films

    Science.gov (United States)

    Gonçalves, J. A. N.; Sandonato, G. M.; Meléndrez, R.; Chernov, V.; Pedroza-Montero, M.; De la Rosa, E.; Rodríguez, R. A.; Salas, P.; Barboza-Flores, M.

    2005-04-01

    Natural diamond is an exceptional prospect for clinical radiation dosimetry due to its tissue-equivalence properties and being chemically inert. The use of diamond in radiation dosimetry has been halted by the high market price; although recently the capability of growing high quality CVD diamond has renewed the interest in using diamond films as radiation dosimeters. In the present work we have characterized the dosimetric properties of diamond films synthesized by the HFCVD method. The thermoluminescence and the optically stimulated luminescence of beta exposed diamond sample containing a B/C 4000 ppm doping presents excellent properties suitable for dosimetric applications with β-ray doses up to 3.0 kGy. The observed OSL and TL performance is reasonable appropriate to justify further investigation of diamond films as dosimeters for ionizing radiation, specially in the radiotherapy field where very well localized and in vivo and real time radiation dose applications are essential.

  4. Thermoluminescence properties of undoped diamond films deposited using HF CVD technique

    Directory of Open Access Journals (Sweden)

    Paprocki K.

    2018-03-01

    Full Text Available Natural diamond has been considered as a perspective material for clinical radiation dosimetry due to its tissuebiocompatibility and chemical inertness. However, the use of natural diamond in radiation dosimetry has been halted by the high market price. The recent progress in the development of CVD techniques for diamond synthesis, offering the capability of growing high quality diamond layers, has renewed the interest in using this material in radiation dosimeters having small geometricalsizes. Polycrystalline CVD diamond films have been proposed as detectors and dosimeters of β and α radiation with prospective applications in high-energy photon dosimetry. In this work, we present a study on the TL properties of undoped diamond film samples grown by the hot filament CVD (HF CVD method and exposed to β and α radiation. The glow curves for both types of radiation show similar character and can be decomposed into three components. The dominant TL peaks are centered at around 610 K and exhibit activation energy of the order of 0.90 eV.

  5. RF characteristic of MESFET on H-terminated DC arc jet CVD diamond film

    International Nuclear Information System (INIS)

    Liu, J.L.; Li, C.M.; Zhu, R.H.; Guo, J.C.; Chen, L.X.; Wei, J.J.; Hei, L.F.; Wang, J.J.; Feng, Z.H.; Guo, H.; Lv, F.X.

    2013-01-01

    Diamond has been considered to be a potential material for high-frequency and high-power electronic devices due to the excellent electrical properties. In this paper, we reported the radio frequency (RF) characteristic of metal-semiconductor field effect transistor (MESFET) on polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD). First, 4 in polycrystalline diamond films were deposited by DC arc jet CVD in gas recycling mode with the deposition rate of 14 μm/h. Then the polished diamond films were treated by microwave hydrogen plasma and the 0.2 μm-gate-length MESFET was fabricated by using Au mask photolithography and electron beam (EB) lithography. The surface conductivity of the H-terminated diamond film and DC and RF performances of the MESFET were characterized. The results demonstrate that, the carrier mobility of 24.6 cm 2 /V s and the carrier density of 1.096 × 10 13 cm −2 are obtained on the surface of H-terminated diamond film. The FET shows the maximum transition frequency (f T ) of 5 GHz and the maximum oscillation frequency (f max ) of 6 GHz at V GS = −0.5 V and V DS = −8 V, which indicates that H-terminated DC arc jet CVD polycrystalline diamond is suitable for the development of high frequency devices.

  6. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  7. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  8. A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces

    Science.gov (United States)

    Baker, Paul A.; Thompson, Raymond G.; Catledge, Shane A.

    2015-01-01

    Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE). PMID:26989457

  9. Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Daniele M. Trucchi

    2017-11-01

    Full Text Available Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation.

  10. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  11. Natural and CVD type diamond detectors as dosimeters in hadrontherapy applications

    International Nuclear Information System (INIS)

    Cirrone, G.A.P.; Cuttone, G.; Rafaele, L.; Sabini, M.G.; De Angelis, C.; Onori, S.; Pacilio, M.; Bucciolini, M.; Bruzzi, M.; Sciortino, S.

    2003-01-01

    Diamond is potentially a suitable material for use as radiation dosimeter; the wide band gap results in low dark currents and low sensitivity to visible light, the high carrier mobility can give rapid response, the very high density of strong bonds in the crystal structure make diamond very resistant to radiation damage; moreover it is tissue equivalent. The more recent advances in the synthesis of polycrystalline diamond by chemical vapour deposition (CVD) techniques have allowed the synthesis of material with electronic properties suitable for dosimetric application. In this paper we will report the results obtained in the study of the response of a natural diamond dosimeter and a CVD one irradiated with 62 AMeV proton beams to demonstrate their possible application in protontherapy

  12. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Evgeny E. Ashkinazi

    2017-06-01

    Full Text Available Epitaxial growth of diamond films on different facets of synthetic IIa-type single crystal (SC high-pressure high temperature (HPHT diamond substrate by a microwave plasma CVD in CH4-H2-N2 gas mixture with the high concentration (4% of nitrogen is studied. A beveled SC diamond embraced with low-index {100}, {110}, {111}, {211}, and {311} faces was used as the substrate. Only the {100} face is found to sustain homoepitaxial growth at the present experimental parameters, while nanocrystalline diamond (NCD films are produced on other planes. This observation is important for the choice of appropriate growth parameters, in particular, for the production of bi-layer or multilayer NCD-on-microcrystalline diamond (MCD superhard coatings on tools when the deposition of continuous conformal NCD film on all facet is required. The development of the film morphology with growth time is examined with SEM. The structure of hillocks, with or without polycrystalline aggregates, that appear on {100} face is analyzed, and the stress field (up to 0.4 GPa within the hillocks is evaluated based on high-resolution mapping of photoluminescence spectra of nitrogen-vacancy NV optical centers in the film.

  13. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  14. Thermoluminescence properties of undoped and nitrogen-doped CVD diamond exposed to gamma radiation

    International Nuclear Information System (INIS)

    Barboza-Flores, M.; Gastelum, S.; Cruz-Zaragoza, E.; Melendrez, R.; Chernov, V.; Pedroza-Montero, M.; Favalli, A.

    2008-01-01

    It is known that the thermoluminescence (TL) performance of CVD diamond depends on the impurity concentration and doping materials introduced during growing. We report on the TL properties of undoped and 750 ppm nitrogen-doped CVD diamond grown on (0 0 1) silicon substrate. The samples were exposed to gamma radiation from a Gammacell 200 Nordion irradiator in the 10-500 Gy dose range at 627 mGy/min dose rate. The nitrogen-doped CVD diamond sample exhibited a TL glow curve peaked around 537 K and a small shoulder about 411 K and a linear dose behavior in the 10-60 Gy dose range. In contrast, the undoped specimen showed a 591 K peaked TL glow curve and linear dose response for 10-100 Gy doses. However, both samples displayed a non-linear dose response for doses higher than 100 Gy. The doping effects seem to cause a higher TL efficiency, which may be attributed to the differences in the diamond bonding and amorphous carbon on the CVD samples as well as to the presence of nitrogen. In addition, the nitrogen content may produce some structural and morphological surface effects, which may account for the distinctive TL features and dose response of the diamond samples

  15. A 3D tomographic EBSD analysis of a CVD diamond thin film

    International Nuclear Information System (INIS)

    Liu Tao; Raabe, Dierk; Zaefferer, Stefan

    2008-01-01

    We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  16. A 3D tomographic EBSD analysis of a CVD diamond thin film

    Directory of Open Access Journals (Sweden)

    Tao Liu, Dierk Raabe and Stefan Zaefferer

    2008-01-01

    Full Text Available We have studied the nucleation and growth processes in a chemical vapor deposition (CVD diamond film using a tomographic electron backscattering diffraction method (3D EBSD. The approach is based on the combination of a focused ion beam (FIB unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  17. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  18. The first bump-bonded pixel detectors on CVD diamond

    International Nuclear Information System (INIS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G.

    1999-01-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch

  19. The first bump-bonded pixel detectors on CVD diamond

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Fried, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Palmieri, V G; Pan, L S; Peitz, A; Pernicka, Manfred; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Steuerer, J; Stone, R; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Turchetta, R; Vittone, E; Wagner, A; Walsh, A M; Wedenig, R; Weilhammer, Peter; Zeuner, W; Ziock, H J; Zöller, M; Charles, E; Ciocio, A; Dao, K; Einsweiler, Kevin F; Fasching, D; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Milgrome, O; Palaio, N; Richardson, J; Sinervo, P K; Zizka, G

    1999-01-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98565544f the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 mu m was observed, consistent with expectations given the detector pitch. (13 refs).

  20. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  1. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    Science.gov (United States)

    Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-04-01

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.

  2. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D. E-mail: dirk.meier@cern.ch.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Manfredi, P.F.; Marshall, R.D.; Mishina, M.; Le Normand, F.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-04-21

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/c and 500 Mev protons up to a fluence of 5x10{sup 15} p/cm{sup 2}. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1x10{sup 15} p/cm{sup 2} and decreases by {approx}40% at 5x10{sup 15} p/cm{sup 2}. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/c and 500 MeV protons up to at least 1x10{sup 15}p/cm{sup 2} without signal loss.

  3. Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    International Nuclear Information System (INIS)

    Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Manfredi, P.F.; Marshall, R.D.; Mishina, M.; Le Normand, F.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1999-01-01

    CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/c and 500 Mev protons up to a fluence of 5x10 15 p/cm 2 . We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1x10 15 p/cm 2 and decreases by ∼40% at 5x10 15 p/cm 2 . Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/c and 500 MeV protons up to at least 1x10 15 p/cm 2 without signal loss

  4. Proton Irradiation of CVD Diamond Detectors for High Luminosity Experiments at the LHC

    CERN Document Server

    Meier, D; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jany, C; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Marshall, R D; Mishina, M; Le Normand, F; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/$c$ and 500~MeV protons up to a fluence of $5\\times 10^{15}~p/{\\rm cm^2}$. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to $1\\ times 10^{15}~p/{\\rm cm^2}$ and decreases by $\\approx$40~\\% at $5\\times 10^{15}~p/{\\rm cm^2}$. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radia...

  5. Diamond-coated probe head for measurements in the deep SOL and beyond

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Xu, G. S.; Yan, Ning

    We have tested two cylindrical graphite probe heads coated by a layer of electrically isolating UNCD (Ultra Nano-Crystalline Diamond) using a CVD (Chemical Vapour Deposition) method. The probe heads were mounted on the reciprocating probe manipulator of the Experimental Advanced Superconducting T...

  6. Growth, characterization and properties of CVD diamond films for applications as radiation detectors

    International Nuclear Information System (INIS)

    Sciorti, S.

    1999-01-01

    The aim of the work is to give a picture of the current state of the art of CVD (chemical vapour deposition) diamond. The interest is due to the capability to grow over large areas a material with physical properties suitable for an impressive number of applications. The authors focuses on the potential of diamond as a radiation detector and gets into details of the huge field that extends from the thermochemistry of the deposition process to the test of a diamond-based tracker with a fast readout electronics

  7. The potential use of diamond coated tungsten tips as a field ionisation source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Prawer, S.; Legge, G.J.F.; Kostidis, L.I. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.

  8. The potential use of diamond coated tungsten tips as a field ionisation source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Prawer, S; Legge, G J.F.; Kostidis, L I [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.

  9. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Jaski, Y.; Cookson, D.

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  10. Superconductivity and low temperature electrical transport in B-doped CVD nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Nesládek, M.; Mareš, Jiří J.; Tromson, D.; Mer, Ch.; Bergonzo, P.; Hubík, Pavel; Krištofik, Jozef

    2006-01-01

    Roč. 7, Suppl. 1 (2006), S41-S44 ISSN 1468-6996 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * electrical transport * doping * CVD diamond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.124, year: 2006

  11. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  12. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  13. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  14. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  15. Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991

    Science.gov (United States)

    Tzeng, Yonhua (Editor); Yoshikawa, Manasori (Editor); Murakawa, Masao (Editor); Feldman, Albert (Editor)

    1991-01-01

    The present conference discusses the nucleation and growth of diamond from hydrocarbons, the cutting tool performance of CVD thick-film diamond, the characterization of CVD diamond grinding powder, industrial applications of crystalline diamond-coated tools, standardized SEM tribometry of diamond-coated substrates, residual stress in CVD diamond films, the optical properties of CVD diamond films, polycrystalline diamond films for optical applications, and diamond growth on ferrous metals. Also discussed are ion beam-irradiation smoothing of diamond films, electronic circuits on diamond substrates, diamond-laminated surfaces for evaporative spray cooling, electron devices based on the unique properties of diamond, diamond cold cathodes, thin-film diamond microstructure applications, Schottky diodes from flame-grown diamond, diamond films for thermionic applications, methods of diamond nucleation and selective deposition, high-rate/large-area diamond film production, halogen-assisted diamond growth, the economics of diamond technology, and the optical and mechanical properties of diamondlike films.

  16. A beam radiation monitor based on CVD diamonds for SuperB

    Science.gov (United States)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  17. CVD Diamond Detectors for Current Mode Neutron Time-of-Flight Spectroscopy at OMEGA/NIF

    International Nuclear Information System (INIS)

    G. J. Schmid; V. Yu. Glebov; A. V. Friensehner; D. R. Hargrove; S. P. Hatchett; N. Izumi; R. A. Lerche; T. W. Phillips; T. C. Sangster; C. Silbernagel; C. Stoecki

    2001-01-01

    We have performed pulsed neutron and pulsed laser tests of a CVD diamond detector manufactured from DIAFILM, a commercial grade of CVD diamond. The laser tests were performed at the short pulse UV laser at Bechtel Nevada in Livermore, CA. The pulsed neutrons were provided by DT capsule implosions at the OMEGA laser fusion facility in Rochester, NY. From these tests, we have determined the impulse response to be 250 ps fwhm for an applied E-field of 500 V/mm. Additionally, we have determined the sensitivity to be 2.4 mA/W at 500 V/mm and 4.0 mA/W at 1000 V/mm. These values are approximately 2 to 5x times higher than those reported for natural Type IIa diamond at similar E-field and thickness (1mm). These characteristics allow us to conceive of a neutron time-of-flight current mode spectrometer based on CVD diamond. Such an instrument would sit inside the laser fusion target chamber close to target chamber center (TCC), and would record neutron spectra fast enough such that backscattered neutrons and x-rays from the target chamber wall would not be a concern. The acquired neutron spectra could then be used to extract DD fuel areal density from the downscattered secondary to secondary ratio

  18. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  19. Nanostructured diamond coatings for orthopaedic applications

    Science.gov (United States)

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  20. Performance of CVD diamond as an optically and thermally stimulated luminescence dosemeter

    International Nuclear Information System (INIS)

    Preciado-Flores, S.; Schreck, M.; Melendrez, R.; Chernov, V.; Bernal, R.; Cruz-Vazquez, C.; Cruz-Zaragoza, E.; Barboza-Flores, M.

    2006-01-01

    Diamond is a material with extreme physical properties. Its radiation hardness, chemical inertness and tissue equivalence qualify it as an ideal material for radiation dosimetry. In the present work, the optically stimulated luminescence (OSL) and thermoluminescence (TL) characteristics of a 10 μm thick CVD diamond (polycrystalline diamond films prepared by chemical vapor deposition) film were studied in order to test its performance as a beta radiation dosemeter. The TL response is composed of four main TL glow peaks; two of these are in the range of 150-200 deg. C and two additional peaks in the 250-400 deg. C temperature range. The integrated TL as a function of radiation dose is linear up to 100 Gy and increases with increasing dose exposure. The dose dependence of the integrated OSL exhibits a similar behavior. The observed OSL/TL behavior for the CVD diamond film clearly demonstrate its capability for applications in radiation dosimetry with special relevance in medical dosimetry owing to the diamond's intrinsic material properties. (authors)

  1. HFCVD Diamond-Coated Mechanical Seals

    Directory of Open Access Journals (Sweden)

    Raul Simões

    2018-05-01

    Full Text Available A mechanical seal promotes the connection between systems or mechanisms, preventing the escape of fluids to the exterior. Nonetheless, due to extreme working conditions, premature failure can occur. Diamond, due to its excellent properties, is heralded as an excellent choice to cover the surface of these devices and extend their lifetime. Therefore, the main objective of this work was to deposit diamond films over mechanical seals and test the coated seals on a water pump, under real working conditions. The coatings were created by hot filament chemical vapor deposition (HFCVD and two consecutive layers of micro- and nanocrystalline diamond were deposited. One of the main difficulties is the attainment of a good adhesion between the diamond films and the mechanical seal material (WC-Co. Nucleation, deposition conditions, and pre-treatments were studied to enhance the coating. Superficial wear or delamination of the film was investigated using SEM and Raman characterization techniques, in order to draw conclusions about the feasibility of these coatings in the WC-Co mechanical seals with the purpose of increasing their performance and life time. The results obtained gave a good indication about the feasibility of this process and the deposition conditions used, with the mechanical seals showing no wear and no film delamination after a real work environment test.

  2. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.; Rodionov, R. [Institution “Project center ITER,” Moscow (Russian Federation); Popovichev, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  3. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Gonon, P; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  4. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  5. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  6. Plasma CVD reactor with two-microwave oscillators for diamond film synthesis

    International Nuclear Information System (INIS)

    Nagatsu, M.; Miyake, M.; Maeda, J.

    2006-01-01

    In this study, we present the experimental results of a new type of microwave plasma CVD system, where two of 1.5 kW microwave sources were used for enlarging the plasma discharge and the diamond film growth. One of the microwave oscillators was used to produce the microwave plasma as in the conventional microwave plasma CVD device, while the second one was used to enlarge the plasma by introducing microwave from the launcher mounted at the substrate stage. We demonstrated the enlargement of plasma discharge area from 60 mm to 100 mm in diameter by using the two-microwave oscillators system. Characteristics of diamond films deposited using H 2 /CH 4 plasmas were also investigated using a scanning electron microscope (SEM) and Raman spectroscopy

  7. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry; Proprietes thermoluminescentes du diamant CVD: applications a la dosimetrie des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Petitfils, A

    2007-09-15

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  8. A CVD Diamond Detector for (n,a) Cross-Section Measurements

    CERN Document Server

    Weiss, Christina; Griesmayer, Erich; Guerrero, Carlos

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,a) cross-sections at the neutron time-of-flight facility n_TOF at CERN. The 59Ni(n,a)56Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,a) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n_TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the t...

  9. Recent results from CVD-diamond heavy-ion detectors

    International Nuclear Information System (INIS)

    Berdermann, E.; Fischer, B.E.; Schloegl, M.; Stelzer, H.; Voss, B.

    2000-03-01

    Latest results from radiation hardness measurements as well as single-particle pulse shape parameters, pulse-height distributions and time spectra are presented. An intrinsic time resolution of 29 ps is achieved with 52 Cr ions of 650 MeV/amu and of 53 ps with 12 C ions of 1.5 Gev/amu, respectively. The resolution is by 20% worse when increasing the beam intensity from 10 6 ions/s to 10 8 ions/s. Performing 58 Ni fragmentation, collected charge distributions are measured in the range 15 241 Am-α-distributions increasing the electric field applied to the detector. In order to visualize and to quantify the influence of the electric field as well as of the total particle fluence to the charge-collection efficiency micro-beam measurements are performed with 12 C ions of 5.9 MeV/amu stopped in the diamond bulk. Pulse-height spectra and charge-collection maps under different conditions are discussed. (orig.)

  10. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru [Russian Academy of Sciences, Space Materials Science Laboratory, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Kaluga Branch (Russian Federation); Voloshin, A. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Ralchenko, V. G.; Bolshakov, A. P. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Romanov, D. A. [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation); Khomich, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Sozontov, E. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  11. Structural Transformation upon Nitrogen Doping of Ultrananocrystalline Diamond Films by Microwave Plasma CVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2009-01-01

    Full Text Available The molecular properties and surface morphology of undoped and N-doped ultra-nanocrystalline diamond (UNCD films deposited by microwave plasma CVD with addition of nitrogen are investigated with various spectroscopic techniques. The results of spatially resolved Raman scattering, ATR/FT-IR and XPS spectra show more amorphous and sp2/sp3 ratio characteristics in N-doped UNCD films. The surface morphology in AFM scans shows larger nanocrystalline diamond clusters in N-doped UNCD films. Incorporation of nitrogen into UNCD films has promoted an increase of amorphous sp2-bonded carbons in the grain boundaries and the size of nanocrystalline diamond grains that are well correlated to the reported enhancement of conductivity and structural changes of UNCD films.

  12. Cutting force and wear evaluation in peripheral milling by CVD diamond dental tools

    International Nuclear Information System (INIS)

    Polini, R.; Allegri, A.; Guarino, S.; Quadrini, F.; Sein, H.; Ahmed, W.

    2004-01-01

    Co-cemented tungsten carbide (WC-Co) tools are currently employed in dental application for prosthesis fabrication. The deposition of a diamond coating onto WC-Co tools could allow both to increase the tool life and tool performance at higher speeds. However, at present it is very difficult to quantify the effective advantage of the application of a diamond coating onto dental tools compared to traditional uncoated tools. Therefore, in this work, we have deposited diamond coatings onto WC-Co dental tools having different geometries by Hot Filament Chemical Vapour Deposition (HFCVD). Prior to deposition, the WC-Co tools were pre-treated in order to roughen the surface and to modify the chemical surface composition. The use of the HFCVD process enabled the deposition of a uniform coating despite the complex geometries of the dental mills. For the first time, in accordance to the knowledge of the authors, we have studied and compared the cutting behaviour of both virgin and diamond-coated dental tools by measuring both wear and cutting force time evolution under milling a very hard Co-Cr-Mo dental alloy. To ensure constant cutting rate (20,000-r.p.m. cutting rate, 0.01-m/min feed rate and 0.5-mm depth of cut), a proper experimental apparatus was used. Three different mill geometries were considered in both coated and uncoated conditions. The results showed that, under the high-speed conditions employed, uncoated tools underwent to catastrophic failure within a few seconds of machining. Diamond-coated tools exhibited much longer tool lives. Lower forces were measured when the coated tool was employed due to the much lower material-mill friction. The best behaviour was observed for coated mills with the presence of a chip-breaker

  13. The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond

    NARCIS (Netherlands)

    Deferme, W.; Tanasa, G.; Amir, J.; Haenen, K.; Nesladek, M.; Flipse, C.F.J.

    2006-01-01

    In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphol. and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD

  14. Laser reflection spot as a pattern in a diamond coating – a microscopic study

    Directory of Open Access Journals (Sweden)

    GORDANA S. RISTIĆ

    2009-07-01

    Full Text Available Diamond coatings were deposited by the synchronous and coupled action of a hot filament CVD method and a pulsed CO2 laser in spectro-absorbing and spectro-non-absorbing diamond precursor atmospheres. The obtained coatings were structured/patterned, i.e., they were comprised of uncovered, bare locations. An extra effect observed only in the spectro-active diamond precursor atmosphere was the creation of another laser spot in the coating – a reflection spot. In order to establish the practical usability of the latter one, extensive microscopic investigations were performed with consideration of the morphology changes in the spot of the direct laser beam. Normal incidence SEM images of this spot showed a smooth surface, without any pulse radiation damage. AFM imaging revealed the actual surface condition and gave precise data on the surface characteristics.

  15. Tests of Hercules/Ultramet CVD coatings in hot hydrogen

    International Nuclear Information System (INIS)

    Vanier, P.E.; Barletta, R.E.; Svandrlik, J.; Adams, J.

    1992-01-01

    The effort by Hercules and Ultramet to produce CVD NbC coatings, which protect carbon-carbon substrates from hot hydrogen, has had some success but with some limitations. The coatings increase the survival time at atmospheric pressure and low flow rate of hydrogen by about a factor of 40 over uncoated graphite at 3000 K. However, the grain structure is not stable at these temperatures, and after about 10--20 minutes, the coating is subject to rapid degradation by spalling in visible chunks. Further experiments would have to be performed to determine the effects of higher pressures and flow rates, for it is not clear how these factors would affect the survival time, considering that one of the main failure mechanisms is independent of the atmosphere

  16. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  17. Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering

    Science.gov (United States)

    Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu

    2018-02-01

    A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.

  18. Measurement of the secondary electron emission from CVD diamond films using phosphor screen detectors

    Science.gov (United States)

    Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.

    2015-03-01

    Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.

  19. Pushing the boundaries of high power lasers: low loss, large area CVD diamond

    Science.gov (United States)

    Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard

    2018-02-01

    Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.

  20. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  1. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  2. High-Resolution Energy and Intensity Measurements with CVD Diamond at REX-ISOLDE

    CERN Document Server

    Griesmayer, E; Dobos, D; Wenander, F; Bergoz, J; Bayle, H; Frais-Kölbl, H; Leinweber, J; Aumeyr, T; CERN. Geneva. BE Department

    2009-01-01

    A novel beam instrumentation device for the HIE-REX (High In-tensity and Energy REX) upgrade has been developed and tested at the On-Line Isotope Mass Separator ISOLDE, located at the European Laboratory for Particle Physics (CERN). This device is based on CVD diamond detector technology and is used for measuring the beam intensity, particle counting and measuring the energy spectrum of the beam. An energy resolution of 0.6% was measured at a carbon ion energy of 22.8 MeV. This corresponds to an energy spread of ± 140 keV.

  3. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Sumant, A.V.; Krauss, A.R.; Gruen, D.M.; Auciello, O.; Erdemir, A.; Williams, M.; Artiles, A.F.; Adams, W.

    2005-01-01

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (R a ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH 4 /Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness R a = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  4. Thermoluminescence characterization of CVD diamond film exposed to UV and beta radiation

    International Nuclear Information System (INIS)

    Barboza-Flores, M.; Melendrez, R.; Gastelum, S.; Chernov, V.; Bernal, R.; Cruz-Vazquez, C.; Brown, F.; Pedroza-Montero, M.; Gan, B.; Ahn, J.; Zhang, Q.; Yoon, S.F.

    2003-01-01

    Thermoluminescence (TL) properties of diamond films grown by microwave and hot filament CVD techniques were studied. The main purpose of the present work was to characterize the thermoluminescence response of diamond films to ultraviolet and beta radiation. The thermoluminescence excitation spectrum exhibits maximum TL efficiency around 210-215 nm. All samples presented a glow curve composed of at least one TL peak and showed regions of linear as well as supralinear behavior as a function or irradiation dose. The linear dose dependence was found for up to sixteen minutes of monochromatic UV irradiation and 300 Gy for beta irradiated samples. The activation energy and the frequency factor were determined and found in the range of 0.33-1.7 eV and 5.44 x 10 2 -5.67 x 10 16 s -1 , respectively. The observed TL performance is reasonable appropriate to justify further investigation of diamond films as radiation dosimeters keeping in mind that diamond is an ideal TL dosemeter since it is tissue-equivalent and biological compatible. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. A CVD diamond detector for (n,α) cross-section measurements

    International Nuclear Information System (INIS)

    Weiss, C.

    2014-01-01

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,α) cross-sections at the neutron time-of-flight facility n⎽TOF at CERN. The 59 Ni(n,α) 56 Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,α) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n⎽TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the thesis. The second part is dedicated to the design and production of the Diamond Mosaic-Detector (DM-D) and its characterization. The 59 Ni(n,α) 56 Fe cross-section measurement at n⎽TOF and the data analysis are discussed in detail in the third part of the thesis, before the summary of the thesis and an outlook to possible future developments and applications conclude the thesis in the forth part. In this work, the Diamond Mosaic-Detector, which consist of eight single-crystal (sCVD) diamond sensors and one 'Diamond on Iridium' (DOI) sensor has proven to be well suited for (n,α) cross-section measurements for 1 MeV < E α < 22 MeV. The upper limit is given by the thickness of the sensors, d = 150 μm, while the lower limit is dictated by background induced by neutron capture reactions in in-beam materials. The cross-section measurement was focussed on the resonance integral of 59 Ni(n,α) 56 Fe at E n = 203 eV, with the aim of clarifying

  6. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F. [Florence Univ. (Italy). Dipt. di Energetica; Borchi, E. [Florence Univ. (Italy). Dipt. di Energetica; Bruzzi, M. [Florence Univ. (Italy). Dipt. di Energetica; Leroy, C. [Florence Univ. (Italy). Dipt. di Energetica; Sciortino, S. [Florence Univ. (Italy). Dipt. di Energetica

    1997-04-01

    The thermoluminescent (TL) response of chemical vapour deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters. (orig.).

  7. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    Science.gov (United States)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-02-01

    The thermoluminescent (TL) response of Chemical Vapour Deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters.

  8. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    International Nuclear Information System (INIS)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-01-01

    The thermoluminescent (TL) response of chemical vapour deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters. (orig.)

  9. Parametric assessments on hydrogenic species transport in CVD-diamond vacuum windows used in ITER ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.; Sedano, L.A.; Fernandez, A. [EURATOM-CIEMAT Association, Madrid (Spain)

    2007-07-01

    Insulators used as H and CD and Diagnostic vacuum windows (VW) in ITER may become modified by surface intake and bulk transport of hydrogenic species. VW, operating under severe radiation levels, have a primary safety role as tritium confinement barriers. Ionizing radiation enhances the (H') uptake and release at surfaces and diffusion rates in the bulk. Radiation damage modifies the material's bulk trapped inventories by increasing steady state trapping centre concentrations. An experimental programme is ongoing at CIEMAT, to quantify radiation effects on H transport characteristics and also the possible impact on the VW. The reference material for ECRH VW is CVD diamond. As a parallel activity, parametric transport assessments are being made in order to obtain a wide evaluation of permeation fluxes, ranges, and soluted/trapped inventories in CVD diamond. Transport models have been developed based on extended capabilities of finite differences integrator tool TMAP7. Special attention is paid to radiation parameters defining inputs acting on transport magnitudes. These inputs have been analysed by using ionizing/damage radiation transport tools such as MCNPX/SRIM. VW operational scenarios are discussed with special attention being paid to the ITER design assumptions for the values of H-species source terms (neutrals and implanted) in the ECRH system. The available material transport database with and without radiation is discussed and taken as reference for this parametric exercise. Permeation fluxes through base materials are shown to be below DRG limits established for ITER. (orig.)

  10. Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review

    Directory of Open Access Journals (Sweden)

    Djoille Denner Damm

    2017-09-01

    Full Text Available Academics and industry have sought after combining the exceptional properties of diamonds with the toughness of steel. Since the early 1990s several partial solutions have been found but chemical vapor deposition (CVD diamond deposition on steel substrate continues to be a persistent problem. The main drawbacks are the high carbon diffusion from gas phase into substrate, the transition metals on the material surface that catalyze sp2 bond formation, instead of sp3 bonds, and the high thermal expansion coefficient (TEC mismatch between diamond and steels. An intermediate layer has been found necessary to increase diamond adhesion. Literature has proposed many efficient intermediate layers as a diffusion barrier for both, carbon and iron, but most intermediate layers shown have not solved TEC mismatch. In this review, we briefly discuss the solutions that exclusively work as diffusion barrier and discuss in a broader way the ones that also solve, or may potentially solve, the TEC mismatch problem. We examine some multilayers, the iron borides, the chromium carbides, and vanadium carbides. We go through the most relevant results of the last two and a half decades, including recent advances in our group. Vanadium carbide looks promising since it has shown excellent diffusion barrier properties, its TEC is intermediary between diamond and steel and, it has been thickened to manage thermal stress relief. We also review a new deposition technique to set up intermediate layers: laser cladding. It is promising because of its versatility in mixing different materials and fusing and/or sintering them on a steel surface. We conclude by remarking on new perspectives.

  11. Surface modification on 304 SS by plasma-immersed ion implantation to improve the adherence of a CVD diamond film

    Energy Technology Data Exchange (ETDEWEB)

    Nono, M.C.A.; Corat, E.J. (Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP (Brazil)); Ueda, M.; Stellati, C.; Barroso, J.J.; Conrad, J.R.; Shamim, M.; Fetherston, P.; Sridharan, K.

    1999-02-01

    The weak adherence of chemical vapor deposited (CVD) diamond films on steel substrates is an important factor that limits the technological applications of these materials. We are interested in enhancing the film-to-substrate adherence by using substrate surfaces with a previous modification by plasma-immersed ion implantation (PIII). In this work we present and discuss the preliminary results on phase formation, microstructure and adherence evaluations. CVD diamond films were deposited on 304 SS, the surface of which was modified by implanted carbon ions. The samples were first submitted to implantation with 30 keV carbon ions at different doses. Later, these surfaces were examined by Auger spectroscopy (SAM), scanning electron microscopy (SEM) and X-ray diffraction. We observed a metastable carbide phase formed from carbon and iron, which is considered to be a good polycrystalline material for the nucleation of CVD diamond crystals. The CVD diamond nucleation and film growth were observed by SEM and Raman spectroscopy. These results are discussed with the emphasis on the carbon diffusion barrier on the substrate surfaces. The preliminary results of diamond growth were encouraging. (orig.) 7 refs.

  12. SU-E-T-153: Detector-Grade CVD Diamond for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lansley, S; Betzel, G; McKay, D; Meyer, J

    2012-06-01

    To evaluate the use of commercially available detector-grade synthetic diamond films made via chemical vapor deposition (CVD) as x- ray detectors for radiotherapy dosimetry. A detector was fabricated using high-quality single crystal CVD diamond films (0.5 × 3 × 3 mm̂3) with 0.4 mm̂3 sensitive volumes, which were encapsulated with PMMA. The detector was placed in a (30 × 30 × 30 cm̂3) PTW water phantom. Six- and ten-MV photons from an Elekta Synergy linac were measured using an SSD of 90 cm and typically a 10-cm phantom depth with a 10 × 10 cm̂2 field size in the central axis of the beam. Data acquisition was performed using a PTW UNIDOS E electrometer with a 100-V bias. The detector was evaluated by measuring leakage current, priming dose, response dynamics, dose linearity, dependence on dose rate, percent depth dose (6 and 10 MV photons) and output factors. Some measurements were compared with a Si diode detector, 0.04 and/or 0.13-cc ion chamber(s). Leakage currents were negligible (∼1 pA) given the overall average sensitivity of the material (680 nC/Gy at 100 V). Detector current rise and fall times were detectors as expected. The type of diamond tested has potential to be used for small field dosimetry due to its small sensitive volume and high sensitivity. Further experiments are ongoing and detector packaging is yet to be optimized. © 2012 American Association of Physicists in Medicine.

  13. Silicon Oil DC200(R)5CST as AN Alternative Coolant for Cvd Diamond Windows

    Science.gov (United States)

    Vaccaro, A.; Aiello, G.; Meier, A.; Schere, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Gantenbein, G.

    2011-02-01

    The production of high power mm-wave radiation is a key technology in large fusion devices, since it is required for localized plasma heating and current drive. Transmission windows are necessary to keep the vacuum in the gyrotron system and also act as tritium barriers. With its excellent optical, thermal and mechanical properties, synthetic CVD (Chemical Vapor Deposition) diamond is the state of the art material for the cw transmission of the mm-wave beams produced by high power gyrotrons. The gyrotrons foreseen for the W7-X stellarator are designed for cw operation with 1 MW output power at 140 GHz. The output window unit is designed by TED (Thales Electron Devices, France) using a single edge circumferentially cooled CVD-diamond disc with an aperture of 88 mm. The window unit is cooled by de-ionized water which is considered as chemical aggressive and might cause corrosion in particular at the brazing. The use of a different coolant such as silicon oil could prevent this issue. The cooling circuit has been simulated by steady-state CFD analysis. A total power generation of 1 kW (RF transmission losses) with pure Gaussian distribution has been assumed for the diamond disc. The performance of both water and the industrial silicon oil DC200(R) have been investigated and compared with a focus on the temperature distribution on the disc, the pressure drop across the cooling path and the heat flux distribution. Although the silicon oil has a higher viscosity (~x5), lower heat capacity (~x1/2) and lower thermal conductivity (~x1/3), it has proven to be a good candidate as alternative to water.

  14. Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.

    Science.gov (United States)

    Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A

    2018-05-22

    This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Multilayer coatings containing diamond and other hard materials on hardmetal substrates

    International Nuclear Information System (INIS)

    Koepf, A.; Haubner, R.; Lux, B.

    2001-01-01

    In order to improve the wear resistance of hardmetal cutting tools, coatings of hard materials were established. Especially the production of multilayer coatings, which combine useful properties of different materials was a topic of industrial and academic research. The present work examined the possibilities of combining diamond as basic layer with protective CVD layers of TiC, TiN, Ti(C,N) and Al 2 O 3 . All these combinations could be realized and some showed quite good adherence under strain, which offers possibilities for technical applications. (author)

  16. Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film

    Institute of Scientific and Technical Information of China (English)

    Zhuji Jin; Zewei Yuan; Renke Kang; Boxian Dong

    2009-01-01

    Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost.By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere.However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality.In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS).The process of ball milling,composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed.The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix.The density of composite can be improved by mechanical alloying.The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sintering in hardness, high-temperature oxidation resistance and wearability.These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film.

  17. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  18. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E n ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics

  19. Superconductivity and low temperature electrical transport in B-doped CVD nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Milos Nesladek, Jiri J. Mares, Dominique Tromson, Christine Mer, Philippe Bergonzo, Pavel Hubik and Jozef Kristofik

    2006-01-01

    Full Text Available In this work, we report on superconductivity (SC found in thin B-doped nanocrystalline diamond films, prepared by the PE-CVD technique. The thickness of the films varies from about 100 to 400 nm, the films are grown on low-alkaline glass at substrate temperatures of about 500–700 °C. The SIMS measurements show that films can be heavily doped with boron in concentrations in the range of 3×1021 cm−3. The Raman spectra show Fano resonances, confirming the substitutional B-incorporation. The low temperature magnetotransport measurements reveal a positive magnetoresistance. The SC transition is observed at about Tc=1.66 K. A simple theory exploiting the concept of weak localization accounting for this transition is proposed.

  20. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  1. Diamond-like carbon coated ultracold neutron guides

    International Nuclear Information System (INIS)

    Heule, S.; Atchison, F.; Daum, M.; Foelske, A.; Henneck, R.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuzniak, M.; Lippert, T.; Meier, M.; Pichlmaier, A.; Straumann, U.

    2007-01-01

    It has been shown recently that diamond-like carbon (DLC) with a sp 3 fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp 3 fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate

  2. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.

    Science.gov (United States)

    Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  3. Commissioning and first operation of the pCVD diamond ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2009-01-01

    The main aim of the ATLAS Beam Conditions Monitor is to protect the ATLAS Inner Detector silicon trackers from high radiation doses caused by LHC beam incidents, e.g. magnet failures. The BCM uses in total 16 1x1 cm2 500 μm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors. They are arranged in 8 positions around the ATLAS LHC interaction point. Time difference measurements with sub nanosecond resolution are performed to distinguish between particles from a collision and spray particles from a beam incident. An abundance of the latter leads the BCM to provoke an abort of the LHC beam. A FPGA based readout system with a sampling rate of 2.56 GHz performs the online data analysis and interfaces the results to ATLAS and the beam abort system. The BCM diamond sensors, the detector modules and their readout system are described. Results of the operation with the first LHC beams are reported and results of commissioning and timing measurements (e.g. with cosmic muons) in preparation for first ...

  4. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  5. Multilayered and composite PVD-CVD coatings in cemented carbides manufacture

    International Nuclear Information System (INIS)

    Glushkov, V.N.; Anikeev, A.I.; Anikin, V.N.; Vereshchaka, A.S.

    2001-01-01

    Carbide cutting tools with wear-resistant coatings deposited by CVD process are widely employed in mechanical engineering to ensure a substantially longer service life of tool systems. However, the relatively high temperature and long time of the process make the substrate decarburise and, as a result, the bend strength and performance characteristics of a tool decrease. The present study suggests the problem of deteriorated strength of CVD-coated carbide tools be solved by the development of a technology that combines arc-PVD and CVD processes to deposit multilayered coatings of titanium and aluminium compounds. (author)

  6. Tl and OSL dosimetry of diamond films CVD pure and unpurified with boron-carbon

    International Nuclear Information System (INIS)

    Melendrez, R.; Pedroza M, M.; Chernov, V.; Ochoa N, J.D.; Bernal, R.; Barboza F, M.; Castaneda, B.; Goncalves, J.A.N.; Sandonato, G.M.; Cruz Z, E.; Preciado F, S.; Cruz V, C.; Brown, F.; Schreck, M.

    2004-01-01

    The diamond is a material that possesses extreme physical properties, such as its hardness to the radiation, its low chemical reactivity besides its equivalence to the human tissue, which qualify him as an ideal material for radiation dosimetry. In this work, it was studied the thermal and optically stimulated response (Tl and OSL) of polycrystalline diamond films grown by the technique of CVD pure and contaminated with Boron-carbon (B/C) with the intention of characterizing their efficiency like a dosemeter for radiation in a range of 0 - 3000 Gy. For the case of the films without impurities, the Tl curve presents four main peaks, two of them in an interval of temperatures of 150-200 C and other two additional around of 250-400 C. The dependence of the response of integrated Tl and that of OSL always maintained a lineal relationship with the exhibition dose up to 100 Gy. The behavior of the films contaminated with B/C (2000 - 20000 ppm) was established through experiments that involved the signal of OSL and their relationship with the Tl response. It was found that this processes are correlated, since the electrons caught in the traps of low temperature (50 - 250 C) of the Tl they are the electrons that recombining with more probability to provide the signal of OSL. According to these results it is possible to propose the diamond films as a good candidate for dosimetry to, using the traditional technique of Tl so much as well as the but recent of OSL. (Author)

  7. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  8. Micro-texturing into DLC/diamond coated molds and dies via high density oxygen plasma etching

    Directory of Open Access Journals (Sweden)

    Yunata Ersyzario Edo

    2015-01-01

    Full Text Available Diamond-Like Carbon (DLC and Chemical Vapor Deposition (CVD-diamond films have been widely utilized not only as a hard protective coating for molds and dies but also as a functional substrate for bio-MEMS/NEMS. Micro-texturing into these hard coated molds and dies provides a productive tool to duplicate the original mother micro-patterns onto various work materials and to construct any tailored micro-textures for sensors and actuators. In the present paper, the high density oxygen plasma etching method is utilized to make micro-line and micro-groove patterns onto the DLC and diamond coatings. Our developing oxygen plasma etching system is introduced together with characterization on the plasma state during etching. In this quantitative plasma diagnosis, both the population of activated species and the electron and ion densities are identified through the emissive light spectroscopy and the Langmuir probe method. In addition, the on-line monitoring of the plasmas helps to describe the etching process. DLC coated WC (Co specimen is first employed to describe the etching mechanism by the present method. Chemical Vapor Deposition (CVD diamond coated WC (Co is also employed to demonstrate the reliable capacity of the present high density oxygen plasma etching. This oxygen plasma etching performance is discussed by comparison of the etching rates.

  9. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  10. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  11. Hard coatings by plasma CVD on polycarbonate for automotive and optical applications

    International Nuclear Information System (INIS)

    Schmauder, T.; Nauenburg, K.-D.; Kruse, K.; Ickes, G.

    2006-01-01

    In many applications, plastic surfaces need coatings as a protection against abrasion or weathering. Leybold Optics is developing Plasma CVD processes and machinery for transparent hard coatings (THC) for polycarbonate parts. In this paper we present the current features and remaining challenges of this technique. The coatings generally show excellent adhesion. Abrasion resistance is superior to commonly used lacquers. Climate durability of the coating has been improved to pass the tests demanded by automotive specifications. Current activities are focused on improving the durability under exposure to UV radiation. Estimations show that our high-rate plasma CVD hard coating process is also economically competitive to lacquering

  12. Diamond like carbon coatings deposited by microwave plasma CVD ...

    Indian Academy of Sciences (India)

    WINTEC

    photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating sp. 3. /sp. 2 ratio. ... ion beam deposition (Savvidas 1986), pulsed laser deposi- ... carrier gas (10 sccm) by passing 150 watts of microwave power.

  13. Influence of melt treatments and polished CVD diamond coated ...

    Indian Academy of Sciences (India)

    WINTEC

    in terms of tool life, good surface finish and reduced cut- ting force are well ... characterized by the high productivity of precise components achieved by .... Balance. Table 3. Detailed data of turning inserts for machining. Insert code: CCGT 09T304 FL K10. C ... the present work and geometry of the inserts are given in table 3.

  14. Influence of melt treatments and polished CVD diamond coated

    Indian Academy of Sciences (India)

    Grain refinement; modification; machining; Al–7Si; Al–7Si–2.5Cu cast alloys. ... of uniformly distributed -Al grains, eutectic Al-silicon and fine CuAl2 particles in the ... These alloys exhibited better machinability and surface characteristics in the ... Department of Mechanical Engineering, Sri Bhagwan Mahavir Jain College of ...

  15. The effect of percentage carbonon the CVD coating of plain carbon ...

    African Journals Online (AJOL)

    Two steels En 3 and En 39 were given a TiC-TiN CVD coating in the carburized and uncarburized conditions. The continuity of the coatings and their adherance to the substrate were examined. The thickness of the deposited coatings were also measured, their adherence to the substrate and their thickness was off ected by ...

  16. Cutting characteristics of dental diamond burs made with CVD technology Características de corte de pontas odontológicas diamantadas obtidas pela tecnologia CVD

    Directory of Open Access Journals (Sweden)

    Luciana Monti Lima

    2006-04-01

    Full Text Available The aim of this study was to determine the cutting ability of chemical vapor deposition (CVD diamond burs coupled to an ultrasonic dental unit handpiece for minimally invasive cavity preparation. One standard cavity was prepared on the mesial and distal surfaces of 40 extracted human third molars either with cylindrical or with spherical CVD burs. The cutting ability was compared regarding type of substrate (enamel and dentin and direction of handpiece motion. The morphological characteristics, width and depth of the cavities were analyzed and measured using scanning electron micrographs. Statistical analysis using the Kruskal-Wallis test (p O objetivo deste estudo foi determinar a habilidade de corte das pontas de diamante obtidas pelo processo de deposição química a vapor (CVD associadas ao aparelho de ultra-som no preparo cavitário minimamente invasivo. Uma cavidade padronizada foi preparada nas faces mesial e distal de 40 terceiros molares, utilizando-se pontas de diamante CVD cilíndrica e esférica. A habilidade de corte foi comparada quanto ao tipo de substrato (esmalte e dentina e quanto à direção do movimento realizado com a ponta. As características morfológicas, a largura e profundidade das cavidades foram analisadas e medidas em microscopia eletrônica de varredura. A análise estatística pelo teste de Kruskal-Wallis (p < 0,05 revelou que a largura e profundidade das cavidades foram significativamente maiores em dentina. Cavidades mais largas foram obtidas quando se utilizou a ponta de diamante CVD cilíndrica, e mais profundas quando a ponta esférica foi empregada. A direção do movimento da ponta não influenciou o tamanho das cavidades, sendo os cortes produzidos pelas pontas de diamante CVD precisos e conservadores.

  17. Novel diamond-coated tools for dental drilling applications.

    Science.gov (United States)

    Jackson, M J; Sein, H; Ahmed, W; Woodwards, R

    2007-01-01

    The application of diamond coatings on cemented tungsten carbide (WC-Co) tools has been the subject of much attention in recent years in order to improve cutting performance and tool life in orthodontic applications. WC-Co tools containing 6% Co metal and 94% WC substrate with an average grain size of 1 - 3 microm were used in this study. In order to improve the adhesion between diamond and WC substrates it is necessary to etch cobalt from the surface and prepare it for subsequent diamond growth. Alternatively, a titanium nitride (TiN) interlayer can be used prior to diamond deposition. Hot filament chemical vapour deposition (HFCVD) with a modified vertical filament arrangement has been employed for the deposition of diamond films to TiN and etched WC substrates. Diamond film quality and purity has been characterized using scanning electron microscopy (SEM) and micro Raman spectroscopy. The performances of diamond-coated WC-Co tools, uncoated WC-Co tools, and diamond embedded (sintered) tools have been compared by drilling a series of holes into various materials such as human tooth, borosilicate glass, and acrylic tooth materials. Flank wear has been used to assess the wear rates of the tools when machining biomedical materials such as those described above. It is shown that using an interlayer such as TiN prior to diamond deposition provides the best surface preparation for producing dental tools.

  18. Influence of CVD diamond tips and Er:YAG laser irradiation on bonding of different adhesive systems to dentin

    OpenAIRE

    da Silva, Melissa Aline [UNESP; Nicolo, Rebeca Di [UNESP; Barcellos, Daphne Camara [UNESP; Batista, Graziela Ribeiro [UNESP; Pucci, Cesar Rogerio [UNESP; Torres, Carlos Rocha Gomes [UNESP; Borges, Alessandra Bühler [UNESP

    2013-01-01

    Aim: The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. Materials and methods: A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, accordin...

  19. An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [Nuclear Research Centre for Agriculture and Medicine, AEOI, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)]. E-mail: mmojtahedzadeh@nrcam.org; Le Normand, F. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France); Cregut, O. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France)

    2007-02-15

    Optical emission spectroscopy (OES) was used to study the plasma generated by the activation of the gas phase CH{sub 4} + H{sub 2} both by hot filaments and by a plasma discharge (DC HF CVD) during the nucleation of CVD diamond. The effects of nucleation parameters, such as methane concentration and extraction potential, on the plasma chemistry near the surface were investigated. The density of the diamond nucleation and the quality of the diamond films were studied by scanning electron microscopy (SEM) and Raman scattering, respectively. The OES results showed that the methane concentration influenced strongly the intensity ratio of H{sub {beta}}-H{sub {alpha}} implying an increase of electron mean energy, as well as CH, CH{sup +}, C{sub 2}. A correlation between the relative increase of CH{sup +} and the diamond nucleation density was found, conversely the increase of C{sub 2} contributed to the introduction of defects in the diamond nuclei.

  20. Surface analytical investigation of diamond coatings and nucleation processes by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Steiner, R.

    1993-10-01

    Imaging SIMS for the investigation of substrate surfaces: the influence of the substrate surface on diamond nucleation is a major topic in the investigation of the chemical vapour deposition (CVD) of diamond. It is well known that the nucleation density can be enhanced by scratching the substrate surface with abrasive powders. Diamond can nucleate at scratches or at residues of the polishing material. In the present work the surface of refractory metals (Mo, Nb, Ta, W) polished with silicon carbide and diamond powder is studied by imaging (2- or 3-D) secondary ion mass spectrometry (SIMS). In first experiments the distribution of SiC and/or diamond residues after polishing was determined. The reaction of diamond with the substrate during heating to deposition temperatures was investigated. Investigation of WC/Co hardmetal substrates: it is well known that Co contained in the binder phase of the hard metal inhibits a strong adhesion between the diamond film and the substrate, which is need for an application as cutting tool. Several attempts to improve the adhesion have been reported up to now. In this work a pre-treatment procedure leading to the formation of Co compounds (borides and silicides) which are stable under diamond deposition conditions were investigated. Furthermore, the application of intermediate sputter layers consisting of chromium and titanium were studied. Investigation of P-doped diamond coatings: in the quaternary phase diagram C-P-B-N exist some phases with diamond structure and superhard phases (e.g BP, c-BN). Also a hypothetical superhard phase of the composition C 3 N 4 is predicted. A scientific objective is the synthesis of such phases by chemical vapour deposition. An increase of the phosphorus concentration effects a distinct change in the morphology of the deposited coatings. A major advantage of SIMS is that the concentration profiles can be measured through the whole film, due to the sputter removal of the sample, and the interface

  1. Extended defect related energy loss in CVD diamond revealed by spectrum imaging in a dedicated STEM

    International Nuclear Information System (INIS)

    Bangert, U.; Harvey, A.J.; Schreck, M.; Hoermann, F.

    2005-01-01

    This article aims at investigations of the low EEL region in the wide band gap system diamond. The advent of the UHV Enfina electron energy loss spectrometer combined with Digital Micrograph acquisition and processing software has made reliable detection of absorption losses below 10 eV possible. Incorporated into a dedicated STEM this instrumentation allows the acquisition of spectral information via spectrum maps (spectrum imaging) of sample areas hundreds of nanometers across, with nanometers pixel sizes, adequate spectrum statistics and 0.3 eV energy resolution, in direct correlation with microstructural features in the mapping area. We aim at discerning defect related losses at band gap energies, and discuss different routes to simultaneously process and analyse the spectra in a map. This involves extracting the zero loss peak from each spectrum and constructing ratio maps from the intensities in two energy windows, one defect related and one at a higher, crystal bandstructure dominated energy. This was applied to the residual spectrum maps and their first derivatives. Secondly, guided by theoretical EEL spectra calculations, the low loss spectra were fitted by a series of gaussian distributions. Pixel maps were constructed from amplitude ratios of gaussians, situated in the defect and the unaffected energy regime. The results demonstrate the existence of sp 2 -bonded carbon in the vicinity of stacking faults and partial dislocations in CVD diamond as well as additional states below conduction band, tailing deep into the band gap, at a node in a perfect dislocation. Calculated EEL spectra of shuffle dislocations give similar absorption features at 5-8 eV, and it is thought that this common feature is due to sp 2 -type bonding

  2. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  3. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  4. Luminescence and conductivity studies on CVD diamond exposed to UV light

    CERN Document Server

    Bizzarri, A; Bruzzi, M; Sciortino, S

    1999-01-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination ...

  5. Luminescence and conductivity studies on CVD diamond exposed to UV light

    Science.gov (United States)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.

    1999-04-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.

  6. Luminescence and conductivity studies on CVD diamond exposed to UV light

    International Nuclear Information System (INIS)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.

    1999-01-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction

  7. Luminescence and conductivity studies on CVD diamond exposed to UV light

    Energy Technology Data Exchange (ETDEWEB)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S

    1999-04-21

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.

  8. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Gorka, B; Nilsson, B; Fernandez-Varea, J M; Svensson, R; Brahme, A

    2006-01-01

    A new dosimeter, based on chemical vapour deposited (CVD) diamond as the active detector material, is being developed for dosimetry in radiotherapeutic beams. CVD-diamond is a very interesting material, since its atomic composition is close to that of human tissue and in principle it can be designed to introduce negligible perturbations to the radiation field and the dose distribution in the phantom due to its small size. However, non-tissue-equivalent structural components, such as electrodes, wires and encapsulation, need to be carefully selected as they may induce severe fluence perturbation and angular dependence, resulting in erroneous dose readings. By introducing metallic electrodes on the diamond crystals, interface phenomena between high- and low-atomic-number materials are created. Depending on the direction of the radiation field, an increased or decreased detector signal may be obtained. The small dimensions of the CVD-diamond layer and electrodes (around 100 μm and smaller) imply a higher sensitivity to the lack of charged-particle equilibrium and may cause severe interface phenomena. In the present study, we investigate the variation of energy deposition in the diamond detector for different photon-beam qualities, electrode materials and geometric configurations using the Monte Carlo code PENELOPE. The prototype detector was produced from a 50 μm thick CVD-diamond layer with 0.2 μm thick silver electrodes on both sides. The mean absorbed dose to the detector's active volume was modified in the presence of the electrodes by 1.7%, 2.1%, 1.5%, 0.6% and 0.9% for 1.25 MeV monoenergetic photons, a complete (i.e. shielded) 60 Co photon source spectrum and 6, 18 and 50 MV bremsstrahlung spectra, respectively. The shift in mean absorbed dose increases with increasing atomic number and thickness of the electrodes, and diminishes with increasing thickness of the diamond layer. From a dosimetric point of view, graphite would be an almost perfect electrode

  9. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kozak, Halyna; Rezek, Bohuslav; Ukraintsev, Egor; Babchenko, Oleg; Kromka, Alexander; Girard, H.A.; Arnault, J.-C.; Bergonzo, P.

    2013-01-01

    Roč. 270, APR (2013), s. 411-417 ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : ATR FTIR * CVD * hydrogenation * microwave * nanocrystalline diamond * nanopowder Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.538, year: 2013

  10. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  11. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  12. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  13. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  14. Influence of CVD diamond tips and Er:YAG laser irradiation on bonding of different adhesive systems to dentin.

    Science.gov (United States)

    da Silva, Melissa Aline; Di Nicolo, Rebeca; Barcellos, Daphne Camara; Batista, Graziela Ribeiro; Pucci, Cesar Rogerio; Rocha Gomes Torres, Carlos; Borges, Alessandra Bühler

    2013-01-01

    The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, according adhesive systems used: Subgroup 1-Adper Single Bond Plus/3M ESPE (SB) total-etch adhesive; Subgroup 2-Adper Scotchbond SE/3M ESPE (AS) selfetching adhesive; Subgroup 3-Clearfil SE Bond/Kuraray (CS) selfetching adhesive. Blocks of composite (Filtek Z250-3M ESPE) 4 mm high were built up and specimens were stored in deionized water for 24 hours at 37°C. Serial mesiodistal and buccolingual cuts were made and stick-like specimens were obtained, with transversal section of 1.0 mm(2). The samples were submitted to microtensile test at 1 mm/min and load of 10 kg in a universal testing machine. Data (MPa) were subjected to ANOVA and Tukey's tests (p adhesive produced significantly lower bond strength values compared to other groups. Surface treatment with Er: YAG laser associated with Single Bond Plus or Clearfil SE Bond adhesives and surface treatment with CVD tip associated with Adper Scotchbond SE adhesive produced significantly lower bond strength values compared to surface treatment with diamond or CVD tips associated with Single Bond Plus or Adper Scotchbond SE adhesives. Interactions between laser and the CVD tip technologies and the different adhesive systems can produce a satisfactory bonding strength result, so that these associations may be beneficial and enhance the clinical outcomes.

  15. Tracking with CVD diamond radiation sensors at high luminosity colliders (1999-3.1507)

    CERN Document Server

    Schnetzer, S R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R J; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Recent progress on developing diamond-based sensors for vertex detection at high luminosity hadron colliders is described. Measurements of the performance of diamond sensors after irradiation to fluences of up to 5*10/sup 15/ hadrons/cm/sup 2/ are shown. These indicate that diamond sensors will operate at distances as close as 5 cm from the interaction point at the Large Hadron Collider (LHC) for many years at full luminosity without significant degradation in performance. Measurements of the quality of the signals from diamond sensors as well as spatial uniformity are presented. Test beam results on measurements of diamond-based microstrip and pixels devices are described.

  16. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  17. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  18. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal

    2008-08-07

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  19. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    International Nuclear Information System (INIS)

    Pomorski, Michal

    2008-01-01

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  20. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  1. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Paterson, P.J.K.

    1993-01-01

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs

  2. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  3. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  4. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  5. Preliminary results from a novel CVD diamond detector system for molecular imaging applications

    International Nuclear Information System (INIS)

    Mahon, A.R.

    1996-01-01

    A novel biomolecular imaging system incorporating a Chemical Vapour Deposition diamond detector is in development. The synthetic diamond is used as a UV detector to image nucleic acids in electrophoresis gels. The microstrip diamond detector currently has a spatial resolution of 30 μm. Preliminary results are presented which include: QE measurements of diamond detectors, detector time response, detector UV response and current detection limits of biomolecules in gel. The potential applications of the technology, and its significant advantages in speed and sensitivity over the current systems are discussed

  6. Development of Fe-AI CVD coatings as tritium permeation barrier

    International Nuclear Information System (INIS)

    Chabrol, C.; Schuster, F.; Le Marois, G.; Serra, E.

    1998-01-01

    A specific method of pack-cementation has been developed in order to perform a CVD deposition of Fe-Al alloys on a martensitic steel at a temperature which respects its mechanical properties ( 2 Al 5 intermetallic phases thanks to a low pressure deposition and using a special cement containing Fe and Al. These coatings coated with an Al 2 O 3 top layer drastically reduce the permeation rate of deuterium with regards to the uncoated substrate. (authors)

  7. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    Science.gov (United States)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  8. High-order Stokes and anti-Stokes Raman generation in monoisotopic CVD {sup 12}C-diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Lux, Oliver; Rhee, Hanjo; Eichler, Hans J. [Institute of Optics and Atomic Physics, Technische Universitaet Berlin (Germany); Ralchenko, Victor G.; Bolshakov, Andrey P. [General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Shirakawa, Akira; Yoneda, Hitoki [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan)

    2016-06-15

    We determined, for the first time, the room temperature phonon energy related to the F{sub 2g} vibration mode (ω{sub SRS(12C)} ∝ 1333.2 cm{sup -1}) in a mono-crystalline single-isotope CVD {sup 12}C-diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one-micron excitation using a Nd{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12}-laser generates a nearly two-octave spanning SRS frequency comb (∝12000 cm{sup -1}) consisting of higher-order Stokes and anti-Stokes components. The spacing of the spectral lines was found to differ by Δω{sub SRS} ∝ 0.9 cm{sup -1} from the comb spacing (ω{sub SRS(natC)} ∝ 1332.3 cm{sup -1}) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes {sup 12}C (98.93%) and {sup 13}C (1.07%). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  10. X-ray beam monitor made by thin-film CVD single-crystal diamond.

    Science.gov (United States)

    Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M; Kachkanov, V; Tartoni, N; Benetti, M; Cannatà, D; Di Pietrantonio, F

    2012-11-01

    A novel beam position monitor, operated at zero bias voltage, based on high-quality chemical-vapor-deposition single-crystal Schottky diamond for use under intense synchrotron X-ray beams was fabricated and tested. The total thickness of the diamond thin-film beam monitor is about 60 µm. The diamond beam monitor was inserted in the B16 beamline of the Diamond Light Source synchrotron in Harwell (UK). The device was characterized under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of approximately 2 µm × 3 µm square. Time response, linearity and position sensitivity were investigated. Device response uniformity was measured by a raster scan of the diamond surface with the micro-focused beam. Transmissivity and spectral responsivity versus beam energy were also measured, showing excellent performance of the new thin-film single-crystal diamond beam monitor.

  11. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  12. Photo-Hall measurements on phosphorus-doped n-type CVD diamond at low temperatures

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kalish, R.; Uzan-Saguy, C.; Baskin, E.; Nesládek, M.; Koizumi, S.

    2003-01-01

    Roč. 199, č. 1 (2003), s. 82-86 ISSN 0031-8965 EU Projects: European Commission(XE) HPRN-CT-1999-00139 Institutional research plan: CEZ:AV0Z1010914 Keywords : photo-Hall measurements * CVD diamonnd * phosphorus doped Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.950, year: 2003

  13. Systematic study of radiation hardness of single crystal CVD diamond material investigated with an Au beam and IBIC method

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang; Traeger, Michael [GSI, Darmstadt (Germany); Draveny, Antoine; Galatyuk, Tetyana [TU, Darmstadt (Germany); Grilj, Veljko [RBI, Zagreb (Croatia); Collaboration: HADES-Collaboration

    2016-07-01

    For the future high rate CBM experiment at FAIR a radiation hard and fast beam detector is required. The detector has to perform precise T0 measurement (σ<50 ps) and should also offer decent beam monitoring capability. These tasks can be performed by utilizing single-crystal Chemical Vapor Deposition (ScCVD) diamond based detector. A prototype, segmented, detector have been constructed and the properties of this detector have been studied with a high current density beam (about 3.10{sup 6}/s/mm{sup 2}) of 1.23 A GeV Au ions in HADES. The irradiated detector properties have been studied at RBI in Zagreb by means of IBIC method. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  14. Impedance study on the corrosion of PVD and CVD titanium nitride coatings

    International Nuclear Information System (INIS)

    Elsener, B.; Rota, A.; Boehni, H.

    1989-01-01

    Titanium nitride (TiN) coatings, produced by physical (PVD) or chemical (CVD) vapor deposition techniques are used routinely to improve the wear and corrosion resistance of a surface. The main problem in using TiN as a protective coating in aggressive environements are pores and pinholes in the coating where the substrate is exposed to the electrolyte. In this work, the electrochemical and corrosion behaviour of TiN films on quartz glass, carbon steel, 304 and 316 stainless steel is studied by polarization curves and electrochemical impedance spectroscopy (EIS) in hydrochloric acid. It is shown that the TiN coating can be used successfully only on substrates that passivate easily. On mild steel rapid corrosion takes place at pores in the coating due to the very noble steady state potential of the TiN coating. The interaction of the metallic substrate with the TiN coating is discussed for the two limiting cases mild steel (active) and 316SS (passive). It is shown that the determination of the coating porosity is possible for the active substrate only. On the passive substrate the occurence of an additional time constant in the high frequency region of the spectrum qualitatively indicates the presence of pores. A quality control of the coatings based on this fact might be possible. (author) 15 refs., 6 figs., 2 tabs

  15. Low temperature diamond growth by linear antenna plasma CVD over large area

    International Nuclear Information System (INIS)

    Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian

    2012-01-01

    Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Janssens, S.D.; Vanacken, J.; Timmermans, M.; Vacík, Jiří; Ataklti, G.W.; Decelle, W.; Gillijns, W.; Goderis, B.; Haenen, K.; Wagner, P.; Moshchalkov, V.V.

    2011-01-01

    Roč. 84, č. 21 (2011), 214517/1-214517/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10480505 Keywords : Nanocrystalline diamond * Superconducting transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  17. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  18. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices.

  19. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Nagashima, I.; Ohgoe, Y.; Hirakuri, K.K.; Mukaibayashi, H.; Masuzawa, T.

    2009-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N 2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N 2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N 2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N 2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N 2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  20. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  1. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  2. Heparin free coating on PLA membranes for enhanced hemocompatibility via iCVD

    Science.gov (United States)

    Wang, Hui; Shi, Xiao; Gao, Ailin; Lin, Haibo; Chen, Yongliang; Ye, Yumin; He, Jidong; Liu, Fu; Deng, Gang

    2018-03-01

    In the present work, we report one-step immobilization of nano-heparin coating on PLA membranes via initiated chemical vapor deposition (iCVD) for enhanced hemocompatibility. The nano-coating introduced onto the membrane surface via the crosslinking of P(MAA-EGDA) was confirmed by the FTIR, SEM and weight measurement respectively. The negative carboxyl groups could form the hydration interaction with the protein and platelets and electrostatic interaction with amide groups of thrombin by the mediation of antithrombin, which is similar but different with heparin. The P(MAA-EGDA) coated membranes showed suppressed platelet adhesion and prolonged clotting time (APTTs increased to 59 s, PTs increased to 20.4 s, TTs increased to 17.5 s, and the FIBs declined by 30 mg/dL). Moreover, the complement activation tests demonstrated the formation of C3a and C5a was inhibited. All results demonstrated that the nano-coating of P(MAA-EGDA) via iCVD significantly enhanced the hemocompatibility of PLA membranes, which is also applicable for various membranes.

  3. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Science.gov (United States)

    Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  4. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z., E-mail: remes@fzu.cz [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Girard, H.A.; Arnault, J.-C.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette (France)

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm{sup −1} spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  5. Functional foam coatings inside tubing and custom developed diamond ignition targets

    International Nuclear Information System (INIS)

    Dawedeit, Christoph

    2014-01-01

    The development of inertial confinement fusion targets requires new efficient ablator materials and characteristic temperature measurements during confinement. Here, an aerogel coating process is developed to coat inside spheres and cylinders. The characteristic emission spectrum of doped aerogel inside diamond targets is used as temperature gauge during confinement. Coatings inside metal cylinders confirmed the generality of the coating procedure. In addition artificial diamond is characterized which represents an interesting ablator material.

  6. Ion implantation and diamond-like coatings of aluminum alloys

    Science.gov (United States)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  7. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    International Nuclear Information System (INIS)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-01-01

    Highlights: • Prediction of the properties of PVD/CVD coatings with the use of (FEM) analysis. • Stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N coatings. • The experimental values of stresses were determined on X-ray diffraction patterns. • An FEM model was established for the purpose of building a computer simulation. - Abstract: The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were

  8. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Brytan, Zbigniew

    2016-12-01

    Highlights: • Prediction of the properties of PVD/CVD coatings with the use of (FEM) analysis. • Stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N coatings. • The experimental values of stresses were determined on X-ray diffraction patterns. • An FEM model was established for the purpose of building a computer simulation. - Abstract: The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were

  9. Room temperature CVD diamond X-ray and charged particle microdetectors

    CERN Document Server

    Vittone, E; Lo Giudice, A; Polesello, P; Manfredotti, C

    1999-01-01

    Hot filament chemical vapour deposition technique is particularly suitable for the realisation of diamond tip and wire detectors working in a coaxial geometry with a built-in internal metal electrode. By using tungsten wires of different diameters and by controlling the shape of the tip by an electrochemical etch, it is possible to obtain various kinds of microdetectors, with diameters ranging from 50 to 300 mu m. The response of these diamond tip and wire detectors has been tested at low X-ray energies (50-250 keV) and at relatively high energies (6-15 MeV) both in terms of sensitivity (collected charge with respect to the absorbed dose) and of linearity as a function of X-ray fluence. Sensitivities larger than 2 nC/Gy are achieved, with a good linearity in the dose rate range used in applications. Such microprobes have been proved to be suitable as narrow X-ray beam profilers and as surface or in vivo microdosimeters for on-line monitoring of radiotherapy plans. Such detectors have also been used as nuclear...

  10. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  11. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    Science.gov (United States)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  12. Optimization of a Wcl6 CVD System to Coat UO2 Powder with Tungsten

    Science.gov (United States)

    Belancik, Grace A.; Barnes, Marvin W.; Mireles, Omar; Hickman, Robert

    2015-01-01

    In order to achieve deep space exploration via Nuclear Thermal Propulsion (NTP), Marshall Space Flight Center (MSFC) is developing W-UO2 CERMET fuel elements, with focus on fabrication, testing, and process optimization. A risk of fuel loss is present due to the CTE mismatch between tungsten and UO2 in the W-60vol%UO2 fuel element, leading to high thermal stresses. This fuel loss can be reduced by coating the spherical UO2 particles with tungsten via H2/WCl6 reduction in a fluidized bed CVD system. Since the latest incarnation of the inverted reactor was completed, various minor modifications to the system design were completed, including an inverted frit sublimer. In order to optimize the parameters to achieve the desired tungsten coating thickness, a number of trials using surrogate HfO2 powder were performed. The furnace temperature was varied between 930 C and 1000degC, and the sublimer temperature was varied between 140 C and 200 C. Each trial lasted 73-82 minutes, with one lasting 205 minutes. A total of 13 trials were performed over the course of three months, two of which were re-coatings of previous trials. The powder samples were weighed before and after coating to roughly determine mass gain, and Scanning Electron Microscope (SEM) data was also obtained. Initial mass results indicated that the rate of layer deposition was lower than desired in all of the trials. SEM confirmed that while a uniform coating was obtained, the average coating thickness was 9.1% of the goal. The two re-coating trials did increase the thickness of the tungsten layer, but only to an average 14.3% of the goal. Therefore, the number of CVD runs required to fully coat one batch of material with the current configuration is not feasible for high production rates. Therefore, the system will be modified to operate with a negative pressure environment. This will allow for better gas mixing and more efficient heating of the substrate material, yielding greater tungsten coating per trial.

  13. The adhesion and tribology analysis of polycrystalline diamond coated on Si3N4 substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Purniawan, A.

    2007-01-01

    Cauliflower and octahedral structure of polycrystalline diamond was deposited on silicon nitride (Si 3 N 4 ) substrate by microwave plasma assisted chemical vapor deposition (MPACVD). In our earlier work, the effects of deposition parameters namely, % Methane (CH 4 ) diluted in hydrogen (H 2 ), microwave power and chamber pressure on surface morphology were studied. In the present work the polycrystalline diamond coating adhesion and tribology behaviour were investigated. Rockwell C hardness tester and pin-on-disk tribometer were used to determine the adhesion and tribology properties on diamond coating, respectively. The morphology of the diamond before and after indentation was observed using field emission scanning electron microscopy (FESEM). Based on the adhesion analysis results, it was found that octahedral morphology has better adhesion than cauliflower structure. It was indicated by few cracks and less peel-off than cauliflower structure of polycrystalline diamond after indentation. Based on tribology analysis, polycrystalline diamond coated on substrate has better tribology properties than uncoated substrate. (author)

  14. Investigation of charge multiplication in single crystalline CVD diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muškinja, M.; Cindro, V.; Gorišek, A. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kagan, H. [Department of Physics, Ohio State University (United States); Kramberger, G., E-mail: Gregor.Kramberger@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mandić, I. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mikuž, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Physics and Mathematics, University of Ljubljana (Slovenia); Phan, S.; Smith, D.S. [Department of Physics, Ohio State University (United States); Zavrtanik, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2017-01-01

    A special metallization pattern was created on a single crystalline diamond detector aimed at creating high enough electric field for impact ionization in the detector material. Electric field line focusing through electrode design and very high bias voltages were used to obtain high electric fields. Previous measurements and theoretical calculations indicated that drifting charge multiplication by impact ionization could take place. A large increase of induced charge was observed for the smallest dot electrode which points to charge multiplication while for the large dot and pad detector structure no such effect was observed. The evolution of induced currents was also monitored with the transient current technique. Induced current pulses with duration of order 1 μs were measured. The multiplication gain was found to depend on the particle rate.

  15. Growth and characterization of single-crystal CVD diamond for radiation detection applications

    International Nuclear Information System (INIS)

    Tranchant, N.

    2008-01-01

    This work aimed at the study of the synthesis of single crystal diamond using the Microwave enhanced Chemical Vapour Deposition technique (MPCVD). The work enabled the development and optimisation of the growth conditions, from the study of the crystalline quality, of the material purity, and of its electronic properties. The assessment of the transport properties was the most determinant: the use of the time of flight (TOF) technique has enabled the measurement of the carrier mobilities and of their kinetic properties as a function of the temperature. When coupled with collected charge efficiency measurements, the work led to remarkable carrier mobility values obtained in the synthesised crystals (3000 cm 2 .V-1.s -1 ). Prepared samples were mounted as detection devices and used successfully in real conditions for the monitoring of ultra-fast pulses, as well as for neutron fluency monitoring, and for medical dosimeters for radiotherapy applications. (author)

  16. Effect of doping on electronic states in B-doped polycrystalline CVD diamond films

    International Nuclear Information System (INIS)

    Elsherif, O S; Vernon-Parry, K D; Evans-Freeman, J H; May, P W

    2012-01-01

    High-resolution Laplace deep-level transient spectroscopy (LDLTS) and thermal admittance spectroscopy (TAS) have been used to determine the effect of boron (B) concentration on the electronic states in polycrystalline chemical vapour deposition diamond thin films grown on silicon by the hot filament method. A combination of high-resolution LDLTS and direct-capture cross-sectional measurements was used to investigate whether the deep electronic states present in the layers originated from point or extended defects. There was good agreement between data on deep electronic levels obtained from DLTS and TAS experiments. Two hole traps, E1 (0.29 eV) and E2 (0.53 eV), were found in a film with a boron content of 1 × 10 19 cm −3 . Both these levels and an additional level, E3 (0.35 eV), were found when the B content was increased to 4 × 10 19 cm −3 . Direct capture cross-sectional measurements of levels E1 and E2 show an unusual dependence on the fill-pulse duration which is interpreted as possibly indicating that the levels are part of an extended defect. The E3 level found in the more highly doped film consisted of two closely spaced levels, both of which show point-like defect characteristics. The E1 level may be due to B-related extended defects within the grain boundaries, whereas the ionization energy of the E2 level is in agreement with literature values from ab initio calculations for B–H complexes. We suggest that the E3 level is due to isolated B-related centres in bulk diamond. (paper)

  17. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    International Nuclear Information System (INIS)

    Kirchheim, Dennis; Jaritz, Montgomery; Hopmann, Christian; Dahlmann, Rainer; Mitschker, Felix; Awakowicz, Peter; Gebhard, Maximilian; Devi, Anjana; Brochhagen, Markus; Böke, Marc

    2017-01-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments. (paper)

  18. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation

    International Nuclear Information System (INIS)

    Leal, J.; Alcala, G.; Bolivar, F.J.; Sanchez, L.; Hierro, M.P.; Perez, F.J.

    2008-01-01

    The ferritic steels used to produce structural components for steam turbines are susceptible to strong corrosion and creep damage due to the extreme working conditions pushed to increase the process efficiency and to reduce pollutants release. The response of aluminide coatings on the P-92 ferritic steel, deposited by CVD-FBR, during oxidation in a simulated steam environment was studied. The analyses were performed at 650 deg. C in order to simulate the working conditions of a steam turbine, and 800 deg. C in order to produce a critical accelerated oxidation test. The Thermo-Calc software was used to predict the different solid phases that could be generated during the oxidation process, in both, coated and uncoated samples. In order to validate the thermodynamic results, the oxides scales produced during steam tests were characterized by different techniques such as XRD, SEM and EDS. The preliminary results obtained are discussed in the present work

  19. Determination of temperature dependent parameters of zero-phonon line in photo-luminescence spectrum of silicon-vacancy centre in CVD diamond thin films

    Czech Academy of Sciences Publication Activity Database

    Dragounová, Kateřina; Potůček, Z.; Potocký, Štěpán; Bryknar, Z.; Kromka, Alexander

    2017-01-01

    Roč. 68, č. 1 (2017), s. 74-78 ISSN 1335-3632 R&D Projects: GA ČR(CZ) GA14-04790S Institutional support: RVO:68378271 Keywords : silicon-vacancy centres * photoluminescence * low temperature * diamond * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.483, year: 2016

  20. Linear antenna microwave plasma CVD diamond deposition at the edge of no-growth region of C-H-O ternary diagram

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Babchenko, Oleg; Hruška, Karel; Kromka, Alexander

    2012-01-01

    Roč. 249, č. 12 (2012), s. 2612-2615 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP205/12/0908 Institutional research plan: CEZ:AV0Z10100521 Keywords : C-H-O phase diagram * nanocrystalline diamond * plasma enhanced CVD * Raman spectroscopy * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012

  1. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  2. A new CVD diamond mosaic-detector for (n, α) cross-section measurements at the n{sub T}OF experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [Atominstitut, Technische Universität Wien (Austria); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Griesmayer, E. [Atominstitut, Technische Universität Wien (Austria); Guerrero, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Badurek, G. [Atominstitut, Technische Universität Wien (Austria); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Bosnar, D. [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Brugger, M.; Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calviño, F. [Universitat Politecnica de Catalunya, Barcelona (Spain); and others

    2013-12-21

    At the n{sub T}OF experiment at CERN a dedicated single-crystal chemical vapor deposition (sCVD) Diamond Mosaic-Detector has been developed for (n,α) cross-section measurements. The detector, characterized by an excellent time and energy resolution, consists of an array of 9 sCVD diamond diodes. The detector has been characterized and a cross-section measurement has been performed for the {sup 59}Ni(n,α){sup 56}Fe reaction in 2012. The characteristics of the detector, its performance and the promising preliminary results of the experiment are presented. -- Highlights: •A large-area detector of 3 ×3 sCVD diamonds was built for (n, α) measurements. •The {sup 59}Ni(n, α){sup 56}Fe cross-section was measured successfully at n{sub T}OF/CERN. •The energy resolution of the detector meets the expectations from simulations. •The reaction products during the measurement at n{sub T}OF could clearly be separated. •The detector is suitable for (n, α) measurements in a heterogeneous beam.

  3. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    Science.gov (United States)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  4. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    Science.gov (United States)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  5. Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer

    Science.gov (United States)

    Maida, Osamu; Tabuchi, Tomohiro; Ito, Toshimichi

    2017-12-01

    We have developed a new fabrication process to decrease the effective activation energy of B atoms doped in diamond without a significant decrease in the carrier mobility by fabricating heavily B-doped clusters with very low mobility which are embedded in lightly-B-doped diamond layers. The resistivities of the heavily B-doped and unintentionally B-doped diamond stacked layers had almost no temperature dependence, suggesting the presence of an impurity-band conduction in these diamond layers. On the other hand, the resistivities of the samples after the embedding growth process of the stacked layers that had been appropriately divided to innumerable small clusters by means of a suitable etching process increased with decreasing the temperature from 330 to 130 K. The effective activation energies and Hall mobilities at room temperature of both samples were estimated to be 0.21 eV, 106 cm2 V-1 s-1 for micron-sized clusters and 0.23 eV, 470 cm2 V-1 s-1 for nano-sized clusters, respectively, indicating that the diamond film structure fabricated in this work is effective for the improvement of the p-type performance for the B-doped CVD diamond.

  6. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    adherent diamond films on WC–CO tools by all three deposition models and has allowed completion of the ..... cesses with hard turning machining will affect future demand for PCBN (and cBN coated) tools. 6. ... Business Communication Co.

  7. Effect of substrate roughness on growth of diamond by hot filament ...

    Indian Academy of Sciences (India)

    Administrator

    Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate ... toughness of the film as the crystal changes its phase from monocrystalline to .... is a characteristic of graphite. We mark the.

  8. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  9. Graphitization of diamond with a metallic coating on ferritic matrix; Grafitizacao do diamante com revestimento metalico em matriz ferritica

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello, E-mail: stenio@uenf.b [Universidade Estadual do Norte Fluminense (PPGECM/CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Ciencias e Tecnologia. Programa de Pos Graduacao em Engenharia e Ciencia dos Materiais

    2010-07-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  10. A study on the basic CVD process technology for TRISO coated particle fuel

    International Nuclear Information System (INIS)

    Choi, D. J.; Cheon, J. H.; Keum, I. S.; Lee, H. S.; Kim, J. G.

    2006-03-01

    Hydrogen energy has many advantages and is suitable as alternative energy of fossil fuel. The study of nuclear hydrogen production has performed at present. For nuclear hydrogen production, it is needed the study of VHTR(Very High Temperature Reactor) and TRISO(TRI-iSOtropic) coated fuel. TRISO coated fuel particle deposited by FBCVD(Fludized Bed CVD) method is composed of three isotropic layers: Inner Pyrolytic Carbon (IPyC), Silicon Carbide (SiC), Outer Pyrolytic Carbon (OPyC) layers. Silicon carbide was chemically vapor deposed on graphite substrate using methyltrichlorosilane (CH 3 SiCl 3 ) as a source in hydrogen atmosphere. The effect of deposition temperature and input gas ratios ( α=Q H2 /Q MTS =P H2 /P MTS ) was investigated in order to find out characteristics of silicon carbide layer. From results of those, SiC-TRISO coating deposition was conducted and achieved. Zirconium carbide layer as an advanced material of silicon carbide layer has studied. In order to find out basic properties and characteristics, studies have conducted using various methods. Zirconium carbide is chemically vapor deposed subliming zirconium tetrachloride(ZrCl 4 ) and using methan(CH 4 ) as a source in hydrogen atmosphere. Many experiments were conducted on graphite substrate about many deposition conditions such as ZrCl 4 heating temperatures and variables of H2 and CH 4 flow rate. but carbon graphite was deposited. For deposition of zirconium carbide, several different methods were approached. so zirconium carbide deposed on ZrO 2 substrate. In this experiments. source subliming type and equipment are no problems. But deposition of zirconium carbide will be continuously studied on graphite substrate approaching views of experimental way and equipment structure

  11. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  12. Flexible diamond-like carbon thin film coated rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Y.T.

    2015-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 75% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin film, by which the coefficient of friction is reduced to less than one tenth. Coating

  13. The system of quantum structures coated with the diamond-like carbon for silicon solar cells

    International Nuclear Information System (INIS)

    Efimov, V.P.; Abyzov, A.S.; Luchaninov, A.A.; Omarov, A.O.; Strel'nitskij, V.E.

    2010-01-01

    The peculiarity of the process of amorphous diamond-like carbon coating deposition on the surface of Si photoelectric cell with quantum filaments, which was irradiated by the electrons and heavy multi-charge ions, have been investigated. The experimental results on the investigations of the optical characteristics of the nitrogen doped hydrogenated diamond-like carbon a-C:(H,N) coatings were presented. The parameters of the process of a-C:(H,N) coating deposition on the surfaces of disordered Si semiconductors structures were optimized for the purpose of minimizing optical reflection coefficient from the front surface of the crystal and supplying its mechanical durability.

  14. Regeneration of FBGs during the HFCVD diamond-fiber coating process

    Science.gov (United States)

    Alberto, Nélia J.; Kalinowski, Hypolito J.; Neto, Victor F.; Nogueira, Rogério N.

    2014-08-01

    In this work, the regeneration of saturated fiber Bragg gratings during the diamond coating of the fiber is presented. Due to the high temperatures characteristic of the hot filament chemical vapor deposition (HFCVD) process (around 800 ºC), uniform fiber Bragg gratings (FBGs) are not appropriate to be coated. Nevertheless, regenerated Bragg gratings are a suitable solution for this drawback. Its production process involves the inscription of a saturated FBG followed by a time consuming heat treatment. Here it is proposed to take advantage of the high temperatures characteristic of the HFCVD process to simultaneous regenerate the grating and coat the fiber with diamond.

  15. Effect of substrates on tribological properties of diamond-like carbon coating

    Directory of Open Access Journals (Sweden)

    Renhui ZHANG

    2017-06-01

    Full Text Available In order to well investigate the effect of different substrates on the friction and wear of diamond-like carbon (DLC coating, the DLC coatings are deposited on substrates like the high-speed steel (HSS, SiC and 304 stainless steel by using plasma enhanced chemical vapor deposition method. The diamond-like carbon is prepared. The microstructure of the coatings is characterized using SEM, TEM and Raman. The SEM results exhibit that the total thickness of the coatings is about 6.5 μm, and there's apparent interfaces between layers. The TEM results imply that the coatings have an amorphous structure. Raman spectrum exhibits that G and D peaks are observed, which implies that the deposition coatings are diamond-like carbon coating. The results of tribological tests show that the substrates have a significant effect on the friction and wear of the coating. For different substrates, the transfer film is found on the steel counterpart surface, the wear track of the HSS has a lowest width, and the DLC coating that deposited on HSS exhibits the lowest wear and low friction coefficient (about 0.1.The microstructure of different substrates wear track surfaces is analyzed by using Raman spectrum, and the lowest wear of the HSS is attributed to the lower degree of the graphitization. The research provides reference for preparing the DLC coating with excellent tribological properties.

  16. Parametric optimization during machining of AISI 304 Austenitic Stainless Steel using CVD coated DURATOMIC cutting insert

    Directory of Open Access Journals (Sweden)

    M. Kaladhar

    2012-08-01

    Full Text Available In this work, Taguchi method is applied to determine the optimum process parameters for turning of AISI 304 austenitic stainless steel on CNC lathe. A Chemical vapour deposition (CVD coated cemented carbide cutting insert is used which is produced by DuratomicTM technology of 0.4 and 0.8 mm nose radii. The tests are conducted at four levels of Cutting speed, feed and depth of cut. The influence of these parameters are investigated on the surface roughness and material removal rate (MRR. The Analysis Of Variance (ANOVA is also used to analyze the influence of cutting parameters during machining. The results revealed that cutting speed significantly (46.05% affected the machined surface roughness values followed by nose radius (23.7%. The influence of the depth of cut (61.31% in affecting material removal rate (MRR is significantly large. The cutting speed (20.40% is the next significant factor. Optimal range and optimal level of parameters are also predicted for responses.

  17. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  18. Effects of temperature and Mo2C layer on stress and structural properties in CVD diamond film grown on Mo foil

    International Nuclear Information System (INIS)

    Long, Fen; Wei, Qiuping; Yu, Z.M.; Luo, Jiaqi; Zhang, Xiongwei; Long, Hangyu; Wu, Xianzhe

    2013-01-01

    Highlights: •Polycrystalline diamond films were grown on Mo foil substrates by HF-CVD. •We investigated the temperature dependence of the film stress for each sample. •We show that how the thermal stress and intrinsic stress affects the total stress. •The stress of Mo foil substrate obtained by XRD was investigated in this study. •The effect of Mo 2 C interface layer for stress of multilayer system was considered. -- Abstract: Polycrystalline diamond films have been prepared by hot-filament-assisted chemical vapor deposition (HFCVD) on Mo foils. The morphology, growth rate, phase composition, element distribution and residual stress of the films at different temperature were investigated by field-emission scanning electron microscopy, Raman spectrum, field emission electron probe microanalysis and X-ray diffraction. Results show that the residual stress of the diamond films is compressive. The thermal stress plays a decisive role in the total stress, while the intrinsic stress can change the trend of the total stress. The residual stress of substrate gradually changes from tensile stress to compressive stress with the increase of the deposited temperature. A Mo 2 C interlayer is formed during deposition process, and this layer has an important influence on the stresses of films and substrates

  19. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  20. Tl and OSL dosimetry of diamond films CVD pure and unpurified with boron-carbon; Dosimetria Tl y OSL de peliculas de diamante CVD puras e impurificadas con boro-carbono

    Energy Technology Data Exchange (ETDEWEB)

    Melendrez, R.; Pedroza M, M.; Chernov, V.; Ochoa N, J.D.; Bernal, R.; Barboza F, M. [CIF, UNISON, A.P. 5-088, 83190 Hermosillo, Sonora (Mexico); Castaneda, B. [Departamento de Fisica, Universidad de Sonora, Apdo. Postal 1626, Hermosillo, Sonora (Mexico); Goncalves, J.A.N.; Sandonato, G.M. [Laboratorio Associado de Plasma, Instituto Nacional de Pesquisas Espaciais C.P. 515- 12201 -970, Sao Jose dos Campos, SP (Brazil); Cruz Z, E. [Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 Mexico D.F. (Mexico); Preciado F, S.; Cruz V, C.; Brown, F. [Departamento de Investigacion en Polimeros y Materiales de la Universidad de Sonora, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Schreck, M. [Universitaet Augsburg, Institut fuer Physik D-86135 Augsburg (Germany)

    2004-07-01

    The diamond is a material that possesses extreme physical properties, such as its hardness to the radiation, its low chemical reactivity besides its equivalence to the human tissue, which qualify him as an ideal material for radiation dosimetry. In this work, it was studied the thermal and optically stimulated response (Tl and OSL) of polycrystalline diamond films grown by the technique of CVD pure and contaminated with Boron-carbon (B/C) with the intention of characterizing their efficiency like a dosemeter for radiation in a range of 0 - 3000 Gy. For the case of the films without impurities, the Tl curve presents four main peaks, two of them in an interval of temperatures of 150-200 C and other two additional around of 250-400 C. The dependence of the response of integrated Tl and that of OSL always maintained a lineal relationship with the exhibition dose up to 100 Gy. The behavior of the films contaminated with B/C (2000 - 20000 ppm) was established through experiments that involved the signal of OSL and their relationship with the Tl response. It was found that this processes are correlated, since the electrons caught in the traps of low temperature (50 - 250 C) of the Tl they are the electrons that recombining with more probability to provide the signal of OSL. According to these results it is possible to propose the diamond films as a good candidate for dosimetry to, using the traditional technique of Tl so much as well as the but recent of OSL. (Author)

  1. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  2. Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    2017-01-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such p......Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence...

  3. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  4. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase

    International Nuclear Information System (INIS)

    Polini, Riccardo; Delogu, Michele; Marcheselli, Giancarlo

    2006-01-01

    WC-Co hard metals continue to gain importance for cutting, mining and chipless forming tools. Cobalt metal currently dominates the market as a binder because of its unique properties. However, the use of cobalt as a binder has several drawbacks related to its hexagonal close-packed structure and market price fluctuations. These issues pushed the development of pre-alloyed binder powders which contain less than 40 wt.% cobalt. In this paper we first report the results of extensive investigations of WC-Fe/Ni/Co hard metal sintering, surface pretreating and deposition of adherent diamond films by using an industrial hot filament chemical vapour deposition (HFCVD) reactor. In particular, CVD diamond was deposited onto WC-Fe/Ni/Co grades which exhibited the best mechanical properties. Prior to deposition, the substrates were submitted to surface roughening by Murakami's etching and to surface binder removal by aqua regia. The adhesion was evaluated by Rockwell indentation tests (20, 40, 60 and 100 kg) conducted with a Brale indenter and compared to the adhesion of diamond films grown onto Co-cemented tungsten carbide substrates, which were submitted to similar etching pretreatments and identical deposition conditions. The results showed that diamond films on medium-grained WC-6 wt.% Fe/Ni/Co substrates exhibited good adhesion levels, comparable to those obtained for HFCVD diamond on Co-cemented carbides with similar microstructure

  5. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  6. Charge transport and X-ray dosimetry performance of a single crystal CVD diamond device fabricated with pulsed laser deposited electrodes

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.A.E.; Abdel-Rahman, M.A.E.; Lohstroh, A.; Bryant, P.; Jayawardena, I.

    2013-01-01

    The deposition of amorphous Carbon mixed with Nickel (C/Ni) as electrodes for a diamond radiation detector using Pulsed Laser Deposition (PLD) was demonstrated previously as a novel technique for producing near-tissue equivalent X-ray dosimeters based on polycrystalline diamond. In this study, we present the first characterisation of a single crystal CVD diamond sandwich detector (of 80 nm thickness) fabricated with this method, labelled SC-C/Ni. To examine the performance of PLD C/Ni as an electrical contact, alpha spectroscopy and x-ray induced photocurrents were studied as a function of applied bias voltage at room temperature and compared to those of polycrystalline CVD diamond detectors (PC-C/Ni); the spectroscopy data allows us to separate electron and hole contributions to the charge transport, whereas the X-ray data was investigated in terms of, linearity and dose rate dependence, sensitivity, signal to noise ratio, photoconductive gain, reproducibility and time response (rise and fall-off times). In the case of electron sensitive alpha induced signals, a charge collection efficiency (CCE) higher than 90 % has been observed at a bias of -40 V and 100 % CCE at -300 V, with an energy resolution of ∼3 % for 5.49 MeV alpha particles. The hole sample showed very poor spectroscopy performance for hole sensitive signals up to 200 Volt; this inhibited a similar numerical analysis to be carried out in a meaningful way. The dosimetric characteristic show a high signal to noise ratio (SNR) of ∼7.3x10 3 , an approximately linear relationship between the photocurrent and the dose rate and a sensitivity of 4.87 μC/Gy.mm 3 . The photoconductive gain is estimated to around 20, this gain might be supported by hole trapping effects as indicated in the alpha spectroscopy. The observed rise and fall-off times are less than 2 and 0.56 seconds, respectively - and mainly reflect the switching time of the X-ray tube used.The reproducibility of (0.504 %) approaches the value

  7. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Diamond-like carbon; buffer layer; plasma CVD; surface characterization; biomedical applications. Abstract. We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer.

  8. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15.

  9. SiV color centers in Si-doped isotopically enriched {sup 12}C and {sup 13}C CVD diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, Vadim; Bolshakov, Andrey [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Boldyrev, Kirill [Institute of Spectroscopy, RAS, Troitsk, Moscow (Russian Federation); Krivobok, Vladimir; Nikolaev, Sergei [Lebedev Physical Institute, RAS, Moscow (Russian Federation); Khomich, Alex [Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Khomich, Andrew [General Physics Institute, RAS, Moscow (Russian Federation); Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Krasilnikov, Anatoly [Institution ' ' ProjectCenter ITER' ' , Moscow (Russian Federation); Ralchenko, Victor [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Harbin Institute of Technology, Harbin (China)

    2017-11-15

    The effect of isotopic modification of diamond lattice on photoluminescence (PL) and optical absorption spectra of ensembles of SiV{sup -} centers was studied. Thin epitaxial diamond layers were grown by a microwave plasma CH{sub 4}/H{sub 2} mixtures using methane enriched to 99.96% for either {sup 12}C or {sup 13}C isotopes, while the Si doping was performed by adding a small percentage of silane SiH{sub 4} into the plasma. Temperature dependent SiV{sup -} ZPL spectra in absorption were measured at 3-80 K to monitor the evolution of the ZPL fine structure. It is found that the SiV{sup -} ZPL at 736.9 nm observed in PL for {sup 12}C diamond at T = 5 K, exhibits a blue shift of 1.78 meV, to 736.1 nm in {sup 13}C diamond matrix. Narrow ZPL with the width (FWHM) of 0.09 meV (21 GHz) was measured in absorption spectra at T = 3-30 K in the Si-doped {sup 13}C diamond. Besides the charged SiV{sup -} center, the absorption of the neutral SiV{sup 0} defect at 946 nm wavelength has also been detected. From changes observed in SiV{sup -} phonon band structure in PL with isotopic modification, the band at 64 meV was confirmed to be a local vibration mode (LVM) involving a Si atom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    highly segmented detectors with an efficiency {epsilon}>98 % could be built from this material. The diamond detectors were segmented in our laboratory and achieved a time resolution of {sigma}{sub t}=75 ps. Medium-size (25.4 x 25.4 mm{sup 2}) micro-strip detectors were tested at the FRS and at the ALADIN/LAND setup at GSI. The obtained position resolution was in the range of the strip size of 200 {mu}m. First full-size detectors (50 x 50 mm{sup 2}) will be completed soon. (orig.)

  11. Development and characterization of protective nickel coatings by CVD process for non-ferrous metals and alloys

    International Nuclear Information System (INIS)

    Haq, A.U.

    2012-01-01

    Objective of this thesis is the formation of adhesive and corrosion resistant nickel film on aluminum, aluminum-lithium (Li 0.5 %) alloy and copper substrates by chemical vapor deposition (CVD) technique. Different surface preparation treatments such as electropolishing, anodizing and pickling are applied to the aforementioned substrates and its effect on the adhesion and corrosion resistance of nickel coating is studied. Nickel coating is deposited on different substrates by using already optimized parameters of 190-200 degree C deposition temperature, 9-8 x 10/sup -1/ Torr pressure during deposition, pure nickel-tetra-carbonyl gas, and induction heating source and 5 minutes deposition time. Substrates subjected to pickling treatment show excellent adhesion of nickel coating with a value of 5B based on ASTM standard while electropolished substrates show valve of 3B. XRD characterization of the nickel film show characteristic peaks of nickel confirming its phase purity. The SEM images show that nickel coating follows the surface features of the substrate. The pickled surface results in film with rough morphology than electropolished or anodized surface. The corrosion resistance of both uncoated and coated substrates is studied by monitoring its open circuit potential in different electrolytes (brine solution, sea and distilled water) at different temperatures. All substrates coated with nickel show 120-400mV potential difference compare with uncoated substrates in different electrolytes. (author)

  12. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    International Nuclear Information System (INIS)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung; Pan, Szu-Jung; Tsai, Wen-Ta; Tai, Chen-Yi; Shih, Chuan-Feng

    2013-01-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test

  13. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    Energy Technology Data Exchange (ETDEWEB)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Pan, Szu-Jung [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tai, Chen-Yi [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Shih, Chuan-Feng [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2013-02-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test.

  14. Cell attachment on diamond-like carbon coating

    Indian Academy of Sciences (India)

    Unknown

    was a better coating with desirable tissue and blood compatibility. Keywords. .... Optical microscopic picture showing the fibroblasts adhering to. DLC coating prepared at 800 eV. ... In other words, the 800 eV CHn+ beam bombarding energy ...

  15. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  16. "Diamond" over-coated Microstrip Gas Chambers for high rate operation

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Hoch, M; Manzin, G; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe the recent developments on the diamond-like carbon (DLC) over-coated Microstrip Gas Chambers made on drawn glass substrates. MSGC surface coating with thin DLC layer of stable and controlled resistivity was proposed to overcome the limitation of detector operation due to surface charging-up under avalanches. This brings also advantages for the detector manufacturing technology. The thin layer, deposited on top of a manufactured MSGC (over-coating), demonstrates excellent mechanical properties and very good stability. We report on recent measurements with DLC over-coated MSGCs of various surface resistivities (ranging from 1013W/r to 1016W/r) on D-263 and AF45 glass substrates. Over-coated MSGCs exhibit good rate capability for the resistivity of the surface around 1015W/r. Stable operation up to 50 mC/cm of accumulated charge from avalanches has been demonstrated.

  17. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  18. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    Science.gov (United States)

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of absorbing coating on ablation of diamond by IR laser pulses

    Science.gov (United States)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  20. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  1. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  2. Corrosion protection of SiC-based ceramics with CVD mullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.L.; Sarin, V.K. [Boston Univ., MA (United States). Dept. of Mfg. Engineering

    1997-12-01

    For the first time, crystalline mullite coatings have been chemically vapor deposited on SiC substrates to enhance its corrosion and oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments.

  3. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    Science.gov (United States)

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  4. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

    Science.gov (United States)

    Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.

    2017-08-01

    A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

  5. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  6. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  7. Use of organosilicate precursors for transparent coatings on organic substrates by plasma CVD

    International Nuclear Information System (INIS)

    Lasorsa, C; Versaci, R; Perillo, P

    2006-01-01

    This work discusses the production of transparent coatings of SiOxCy on substrates polycarbonated by PECVD at temperatures below 80 o C, with a gaseous mixture using different precursors with which, in similar processes produced the same results with respect to the coating obtained, with the same excellent quality and in accordance with international standards for optic coatings. Chlorinated precursors were excluded because they are highly corrosive as well as those with operating risks (toxic or explosive). The precursors used were tetraethyl orthosilicate (TEOS), tetramethylsilanete (TMS,) tetramethoxy silane (TMOS), hexamethyldisilizane (HMDS), and methyltrimethoxysilane (Z6070), with the contribution of O 2 and methane as reactive gases. Fourier transform infrared spectroscopy (FTIR) was used as well as X-ray generated photoelectron spectroscopy (XPS/ESCA). The functional groups were studied together with the film elements and its mechanical properties, transparency and refraction index. Irregardless of the precursor used, by properly modifying the process variables (pressure of the gaseous mixture, radio frequency power, relationship of processing gases and their flow), similar coatings can be chemically obtained, having the same morphology and, therefore, with identical adherence, structural and optic properties. None of the works consulted refer to the possibility of the indistinct use of different precursors for obtaining the same coating. These results are relevant when considering the difference in costs and their market availability. The influence of the addition of methane was studied in two processing variants, a) with oxygen and methane and b) with oxygen alone. For all the precursors used and with identical processing conditions, the carbon contributed by the addition of methane increased the concentration of carbon compounds, considerably reducing the presence of silanol, which being absorbent produces structural instability and cracking of the

  8. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the

  9. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  10. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  11. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  12. Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD

    International Nuclear Information System (INIS)

    Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M.E.

    2012-01-01

    Highlights: ► Tungsten oxide is aerosol assisted chemically vapor deposited on polycarbonate. ► Their properties are dependent on the Ar:O 2 ratio during deposition. ► The porous structure enhances their electrochemical performance. - Abstract: Tungsten oxide coatings are chemically vapor deposited on polycarbonate via aerosol assisted at 125 °C. The effect of the Ar:O 2 ratio on the structural, morphological and electrochemical properties of the samples is investigated. The coating grown using Ar:O 2 ratio of 50:50, exhibits the best electrochemical activity and the fastest colouration-bleaching response. At the same time it offers a high specific capacitance that does not degrade upon at least 1000 successive charging–discharging cycles as studied by voltammetry in a solution of 1 M LiClO 4 . The importance of morphology towards the enhancement of the electrochromic behaviour of the coatings is discussed.

  13. Carbon nanotubes and nanofibers synthesized by CVD on nickel coatings deposited with a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, M. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); DQIAQF-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Giuliani, L. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Candal, R.J. [INQUIMAE-FCEyN-UBA, Cdad. Universitaria Pab.2, (1428), Buenos Aires (Argentina); Lamas, D.G. [CINSO, CITEFA, CONICET, J.B. de La Salle 4397, (1603) V.Martelli, Buenos Aires (Argentina); Caso, A. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Rubiolo, G. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); UAM-CNEA, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Grondona, D. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Goyanes, S. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Marquez, A., E-mail: amarquez@df.uba.a [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina)

    2010-04-16

    Nanotubes and nanofibers were grown on Ni coatings deposited by plasma generated with a pulsed vacuum arc on silicon wafers using three different bias conditions: at floating potential (approximately +30 V respect to the grounded cathode); at ground potential; and at -60 V. An atomic force microscopy study showed that the Ni film morphology was affected by the bias condition of the substrate. The morphology of carbonaceous species depended on Ni-films characteristics. FE-SEM and TEM analyses have shown that nanofibers growth was favoured on Ni coatings deposited at -60 V whereas nanotubes grew mainly on Ni coatings obtained at floating and ground potentials. Hence, this new method to produce the precursor can be optimized to obtain nanotubes or nanofibers varying the substrate bias for the Ni deposition.

  14. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  15. Anticorrosive coating of SixOyCz on metallic substrates applied with the plasma CVD technique

    International Nuclear Information System (INIS)

    Perillo, P; Lasorsa, C; Versaci, R

    2006-01-01

    This work deals with the production of anticorrosive coatings of Si x O y C z on metallic substrates by PECVD (Plasma Enhanced Chemical Vapor Deposition) in a two layer coating, with a gaseous mixture using methyltrimethoxysilane (Z6070) with the contribution of O 2 and methane as reactive gases. The process involves two steps, the first with the substrate thermalized to 500 o C and the second step with the substrate at room temperature. In the first step the process is carried out with the mixture of O 2 and Z6070, in the second step methane is added to the mixture of the plasma forming gases. The coatings were carried out on AISI 410 stainless steel, AISI M2 steel, titanium and AA6061 aluminum substrates. This work presents the preliminary results of the electrochemical evaluation and the mechanical properties of the coating. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS/ESCA ), and scanning electron microscopy were used for this study. Electrochemical techniques were used to study the reaction to the corrosion of the coatings. Potentiodynamic polarization curves were prepared in a solution of 5% H 2 SO 4 and in NaCl 0,1M. The tests were undertaken at room temperature. This process is presented as an alternative to the conventional immersion processes by the sol-gel method, which produces the polymerization of the reagent as a result of the effect of the oxygen from the environment, while the plasma process produces very different chemical reactions in the center of the plasma itself with coatings also different (CW)

  16. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Backfish, Michael [Fermilab; Kato, Shigeki [KEK, Tsukuba; Tan, Cheng-Yang [Fermilab; Zwaska, Robert [Fermilab

    2017-05-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.

  17. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    CERN Document Server

    Grinten, M G D; Shiers, D; Baker, C A; Green, K; Harris, P G; Iaydjiev, P S; Ivanov, S N; Geltenbort, P

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron.

  18. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    International Nuclear Information System (INIS)

    Grinten, M.G.D. van der; Pendlebury, J.M.; Shiers, D.; Baker, C.A.; Green, K.; Harris, P.G.; Iaydjiev, P.S.; Ivanov, S.N.; Geltenbort, P.

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron

  19. Adhesion of staphylococcal and Caco-2 cells on diamond-like carbon polymer hybrid coating.

    Science.gov (United States)

    Kinnari, Teemu J; Soininen, Antti; Esteban, Jaime; Zamora, Nieves; Alakoski, Esa; Kouri, Vesa-Petteri; Lappalainen, Reijo; Konttinen, Yrjö T; Gomez-Barrena, Enrique; Tiainen, Veli-Matti

    2008-09-01

    Staphylococci cause the majority of the nosocomial implant-related infections initiated by adhesion of planktonic bacteria to the implant surface. It was hypothesized that plasma accelerating filtered pulsed arc discharge method enables combination of the advantageous properties of diamond with the antisoiling properties of polymers. Diamond-like carbon polytetrafluoroethylene hybrid (DLC-PTFE-h) coating was produced. The adhesion of S. aureus ATCC 25923 (10(8) colony-forming units/mL) to surfaces diminished from 2.32%, 2.35%, and 2.57% of high quality DLC, titanium, and oxidized silicon, respectively, to 1.93% of DLC-PTFE-h. For S. epidermidis ATCC 35984 the corresponding figures were 3.90%, 3.32%, 3.47%, and 2.57%. Differences in bacterial adhesion between recombinant DLC-PTFE-h and other materials were statistically significant (p DLC-PTFE-h as to DLC, titanium, or silicon, which were all in the MTT test found to be cytocompatible. DLC-PTFE-h coating can be used to modify the surface properties of any surgical implants and is an unfavorable substrate for staphylococcal cells, but compatible with human Caco-2 cells. DLC-PTFE-h coating may help in the combat against Staphylococcus-related implant infections which usually require both antibiotics and surgical removal of the implant for cure.

  20. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  1. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  2. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  3. Optically stimulated luminescence and thermoluminescence in CVD diamond and dosimetric evaluation in fields of ionizing radiation; Luminiscencia opticamente estimulada y termoluminiscencia en diamante DQV y evaluacion dosimetrica en campos de radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Barboza F, M.; Chernov, V.; Pedroza M, M. [Centro de Investigaciones en Fisica, Universidad de Sonora, A.P. 5-088, 83190 Hermosillo, Sonora (Mexico); Schreck, M. [Universitat Augsburg, Institut fur Physik D-86135, Augsburg (Germany); Preciado F, S.; Melendrez, R. [Universidad de Sonora, A.P. 130, 83000 Hermosillo, Sonora (Mexico)

    2006-07-01

    The optically stimulated luminescence (OSL) results a highly appropriate dosimetric technique for readings of absorbed radiation 'in alive' and 'in situ', as well as in real time. The CVD diamond on the other hand presents excellent qualities like radiation reader thanks to its reproducibility, radiation resistance, biocompatibility and non toxicity. The present work studies the answer of two diamond films pure and polluted with nitrogen (750 ppm) grown by the Chemical Vapor Deposition method (CVD) on silicon substrate (001) irradiated with beta (Sr-90) in the 0.833-100 Gy interval. The optical stimulation was carried out by 40 seconds with infrared laser (830 nm, 0.36 W/cm{sup 2}) and the filter BG-39 (300-600 nm) coupled the PM. The intensity and the decay of the hyperbolic type of the LOE curves were similar in both samples, for the non doped diamond were observed trapping states in 200-380 C being compared with those that it presents the polluted diamond with nitrogen in 80-277 C. The dosimetric behavior in the pure sample is observed lineal in two regions 0-16 Gy and in 30-100 Gy, only the doped sample didn't present linearity in the all range of the studied dose. The advantage is stood out of LOE on TL because the first one not requires of thermal stimulation in such a way that is more appropriate to detect and to measure radiation doses in biomedicine. (Author)

  4. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  5. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  6. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  7. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  8. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.J.G., E-mail: francisco.silva@eu.ipp.pt [Departamento de Engenharia Mecânica do Instituto Superior de Engenharia do Porto do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Martinho, R.P. [Departamento de Engenharia da Escola Superior de Estudos Industriais e de Gestão do Instituto Politécnico do Porto, Rua D. Sancho I, 981, 4480-876 Vila do Conde (Portugal); Baptista, A.P.M. [Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2014-01-01

    This work reports on laboratorial and experimental wear behaviour studies about a multi-layered film deposited by PVD (Physical Vapour Deposition) unbalanced magnetron sputtering. The film consists of three different layers: CrN in the bottom, CrCN as intermediate layer and DLC (diamond-like carbon) on the top. Film characterization was done using techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy and X-ray diffraction. Scratch-tests, nanoindentation analysis and ball-cratering wear tests were used in order to measure the adhesion critical load, hardness and wear coefficient, respectively. Experimental tests were developed letting one to realise the suitability of this film for mould cavities used on injection moulding machines that produce automotive parts in polypropylene reinforced with 30% (wt.) glass fibres, because this composite material performs severe abrasion on injection moulding which brings important challenges to surface wear resistance. Experimental tests revealed that, after 135,000 injection cycles, multi-layer coating improved significantly the performance previously revealed by uncoated samples. The good results achieved by this film can be partially assigned to DLC top layer due to its low friction coefficient. This paper discusses these results, comparing them with some other PVD coatings already tested in the same conditions. - Highlights: • This coating presents a very good adhesion to the P20 steel substrate. • Surface wear performance is largely improved by the use of this coating. • Coating wear resistance is about 58.2 times higher than the uncoated substrate. • This film presents high suitability for application in mould cavities.

  9. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  10. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility.

    Science.gov (United States)

    Huacho, Patricia Milagros Maquera; Nogueira, Marianne N Marques; Basso, Fernanda G; Jafelicci Junior, Miguel; Francisconi, Renata S; Spolidorio, Denise M P

    2017-01-01

    The aim of this study was to evaluate the surface free energy (SFE), wetting and surface properties as well as antimicrobial, adhesion and biocompatibility properties of diamond-like carbon (DLC)-coated surfaces. In addition, the leakage of Escherichia coli through the abutment-dental implant interface was also calculated. SFE was calculated from contact angle values; R a was measured before and after DLC coating. Antimicrobial and adhesion properties against E. coli and cytotoxicity of DLC with human keratinocytes (HaCaT) were evaluated. Further, the ability of DLC-coated surfaces to prevent the migration of E. coli into the external hexagonal implant interface was also evaluated. A sterile technique was used for the semi-quantitative polymerase chain reaction (semi-quantitative PCR). The surfaces showed slight decreases in cell viability (p0.05). It was concluded that DLC was shown to be a biocompatible material with mild cytotoxicity that did not show changes in R a, SFE, bacterial adhesion or antimicrobial properties and did not inhibit the infiltration of E. coli into the abutment-dental implant interface.

  11. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  12. Operation of microstrip gas chambers manufactured on glass coated with high resistivity diamond-like layers

    CERN Document Server

    Boimska, B; Dominik, Wojciech; Hoch, M; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe recent observations and measurements realized with micro-strip gas chambers (MSGCs) manufactured on boro-silicate glass coated with a thin layer of diamond-like carbon (DLC) having a surface resistivity around 4.10$^{16}\\Omega/\\Box$. The role of the back-pla electrode configuration and potential in the detector performance has been studied. Even for this very high resistivity of the coatings, MSGCs operate differently from those manufactured on bare boro-silicate glass; the charge gain increases with the radiation flux for counting rates above 103 Hz/mm2, reaching a value 60% higher for 105 Hz/mm2. This behavior does not depend on the presence and potential of the back plane electrode; however, both maximum gain and rate capability are influenced by the drift field. From this study, compared with measurements realized previously with other detectors, we deduce that for stable high rate operation of MSGCs the resistivity of the coating should not exceed ~10$^{15}\\Omega/\\Box$.

  13. Coating dental implant abutment screws with diamondlike carbon doped with diamond nanoparticles: the effect on maintaining torque after mechanical cycling.

    Science.gov (United States)

    Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette

    2015-01-01

    To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.

  14. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  15. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals

    International Nuclear Information System (INIS)

    Camargo, S.S.; Gomes, J.R.; Carrapichano, J.M.; Silva, R.F.; Achete, C.A.

    2005-01-01

    Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si 3 N 4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 to 55 N and sliding velocities from 0.2 to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si-coated rings, on the other hand, presented for loads up to 10 N a steady-state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N, the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N, a catastrophic behavior is observed. Typically, wear rates below 5x10 -6 and 2x10 -7 mm 3 /N m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer

  16. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Litong; Cheng Laifei; Yang Wenbin; Zhang Weihua; Xu Yongdong

    2009-01-01

    An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl 3 -CH 4 -H 2 -Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 deg. C in 14 vol.% H 2 O/8 vol.% O 2 /78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.

  17. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  18. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    Science.gov (United States)

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  20. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    Lin Zeng; Gao Ding; Ba Dechun; Wang Feng; Liu Chunming

    2013-01-01

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp 2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp 3 content of the coatings

  1. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    Science.gov (United States)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  2. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane

    Science.gov (United States)

    Prihandana, Gunawan S.; Sanada, Ippei; Ito, Hikaru; Noborisaka, Mayui; Kanno, Yoshihiko; Suzuki, Tetsuya; Miki, Norihisa

    2013-01-01

    A nano porous polyethersulfone (PES) membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC) onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems. PMID:28788333

  3. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  4. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    Science.gov (United States)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  5. Experimental Investigation on Ductile Mode Micro-Milling of ZrO2 Ceramics with Diamond-Coated End Mills

    Directory of Open Access Journals (Sweden)

    Rong Bian

    2018-03-01

    Full Text Available ZrO2 ceramics are currently used in a broad range of industrial applications. However, the machining of post-sintered ZrO2 ceramic is a difficult task, due to its high hardness and brittleness. In this study, micro-milling of ZrO2 with two kinds of diamond-coated end mills has been conducted on a Kern MMP 2522 micro-milling center (Kern Microtechnik GmbH, Eschenlohe, Germany. To achieve a ductile mode machining of ZrO2, the feed per tooth and depth of cut was set in the range of a few micrometers. Cutting force and machined surface roughness have been measured by a Kistler MiniDynamometer (Kistler Group, Winterthur, Switzerland and a Talysurf 120 L profilometer (Taylor Hobson Ltd., Leicester, UK, respectively. Machined surface topography and tool wear have been examined under SEM. Experiment results show that the material can be removed in ductile mode, and mirror quality surface with Ra low as 0.02 μm can be achieved. Curled and smooth chips have been collected and observed. The axial cutting force Fz is always bigger than Fx and Fy, and presents a rising trend with increasing of milling length. Tool wear includes delamination of diamond coating and wear of tungsten carbide substrate. Without the protection of diamond coating, the tungsten carbide substrate was worn out quickly, resulting a change of tool tip geometry.

  6. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications.

    Science.gov (United States)

    Allen, M; Myer, B; Rushton, N

    2001-05-01

    Diamond-like carbon (DLC) shows great promise as a durable, wear- and corrosion-resistant coating for biomedical implants. The effects of DLC coatings on the musculoskeletal system have not been investigated in detail. In this study, DLC coatings were deposited on polystyrene 24-well tissue culture plates by fast-atom bombardment from a hexane precursor. Two osteoblast-like cell lines were cultured on uncoated and DLC-coated plates for periods of up to 72 h. The effects of DLC coatings on cellular metabolism were investigated by measuring the production of three osteoblast-specific marker proteins: alkaline phosphatase, osteocalcin, and type I collagen. There was no evidence that the presence of the DLC coating had any adverse effect on any of the parameters measured in this study. In a second series of experiments, DLC-coated cobalt-chromium cylinders were implanted in intramuscular locations in rats and in transcortical sites in sheep. Histologic analysis of specimens retrieved 90 days after surgery showed that the DLC-coated specimens were well tolerated in both sites. These data indicate that DLC coatings are biocompatible in vitro and in vivo, and further investigations into their long-term biological and tribological performance are now warranted. Copyright 2001 John Wiley & Sons, Inc.

  7. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    Science.gov (United States)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  8. Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study

    Science.gov (United States)

    Castañeda, S. I.; Pérez, F. J.

    2018-02-01

    The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.

  9. Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating

    Science.gov (United States)

    Ang, Caen; Kemery, Craig; Katoh, Yutai

    2018-05-01

    Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.

  10. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    Science.gov (United States)

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  11. Friction and wear behavior of Inconel 625 with Ni3Ti, TiN, TiC-CVD coatings in an HTGR environment

    International Nuclear Information System (INIS)

    Sarosiek, A.M.; Li, C.C.

    1984-04-01

    The following conclusions apply to Inconel 625 with Ni 3 Ti, TiN, TiC-CVD coatings, tested in an HTGR environment in a temperature range between 500 and 900 0 C at a contact pressure of 3.45 MPa. The average wear rate is very small varying between 0.0 and 1.7 x 10 -4 g/m. The wear rate shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases or as the sliding velocity decreases. Damage experienced by wear areas is minimal. Stick-slip friction was observed at low sliding velocity, however the friction coefficient is low (maximum 0.63) with an average value of about 0.44. The friction coefficient shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases, or as the sliding velocity decreases. Ni 3 Ti, TiN, TiC-CVD coatings, are considered effective in minimizing friction and wear damage of Inconel 625 in an HTGR environment

  12. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-01-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  14. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon

    Science.gov (United States)

    Das, Debajyoti; Banerjee, Amit

    2015-08-01

    Aiming towards a specific application as antireflection coatings (ARC) in Si solar cells, the growth of hydrogenated diamond like carbon (HDLC) films, by RF magnetron sputtering, has been optimized through comprehensive optical and structural studies. Various physical properties of the films e.g., (ID/IG) ratio in the Raman spectra, percentage of sp3 hybridization in XPS spectra, H-content in the network, etc., have been correlated with different ARC application properties e.g., transmittance, reflectance, optical band gap, refractive index, surface roughness, etc. The ARC properties have been optimized on unheated substrates, through systematic variations of RF power, gas flow rate, gas pressure and finally controlled introduction of hydrogen to the DLC network at its most favorable plasma parameters. The optimum HDLC films possess (T700)max ∼ 95.8%, (R700)min ∼ 3.87%, (n700)min ∼ 1.62 along with simultaneous (Eg)max ∼ 2.53 eV and ∼75.6% of sp3 hybridization in the C-network, corresponding to a bonded H-content of ∼23 at.%. Encouraging improvements in the ARC properties over the optimized DLC film were obtained with the controlled addition of hydrogen, and the optimum HDLC films appear quite promising for applications in Si solar cells. Systematic materials development has been performed through comprehensive understanding of the parameter space and its optimization, as elaborately discussed.

  15. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  16. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Srinivasan, Balaji; Rao, Balkrishna C; Ramachandra Rao, M S

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min −1 with a lower feed and a lower depth of cut of 0.5 mm rev −1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength. (paper)

  18. Structural and electrical characterization of diamond films deposited in nitrogen/oxygen containing gas mixture by linear antenna microwave CVD process

    Czech Academy of Sciences Publication Activity Database

    Vojs, Marian; Varga, Marián; Babchenko, Oleg; Ižák, Tibor; Mikolášek, M.; Marton, M.; Kromka, Alexander

    2014-01-01

    Roč. 312, SEP (2014), s. 226-230 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : pulsed linear antenna microwave chemical vapor deposition * nanocrystalline diamond * Raman spectroscopy * admittance spectroscopy * n-type conductive NCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  19. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  20. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  1. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  2. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  3. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  4. CVD - main concepts, applications and restrictions

    International Nuclear Information System (INIS)

    Bliznakovska, B.; Milosevski, M.; Krawczynski, S.; Meixner, C.; Koetter, H.R.

    1993-01-01

    Despite of the fact that the existing literature covering the last two decades is plentiful with data related to CVD, this document is an attempt to provide to a reader a concise information about the nature of CVD technique at production of technologically important materials as well as to point at special references. The text is devided into three separate sections. The first section, The Main Features of CVD, is intended to give a complete comprehensive picture of the CVD technique through process description and characterization. The basic principles of thermodynamics, CVD chemical reactions classification, CVD chemical kinetics aspects and physics of CVD (with particular attention on the gas-flow phenomena) are included. As an additional aspect, in CVD unavoidable aspect however, the role of the coating/substrate compatibility on the overall process was outlined. The second section, CVD Equipment, concerns on the pecularities of the complete CVD unit pointing out the individual significances of the separate parts, i.e. pumping system, reactor chamber, control system. The aim of this section is to create to a reader a basic understanding of the arising problems but connected to be actual CVD performance. As a final goal of this review the reader's attention is turned upon the CVD applications for production of an up-to-date important class of coatings such as multilayer coatings. (orig.)

  5. Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD

    International Nuclear Information System (INIS)

    Shanaghi, Ali; Rouhaghdam, Ali Reza Sabour; Ahangarani, Shahrokh; Chu, Paul K.; Farahani, Taghi Shahrabi

    2012-01-01

    Titanium carbide coatings are deposited on hot-work steel (H 11 ) by plasma-assisted chemical vapor deposition (PACVD) and the dependence of the corrosion behavior on fabrication parameters is investigated. Grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), Raman and electrochemical tests are used to study the structure as well as corrosion behaviors. Grazing incidence X-ray diffraction reveals the (2 0 0) plane implying that the TiC coatings are deposited via the kinetics-limited crystal growth mechanism and under thermodynamically stable conditions. The SEM results indicate that the formation of a homogeneous and uniform titanium carbide nanostructure coatings. Potentiodynamic and electrochemical impedance tests performed in 0.5 M H 2 SO 4 and 0.05 M NaCl show that the TiC coating produced using a 40% duty cycle possesses high corrosion resistance in both media. The R p values of the TiC coating (50% duty cycle) in 0.05 M NaCl and the other TiC coating (40% duty cycle) in 0.5 M H 2 SO 4 are approximately four and sixteen orders of magnitude higher than that of the bare steel, respectively. Our results reveal that the duty cycles not only affect the structure and morphology of the coatings but also influence the electrochemical properties.

  6. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  7. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Taposh; Pingguan-Murphy, Belinda; Choudhury, Dipankar; Bin Mamat, Azuddin; Masjuki, H H

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. (paper)

  8. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  9. CVD in nuclear energy

    International Nuclear Information System (INIS)

    Nickel, H.

    1981-08-01

    CVD-deposited pyrocarbon, especially the coatings of nuclear fuel kernels show a structure depending on many parameters such as deposition temperature, nature and pressure of the pyrolysis gas, nature of the substrate, geometry of the deposition system, etc. Because of the variety of pyrocarbon different characterization methods have been developed or qualified for this new application. Additionally classical characterization procedures are available. Beside theoretical aspects concerning the formation and deposition mechanism of pyrocarbon from the gas phase the behaviour of such coatings under irradiation with fast neutrons is discussed. (orig.) [de

  10. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  11. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.

    Science.gov (United States)

    Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo

    2015-06-03

    Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.

  12. Growth and characterization of single-crystal CVD diamond for radiation detection applications; Synthese et caracterisation de diamants monocristallins pour applications de detecteur de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Tranchant, N

    2008-01-15

    This work aimed at the study of the synthesis of single crystal diamond using the Microwave enhanced Chemical Vapour Deposition technique (MPCVD). The work enabled the development and optimisation of the growth conditions, from the study of the crystalline quality, of the material purity, and of its electronic properties. The assessment of the transport properties was the most determinant: the use of the time of flight (TOF) technique has enabled the measurement of the carrier mobilities and of their kinetic properties as a function of the temperature. When coupled with collected charge efficiency measurements, the work led to remarkable carrier mobility values obtained in the synthesised crystals (3000 cm{sup 2}.V-1.s{sup -1}). Prepared samples were mounted as detection devices and used successfully in real conditions for the monitoring of ultra-fast pulses, as well as for neutron fluency monitoring, and for medical dosimeters for radiotherapy applications. (author)

  13. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2012-09-15

    Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

  14. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Shanaghi, Ali; Rouhaghdam, Ali Reza Sabour; Ahangarani, Shahrokh; Chu, Paul K.

    2012-01-01

    Highlights: ► The TiC x nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC x nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H 11 hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

  15. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings

    International Nuclear Information System (INIS)

    Pang Xiaolu; Yang Huisheng; Gao Kewei; Wang Yanbin; Volinsky, Alex A.

    2011-01-01

    Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50-80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.

  16. FY 2000 report on the results of the regional consortium R and D project - Regional new technology creation R and D. First year report. Functional molds with highly polished diamond coatings; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki shingijutsu soshutsu kenkyu kaihatsu. Kyomen diamond maku wo yusuru kokino kanagata (shonendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of the technology to form the uniform diamond coating on mold with the complicated shape and also to highly polish it by a new chemical polishing method. The new chemical polishing method is a method using TiAlX intermetallic compounds as grindstone. Reaction with each other of Ti and C by frictional heat expedites diamond polishing. 1) development of the controlling technology of diamond coating interface; 2) development of the 3-D diamond polishing system; 3) demonstrative test on diamond coating; 4) study of a possibility of the commercialization. 1) was divided into the development of the controlling technology of diamond coating interface and the survey of super-hard alloys suitable for diamond coating formation. In the latter, it was found out that the highly Co containing particular WC super-hard alloys were bad in adhesiveness to diamond coating. Therefore, studies were made on the manufacturing of super-hard alloys which use coarse WC only near the surface and does not have much Co and on the use of SiC excellent in adhesiveness both to super-hard alloys and diamond for intermediate layer. (NEDO)

  17. Carbon coated Fe, Co and Ni Nanoparticles produced by high pressure CVD and their potential for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A.; Ibrahim, E.M.M.; Khavrus, V.; Krupskaya, Y.; Leonhardt, A.; Klingeler, R.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany)

    2009-07-01

    Fe rate at C, Co rate at C and Ni rate at C nanocapsules have been produced by high pressure chemical vapour deposition (HPCVD). Scanning electron microscopy images prove that most of the particles are coated with carbon. High resolution transmission electron microscopy imaging confirms that these particles have a broad size distribution and a core/shell structure. In addition, individual nanoparticles are found inside a carbon capsule as well as several particles together in one shell. X-ray diffraction confirms the phases and allows calculating the average particle size from the width of the peaks. Our magnetisation studies confirm that the coated particles are ferromagnetic up to 400 K. AC magnetic heating studies have been performed which imply the potential of carbon coated nanomagnets for applications in hyperthermia therapies.

  18. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  19. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  20. Temperature effect on the formation of a relief of diamond-like carbon coatings and its modification by ion bombardment

    International Nuclear Information System (INIS)

    Rubshtein, A.P.; Trakhtenberg, I.Sh.; Yugov, V.A.; Vladimirov, A.B.; Plotnikov, S.A.; Ponosov, Yu.S

    2006-01-01

    Using the method of pulsed arc sputtering of a graphite target the diamond-like coatings (DLC) ∼1.5 μm thick are deposited on a steel R6M5 substrate. The relief of the coatings obtained under various temperature conditions is investigated. Variations of carbon DLC surfaces are followed after their bombardment with accelerated argon or chemically active oxygen ions. Argon ion bombardment is established to be preferred for producing a smoothed-out DLC relief. It is shown that a DLC relief should be taken into account when measuring microhardness. It is recommended that transformation of interatomic bonds in irradiated subsurface layers be taken into consideration if information index of methods applied constitutes several monolayers [ru

  1. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  2. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    Nakaya, Masaki; Shimizu, Mari; Uedono, Akira

    2014-01-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  3. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  4. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  5. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Tiwari, Rajanish N.; Chang Li

    2010-01-01

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {100} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was ∼530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/μm) and high current-density (1.6 mA/cm 2 ) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  6. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  7. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    . Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels

  8. Fabrication of diamond-coated germanium ATR prisms for IR-spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Babchenko, Oleg; Kozak, Halyna; Ižák, Tibor; Stuchlík, Jiří; Remeš, Zdeněk; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 87, May (2016), 67-73 ISSN 0924-2031 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : diamond * low temperature growth * linear antenna microwave plasma * germanium * SEM * FTIR Subject RIV: JI - Composite Materials Impact factor: 1.740, year: 2016

  9. Novel nanocrystalline diamond coating of coronary stents reduces neointimal hyperplasia in pig model

    Czech Academy of Sciences Publication Activity Database

    Kočka, V.; Jirásek, T.; Taylor, Andrew; Fendrych, František; Rezek, Bohuslav; Šimůnková, Z.; Mrázová, I.; Toušek, P.; Mistrík, J.; Mandys, V.; Nesládek, M.

    2014-01-01

    Roč. 20, č. 1 (2014), s. 65-76 ISSN 1205-6626 R&D Projects: GA AV ČR KAN200100801 Institutional support: RVO:68378271 Keywords : stents * nanotechnology * restenosis * optical coherence tomography * diamond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.758, year: 2013

  10. Diamond-coated three-dimensional GaN micromembranes: effect of nucleation and deposition techniques

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Vanko, G.; Babchenko, Oleg; Potocký, Štěpán; Marton, M.; Vojs, M.; Choleva, P.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2585-2590 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GP14-16549P Institutional support: RVO:68378271 Keywords : diamond film * GaN micromembranes * microwave chemical vapour deposition * polymer-based nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  11. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A., E-mail: catledge@uab.edu

    2015-02-15

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B{sub 2}H{sub 6}) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  12. Thermally stable diamond brazing

    Science.gov (United States)

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  13. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  14. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  15. Diamond films on stainless steel substrates with an interlayer applied by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Alves, Kenya Aparecida; Damm, Djoille Denner; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (LAS/INPE), Sao Jose dos Campos, SP (Brazil). Laboratorio Associado de Sensores e Materiais; Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Maraba, PA (Brazil); Vasconcelos, Getulio de [Instituto de Estudos Avancados (DedALO/IEAv), Sao Jose dos Campos, SP (Brazil). Laboratorio de Desenvolvimento de Aplicacoes de Lasers e Optica

    2017-03-15

    The objective of this work is the Hot Filament Chemical Vapor Deposition (HFCVD) of diamond films on stainless steel substrates using a new technique for intermediate barrier forming, made by laser cladding process. In this technique, a powder layer is irradiated by a laser beam to melt the powder layer and the substrate surface layer to create the interlayer. The control of the laser beam parameters allows creating homogeneous coating layers, in rather large area in few seconds. In this work, the silicon carbide powder (SiC) was used to create an intermediate layer. Before the diamond growth, the samples were subjected to the seeding process with diamond powder. The diamond deposition was performed using Hot-Filament CVD reactor and the characterizations were Scanning Electron Microscopy, X-ray diffraction, Raman Scattering Spectroscopy and Scratch Test. (author)

  16. Diamond-coated field-effect sensor for DNA recognition - influence of material and morphology

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Sakata, T.; Miyazawa, Y.; Kajisa, T.; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 60, Nov (2015), 87-93 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : diamond * field effect device * DNA * C-V characteristics * fluorescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.125, year: 2015

  17. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Babchenko, Oleg; Varga, Marián; Stuchlík, Jiří; Jirásek, Vít; Prajzler, Václav; Nekvindová, P.; Kromka, Alexander

    2016-01-01

    Roč. 618, Nov (2016), s. 130-133 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-05053S Grant - others:AV ČR(CZ) MOST-15-04 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : hydrogenated amorphous silicon * nanocrystalline diamond * planar waveguides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.879, year: 2016

  18. Simulations, fabrication and characterization of diamond coated Love wave-type SAW sensors

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Soltani, A.; Rumeau, A.; Taylor, Andrew; Drbohlavová, L.; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Krečmarová, Marie; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), 2606-2610 ISSN 1862-6300 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GA13-31783S Institutional support: RVO:68378271 Keywords : acoustic sensors * chemical vapor deposition * diamond * nanocrystalline materials * quartz * surface acoustic waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  19. Temperature-dependent stress in diamond-coated AlGaN/GaN heterostructures

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Jirásek, Vít; Vanko, G.; Dzuba, J.; Kromka, Alexander

    2016-01-01

    Roč. 106, Sep (2016), s. 305-312 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GP14-16549P Grant - others:AV ČR(CZ) SAV-16-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : thermally induced stress * Raman spectroscopy * polycrystalline diamond film * GaN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.364, year: 2016

  20. Chemical vapor deposition of diamond onto iron based substrates. The use of barrier layers

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.

    1995-01-01

    When Fe is exposed to the plasma environment suitable for the chemical vapor deposition (CVD) of diamond, the surface is rapidly covered with a thick layer graphitic soot and C swiftly diffuses into the Fe substrate. Once the soot reaches a critical thickness, diamond films nucleate and grow on top of it. However, adhesion of the film to the substrate is poor due to the lack of structural integrity of the soot layer, A thin coating of TiN on the Fe can act to prevent diffusion and soot formation. Diamond readily grows upon the TiN via an a-C interface layer, but the a-C/TiN interface is weak and delamination occurs at this interface. In order to try and improve the adhesion, the use of a high dose Ti implant was investigated to replace the TiN coating. 7 refs., 6 figs

  1. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  2. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    International Nuclear Information System (INIS)

    Kalin, M.; Simič, R.

    2013-01-01

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  3. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia)

    2013-04-15

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  4. The interaction between diamond like carbon (DLC coatings and ionic liquids under boundary lubrication conditions

    Directory of Open Access Journals (Sweden)

    K. Milewski

    2017-01-01

    Full Text Available The aim of the study was to analyse antiwear DLC coatings produced by physical vapour deposition. The a-C:H coatings were deposited on steel elements designed to operate under friction conditions. The coating structure was studied by observing the surface topography with a scanning electron microscope (SEM and a profilometer. The friction and wear properties of the coatings were examined using a ball-on-disc tribotester. The lubricants tested were two types of ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate and trihexyltetradecylphosphonium bis(trifluoromethy-lsulphonyl amide. The experimental data was used to select ionic liquids with the best tribological properties to operate under lubricated friction conditions and interact with DLC coatings.

  5. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  6. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    Science.gov (United States)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  7. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    Science.gov (United States)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  8. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  9. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  10. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  11. The Effect of Bias Voltage and Gas Pressure on the Structure, Adhesion and Wear Behavior of Diamond Like Carbon (DLC Coatings With Si Interlayers

    Directory of Open Access Journals (Sweden)

    Liam Ward

    2014-04-01

    Full Text Available In this study diamond like carbon (DLC coatings with Si interlayers were deposited on 316L stainless steel with varying gas pressure and substrate bias voltage using plasma enhanced chemical vapor deposition (PECVD technology. Coating and interlayer thickness values were determined using X-ray photoelectron spectroscopy (XPS which also revealed the presence of a gradient layer at the coating substrate interface. Coatings were evaluated in terms of the hardness, elastic modulus, wear behavior and adhesion. Deposition rate generally increased with increasing bias voltage and increasing gas pressure. At low working gas pressures, hardness and modulus of elasticity increased with increasing bias voltage. Reduced hardness and modulus of elasticity were observed at higher gas pressures. Increased adhesion was generally observed at lower bias voltages and higher gas pressures. All DLC coatings significantly improved the overall wear resistance of the base material. Lower wear rates were observed for coatings deposited with lower bias voltages. For coatings that showed wear tracks considerably deeper than the coating thickness but without spallation, the wear behavior was largely attributed to deformation of both the coating and substrate with some cracks at the wear track edges. This suggests that coatings deposited under certain conditions can exhibit ultra high flexible properties.

  12. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  13. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  14. Evaluation of saw damage using diamond-coated wire in crystalline silicon solar cells by photoluminescence imaging

    Science.gov (United States)

    Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi

    2018-05-01

    Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.

  15. Optimisation of mechanical properties of plasma deposited graded multilayer diamond-like carbon coatings

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Sobota, Jaroslav; Fořt, Tomáš; Grossman, Jan; Stoica, A.; Buršík, Jiří; Klapetek, P.; Peřina, Vratislav

    2008-01-01

    Roč. 10, č. 12 (2008), s. 3229-3232 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : nanostructured coatings * DLC * hardness * adhesion * intrisic stress * fracture toughness * dynamic impact test Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.577, year: 2008

  16. Abutment Coating With Diamond-Like Carbon Films to Reduce Implant-Abutment Bacterial Leakage.

    Science.gov (United States)

    Cardoso, Mayra; Sangalli, Jorgiana; Koga-Ito, Cristiane Yumi; Ferreira, Leandro Lameirão; da Silva Sobrinho, Argemiro Soares; Nogueira, Lafayette

    2016-02-01

    The influence of diamond-like carbon (DLC) films on bacterial leakage through the interface between abutments and dental implants of external hexagon (EH) and internal hexagon (IH) designs was evaluated. Film deposition was performed by plasma-enhanced chemical vapor deposition. Sets of implants and abutments (n = 30 per group, sets of 180 implants) were divided according to connection design and treatment of the abutment base: 1) no treatment (control); 2) DLC film deposition; and 3) Ag-DLC film deposition. Under sterile conditions, 1 μL Enterococcus faecalis was inoculated inside the implants, and abutments were tightened. The sets were tested for immediate external contamination, suspended in test tubes containing sterile culture broth, and followed for 5 days. Turbidity of the broth indicated bacterial leakage. At the end of the period, the abutments were removed and the internal content of the implants was collected with paper points and plated in Petri dishes. After 24-hour incubation, they were assessed for bacterial viability and colony-forming unit counting. Bacterial leakage was analyzed by χ(2) and Fisher exact tests (α = 5%). The percentage of bacterial leakage was 16.09% for EH implants and 80.71% for IH implants (P DLC and Ag-DLC films do not significantly reduce the frequency of bacterial leakage and bacteria load inside the implants.

  17. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  18. Laser surface graphitization to control friction of diamond-like carbon coatings

    Science.gov (United States)

    Komlenok, Maxim S.; Kononenko, Vitaly V.; Zavedeev, Evgeny V.; Frolov, Vadim D.; Arutyunyan, Natalia R.; Chouprik, Anastasia A.; Baturin, Andrey S.; Scheibe, Hans-Joachim; Shupegin, Mikhail L.; Pimenov, Sergei M.

    2015-11-01

    To study the role of laser surface graphitization in the friction behavior of laser-patterned diamond-like carbon (DLC) films, we apply the scanning probe microscopy (SPM) in the lateral force mode (LFM) which allows to obtain simultaneously the lateral force and topography images and to determine local friction levels in laser-irradiated and original surface areas. Based on this approach in the paper, we report on (1) laser surface microstructuring of hydrogenated a-C:H and hydrogen-free ta-C films in the regime of surface graphitization using UV laser pulses of 20-ns duration and (2) correlation between the structure and friction properties of the laser-patterned DLC surface on micro/nanoscale using SPM/LFM technique. The SPM/LFM data obtained for the surface relief gratings of graphitized microstructures have evidenced lower friction forces in the laser-graphitized regions. For the hydrogenated DLC films, the reversible frictional behavior of the laser-graphitized micropatterns is found to take place during LFM imaging at different temperatures (20 and 120 °C) in ambient air. It is revealed that the lateral force distribution in the laser-graphitized areas is shifted to higher friction levels (relative to that of the unirradiated surface) at temperature 120 °C and returned back to the lower friction during the sample cooling to 20 °C, thus confirming an influence of adsorbed water layers on the nanofriction properties of laser-graphitized micropatterns on the film surface.

  19. Diamond sensors for future high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bachmair, Felix, E-mail: bachmair@phys.ethz.ch

    2016-09-21

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  20. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Fu, Zhi-qiang; Wang, Cheng-biao; Zhang, Wei; Wang, Wei; Yue, Wen; Yu, Xiang; Peng, Zhi-jian; Lin, Song-sheng; Dai, Ming-jiang

    2013-01-01

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp 3 -C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  1. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    International Nuclear Information System (INIS)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F; Hampai, D; Rossi, M

    2008-01-01

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications

  2. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F [Dipartimento di Scienze e Tecnologie Chimiche, MINASlab, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Hampai, D [INFN-LNF Via E Fermi 40, Frascati (Italy); Rossi, M [Dipartimento di Energetica, Universita di Roma ' Sapienza' , Via Antonio Scarpa 16, 00161 Roma (Italy)

    2008-10-15

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong <110> preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications.

  3. Development of a new neutron mirror made of deuterated Diamond-like carbon

    International Nuclear Information System (INIS)

    Sakurai, Dai; Chiba, Junsei; Shimizu, Hirohiko M; Nishimura, Daiki; Ino, Takashi; Kaneko, Naokatsu; Muto, Suguru; Kakusho, Nobunori; Seki, Yoshichika; Katayama, Ryo; Kitaguchi, Masaaki; Mishima, Kenji; Yamashita, Satoru; Ozeki, Kazuhide; Yoshioka, Tamaki

    2014-01-01

    We developed a new neutron mirror made of Diamond-like carbon (DLC). DLC is a film of amorphous carbon that has characteristics of both diamond and graphite. We produced DLC mirrors by ionization deposition method which is one of the chemical vapor deposition (CVD). Generally, DLC made by CVD contents a few tens of percentages of hydrogen. It decreases the Fermi potential of the DLC coating because hydrogen has negative Fermi potential. In order to increase the Fermi potential of the coating, we deuterated the DLC by using deuterated benzene for the source gas. The characteristics of the deuterated DLC(DDLC) coating was evaluated by RBS, ERDA, x-ray reflectivity, AFM. As a result, DDLC coating has 243 neV due to deuteration, which is the same level as Ni. The RMS of height of the DDLC was 0.6nm so that the DDLC coating can be applied for a focusing mirror or specular transportation of pulsed neutron. Besides, we also develop Hydrogen/Deuterium DLC multiple layer mirror. So far, 4 layers mirror has been succeeded.

  4. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  5. Modeling of thermal stress induced during the diamond-coating of ALGaN/GaN high electron mobility transistors

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Ižák, Tibor; Babchenko, Oleg; Kromka, Alexander; Vanko, G.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 522-526 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nano-crystalline diamond * gallium nitride * HEMT * selective diamond growth Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    Science.gov (United States)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  7. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  8. Friction mechanisms of silicon wafer and silicon wafer coated with diamond-like carbon film and two monolayers

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Yoon, Eui Sung; Han, Hung Gu; Kong, Ho Sung

    2006-01-01

    The friction behaviour of Si-wafer, Diamond-Like Carbon (DLC) and two Self-Assembled Monolayers(SAMs) namely DiMethylDiChlorosilane (DMDC) and DiPhenyl-DiChlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-Newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer. Interestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains

  9. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.

    Science.gov (United States)

    Filova, Elena; Vandrovcova, Marta; Jelinek, Miroslav; Zemek, Josef; Houdkova, Jana; Jan Remsa; Kocourek, Tomas; Stankova, Lubica; Bacakova, Lucie

    2017-01-01

    Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

  10. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode.

    Science.gov (United States)

    Song, Yang; Swain, Greg M

    2007-06-12

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.

  11. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode

    International Nuclear Information System (INIS)

    Song Yang; Swain, Greg M.

    2007-01-01

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na 2 SO 3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2 ± 2.9 ppb for UV plant influent water and 16.4 ± 0.9 ppb for Well 119 water (n = 4). These values differed from the specified concentrations by less than 4%

  12. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  13. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    International Nuclear Information System (INIS)

    Xie, Z.W.; Wang, L.P.; Wang, X.F.; Huang, L.; Lu, Y.; Yan, J.C.

    2011-01-01

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si 3 N 4 , a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.

  14. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  15. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S; Nugent, K W; Bettiol, A A; Kostidis, L I; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  16. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1996-01-01

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 μm 2 . After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs

  17. Coating of Si3N4 fine particles with AlN by fluidized bed-CVD; Ryudoso CVD ho ni yoru Si3N4 biryushi no AlN hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Oyama, Y. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K.; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1996-03-10

    Agglomerates of 100-250 {mu}m consisting of Si3N4 primary particles of 0.76 {mu}m were made with a rotary vibrating sieve. Si3N4 fine particles were coated with AlN by gas phase reaction with AlCl3 and NH3 in some fluidized beds of the agglomerates. The cross sectional distribution of AlN in the agglomerate was measured by EPMA analysis. As a result, uniform deposition of AlN was obtained at a relatively low reaction temperature and low gas velocity. 4 refs., 3 figs.

  18. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    Science.gov (United States)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  19. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  20. Diamond-like carbon coatings on a CoCrMo implant alloy: A detailed XPS analysis of the chemical states at the interface

    International Nuclear Information System (INIS)

    Mueller, U.; Falub, C.V.; Thorwarth, G.; Voisard, C.; Hauert, R.

    2011-01-01

    Low friction and wear resistant coatings have a long history of successful applications in industry. It has long been hoped that these coatings, especially diamond-like carbon (DLC), could also be used successfully in load-bearing joint implants, extending implant life time considerably. However, despite several medical studies carried out so far, no regular DLC-coated implants are available on the market. In most cases, failure was due to insufficient long-term stability of the adhesion of such coatings on implants in vivo. That is because introducing a coated implant not only brings the coating into contact with the body environment but also the interface that controls the adhesion. This usually reactively formed interface must be considered to be at least one additional material which must be not only biocompatible, but also unsusceptible to corrosive attack. The aim of this paper is to analyze in detail the interface, i.e., the transition region between the substrate and the coating. This knowledge is necessary in order to find the right measures to ensure the long-term stability of the adhesion. Results for DLC coatings on a cobalt-chromium-molybdenum alloy are presented. It is shown that a very thin interface layer is formed, with the alloy on one side and the carbon film on the other side. This layer consists of a mixture of carbides from all the metals of the base material. This result is obtained by means of measuring depth profiles using X-ray photoelectron spectroscopy because these spectra yield not only the chemical composition of the interface but a detailed analysis provides information on the chemical states across the interface.

  1. Carbon-Based Wear Coatings: Properties and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2003-01-01

    and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  2. Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication.

    Science.gov (United States)

    Zhuang, Hao; Song, Bo; Staedler, Thorsten; Jiang, Xin

    2011-10-04

    By combining microcontact printing with a nanodiamond seeding technique, a precise micrometer-sized chemical vapor deposition (CVD) diamond pattern have been obtained. On the basis of the guidance of basic theoretical calculations, monodisperse detonation nanodiamonds (DNDs) were chosen as an "ink" material and oxidized poly(dimethylsiloxane) (PDMS) was selected to serve as a stamp because it features a higher interaction energy with the DNDs compared to that of the original PDMS. The adsorption kinetics shows an approximately exponential law with a maximum surface DND density of 3.4 × 10(10) cm(-2) after 20 min. To achieve a high transfer ratio of DNDs from the PDMS stamp to a silicon surface, a thin layer of poly(methyl methacrylate) (PMMA) was spin coated onto the substrates. A microwave plasma chemical vapor deposition system was used to synthesize the CVD diamond on the seeded substrate areas. Precise diamond patterns with a low expansion ratio (3.6%) were successfully prepared after 1.5 h of deposition. Further increases in the deposition time typically lead to a high expansion rate (∼0.8 μm/h). The general pattern shape, however, did not show any significant change. Compared with conventional diamond pattern deposition methods, the technique described here offers the advantages of being simple, inexpensive, damage-free, and highly compatible, rendering it attractive for a broad variety of industrial applications. © 2011 American Chemical Society

  3. Nucleation and adhesion of diamond films on Co cemented tungsten carbide

    Energy Technology Data Exchange (ETDEWEB)

    Polini, R.; Santarelli, M.; Traversa, E.

    1999-12-01

    Diamond deposits were grown using hot filament chemical vapor deposition (CVD) on pretreated Co cemented tungsten carbide (WC-Co) substrates with an average grain size of 6 {micro}m. Depositions were performed with 0.5 or 1.0% methane concentration and with substrate temperatures ranging from 750 to 1,000 C. Diamond nucleation densities were measured by scanning electron microscopy. Scratched and bias-enhanced nucleation pretreated substrates showed the larger nucleation densities. Etching of the WC performed by Murakami's reagent, followed by surface-Co dissolution (MP pretreatment), led to a roughened but scarcely nucleating surface. The performance of a scratching prior to the MP pretreatment allowed one to increase the nucleation density, due scratching-induced defects, confined in the outermost layer of WC grains, which act as nucleation sites. Smaller nucleation densities were observed with increasing the substrate temperature and reducing the methane concentration, confirming that diamond nucleates via a heterogeneous process. The adhesion of continuous films was evaluated by the reciprocal of the slope of crack radius-indentation load functions. The substrate pretreatments mainly affected the film adhesion, while the influence of CVD process conditions was minor. The two main factors that improve the diamond film adhesion are the coating-substrate contact area and the surface-Co removal.

  4. Scientific Fundamentals and Technological Development of Novel Biocompatible/Corrosion Resistant Ultrananocrystalline Diamond (UNCD) Coating Enabling Next Generation Superior Metal-Based Dental Implants

    Science.gov (United States)

    Kang, Karam

    Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.

  5. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  6. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  7. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves

    2013-01-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  8. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  9. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  10. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  11. Wear of ultra-high molecular weight polyethylene against damaged and undamaged stainless steel and diamond-like carbon-coated counterfaces.

    Science.gov (United States)

    Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R

    1998-10-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.

  12. Effect of high temperature annealing on the grain size of CVD-grown SiC and experimental PBMR TRISO coated particles

    CSIR Research Space (South Africa)

    Mokoduwe, SM

    2010-10-01

    Full Text Available in the PBMR fuel SiC layer. square samples were cut from the original sample received from ORNL and prepared for grain size Prague, Czech Republic, October 18 – 2000 °C. These no significant ion of how the 8] also ge is also of tal THODS -Si... for grain size determination Fig. 5: Influence of high temperature annealing on the CVD ORNL polycrystalline 3 C-SiC. Fig. 6: Influence of high temperature annealing on the polycrystalline 3 C-SiC layer of PBMR TRISO CP batches D and E...

  13. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  14. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  15. Wear resistant PVD-/CVD-dry lubricant coatings for the environmental and innovative production. Subproject 3: dry lubricant coatings - carbon coatings. Final report; Verschleissfeste PVD-/CVD-Trockenschmierstoffschichten fuer die umweltschonende und innovative Fertigung. Teilprojekt 3: Kohlenstoffbasierte Trockenschmierstoffschichten (TSS-C). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schattke, A.; Hockauf, W.

    2002-09-05

    The partners Bosch, Metaplas Ionon and Roth and Rau developed dry lubricant coatings on a carbon coating base. The cutting tools used for the testing were developed in former dry cutting projects especially for cutting with minimum quantity lubrication (MQL). The coatings were tested in cutting and metal forming. After tribological testing at the coating companies the deposited coatings were evaluated by machining tests in drilling, thread forming and metal forming at the universities of Darmstadt and Kassel. The best coatings were tested in production field tests (laboratory) or, if possible, in the production at company Bosch and at other end users of the joint project. It was possible to show that carbon coatings are very good at punching and sheet bending. Also at drilling and thread forming in cast iron and low alloyed steels the results are good enough for production. The results at drilling and thread forming in aluminium alloys and high alloyed steels (X90CrMoV18) were not good enough for production under dry conditions. But testing with a reduced amount of MQL (6ml/h) showed better cutting parameters than commercial coatings. Also cutting length and quality of the parts are better. Even with the best coatings it was not possible to make dry massive forming with reduced temperature. At these high temperatures and high surface pressures it was not possible to work without lubricants. (orig.) [German] Im Projekt wurden von den Partnern Bosch, Metaplas Ionon und Roth and Rau Trockenschmierstoffschichten auf Kohlenstoffbasis entwickelt. Diese wurden auf Werkzeuge abgeschieden, deren Geometrien in bereits abgeschlossenen Projekten fuer die Trockenzerspannung mit Minimalmengenschmierung optimiert wurden. Die Schichten sind fuer die Zerspannung und Umformtechnik vorgesehen. An tribologische Tests bei den Beschichtern schlossen sich Filtertests an den Hochschulen Darmstadt und Kassel an, bei denen die Schichten in Bohr-, Gewindeform- und Umformtests untersucht

  16. Status of diamond particle detectors

    Science.gov (United States)

    Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1998-11-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.

  17. The Many Facets of Diamond Crystals

    Directory of Open Access Journals (Sweden)

    Yuri N. Palyanov

    2018-01-01

    Full Text Available This special issue is intended to serve as a multidisciplinary forum covering broad aspects of the science, technology, and application of synthetic and natural diamonds. This special issue contains 12 papers, which highlight recent investigations and developments in diamond research related to the diverse problems of natural diamond genesis, diamond synthesis and growth using CVD and HPHT techniques, and the use of diamond in both traditional applications, such as mechanical machining of materials, and the new recently emerged areas, such as quantum technologies. The results presented in the contributions collected in this special issue clearly demonstrate that diamond occupies a very special place in modern science and technology. After decades of research, this structurally very simple material still poses many intriguing scientific questions and technological challenges. It seems undoubted that diamond will remain the center of attraction for many researchers for many years to come.

  18. Wear studies on diamond layers; Verschleissuntersuchungen an Diamantschichten

    Energy Technology Data Exchange (ETDEWEB)

    Deuerler, F. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachgebiet Materialkunde; Pohl, M.; Tikana, L. [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2000-08-01

    Wear studies were carried out on thin CVD diamond layers on WC/Co hard metal substrate. The diamond and hard metal system was exposed to abrasive particles, and the time to initial failure and the size of the wear crater were recorded. In the cavitation test, vibrational cavitation is induced by a sonotrode immersed in a liquid and excited by ultrasonic waves. The wear damage on the surface are recorded by quantitative image analysis as percent surface damage. The mechanism of layer failure (adhesive, cohesive) can be assessed qualitatively by means of SEM pilctures. The effects of surface pretreatment on the adhesive strength of the coating are investigated as well. [German] Das Verhalten von duennen CVD-Diamantschichten auf WC/Co-Hartmetallsubstraten unter Verschleissbeanspruchung wird beschrieben. Dabei wird der Schichtverbund Diamant-Hartmetall im Strahlverschleisstest abrasiven Partikeln ausgesetzt und die Zeit bis zum ersten Schichtversagen sowie die Groesse des Verschleisskraters registriert. Beim Kavitationstest erzeugt eine durch Ultraschall angeregte Sonotrode, die in eine Fluessigkeit eintaucht, Schwingungskavitation. Die durch Oberflaechenzerruettung verursachten Verschleissschaeden an der Schichtoberflaeche werden ueber quantitative Bildanalyse als prozentuale Flaechenschaedigung erfasst. Der Mechanismus des Schichtversagens (adhaesiv, kohaesiv) kann anhand von REM-Aufnahmen qualitativ beurteilt werden. Die Auswirkungen einer Vorbehandlung der Oberflaeche des Hartmetalls auf die fuer die Anwendung massgebliche Haftfestigkeit der Beschichtung werden betrachtet. (orig.)

  19. Growth, characterization, and device development in monocrystalline diamond films

    Science.gov (United States)

    Davis, Robert F.

    1991-12-01

    The nucleation of diamond grains on an unscratched silicon wafer is enhanced by four order of magnitude relative to scratched substrates by using negative bias enhanced microwave plasma CVD in a 2 percent methane/hydrogen plasma for an initial period. In vacuo surface analysis has revealed that the actual nucleation occurs on the amorphous C coating present on the thin SiC layer which forms as the product of the initial reaction with the Si surface. It is believed that the C forms critical clusters which are favorable for diamond nucleation. Similar enhancement was observed together with the occurrence of textured diamond films in the use of bias pretreatment of cubic Beta SiC substrates. Approximately 50 percent of the initial diamond nuclei were aligned with the SiC substrate. In contrast, the use of the biasing pretreatment for one hour on polycrystalline substrates resulted in only about 7 percent coverage with diamond particles. Numerous techniques have been used to analyze the nucleation and growth phenomena, especially micro Raman and scanning tunneling microscopy. The latter technique has shown that the morphology of doped and undoped diamond nuclei are similar, as well as the fact that significant concentrations of vacancy related defects are present. In device related-studies, UV-photoemission studies have shown that TiC occurs at the Ti-diamond (100) interface after a 400 C anneal. The Schottky barrier height from this metal on p-type diamond was determined to be 1.0 eV. Indications of negative electron affinity (NEA) was observed and attributed to emission of electrons that are quasi-thermalized to the bottom of the conduction band. A disordered surface removes the NEA. The microwave performance of p-type (beta-doped) diamond MESFET's at 10 GHz has been further investigated. Elevated temperatures may be necessary to obtain sufficient free charge densities in the conducting channel but this will result in degraded device performance. Each of these

  20. Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model

    Science.gov (United States)

    Kim, J H; Shin, J H; Shin, D H; Moon, M-W; Park, K; Kim, T-H; Shin, K M; Won, Y H; Han, D K; Lee, K-R

    2011-01-01

    Objective Neointimal hyperplasia is a major complication of endovascular stent placement with consequent in-stent restenosis or occlusion. Improvements in the biocompatibility of stent designs could reduce stent-associated thrombosis and in-stent restenosis. We hypothesised that the use of a diamond-like carbon (DLC)-coated nitinol stent or a polyethylene glycol (PEG)-DLC-coated nitinol stent could reduce the formation of neointimal hyperplasia, thereby improving stent patency with improved biocompatibility. Methods A total of 24 stents were implanted, under general anaesthesia, into the iliac arteries of six dogs (four stents in each dog) using the carotid artery approach. The experimental study dogs were divided into three groups: the uncoated nitinol stent group (n = 8), the DLC-nitinol stent group (n = 8) and the PEG-DLC-nitinol stent group (n = 8). Results The mean percentage of neointimal hyperplasia was significantly less in the DLC-nitinol stent group (26.7±7.6%) than in the nitinol stent group (40.0±20.3%) (p = 0.021). However, the mean percentage of neointimal hyperplasia was significantly greater in the PEG-DLC-nitinol stent group (58.7±24.7%) than in the nitinol stent group (40.0±20.3%) (p = 0.01). Conclusion Our findings indicate that DLC-coated nitinol stents might induce less neointimal hyperplasia than conventional nitinol stents following implantation in a canine iliac artery model; however, the DLC-coated nitinol stent surface when reformed with PEG induces more neointimal hyperplasia than either a conventional or DLC-coated nitinol stent. PMID:21325363

  1. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  2. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  3. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.

    Science.gov (United States)

    Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J

    2010-11-01

    Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via