WorldWideScience

Sample records for cutting force measurement

  1. Cutting force measurement of electrical jigsaw by strain gauges

    Kazup, L; Varadine Szarka, A

    2016-01-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement. (paper)

  2. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  3. A Modernized UDM-600 Dynamometer-Based Setup for the Cutting Force Measurement

    Ya. I. Shuliak

    2016-01-01

    Full Text Available The article considers development of a modernized UDM-600 dynamometer-based setup for measuring the cutting force components. Modernization of existing equipment to improve the method of recording the cutting force components in the automated mode is of relevance. The measuring setup allows recording the cutting force components in turning and milling, as well as the axial force and the torque in the drilling and milling operations.The article presents a block diagram and a schematic diagram of the setup to measure the cutting force components, and describes a basic principle of measuring units within the modernized setup. The developed setup uses a half-bridge strain gauge measuring circuit to record the cutting forces. To enhance the measuring circuit output voltage is used a 16-channel amplifier of LA-UN16 model with a discretely adjustable gain. To record and process electrical signals is used a data acquisition device of NI USB-6009 model, which enables transmitting the received data to a PC via USB-interface. The data acquisition device has a built-in stabilized DC power supply that is used to power the strain gauge bridges. A developed schematic diagram of the measuring setup allows us to realize this measuring device and implement its modernization.Final processing of recorded data is provided through the software developed in visual programming environment LabVIEW 9.0. The program allows us to show the real-time measuring values of the cutting force components graphically and to record the taken data to a text file.The measuring setup modernization enabled increasing measurement accuracy and reducing time for processing and analysis of experimental data obtained when measuring the cutting force components. The MT2 Department of BMSTU uses it in education and research activities and in experimental efforts and laboratory classes.

  4. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  5. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement.

    Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang

    2018-04-18

    Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.

  6. Cutting forces during turning with variable depth of cut

    M. Sadílek

    2016-03-01

    The proposed research for the paper is an experimental work – measuring cutting forces and monitoring of the tool wear on the cutting edge. It compares the turning where standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied.

  7. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface...... is discussed. The cutting forces parallel and perpendicular to the cutting direction are measured for various parameters, and the results correlated to the formation of chips and the wear of the tool....

  8. Granular rheology: measuring boundary forces with laser-cut leaf springs

    Tang, Zhu; Brzinski, Theodore A.; Daniels, Karen E.

    2017-06-01

    In granular physics experiments, it is a persistent challenge to obtain the boundary stress measurements necessary to provide full a rheological characterization of the dynamics. Here, we describe a new technique by which the outer boundary of a 2D Couette cell both confines the granular material and provides spatially- and temporally- resolved stress measurements. This key advance is enabled by desktop laser-cutting technology, which allows us to design and cut linearly-deformable walls with a specified spring constant. By tracking the position of each segment of the wall, we measure both the normal and tangential stress throughout the experiment. This permits us to calculate the amount of shear stress provided by basal friction, and thereby determine accurate values of μ(I).

  9. Evaluation of cutting force uncertainty components in turning

    Axinte, Dragos Aurelian; Belluco, Walter; De Chiffre, Leonardo

    2000-01-01

    A procedure is proposed for the evaluation of those uncertainty components of a single cutting force measurement in turning that are related to the contributions of the dynamometer calibration and the cutting process itself. Based on an empirical model including errors form both sources......, the uncertainty for a single measurement of cutting force is presented, and expressions for the expected uncertainty vs. cutting parameters are proposed. This approach gives the possibility of evaluating cutting force uncertainty components in turning, for a defined range of cutting parameters, based on few...

  10. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  11. Monitoring machining conditions by analyzing cutting force vibration

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)

    2015-09-15

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

  12. Monitoring machining conditions by analyzing cutting force vibration

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan

    2015-01-01

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration

  13. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  14. A cutting force model for micromilling applications

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2006-01-01

    In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius.......In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius....

  15. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-01-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method. (paper)

  16. Development of lathe tool dynamometer and finding cutting forces using negative and positive rake angle cutting tool

    Zeb, M.A.; Irfan, M.A.

    2005-01-01

    Most output parameters in machining, such as cutting forces, temperatures, strains and the work-hardening of the chip material, are directly related to the chip formation process. The characteristics of machining processes can be well understood if the forces and strains during chip formation are known. In this research a lathe tool dynamometer was used to measure cutting forces involved in machining of Steel 1045 and Aluminum 2219 T62. High Speed Steel (HSS), cutting tools with positive and negative rake angles were used. It was observed that more cutting forces are experienced by the cutting tool with positive rake angle as compared to the forces experienced by the cutting tool with negative rake angle. For steel 1045 the cutting forces using positive rake angle cutting tool were much higher. This suggested that for harder materials using a negative rake angle is more suitable for cutting. (author)

  17. A scalable platform for biomechanical studies of tissue cutting forces

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  18. Analysis of changes in paper cutting forces during the cutting cycle in single-knife guillotine

    Rusin, Agnieszka; Petriaszwili, Georgij

    2013-01-01

    Paper presents the results of changes in the three components of cutting forces of paper stacks cutting during the cutting cycle in single-knife guillotine. The changes of the three components of cutting force at different stages of cutting cycle were analyzed.

  19. A study of estimating cutting depth for multi-pass nanoscale cutting by using atomic force microscopy

    Lin, Zone-Ching; Hsu, Ying-Chih

    2012-01-01

    This paper studies two models for estimating cutting depth of multi-pass nanoscale cutting by using an atomic force microscopy (AFM) probe. One estimates cutting depth for multi-pass nanoscale cutting by using regression equations of nanoscale contact pressure factor (NCP factor) while the other uses equation of specific down force energy (SDFE). This paper proposes taking a diamond-coated probe of AFM as the cutting tool to carry out multi-pass nanoscale cutting experiments on the surface of sapphire substrate. In the process of experimentation, different down forces are set, and the probe shape of AFM is known, then using each down force to multi-pass cutting the sapphire substrate. From the measured experimental data of a central cutting depth of the machining groove by AFM, this paper calculates the specific down force energy of each down force. The experiment results reveal that the specific down force energy of each case of multi-pass nanoscale cutting for different down forces under a probe of AFM is close to a constant value. This paper also compares the nanoscale cutting results from estimating cutting depths for each pass of multi-pass among the experimental results and the calculating results obtained by the two theories models. It is found that the model of specific down force energy can calculate cutting depths for each nanoscale cutting pass by one equation. It is easier to use than the multi-regression equations of the nanoscale contact pressure factor. Besides, the estimations of cutting depth results obtained by the model of specific down force energy are closer to that of the experiment results. It shows that the proposed specific down force energy model in this paper is an acceptable model.

  20. An Experimental Study of the Cutting Forces in Metal Turning

    Zoltan Iosif Korka

    2013-09-01

    Full Text Available Cutting forces are classified among the most important technological parameters in machining process. Cutting forces are the background for the evaluation of the necessary machining power, as well as for dimensioning of the tools. Cutting forces are also having a major influence on the deformation of the work piece machined, its dimensional accuracy, and machining system stability.

  1. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    Zheng, Meng; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C; Pugno, Nicola M

    2013-01-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip–tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip–tube collision process and the roles of the scribing velocity and the frictional interaction on the tip–tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26–4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1–15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures. (paper)

  2. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  3. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  4. Prediction of Cutting Force in Turning Process-an Experimental Approach

    Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.

    2018-02-01

    This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.

  5. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  6. Cutting temperature measurement and material machinability

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  7. Modelling the cutting edge radius size effect for force prediction in micro milling

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...... edge radius ratio is used for the parameters involved in the force calculation. The model was verified by means of cutting force measurements in micro milling. The results show good agreement between predicted and measured forces. It is also demonstrated that the use of the Stabler's rule...... is a reasonable approximation and that micro end mill run out is effectively compensated by the deflections induced by the cutting forces....

  8. Counterbalance of cutting force for advanced milling operations

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  9. Application of Taguchi method for cutting force optimization in rock

    In this paper, an optimization study was carried out for the cutting force (Fc) acting on circular diamond sawblades in rock sawing. The peripheral speed, traverse speed, cut depth and flow rate of cooling fluid were considered as operating variables and optimized by using Taguchi approach for the Fc. L16(44) orthogonal ...

  10. ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

    X. M. ANTHONY

    2015-03-01

    Full Text Available In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA was conducted to understand the influence of all cutting parameters and tool geometry on cutting force.

  11. Drilling of metal matrix composites: cutting forces and chip formation

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  12. Analysing a Relationship Between Wheel Wear and Cutting Forces During Diamond Grinding

    M. A. Shavva

    2014-01-01

    carbide (Т15К6 work pieces was experimentally made. Experiments were carried out on the universal flat-grinding machine 3G71M using a diamond grinding wheel 6А2 250х20х4х29х76 АС6 160/125 А1 100% М1-01 according to GOST 16170-91. When using this equipment, cutting operation conditions, namely grinding speed and longitudinal table feed were 35 m/s and 3 - 12 m/min, respectively.The work piece was clamped in a vise. Vise was set on the universal attachment. Device was installed on a three-component dynamometer brands Kistler 9257B to measure cutting forces.Grinding was carried out under the following operation conditions: traverse Strav= 3 m/min, depth of cutting t = 20 μm. Grinding used a water-based cooling emulsion. Wheel speed was 35m/s. The dynamometer was tuned to the frequency of signal equal to 250 Hz.After processing the experimental and calculated data were compared using the theoretical formulas. The maximum difference between them was 17%.Owing to the presented model it is possible to obtain data on the diamond tool wear during cutting through a change of the tangential component of the cutting force. With the definite maximum wear of diamond wheel it is possible to calculate a threshold value of the tangential component of the cutting force. When the threshold value of the tangential component of the cutting force is reached, a diamond wheel must be subjected to dressing. On-time wheel dressing allows us to avoid reducing quality of the machined surface.Control of forces in the cutting zone is difficult to organize; the procedure can be performed by power control of the grinding spindle through the current control.

  13. Laboratory versus industrial cutting force sensor in tool condition monitoring system

    Szwajka, K

    2005-01-01

    Research works concerning the utilisation of cutting force measures in tool condition monitoring usually present results and deliberations based on laboratory sensors. These sensors are too fragile to be used in industrial practice. Industrial sensors employed on the factory floor are less accurate, and this must be taken into account when creating a tool condition monitoring strategy. Another drawback of most of these works is that constant cutting parameters are used for the entire tool life. This does not reflect industrial practice where the same tool is used at different feeds and depths of cut in sequential passes. This paper presents a comparison of signals originating from laboratory and industrial cutting force sensors. The usability of the sensor output was studied during a laboratory simulation of industrial cutting conditions. Instead of building mathematical models for the correlation between tool wear and cutting force, an FFBP artificial neural network was used to find which combination of input data would provide an acceptable estimation of tool wear. The results obtained proved that cross talk between channels has an important influence on cutting force measurements, however this input configuration can be used for a tool condition monitoring system

  14. Cutting force model for high speed machining process

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  15. Identification of cutting force coefficients in machining process considering cutter vibration

    Yao, Qi; Luo, Ming; Zhang, Dinghua; Wu, Baohai

    2018-03-01

    Among current cutting force models, cutting force coefficients still are the foundation of predicting calculation combined with consideration of geometry engagement variation, equipment characteristics, material properties and so on. Attached with unimpeachable significance, the traditional and some novel identification methods of cutting force coefficient are still faced with trouble, including repeated onerous work, over ideal measuring condition, variation of value due to material divergence, interference from measuring units. To utilize the large amount of data from real manufacturing section, enlarge data sources and enrich cutting data base for former prediction task, a novel identification method is proposed by considering stiffness properties of the cutter-holder-spindle system in this paper. According to previously proposed studies, the direct result of cutter vibration is the form of dynamic undeformed chip thickness. This fluctuation is considered in two stages of this investigation. Firstly, a cutting force model combined with cutter vibration is established in detailed way. Then, on the foundation of modeling, a novel identification method is developed, in which the dynamic undeformed chip thickness could be obtained by using collected data. In a carefully designed experiment procedure, the reliability of model is validated by comparing predicted and measured results. Under different cutting condition and cutter stiffness, data is collected for the justification of identification method. The results showed divergence in calculated coefficients is acceptable confirming the possibility of accomplishing targets by applying this new method. In discussion, the potential directions of improvement are proposed.

  16. Measurement of tool forces in diamond turning

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  17. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  18. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  19. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  20. Geometry, penetration force, and cutting profile of different 23-gauge trocars systems for pars plana vitrectomy.

    Meyer, Carsten H; Kaymak, Hakan; Liu, Zengping; Saxena, Sandeep; Rodrigues, Eduardo B

    2014-11-01

    To investigate the geometry, penetration force, and cutting profile of 23-gauge trocar systems for pars plana vitrectomy based on their grinding methods in a standardized laboratory setting. In this experimental study, Eleven different commercially available 23-gauge sclerotomy trocar systems were divided into 4 groups according to their needle grinding and deburring: "back" bevel, "spear" bevel, "lancet" bevel, and "spatula" bevel. The normative geometrical data of the trocar systems were systematically analyzed according to nomenclature ISO 7864 and ISO 9626. Force to penetrate a 0.4-mm thick polyurethane foil was measured by a Penetrometer, when the trocar needle was piercing, cutting, and sliding through the foil at different defined loading phases and plotted as a load-displacement diagram. Magnified images of the consecutive cut were taken under a microscope after the entire penetration through the foil. Three physicians used all trocar systems in a masked fashion on human sclera to evaluate the manual penetration force in 30° and 90°. The mean outer diameter of the trocar systems was 0.630 ± 0.009 mm, and the mean outer diameter of the trocars was 0.750 ± 0.013 mm. The mean point length was 3.11 ± 0.49 mm, and the mean length of the bevel was 1.46 ± 0.23 mm. The primary bevel angle was 10.75 ± 0.41°, and the secondary bevel angle was 65.9 ± 42.56°. The piercing forces of the back bevel and spear-pointed trocars/needles were at the same level (0.087 ± 0.028 N). The lancet-pointed needle had remarkable low piercing and cutting forces with 0.41 N (range, 0.35-0.47 N). The spatula bevel tip showed the highest penetration piercing force with 1.6 N (range, 1.59-1.73 N). The back bevel systems induced frequently triangular-shaped incisions, with two nearly rectangular cuts of short length. The spear bevels produced a regular characteristic linear cut. Especially, the lancet blade created straight cut with a linear wound apposition. Spatula trocar systems

  1. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. A Numerical Approach and Comparison of Cutting Forces and Chip Morphology in Orthogonal Cutting of Light Alloys

    Alvarez, Roberto; Domingo, Rosario; Sebastian, Miguel Angel

    2011-01-01

    This paper deals with the simulation of UNS A92024 aluminium alloy cutting processes. In particular, 2D and 3D Finite Element Method (FEM) simulations were carried out in order to estimate cutting forces and chip morphology during turning operations. The material is modelled with two different set of parameters for the Johnson--Cook's (J-C) constitutive equation and a failure Cockroft and Latham's model exploited considers damage. The comparison between the predicted chip morphology and principal cutting forces at varying of J-C parameters and cutting regimes with those experimentally found are presented and discussed. The paper shows the importance of damage criterion in the cutting forces, during the simulation, especially in 3D.

  3. Interfacial force measurements using atomic force microscopy

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  4. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  5. Influence of speed on wear and cutting forces in end-milling nickel alloy

    Estrems, M.; Sánchez, H. T.; Kurfess, T.; Bunget, C.

    2012-04-01

    The effect of speed on the flank wear of the cutting tool when a nickel alloy is milled is studied. From the analysis of the measured forces, a dynamic semi-experimental model is developed based on the parallelism between the curve of the thrust forces of the unworn tool and the curves when the flank of the tool is worn. Based on the change in the geometry of the contact in the flank worrn face, a theory of indentation of the tool on the workpiece is formulated in such a way that upon applying equations of contact mechanics, a good approximation of the experimental results is obtained.

  6. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  7. A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

    Yung-Chou Kao

    2015-10-01

    Full Text Available In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

  8. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  9. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  10. The influence of mechanical properties of workpiece material on the main cutting force in face milling

    M. Sekulić

    2010-10-01

    Full Text Available The paper presents the research into cutting forces in face milling of three different materials: steel Č 4732 (EN42CrMo4, nodular cast iron NL500 (EN-GJS-500-7 and silumine AlSi10Mg (EN AC-AlSi10Mg. Obtained results show that hardness and tensile strength values of workpiece material have a significant influence on the main cutting force, and thereby on the cutting energy in machining.

  11. Cutting force and wear evaluation in peripheral milling by CVD diamond dental tools

    Polini, R.; Allegri, A.; Guarino, S.; Quadrini, F.; Sein, H.; Ahmed, W.

    2004-01-01

    Co-cemented tungsten carbide (WC-Co) tools are currently employed in dental application for prosthesis fabrication. The deposition of a diamond coating onto WC-Co tools could allow both to increase the tool life and tool performance at higher speeds. However, at present it is very difficult to quantify the effective advantage of the application of a diamond coating onto dental tools compared to traditional uncoated tools. Therefore, in this work, we have deposited diamond coatings onto WC-Co dental tools having different geometries by Hot Filament Chemical Vapour Deposition (HFCVD). Prior to deposition, the WC-Co tools were pre-treated in order to roughen the surface and to modify the chemical surface composition. The use of the HFCVD process enabled the deposition of a uniform coating despite the complex geometries of the dental mills. For the first time, in accordance to the knowledge of the authors, we have studied and compared the cutting behaviour of both virgin and diamond-coated dental tools by measuring both wear and cutting force time evolution under milling a very hard Co-Cr-Mo dental alloy. To ensure constant cutting rate (20,000-r.p.m. cutting rate, 0.01-m/min feed rate and 0.5-mm depth of cut), a proper experimental apparatus was used. Three different mill geometries were considered in both coated and uncoated conditions. The results showed that, under the high-speed conditions employed, uncoated tools underwent to catastrophic failure within a few seconds of machining. Diamond-coated tools exhibited much longer tool lives. Lower forces were measured when the coated tool was employed due to the much lower material-mill friction. The best behaviour was observed for coated mills with the presence of a chip-breaker

  12. Sawtooth forces in cutting tropical hardwoods native to South America

    S. P. Loehnertz; I. V. Cooz

    As a result of design, operation, and maintenance, sawblades used in tropical sawmills can cause many problems. Improvements in these areas are needed to reduce the waste associated with sawing of tropical species that are regarded as difficult to cut. In this study, cutting experiments that simulated bandsawing of tropical hardwoods showed the effect of chip...

  13. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling

    Li, Zhongqun; Liu, Qiang; Yuan, Songmei; Huang, Kaisheng

    2013-05-01

    Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.

  14. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  15. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  16. Finite Element Analysis Of Influence Of Flank Wear Evolution On Forces In Orthogonal Cutting Of 42CrMo4 Steel

    Madajewski Marek

    2017-01-01

    Full Text Available This paper presents analysis of flank wear influence on forces in orthogonal turning of 42CrMo4 steel and evaluates capacity of finite element model to provide such force values. Data about magnitude of feed and cutting force were obtained from measurements with force tensiometer in experimental test as well as from finite element analysis of chip formation process in ABAQUS/Explicit software. For studies an insert with complex rake face was selected and flank wear was simulated by grinding operation on its flank face. The aim of grinding inset surface was to obtain even flat wear along cutting edge, which after the measurement could be modeled with CAD program and applied in FE analysis for selected range of wear width. By comparing both sets of force values as function of flank wear in given cutting conditions FEA model was validated and it was established that it can be applied to analyze other physical aspects of machining. Force analysis found that progression of wear causes increase in cutting force magnitude and steep boost to feed force magnitude. Analysis of Fc/Ff force ratio revealed that flank wear has significant impact on resultant force in orthogonal cutting and magnitude of this force components in cutting and feed direction. Surge in force values can result in transfer of substantial loads to machine-tool interface.

  17. Finite Element Analysis Of Influence Of Flank Wear Evolution On Forces In Orthogonal Cutting Of 42CrMo4 Steel

    Madajewski, Marek; Nowakowski, Zbigniew

    2017-01-01

    This paper presents analysis of flank wear influence on forces in orthogonal turning of 42CrMo4 steel and evaluates capacity of finite element model to provide such force values. Data about magnitude of feed and cutting force were obtained from measurements with force tensiometer in experimental test as well as from finite element analysis of chip formation process in ABAQUS/Explicit software. For studies an insert with complex rake face was selected and flank wear was simulated by grinding operation on its flank face. The aim of grinding inset surface was to obtain even flat wear along cutting edge, which after the measurement could be modeled with CAD program and applied in FE analysis for selected range of wear width. By comparing both sets of force values as function of flank wear in given cutting conditions FEA model was validated and it was established that it can be applied to analyze other physical aspects of machining. Force analysis found that progression of wear causes increase in cutting force magnitude and steep boost to feed force magnitude. Analysis of Fc/Ff force ratio revealed that flank wear has significant impact on resultant force in orthogonal cutting and magnitude of this force components in cutting and feed direction. Surge in force values can result in transfer of substantial loads to machine-tool interface.

  18. Radioactive wear measurements of cutting tools made of metal in cutting aluminium alloys

    Frevert, E.

    1977-01-01

    The possibility of making quick checkings of the inhomogeneities of turning materials with radioactive wear measurements has been tested. After activation analysis of the long-lived radioisotopes of cutting tools made of hard metal a method for loss-free collection of the turnings has been developed. The detection limit of the abrasion is about 10 -8 g, the measuring times are 5-10 minutes. Special radiation protection measures are not necessary. An analysis of the abrasion showed that at the beginning of cutting the amount of cobalt is 6 times higher than in the normal composition of the used cutting tools. (author)

  19. Cutting

    ... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...

  20. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  1. Study of the Vibration Effect on the Cutting Forces and Roughness of Slub Milling

    Germa, S.; Estrems Amestoy, M.; Sánchez Reinoso, H. T.; Franco Chumillas, P.

    2009-11-01

    For the planning process of slab milling operations, the vibration of the tool is the main factor to be considered. Under vibration conditions, the effect of the small displacements of the cutting tool and the cutting forces on the chip thickness must be minimized in order to avoid undesirable consequences, such as the fast flank wear, superficial defects and roughness increase. In this work, a mathematical model is developed to take into account the combined effect of the cutting tool and workpiece oscillation, as well as the axial errors of different milling tool tips. As a result, the model estimates the variation of the cutting forces and the ideal surface roughness.

  2. Force Relations and Dynamics of Cutting Knife in a Vertical Disc Mobile Wood Chipper

    Segun R. BELLO

    2011-06-01

    Full Text Available The force relations and dynamics of cutting knife in a vertical disc wood chipper were investigated. The tool geometry determined include: rake angle (20 deg C; Shear angle, (fi= 52.15 deg C; the mean frictional angle, (t = 5.71 deg C. The analysis and comparison of the cutting forces has shown that the chips separated from the wood are being formed by off cutting, since normal applied force N is compressive in nature, the magnitude of the forces used by the knife on the wood is expected to increase as the cutting edge of the knife goes deeper into the wood until the value of the resisting force acting against the cut wood Ff is reached and exceeded. The evaluated forces acting on the knife and the chip are: F = 3.63Nmm^-1; N = 34.7 Nmm^-1; Fs= 27.45Nmm^-1; Fn =31.92 Nmm^-1; Ft = -8.46Nmm^-1; Fc = 33.85Nmm^-1. The resultant force acting on the tool face, Pr = 34.89Nmm^-1. The specific cutting pressure, Pc and cutting force needed to cut the timber, Fc, are 1.79 × 10^6 N/m2 and 644.84N respectively. The energy consumed in removing a unit volume of material is 69.96kJ/mm^-3 and the maximum power developed in cutting the chip is 3591.77W (4.82hp. The chipper efficiency (86.6% was evaluated by the highest percentage of accepted chip sizes.

  3. The relationship of cutting force with hole quality in drilling process of AISI H13 steel

    Tekaüt İsmail

    2017-01-01

    Full Text Available The harmony of the drilling machine-cutting tool-work piece is very important for producing the machine part with the ideal dimensions. For this purpose in this study, the effect of cutting forces on hole quality (surface roughness, diameter deviation and circular deviation was investigated by 14 mm diameter uncoated and (AlCrN monolayer coated carbide drills for drilling AISI H13 hot work tool steel on vertical machining center. Four different cutting speeds (60, 75, 90 and 108 m / min and three different feed rates (0.15, 0.20 and 0.25 mm / rev were used in the experiments. Cutting forces have been found to be effective in improving hole quality. Better hole quality has obtained with coated drills than uncoated drills in experiments. It has been observed that coated drills have the effect of improving the hole quality due to the operation with less cutting force and better chip evacuation.

  4. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.

    Cong, W L; Pei, Z J; Sun, X; Zhang, C L

    2014-02-01

    Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.

    Kikuchi, Masafumi; Okuno, Osamu

    2004-12-01

    To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.

  6. Influences of Athletic Footwear on Ground Reaction Forces During A Sidestep Cutting Maneuver on Artificial Turf

    Jacob R. Gdovin

    2018-04-01

    Full Text Available Background: Recreational athletes can select their desired footwear based on personal preferences of shoe properties such as comfort and weight. Commonly worn running shoes and cleated footwear with similar stud geometry and distribution are worn when performing sport-specific tasks such as a side-step cutting maneuver (SCM in soccer and American football (hereafter, referred to as football. The effects of such footwear on injury mechanics have been documented with less being known regarding their effect on performance. Objective: The purpose of this study was to examine performance differences including peak ground reaction forces (pGRF, time-to-peak ground reaction forces (tpGRF and the rate of force development (RFD between football cleats (FB, soccer cleats (SOC, and traditional running sneakers (RUN during the braking and propulsive phases of a SCM. Methodology: Eleven recreationally active males who participated in football and/or soccer-related activities at the time of testing completed the study. A 1 x 3 [1 Condition (SCM x 3 Footwear (RUN, FB, SOC] repeated measures ANOVA was utilized to analyze the aforementioned variables. Results: There were no significant differences (p > 0.05 between footwear conditions when comparing pGRF, tpGRF, or RFD in either the braking or propulsive phases. Conclusion: The results suggest that the studded and non-studded footwear allowed athletes to generate similar forces over a given time frame when performing a SCM.

  7. Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber – Epoxy Composite Tube

    Roy Y. Allwin

    2017-09-01

    Full Text Available Carbon fiber reinforced polymeric (CFRP composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.

  8. Forces, surface finish and friction characteristics in surface engineered single- and multiple-point cutting edges

    Sarwar, M.; Gillibrand, D.; Bradbury, S.R.

    1991-01-01

    Advanced surface engineering technologies (physical and chemical vapour deposition) have been successfully applied to high speed steel and carbide cutting tools, and the potential benefits in terms of both performance and longer tool life, are now well established. Although major achievements have been reported by many manufacturers and users, there are a number of applications where surface engineering has been unsuccessful. Considerable attention has been given to the film characteristics and the variables associated with its properties; however, very little attention has been directed towards the benefits to the tool user. In order to apply surface engineering technology effectively to cutting tools, the coater needs to have accurate information relating to cutting conditions, i.e. cutting forces, stress and temperature etc. The present paper describes results obtained with single- and multiple-point cutting tools with examples of failures, which should help the surface coater to appreciate the significance of the cutting conditions, and in particular the magnitude of the forces and stresses present during cutting processes. These results will assist the development of a systems approach to cutting tool technology and surface engineering with a view to developing an improved product. (orig.)

  9. Calculating Parameters of Chip Formation and Cutting Forces of Plastic Materials

    S. V Grubyi

    2017-01-01

    Full Text Available In addition to the kinematics and geometric parameters of the tool, parameters of chip formation and cutting forces lay the groundwork for theoretical analysis of various types of machining.The objective of research activities is to develop a calculation technique to evaluate parameters of chip formation and cutting forces when machining such plastic materials as structural carbon and alloy steels, and aluminum alloys. The subject of research activities is directly a cutting process, algorithms and calculation methods in the field under consideration. A theoretical (calculated method to analyse parameters was used. The results of qualitative and quantitative calculations were compared with the published experimental data.As to the chip formation and cutting forces, a model with a single shear plane is analyzed, which allows a quantitative evaluation of the parameters and of the process factors. Modern domestic and foreign authors’ publications of cutting metals use this model on the reasonable grounds. The novelty of the proposed technique is that calculation of parameters and cutting forces does not require experimental research activities and is based on using the known mechanical characteristics of machined and tool materials. The calculation results are parameters, namely the shear angle, velocity factor of the chip, relative shift, friction coefficient at the front surface, cutting forces, etc. Calculation of these parameters will allow us to pass on to the thermo-physical problems, analysis of tool wear and durability, accuracy, quality and performance rate.The sequence of calculations is arranged in the developed user program in an algorithmic programming language with results in graphical or tabulated view. The calculation technique is a structural component of the cutting theory and is to be used in conducting research activities and engineering calculations in this subject area.

  10. Automatic HTS force measurement instrument

    Sanders, S.T.; Niemann, R.C.

    1999-01-01

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs

  11. Study of Surface Roughness and Cutting force in machining for 6068 Aluminium alloy

    Purushothaman, D.; Kaushik Yanamundra, Krishna; Krishnan, Gokul; Perisamy, C.

    2018-04-01

    Metal matrix composites, in particular, Aluminium Hybrid Composites are gaining increasing attention for applications in air and land because of their superior strength to weight ratio, density and high temperature resistance. Aluminium alloys are being used for a wide range of applications in Aerospace and Automobile industries, to name a few. The Aluminium Alloy 6068 has been used as the specimen. It is mainly composed of Aluminium (93.22 - 97.6 %), Magnesium (0.60 - 1.2 %), Silicon (0.60 - 1.4 %) and Bismuth (0.60 - 1.1 %). Aluminium 6068 is widely used for manufacturing aircraft structures, fuselages and wings. It is also extensively used in fabricating automobile parts such as wheel spacers. In this study, tests for the measurement of surface roughness and cutting force has been carried out on the specimen, the results evaluated and conclusions are drawn. Also the simulation of the same is carried out in a commercial FE software – ABAQUS.

  12. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  13. Cutting force response in milling of Inconel: analysis by wavelet and Hilbert-Huang Transforms

    Grzegorz Litak

    Full Text Available We study the milling process of Inconel. By continuously increasing the cutting depth we follow the system response and appearance of oscillations of larger amplitude. The cutting force amplitude and frequency analysis has been done by means of wavelets and Hilbert-Huang transform. We report that in our system the force oscillations are closely related to the rotational motion of the tool and advocate for a regenerative mechanism of chatter vibrations. To identify vibrations amplitudes occurrence in time scale we apply wavelet and Hilbert-Huang transforms.

  14. Using laser to measure stem thickness and cut weed stems

    Heisel, T.; Schou, Jørgen; Andreasen, C.

    2002-01-01

    Stem thickness of the weed Solanum nigrum and the crop sugarbeet was determined with a He-Ne laser using a novel non-destructive technique measuring stem shadow. Thereafter, the stems were cut close to the soil surface with a CO2 laser. Treatments were carried out on pot plants, grown....... A binary model was also tested. The non-linear model incorporating stem thickness described the data best, indicating that it would be possible to optimize laser cutting by measuring stem thickness before cutting. The general tendency was that more energy was needed the thicker the stem. Energy uses...... in the greenhouse, at two different growth stages, and plant dry matter was measured 2-5 weeks after treatment. The relationship between plant dry weight and laser energy was analysed using two different non-linear dose-response regression models; one model included stem thickness as a variable, the other did not...

  15. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  16. Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment

    V. G. Sargade

    2016-04-01

    Full Text Available This paper investigates the effect of cutting parameters on the surface roughness and cutting force of titanium alloy Ti-6Al-4V ELI when turning using PVD TiAlN coated tool in dry environment. Taguchi L9 orthogonal array design of experiment was used for the turning experiment 2 factors and 3 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed rate (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. Linear and second order model of the surface roughness and cutting force has been developed in terms of cutting speed and feed. The results show that the feed rate was the most impact factor controlling the cutting force and surface roughness produced. MINITAB 17software was used to develop a linear and second order model of surface roughness and cutting force. Optimum condition was at 66.97 m/min of cutting speed, 0.08 mm/rev of feed rate. Surface roughness 0.57μm and cutting force 54.02 N were obtained at the optimum condition. A good agreement between the experimental and predicted surface roughness and cutting force were observed.

  17. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

    Vishal Singh

    2016-04-01

    Full Text Available Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min-1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min-1 cutting with a sharper knife-edge angle (15° required less peak force and specific energy than that of high-speed cutting (40 mm min-1 with a wider knife-edge angle (25°. The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min-1 and edge angle 150 to 285.1 N (40 mm min-1 and 250, and cucumber, at 11.61 (20 mm min-1 and 150 to 21.41 N (40 mm min-1 and 250, respectively. High speed (40 mm min-1, with a large knife-edge angle (25°, required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min-1, with a small knife-edge angle (150, is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05. Linear or quadratic regressions gave a good fit of these variables. 

  18. Dew point measurement technique utilizing fiber cut reflection

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  19. Determination of the cutting forces regression functions for milling machining of the X105CrMo17 material

    Popovici, T. D.; Dijmărescu, M. R.

    2017-08-01

    The aim of the research presented in this paper is to determine a cutting force prediction model for milling machining of the X105CrMo17 stainless steel. The analysed material is a martensitic stainless steel which, due to the high Carbon content (∼1%) and Chromium (∼17%), has high hardness and good corrosion resistance characteristics. This material is used for the steel structures parts which are subject of wear in corrosive environments, for making valve seats, bearings, various types of cutters, high hardness bushings, casting shells and nozzles, measuring instruments, etc. The paper is structured into three main parts in accordance to the considered research program; they are preceded by an introduction and followed by relevant conclusions. In the first part, for a more detailed knowledge of the material characteristics, a quality and quantity micro-analysis X-ray and a spectral analysis were performed. The second part presents the physical experiment in terms of input, necessary means, process and registration of the experimental data. In the third part, the experimental data is analysed and the cutting force model is developed in terms of the cutting regime parameters such as cutting speed, feed rate, axial depth and radial depth.

  20. Method for Friction Force Estimation on the Flank of Cutting Tools

    Luis Huerta

    2017-01-01

    Full Text Available Friction forces are present in any machining process. These forces could play an important role in the dynamics of the system. In the cutting process, friction is mainly present in the rake face and the flank of the tool. Although the one that acts on the rake face has a major influence, the other one can become also important and could take part in the stability of the system. In this work, experimental identification of the friction on the flank is presented. The experimental determination was carried out by machining aluminum samples in a CNC lathe. As a result, two friction functions were obtained as a function of the cutting speed and the relative motion of the contact elements. Experiments using a worn and a new insert were carried out. Force and acceleration were recorded simultaneously and, from these results, different friction levels were observed depending on the cutting parameters, such as cutting speed, feed rate, and tool condition. Finally, a friction model for the flank friction is presented.

  1. A theoretical model for predicting the Peak Cutting Force of conical picks

    Gao Kuidong

    2014-01-01

    Full Text Available In order to predict the PCF (Peak Cutting Force of conical pick in rock cutting process, a theoretical model is established based on elastic fracture mechanics theory. The vertical fracture model of rock cutting fragment is also established based on the maximum tensile criterion. The relation between vertical fracture angle and associated parameters (cutting parameter  and ratio B of rock compressive strength to tensile strength is obtained by numerical analysis method and polynomial regression method, and the correctness of rock vertical fracture model is verified through experiments. Linear regression coefficient between the PCF of prediction and experiments is 0.81, and significance level less than 0.05 shows that the model for predicting the PCF is correct and reliable. A comparative analysis between the PCF obtained from this model and Evans model reveals that the result of this prediction model is more reliable and accurate. The results of this work could provide some guidance for studying the rock cutting theory of conical pick and designing the cutting mechanism.

  2. Thermographic measurements of high-speed metal cutting

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  3. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  4. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  5. Preliminary investigation of predictors of the cutting forces for some South African coals

    MacGregor, I M; Baker, D R

    1985-08-01

    This paper discusses the possible use of petrological data and proximate analyses in the prediction of cutting forces for coal. It is restricted to the development of univariate predictors based on data from thirteen collieries in five major Transvaal and Orange Free State coalfields and three coal provinces. The aim of the work was the identification and development of the best predictors of mean peak cutting force and Hardgrove grindability index from among the independent variables evaluated. The data were processed according to the SPSS computer package. The analysis revealed reasonable correlations between the Hardgrove grindability index and (1) the volatiles and vitrinite content in the Vereeniging-Sasolburg and South Rand Coalfields, (2) the contents of vitrinite, vitrinite plus exinite, and minerals plus inertinite in the Eastern Transvaal Coalfield.

  6. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  7. Direct measurements of intermolecular forces by chemical force microscopy

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  8. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  9. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  10. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  11. Force measurements for levitated bulk superconductors

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  12. Force measurements for levitated bulk superconductors

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  13. The effects of femoral neck cut, cable tension, and muscles forces on the greater trochanter fixation.

    Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves

    2012-04-01

    Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.

  14. The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.

    Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A

    2018-02-01

    Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated

  15. Axial force measurement for esophageal function testing

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  16. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  17. Forced genital cutting in North America: feminist theory and nursing considerations.

    Antinuk, Kira

    2013-09-01

    This article will examine forced nontherapeutic genital cutting (FNGC) through the lens of feminist theory and in relation to the concept of social justice in nursing. I will address the underlying assumptions of feminism and how they apply to the two currently legal forms of FNGC in North America: male infant circumcision and intersex infant/child genital cutting. Through a literature review and critical analysis of these practices, I will illustrate the challenges they present when considering the role of nurses in promoting social justice. If feminism asserts that bodily integrity, autonomy, and fundamental human rights are essential components of gender equality, it follows that these must be afforded to all genders without discrimination. Historically, there have been few feminists who have made this connection, yet a growing and diverse movement of people is challenging the frameworks in which we consider genital cutting in our society. Nurses are positioned well to be at the forefront of this cause and have a clear ethical duty to advocate for the elimination of all forms of FNGC.

  18. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  19. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert

    Hessainia Zahia

    2015-04-01

    Full Text Available This paper focuses on the exploitation of the response surface methodology (RSM to determine optimum cutting conditions leading to minimum surface roughness and cutting force components. The technique of RSM helps to create an efficient statistical model for studying the evolution of surface roughness and cutting forces according to cutting parameters: cutting speed, feed rate and depth of cut. For this purpose, turning tests of hardened steel alloy (AISI 4140 (56 HRC were carried out using PVD – coated ceramic insert under different cutting conditions. The equations of surface roughness and cutting forces were achieved by using the experimental data and the technique of the analysis of variance (ANOVA. The obtained results are presented in terms of mean values and confidence levels. It is shown that feed rate and depth of cut are the most influential factors on surface roughness and cutting forces, respectively. In addition, it is underlined that the surface roughness is mainly related to the cutting speed, whereas depth of cut has the greatest effect on the evolution of cutting forces. The optimal machining parameters obtained in this study represent reductions about 6.88%, 3.65%, 19.05% in cutting force components (Fa, Fr, Ft, respectively. The latters are compared with the results of initial cutting parameters for machining AISI 4140 steel in the hard turning process.

  20. Ambulatory Measurement of Ground Reaction Forces

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  1. Measuring Air Force Contracting Customer Satisfaction

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and

  2. Modeling of the Cutting Forces in Turning Process Using Various Methods of Cooling and Lubricating: An Artificial Intelligence Approach

    Djordje Cica

    2013-01-01

    Full Text Available Cutting forces are one of the inherent phenomena and a very significant indicator of the metal cutting process. The work presented in this paper is an investigation of the prediction of these parameters in turning using soft computing techniques. During the experimental research focus is placed on the application of various methods of cooling and lubricating of the cutting zone. On this occasion were used the conventional method of cooling and lubricating, high pressure jet assisted machining, and minimal quantity lubrication technique. The data obtained by experiment are used to create two different models, namely, artificial neural network and adaptive networks based fuzzy inference systems for prediction of cutting forces. Furthermore, both models are compared with the experimental data and results are indicated.

  3. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging

    Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...

  4. DISPOSITIVO TRANSDUCTOR PARA LA MEDICIÓN DE FUERZA Y VELOCIDAD EN UNA TAREA DE CORTE CON ESCALPELO DISPOSITIVO TRANSDUCTOR PARA A MEDIÇÃO DE FORÇA E VELOCIDADE EM UMA TAREFA DE CORTE COM ESCALPELO TRANSDUCER DEVICE FOR MEASURING FORCE AND SPEED IN A TASK OF SCALPEL CUTTING

    Edilberto Mejía

    2010-12-01

    finalidade desenvolveu-se um software em linguagem de programação C #. Todos os ensaios se efetuaram sobre o mesmo tecido e com a mesma rotina para realizar uma medição da repetibilidade do corte. Os resultados foram registados em tabelas, para fins de análise estatística e representação gráfica.This paper shows the design and manufacture of a mechatronic device, capable of measuring force and speed in a cutting work done with a scalpel. A study based on the finite element method was made, in order to record the force required to break the tissue (chicken breast having a theoretical framework as the benchmark of the results obtained in the cutting tests. It was used, as the primary measuring device, a sensor type Flexiforce A201-25. The device was attached, as a working tool, to an industrial robotic arm programmed with a crosssection routine. The cutting speed of the implemented device was sensed through a camera by tracking a marker set previously for this purpose, software in C # programming language was developed. All tests were performed on the same tissue and with the same routine to perform a measurement of cutting repeatability. The results were recorded in tables, for purposes of statistical analysis, and graphical representation.

  5. Detecting chameleons through Casimir force measurements

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  6. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  7. Field measurement of basal forces generated by erosive debris flows

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  8. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  9. Estimation of the influence of tool wear on force signals: A finite element approach in AISI 1045 orthogonal cutting

    Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre

    2018-05-01

    Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.

  10. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  11. Measurement of secondary emissions during laser cutting of steel equipments

    Pilot, Guy [Institut de Radioprotection et de Surete Nucleaire, BP 68, 91192 Gif-sur-Yvette Cedex (France)], E-mail: guy.pilot@irsn.fr; Fauvel, Sylvain [Institut de Radioprotection et de Surete Nucleaire, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gosse, Xavier [AREVA NC, Centre de Marcoule, 30200 Bagnols-sur-Ceze Cedex (France); Dinechin, Guillaume de [Commissariat a l' Energie Atomique, DEN/DM2S/SEMT, Saclay, Bat. 611, 91191 Gif-sur-Yvette Cedex (France); Vernhet, Didier [Commissariat a l' Energie Atomique, DEN/VRH/UMODD, Centre de Valrho, BP 17171, 20207 Bagnols-sur-Ceze Cedex (France)

    2008-08-15

    In order to dismantle some equipments of an obsolete reprocessing plant in Marcoule, studies were carried out by IRSN (Institut de Radioprotection et de Surete Nucleaire)/DSU/SERAC in cooperation with CEA (power laser group) on the laser cutting of steel structures, on the request of AREVA NC/Marcoule (UP1 dismantling project manager) and CEA/UMODD (UP1 dismantling owner). These studies were aimed at: {center_dot}quantifying and characterizing the secondary emissions produced by Nd-YAG laser cutting of Uranus 65 steel pieces and examining the influence of different parameters, {center_dot}qualifying a prefiltration technique and particularly an electrostatic precipitator, {center_dot}comparing the Nd-YAG laser used with other cutting tools previously studied especially on aerosol production and aerosol size distribution.

  12. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  13. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  14. Dismantling of Evaporators by Laser Cutting Measurement of Secondary Emissions

    Pilot, Guy; Fauvel, Sylvain; Gosse, Xavier; De Dinechin, Guillaume

    2006-01-01

    In order to dismantle the evaporators of an obsolete reprocessing plant in Marcoule, studies were carried out by IRSN (Institut de Radioprotection et de Surete Nucleaire) / DSU/SERAC in cooperation with CEA (power laser group) on the laser cutting of steel structures, on the request of COGEMA (now AREVA NC) /Marcoule (UP1 dismantling project manager) and CEA/UMODD (UP1 dismantling owner). The aim of these studies was: - to quantify and to characterize the secondary emissions produced by Nd-YAG laser cutting of Uranus 65 steel pieces representative of UP1 evaporator elements and to examine the influence of different parameters, - to qualify a pre-filtration technique and particularly an electrostatic precipitator, - to compare the Nd-YAG used with other cutting tools previously studied. The experiments, which took place in a 35 m 3 ventilated cutting cell, allow to underline the following points: for the Uranus 65 steel, the sedimented dross, the deposits on the walls of the cutting cell and the aerosols drawn in the ventilation exhaust duct (∼ 275 m 3 /h), represent respectively between 92% and 99%, between 0.01% and 0.25% and between 1% and 8% of the total collected mass, the attached slag varies much from one configuration to the other and can sometimes amount to a relatively important fraction of the total mass, the kerves vary from 2 mm up to 7 mm for the Uranus 65 steel plates (thickness: 13.8 mm for the single plate and 12.8 + 3.5 mm for the double plate), the exhausted aerosol mass per cut length (g/m) decreases with the cutting speed, varies neither with the stand-off nor with the gas pressure, is dependent upon the gas nature (for the double plate), increases with the laser power, is strongly affected by the nature of the steel (stainless steel or mild steel) and is independent upon the plate position, the size distribution of aerosols is multimodal with a main mode often around 0.45 μm, the electrostatic precipitator has been a satisfactory prefilter

  15. Influence of anatomy and basic density on specific cutting force for wood from Corymbia citriodora Hill & Johnson

    Luiz-E. de L. Melo

    2015-12-01

    Full Text Available Aim of the study: The aim of this study was to evaluate the influence of xylem tissue cell structure, determined through biometry and basic density of the wood from Corymbia citriodora Hill & Johnson on consumption of specific 90º-0º longitudinal cutting force.Area of study: The study area was in the region of the Vale do Rio Doce - Minas Gerais, Brazil.Material and methods: A diametrical board with dimensions of 60 x 18 x 5 cm (length x width x thickness, respectively, with more than 1.3 m from the ground, was removed. In machining trials, a 400 mm diameter circular saw was used, with 24 “WZ” teeth, feed rate of 10 m.min-1, cutting speed of 61 m.s-1, and maximum instantaneous torque of 92.5 N.m. During cutting, test specimens were removed with alternated and parallel 1.5 cm edges in 6 radial positions, which were used for biometric determination of cell structure and basic density.Main results: It was observed that wood basic density, vessel diameter, fiber wall thickness, fiber wall fraction and fiber wall portion were directly proportional to the specific cutting force. In contrast, vessel frequency and fiber lumen diameter proved to be inversely proportional to cutting force.Research highlights: This work provides important values of quantification of influence of xylem tissue cell structure, determined through biometry and physical properties of the wood that may be used to prediction of consumption of specific cutting force.Keywords: wood machining; wood properties; optimization of the process.

  16. Measuring pulsatile forces on the human cranium.

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  17. Unsteady Aerodynamic Force Sensing from Measured Strain

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  18. Can semiquantitative measurements of SUVmax and cut-off values differentiate colorectal malignant from benign lessions?

    Nguyen, Tram; Hess, Søren; Petersen, Henrik

    2017-01-01

    , which also precludes a clinically significant cut-off value. The same applies to SUVpeak and SUVmean while TLG measures may be more indicative. CONCLUSION: Semi-quantitative measurements of SUVmax and cut-off values proved inadequate for differentiating colorectal malignancies from benign findings...

  19. A MEMS sensor for microscale force measurements

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  20. Propellant Slosh Force and Mass Measurement

    Andrew Hunt

    2018-01-01

    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  1. Memory effect o force measurements at nanoscales

    Lisy, V.; Tothova, J.

    2011-01-01

    we have obtained an exact solution for the drift velocity of a Brownian particle in an incompressible fluid under the action of a constant force, taking into account the hydrodynamic memory in the particle motion. This velocity is proportional to the applied force but depends in a complicated manner on the time of observation t. At short times it is proportional to t and at long times it contains algebraic tails, the longest-lived of which being ∼ t -1/ 2. Due to this the velocity very slowly approaches the limiting value F/γ. As a consequence, the force F can significantly differ from the value that would be extracted from the drift measurements neglecting the inertial effects, which is a standard assumption in the interpretation of such experiments. The presented method can be equally applicable in the case of force linearly depending on the particle position. For nonlinear forces, first the open question about the choice of convention to be used in stochastic calculus should be resolved. (authors)

  2. Measurement-only topological quantum computation without forced measurements

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-01-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons. (paper)

  3. A new diagnostic accuracy measure and cut-point selection criterion.

    Dong, Tuochuan; Attwood, Kristopher; Hutson, Alan; Liu, Song; Tian, Lili

    2017-12-01

    Most diagnostic accuracy measures and criteria for selecting optimal cut-points are only applicable to diseases with binary or three stages. Currently, there exist two diagnostic measures for diseases with general k stages: the hypervolume under the manifold and the generalized Youden index. While hypervolume under the manifold cannot be used for cut-points selection, generalized Youden index is only defined upon correct classification rates. This paper proposes a new measure named maximum absolute determinant for diseases with k stages ([Formula: see text]). This comprehensive new measure utilizes all the available classification information and serves as a cut-points selection criterion as well. Both the geometric and probabilistic interpretations for the new measure are examined. Power and simulation studies are carried out to investigate its performance as a measure of diagnostic accuracy as well as cut-points selection criterion. A real data set from Alzheimer's Disease Neuroimaging Initiative is analyzed using the proposed maximum absolute determinant.

  4. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  5. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  6. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  7. EXPERIMENTAL INVESTIGATION OF THE EFFECT OF MACHINIG PARAMETERS OVER CUTTING FORCE AND SURFACE ROUGHNESS IN THE MACHINABILITY OF AA5052 ALLOY

    Hasan GÖKKAYA

    2006-03-01

    Full Text Available In this study, the effects of different cutting and feed rates over average surface roughness and main cutting force during the machinability of AA5052 aluminum alloy with uncoated cemented carbide insert were evaluated. In the experiments, stable depth of cut (1.5 mm, four different cutting speeds (200, 300, 400, 500 m/min and five different feed rates (0.10, 0.15, 0.20, 0.25, 0.30 mm/rev were used. Based on cutting and feed rates, the lowest main cutting force was obtained as 113 in 500 m/min cutting speed and 0.10 mm/rev feed rate and the highest cutting force was obtained as 332 N in 200 m/min cutting speed and 0.30 mm/rev feed rate. The lowest average surface roughness was obtained as 0.95 µm in 200 m/min cutting speed and 0.10 mm/rev feed rate and the highest average surface roughness was obtained as 6.65 µm in 300 m/min cutting speed and 0.30 mm/rev feed rate.

  8. Near DC force measurement using PVDF sensors

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  9. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  10. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    Pilot, G.; Noel, M.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1990-01-01

    As part of an inter-facility comparison of secondary emissions from plasma-arc and laser cutting techniques, standard cutting tests have been done by plasma arc underwater and in air and laser beam in air. The same team, CEA/DPT/SPIN, was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick grade 304 stainless steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institute fuer Werkstoffkunde of Hannover and CEA/CEN Cadarache. 10 mm and sometimes 20 mm thick grade 304 stainless steel plates were cut by laser beam in four different facilities: CEA/CEN Fontenay, CEA/CEN Saclay, Institute fuer Werkstoffkunde of Hannover and ENEA/FRASCATI. The results obtained in the standard experiments are rather similar, the differences that appear can be explained by the various scales of the facilities (semi-industrial and laboratory scale) and by some particularity in the cutting parameters (additional secondary gas flow of oxygen in plasma cutting at Hannover for example). Some supplementary experiments show the importance of some cutting parameters. (author)

  11. Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters

    Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong

    2018-05-01

    This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.

  12. Squeezed noise in precision force measurements

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  13. Measurement of batter movements in brown coal open cuts - results of a research project

    Nehring, H

    1984-05-01

    In the course of a research project sponsored by the State of North Rhine-Westphalia the mine surveying methods used when measuring deformation on open cut batters were further developed, by taking into account the special conditions prevailing in open cuts, to such an extent that the essential monitoring of soil movements can be carried out reliably and promptly. As an integral part of an optimised, accurate geodetic measurement of points, the direct measurement of longitude across the open cut was introduced as a rapid measuring method. The aerophotogrammetric measurement of points is practically as accurate as terrestrial surveying. The author describes the prototype of an automatically operated instrument system for the monitoring of points. In conclusion he also stresses that the first promising advance has already been made as regards the sufficiently accurate monitoring of rock movements in boreholes.

  14. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    Pilot, G.; Noel, J.P.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1992-01-01

    As part of an inter-facility comparison of secondary emissions from plasma arc and laser-cutting techniques, standard cutting tests have been done by plasma arc underwater and in air, and by laser beam in air. The same team was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick, grade 304 stainless-steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institut fuer Werkstoffkunde of Universitaet Hannover and CEA/CEN Cadarache. 10 mm and in some cases 20 mm thick, grade 304, stainless-steel plates were cut by laser beam in five different facilities: CEA-CEN Fontenay, CEA-CEN Saclay, Institut fuer Werkstoffkunde of Universitaet Hannover and ENEA/Frascati. The results obtained in the standard experiments are rather similar, and the differences that appear can be explained by the various scales of the involved facilities (semi-industrial and laboratory) and by some particularities in the cutting parameters (an additional secondary gas flow of oxygen in plasma cutting at Universitaet Hannover, for example)

  15. Material testing of copper by extrusion-cutting

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  16. Improving Oncology Quality Measurement in Accountable Care: Filling Gaps with Cross-Cutting Measures.

    Valuck, Tom; Blaisdell, David; Dugan, Donna P; Westrich, Kimberly; Dubois, Robert W; Miller, Robert S; McClellan, Mark

    2017-02-01

    each gap, we searched for available measures not already being used in programs. Where existing measures did not cover gaps, we recommended refinements to existing measures or proposed measures for development. We shared the results of the measure gap analysis with a roundtable of national experts in cancer care and oncology measurement. During a web meeting and an in-person meeting, the roundtable reviewed the gap analysis and identified priority opportunities for improving measurement. The group determined that overreliance on condition-specific process measures is problematic because of rapidly changing evidence and increasing personalization of cancer care. The group's primary recommendation for enhancing measure sets was to prioritize and develop effective cross-cutting measures that assess clinical and patient-reported outcomes, including shared decision making, care planning, and symptom control. The group also prioritized certain safety and structural measures to complement condition-specific process measures. Further, the group explored strategies for using clinical pathways and devising layered measurement approaches to improve measurement for accountable care. This article presents the roundtable's conclusions and recommendations for next steps. Funding for this project was provided by the National Pharmaceutical Council (NPC). Westrich and Dubois are employees of the NPC. Valuck is a partner with Discern Health. Blaisdell and Dugan are employed by Discern Health. McClellan reports fees for serving on the Johnson & Johnson Board of Directors. Dugan reports consulting fees from the National Committee for Quality Assurance and Pharmacy Quality Alliance. The remaining authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. Study concept and design were contributed by Blaisdell, Valuck, Dugan, and Westrich. Blaisdell took the lead in data collection, along with Valuck

  17. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  18. Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis.

    Burkhart, Timothy A; Dunning, Cynthia E; Andrews, David M

    2011-10-13

    The fundamental nature of impact testing requires a cautious approach to signal processing, to minimize noise while preserving important signal information. However, few recommendations exist regarding the most suitable filter frequency cut-offs to achieve these goals. Therefore, the purpose of this investigation is twofold: to illustrate how residual analysis can be utilized to quantify optimal system-specific filter cut-off frequencies for force, moment, and acceleration data resulting from in-vitro upper extremity impacts, and to show how optimal cut-off frequencies can vary based on impact condition intensity. Eight human cadaver radii specimens were impacted with a pneumatic impact testing device at impact energies that increased from 20J, in 10J increments, until fracture occurred. The optimal filter cut-off frequency for pre-fracture and fracture trials was determined with a residual analysis performed on all force and acceleration waveforms. Force and acceleration data were filtered with a dual pass, 4th order Butterworth filter at each of 14 different cut-off values ranging from 60Hz to 1500Hz. Mean (SD) pre-fracture and fracture optimal cut-off frequencies for the force variables were 605.8 (82.7)Hz and 513.9 (79.5)Hz, respectively. Differences in the optimal cut-off frequency were also found between signals (e.g. Fx (medial-lateral), Fy (superior-inferior), Fz (anterior-posterior)) within the same test. These optimal cut-off frequencies do not universally agree with the recommendations of filtering all upper extremity impact data using a cut-off frequency of 600Hz. This highlights the importance of quantifying the filter frequency cut-offs specific to the instrumentation and experimental set-up. Improper digital filtering may lead to erroneous results and a lack of standardized approaches makes it difficult to compare findings of in-vitro dynamic testing between laboratories. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  20. Development of measuring and control systems for underwater cutting of radioactive components

    Drews, P.; Fuchs, K.

    1990-01-01

    Shutdown and dismantling of nuclear power plants requires special techniques to decommission the radioactive components involved. For reasons of safety, decommissioning of components under water can be advantageous because of the radioactive shielding effect of water. In this project, research activities and developmental works focused on the realization of different sensor systems and their adaptation to cutting tasks. A new image-processing system has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). For control of process parameters, different inductive, ultrasonic and optical sensors have been modified and tested. The investigations performed are aimed at assuring high-quality underwater cutting with the help of sensor systems specially adapted to cutting tasks, with special signal procession and evaluation through microcomputer control. It is important that special attention be paid to the reduction of interferences in image pick-up and procession. The measuring system has been designed and realized according to the consideration of the demands for underwater cutting processes. The reliability of the system was tested in conjunction with a four-axes handling system

  1. Measurement of dynamic bite force during mastication.

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (Pmastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics. © 2012 Blackwell Publishing Ltd.

  2. CHANGE@CERN:Task Force 1: finding the least painful cuts

    2002-01-01

    This week sees the first in our series of reports on the work of the Task Forces By 2004, COMPASS will be the main experiment at the SPS, but the LHC experiments will also be calibrating detectors. 'It was a painful task, with which we had to proceed in the least damaging way', says Dieter Schlatter, Head of the EP Division, when describing his experience as Convenor of Task Force 1. This Task Force was charged with responsibility for advising on how money could be saved within CERN's research programme, in order to help deal with the increased cost to completion of the LHC project. Their role, as with the other Task Forces, was to suggest where savings could be made, and in most cases their suggestions have been incorporated in the Management's draft Long Term Plan. The pain of the task was to some extent alleviated by developments within the LHC project itself. Delays in the delivery of superconducting cable meant that the start up of the LHC would be delayed by a year, to 2007, and this gave Task Force ...

  3. Reliable tool life measurements in turning - an application to cutting fluid efficiency evaluation

    Axinte, Dragos A.; Belluco, Walter; De Chiffre, Leonardo

    2001-01-01

    The paper proposes a method to obtain reliable measurements of tool life in turning, discussing some aspects related to experimental procedure and measurement accuracy. The method (i) allows and experimental determination of the extended Taylor's equation, with a limited set of experiments and (ii......) provides efficiency evaluation. Six cutting oils, five of which formulated from vegetable basestock, were evaluated in turning. Experiments were run in a range of cutting parameters. according to a 2, 3-1 factorial design, machining AISI 316L stainless steel with coated carbide tools. Tool life...

  4. Cantilevers orthodontics forces measured by fiber sensors

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  5. Rigid two-axis MEMS force plate for measuring cellular traction force

    Takahashi, Hidetoshi; Jung, Uijin G; Shimoyama, Isao; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi

    2016-01-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µ m  ×  15 µ m  ×  5 µ m base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m −1 and less than 0.05 µ N, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µ N over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement. (paper)

  6. Measurement and modelling ozone fluxes over a cut and fertilized grassland

    R. Mészáros

    2009-10-01

    Full Text Available During the GRAMINAE Integrated Experiment between 20 May and 15 June 2000, the ozone flux was measured by the eddy covariance method above intensively managed grassland in Braunschweig, northern Germany. Three different phases of vegetation were covered during the measuring campaign: tall grass canopy before cut (29 May 2000, short grass after cut, and re-growing vegetation after fertilization (5 June 2000. Results show that beside weather conditions, the agricultural activities significantly influenced the O3 fluxes. After the cut the daytime average of the deposition velocity (vd decreased from 0.44 cm s−1 to 0.26 cm s−1 and increased again to 0.32 cm s−1 during the third period. Detailed model calculations were carried out to estimate deposition velocity and ozone flux. The model captures the general diurnal patter of deposition, with vd daytime values of 0.52, 0.24, and 0.35 cm s−1 in the first, second and third period, respectively. Thus the model predicts a stronger response to the cut than the measurements, which is nevertheless smaller than expected on the basis of change in leaf area. The results show that both cut and fertilization have complex impacts on fluxes. Reduction of vegetation by cutting decreased the stomatal flux initially greatly, but the stomatal flux recovered to 80% of its original value within a week. At the same time, the non-stomatal flux appears to have increased directly after the cut, which the model partially explains by an increase in the deposition to the soil. A missing sink after the cut may be the chemical interaction with biogenic volatile organic compounds released after the cut and exposed senescent plant parts, or the increase in soil NO emissions after fertilization. Increased canopy temperatures may also have promoted ozone destruction on leaf surfaces. These results demonstrate the importance of canopy

  7. Measuring multiple residual-stress components using the contour method and multiple cuts

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  8. Validation of hindi translation of DSM-5 level 1 cross-cutting symptom measure.

    Goel, Ankit; Kataria, Dinesh

    2018-04-01

    The DSM-5 Level 1 Cross-Cutting Symptom Measure is a self- or informant-rated measure that assesses mental health domains which are important across psychiatric diagnoses. The absence of this self- or informant-administered instrument in Hindi, which is a major language in India, is an important limitation in using this scale. To translate the English version of the DSM-5 Level 1 Cross-Cutting Symptom Measure to Hindi and evaluate its psychometric properties. The study was conducted at a tertiary care hospital in Delhi. The DSM-5 Level 1 Cross-Cutting Symptom Measure was translated into Hindi using the World Health Organization's translation methodology. Mean and standard deviation were evaluated for continuous variables while for categorical variables frequency and percentages were calculated. The translated version was evaluated for cross-language equivalence, test-retest reliability, internal consistency, and split half reliability. Hindi version was found to have good cross-language equivalence and test-retest reliability at the level of items and domains. Twenty two of the 23 items and all the 23 items had a significant correlation (ρ Cutting Symptom Measure as translated in this study is a valid instrument. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A novel AFM based method for force measurements between individual hair strands

    Max, Eva; Haefner, Wolfgang; Wilco Bartels, Frank; Sugiharto, Albert; Wood, Claudia; Fery, Andreas

    2010-01-01

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  10. Thinkers at the Cutting Edge: Innovation in the Danish Special Forces

    Mayland, Karina; Haugegaard, Rikke; Shapiro, Allan

    2017-01-01

    This article is a contribution to the discussions about the unique capacity of Special Operation Forces (SOF). Based on data from interviews and observation in a field study among the Danish Frogman Corps, the Royal Danish Navy Special Operations unit, and the Danish Jaeger Corps, the Danish Army...... Special Operations unit, the article investigates the work environment of the two Special Operations units supporting an innovative capacity. What kind of leadership, processes and work climate support employee-driven innovation in SOF?......This article is a contribution to the discussions about the unique capacity of Special Operation Forces (SOF). Based on data from interviews and observation in a field study among the Danish Frogman Corps, the Royal Danish Navy Special Operations unit, and the Danish Jaeger Corps, the Danish Army...

  11. Advantages of the CCD camera measurements for profile and wear of cutting tools

    Varga, G; Dudas, I; Balajti, Z

    2005-01-01

    In our paper we prepared an evaluating study of which conclusions draw mainly two directions for our fields of research. On the one hand, this means the measuring of fix, standing workpieces, on the other hand this means geometrical measurement of moving tools. The first case seems to be solved in many respects (in general cases), but the second one is not completely worked out according to the relevant literature. The monitoring of tool wear, the determination of geometrical parameters (this is mainly in case of gear-generating tools) is not really widespread yet, mainly, if optical parameters have influence on the evaluating procedure (e.g. examination of profiles of grinding wheels). We show the elaboration of a process for the practical application of measuring techniques performed by image processing CCD cameras on the basis of wearing criteria of different cutting tools (drilling tool, turning tool). We have made a profile and cutting tool wear measuring program

  12. Measuring Agglomeration Forces in a Financial Center

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  13. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  14. Petrophysical measurements on drill cuttings; Mesures petrophysiques sur deblais de forage

    Egermann, P.

    2003-12-01

    This thesis describes new methods to determine petrophysical properties of porous medium from millimetric fragments. Fundamental properties are measured: permeability, porosity, capillary pressure and the tortuosity. The permeability measurement is based on the flow of a viscous fluid inside the fragments, which is interpreted using a numerical model. The tortuosity (formation factor) is obtained from electrical measurements and a conductivity model in heterogeneous media. The methods are validated on crushed core fragments of known properties with a good agreement. The applications are numerous: measurements from drill cuttings to characterize underground reservoirs (hydrocarbons, aquifers), low permeability consolidated formations (cap rocks) and also the characterization of any dispersed porous medium (natural or artificial). (author)

  15. Bite Forces and Their Measurement in Dogs and Cats

    Se Eun Kim

    2018-04-01

    Full Text Available Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs, and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull’s morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  16. Bite Forces and Their Measurement in Dogs and Cats.

    Kim, Se Eun; Arzi, Boaz; Garcia, Tanya C; Verstraete, Frank J M

    2018-01-01

    Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs), and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA) of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull's morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  17. A Compendium of Resistance, Sinkage and Trim, and Longitudinal Wave Cut Measurements Obtained on Model 5365

    Ratchliffe, Toby; Fullerton, Anne; Rice, James; Walker, Don; Russell, Lauren; Fu, Thomas

    2007-01-01

    .... In these experiments drag force was measured using both 6-component Kistler gages and a "traditional" block gage at the tow post location, as well as a Kistler gage located at the grasshopper bracket...

  18. Analysis of the tractive force pattern on a knot by force measurement during laparoscopic knot tying.

    Takayasu, Kenta; Yoshida, Kenji; Kinoshita, Hidefumi; Yoshimoto, Syunsuke; Oshiro, Osamu; Matsuda, Tadashi

    2017-07-19

    Quantifying surgical skills assists novice surgeons when learning operative techniques. We measured the interaction force at a ligation point and clarified the features of the force pattern among surgeons with different skill levels during laparoscopic knot tying. Forty-four surgeons were divided into three groups based on experience: 13 novice (0-5 years), 16 intermediate (6-15 years), and 15 expert (16-30 years). To assess the tractive force direction and volume during knot tying, we used a sensor that measures six force-torque values (x-axis: Fx, y-axis: Fy, z-axis: Fz, and xy-axis: Fxy) attached to a slit Penrose drain. All participants completed one double knot and five single knot sequences. We recorded completion time, force volume (FV), maximum force (MF), time over 1.5 N, duration of non-zero force, and percentage time when vertical force exceeded horizontal force (PTz). There was a significant difference between groups for completion time (p = 0.007); FV (total: p = 0.002; Fx: p = 0.004, Fy: p = 0.007, Fxy: p = 0.004, Fz: p force (p = 0.029); and PTz (p force pattern at the ligation point during suturing by surgeons with three levels of experience using a force measurement system. We revealed that both force volume and force direction differed depending on surgeons' skill level during knot tying. Copyright © 2017. Published by Elsevier Inc.

  19. Technology on precision measurement of torque and force

    2005-12-01

    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  20. Recent Investments by NASA's National Force Measurement Technology Capability

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  1. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation

    Badis Haddag

    2016-08-01

    Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.

  2. Air Force Maintenance Technician Performance Measurement.

    1979-12-28

    aMbr) ATTACHED DD , . - , .147-3 ",, EDITIoN o Fo NOV 66 IS O SOLETE 8,C) 9iCLAS S I r! ABSTRA CT Title: AIR FORCE MAINTENANCE T-,-NIIAN PERFCRMANCZ M...directions have 43 been edited to c’-nf:rm to Uhrbrock’s (1961) rules for a-zraisai forms, i.e., thoup-hts are expressed clearly and si-z!y, staze- ments...Yillarl, -Iheed 19 ,4., F. 1-ut .h ..s, ar .L . ’I’t-.man- -...." , e 3reakthrough for ?erfcrmance .- aisa !." 3usiness Horizons, 1076, 1, 66-73. Yiner, J

  3. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  4. Bite force measurement based on fiber Bragg grating sensor

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  5. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  6. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  7. Method for 3D noncontact measurements of cut trees package area

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  8. Nanonewton force measurement using a modified Michelson interferometer

    Tahviliyan, Masoud; Charsooghi, Mohammad A; Akhlaghi, Ehsan A; Taghi Tavassoly, Mohammad

    2017-01-01

    In this paper, we introduce a new method to measure forces in the nanonewton range. The method is based on modification of a Michelson interferometer in which the rigid mirrors are replaced with two thin rod-like mirrors. One of the rod-like mirrors is fixed at both ends and the other has one free end. As the mirror with free end deflects in response to an applied force the spatial interference pattern is changed. Analysis of the interference fringes provides a readout of the rod deflection and thereby the applied force. The device is calibrated by applying known forces to the mirror with a free end and measuring the resulting displacement. Two different methods, mechanical and electrostatic, are used for calibration. The precision of the measurements and the propagation of the calibration uncertainty are investigated. The results show that this optical method is a good candidate for detecting small forces in the nanonewton range. (paper)

  9. Molecular force sensors to measure stress in cells

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F

    2017-01-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)

  10. Force measurements on a shielded coreless linear permanent magnet motor

    Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.A.

    2014-01-01

    This paper compares force measurements on a shielded coreless linear permanent magnet motor with 2-D models. A 2-D semianalytical modeling method is applied, which is based on Fourier modeling and includes force calculations. The semianalytical modeling correctly predicts the behavior found in the

  11. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  12. Development of measuring and control systems for underwater cutting of radioactive components

    Drews, P.; Fuchs, K.

    1990-01-01

    The underwater dismantling of nuclear power plants has to be remotely controlled with simultaneous optical control by underwater cameras. It is this optical control in particular that leads to problems as, for example, abrasive wheel cutting is subjected to a wide range of interferences so that a minimum of contrast and blurred contours of camera images must be accounted for. This paper describes a new image processing system that has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). Workpiece recognition is performed through the comparison of actually measured objects with pre-trained reference patterns allowing the determination of object location and orientation, the data of which are then supplied to the handling controller. A completely satisfactory prototype system has been built, which is capable of performing image analysis (workpiece recognition, workpiece position, etc.) as well as the control of a handling system with an inductive sensor (distance detection, edge recognition and distance control). With an additional camera the operator has the means of visual process observation. The overall functioning of the system has been tested and demonstrated with a four-axes handling system. (author)

  13. Study of performance of high speed turning using the volumetric dimension coefficient of resultant cutting force; Estudio del rendimiento del torneado de alta velocidad utilizando el coeficiente de dimension volumetrica de la fuerza de corte resultante

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P. C.; Siller-Carrillo, H. R.; Toscano-Reyes, H.

    2013-07-01

    This work deals with the experimental study of the resultant cutting force evolution of two coating carbide and a cermet inserts, during the dry turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. A new criterion for machinability study, the coefficient of volumetric dimension of cutting force, it is introduced. The investigation showed a better performance of cermet for moderate and intermediate cutting speeds, while at high cutting speed and final machining time, the three layers coated carbide achieved the best result. The factorial analysis of variance demonstrated a significant effect of machining time on the coefficient of volumetric dimension of resultant cutting force, while the material insert factor and their interaction, for intermediate cutting speed was just significant. (Author)

  14. Force Measurements on a VAWT Blade in Parked Conditions

    Anders Goude

    2017-11-01

    Full Text Available The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

  15. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  16. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  17. Quantitative measurements of shear displacement using atomic force microscopy

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  18. Uncertainty of slip measurements in a cutting system of converting machinery for diapers production

    D’Aponte F.

    2015-01-01

    Full Text Available In this paper slip measurements are described between the peripheral surfaces of knife and a not driven anvil cylinders in a high velocity, high quality cutting unit of a diaper production line. Laboratory tests have been carried out on a test bench with real scale components for possible on line application of the method. With reference to both starting and steady state conditions correlations with the process parameters have been found, achieving a very satisfactory reduction of the slip between the knife cylinder and the not driven anvil one. Accuracy evaluation of measurements allowed us to validate the obtained information and to evaluate the detection threshold of the measurement method in the present configuration The analysis of specific uncertainty contributions to the whole uncertainty could be also used, to further reduce the requested uncertainty of the measurement method.

  19. Personal computer interface for temmperature measuring in the cutting process with turning

    Trajchevski, Neven; Filipovski, Velimir; Kuzinonovski, Mikolaj

    2004-01-01

    The computer development aided reserch systems in the investigations of the characteristics of the surface layar forms conditions for decreasing of the measuring uncertainty. Especially important is the fact that the usage of open and self made measuring systems accomplishes the demands for a total control of the research process. This paper describes an original personal computer interface which is used in the newly built computer aided reserrch system for temperatute measuring in the machining with turning. This interface consists of optically-coupled linear isolation amplifier and an analog to digital (A/D) converter. It is designed for measuring of the themo- voltage that is a generated from the natural thermocouple workpiece-cutting tool. That is achived by digitalizing the value of the thermo-voltage in data which is transmitted to the personal computer. The interface realization is a result of the research activity of the faculty of Mechanical Engineering and the Faculty of Electrical Engineering in Skopje.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  1. Measuring oil and water cuts in a multiphase flowstream with elimination of the effects of gas in determining the liquid cuts

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A method of measuring the water and oil fractions in a multiphase flow stream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the materials in the fluid. Analysis of the gamma spectra yields the ratio of the gamma ray counts of element sulfur to those of chlorine. From this ratio, the oil and water cuts (fractional oil and water contents) of the fluid may be measured while eliminating the effects of gas in the flowstream on the measurements. (U.K

  2. MD1405: Demonstration of forced dynamic aperture measurements at injection

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  3. Designing an experiment to measure cellular interaction forces

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  4. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  5. Parameters of Carcass Cuts and Measurements of Martinik Lambs Managed under Intensive Conditions

    G. Alexandre

    2008-02-01

    Full Text Available The Martinik sheep is selected for its good adaptive and reproductive traits. The production sector reproaches it with low carcass conformation, although its carcasses have been little described. Two intensive fattening experiments were conducted, whereby lambs were slaughtered for linear measurements and cuts. The variables were analyzed and allometric equations were determined. The database (n = 43 was adjusted for feeding levels and slaughter weight groups (SW: 28, 32 and 36 kg. Mean cold carcass (CC weights varied (P 0.05. The weights of all carcass cuts significantly (P < 0.01 increased with CC increase. Shoulders and legs represented 18 and 34% of CC, respectively. Various measurements taken on the carcass and pelvis width significantly increased (P < 0.05 with CC increase (near 9% difference between extreme weights. Indices of carcass and leg compactness (0.32 and 0.45, respectively did not vary with SW, whereas weight indices did. Allometric coefficients of the shoulder (0.915 and leg (0.891 were in line with those of the literature. This preliminary description of Martinik sheep carcasses could be made available to the sector actors in order to pursue the work and help to better select breeds and management systems.

  6. Dynamic steering beams for efficient force measurement in optical manipulation

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  7. Support force measures of midsized men in seated positions.

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  8. Fiber optic micro sensor for the measurement of tendon forces

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  9. Fiber optic micro sensor for the measurement of tendon forces.

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  10. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  11. Effect of type and percentage of reinforcement for optimization of the cutting force in turning of Aluminium matrix nanocomposites using response surface methodologies

    Priyadarshi, Devinder [DAV Institute of Engineering and Technology, Jalandhar (India); Sharma, Rajesh Kumar [Institute of Technology, Hamirpur (India)

    2016-03-15

    Aluminium matrix composites (AMCs) now hold a significant share of raw materials in many applications. It is of prime importance to study the machinability of such composites so as to enhance their applicability. Sufficient work has been done for studying the machining of AMCs with particle reinforcements of micron range. This paper presents the study of AMCs with particle reinforcement of under micron range i.e. nanoparticles. This paper brings out the results of an experimental investigation of type and weight percent of nanoparticles on the tangential cutting force during turning operation. SiC, Gr and SiC-Gr (in equal proportions) were used with Al-6061 alloy as the matrix phase. The results indicate that composites with SiC require greater cutting force followed by hybrid and then Gr. Increase in the weight percent also significantly affected the magnitude of cutting force. RSM was used first to design and analyze the experiments and then to optimize the turning process and obtain optimal conditions of weight and type of reinforcements for turning operation.

  12. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  13. Accurate fluid force measurement based on control surface integration

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  14. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  15. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Measured long-range repulsive Casimir–Lifshitz forces

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  17. Measured long-range repulsive Casimir-Lifshitz forces.

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  18. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  19. Design rules for biomolecular adhesion: lessons from force measurements.

    Leckband, Deborah

    2010-01-01

    Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.

  20. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  1. Measuring Industry Coagglomeration and Identifying the Driving Forces

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  2. Identification of GMS friction model without friction force measurement

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  3. Measuring of beat up force on weaving machines

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  4. Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM

    Wojcikiewicz Ewa P.

    2004-01-01

    Full Text Available We describe the use of atomic force microscopy (AFM in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1/intercellular adhesion molecule-1 (ICAM-1 as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study.

  5. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-01

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  6. Force-velocity measurements of a few growing actin filaments.

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  7. α-Cut method based importance measure for criticality analysis in fuzzy probability – Based fault tree analysis

    Purba, Julwan Hendry; Sony Tjahyani, D.T.; Widodo, Surip; Tjahjono, Hendro

    2017-01-01

    Highlights: •FPFTA deals with epistemic uncertainty using fuzzy probability. •Criticality analysis is important for reliability improvement. •An α-cut method based importance measure is proposed for criticality analysis in FPFTA. •The α-cut method based importance measure utilises α-cut multiplication, α-cut subtraction, and area defuzzification technique. •Benchmarking confirm that the proposed method is feasible for criticality analysis in FPFTA. -- Abstract: Fuzzy probability – based fault tree analysis (FPFTA) has been recently developed and proposed to deal with the limitations of conventional fault tree analysis. In FPFTA, reliabilities of basic events, intermediate events and top event are characterized by fuzzy probabilities. Furthermore, the quantification of the FPFTA is based on fuzzy multiplication rule and fuzzy complementation rule to propagate uncertainties from basic event to the top event. Since the objective of the fault tree analysis is to improve the reliability of the system being evaluated, it is necessary to find the weakest path in the system. For this purpose, criticality analysis can be implemented. Various importance measures, which are based on conventional probabilities, have been developed and proposed for criticality analysis in fault tree analysis. However, not one of those importance measures can be applied for criticality analysis in FPFTA, which is based on fuzzy probability. To be fully applied in nuclear power plant probabilistic safety assessment, FPFTA needs to have its corresponding importance measure. The objective of this study is to develop an α-cut method based importance measure to evaluate and rank the importance of basic events for criticality analysis in FPFTA. To demonstrate the applicability of the proposed measure, a case study is performed and its results are then benchmarked to the results generated by the four well known importance measures in conventional fault tree analysis. The results

  8. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  9. Spin motive forces, 'measurements', and spin-valves

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  10. Model Engine Performance Measurement From Force Balance Instrumentation

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  11. Enclosed Electronic System for Force Measurements in Knee Implants

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  12. Surface contact potential patches and Casimir force measurements

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  13. Friction of ice measured using lateral force microscopy

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  14. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  15. Optical tweezers force measurements to study parasites chemotaxis

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  16. Orthogonal cutting forces in juvenile and mature Pinus taeda wood Forças de corte ortogonal na madeira juvenil e adulta de Pinus taeda

    Raquel Gonçalves

    2005-08-01

    Full Text Available The distinct characteristics of juvenile and mature woods, which are observed particularly in softwoods, have an influence on processing due to their different mechanical resistance properties in relation to cutting operations. In the past, when most of the wood used industrially came from adult trees of natural forests, little importance was given to a distinction between different zones of the tree stem. At present, however, as the supply of mature trees with large diameters from native forests is constantly decreasing, the use of short-cycle trees has become a common practice, through the adoption of species that grow relatively fast, such as pines and eucalyptus. In both softwoods and hardwoods, juvenile wood cells are generally smaller and thinner than in mature wood, and this reflects on their density and mechanical resistance, which should have an effect on the cutting forces developed during processing. The main object of this research was to evaluate orthogonal cutting forces in juvenile and mature Pinus taeda woods. Cutting force magnitude differences were observed for those two regions of the trunk, with parallel cutting forces being 33.4% higher, on average, at the mature wood region for 90-0 cutting, and 12% higher for 90-90 cutting. This result is consistent with the distinct anatomical structures of the material, since the forces developed during machining depend directly upon its properties.As características distintas dos lenhos juvenil e adulto, existentes principalmente na formação das coníferas, influenciam na usinagem devido às diferentes propriedades de resistência mecânica ao corte. No passado, quando a maior parte da madeira utilizada industrialmente era proveniente de árvores adultas de florestas naturais, pouca importância era dada à diferenciação de zonas no tronco. Atualmente, no entanto, com o decréscimo constante do suprimento de árvores adultas de grandes diâmetros, provenientes de florestas nativas

  17. A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment

    Duflot, Nicolas [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: nicolas.duflot@areva.com; Berenguer, Christophe [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: christophe.berenguer@utt.fr; Dieulle, Laurence [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: laurence.dieulle@utt.fr; Vasseur, Dominique [EPSNA Group (Nuclear PSA and Application), EDF Research and Development, 1, avenue du Gal de Gaulle, 92141 Clamart cedex (France)], E-mail: dominique.vasseur@edf.fr

    2009-11-15

    A truncation process aims to determine among the set of minimal cut-sets (MCS) produced by a probabilistic safety assessment (PSA) model which of them are significant. Several truncation processes have been proposed for the evaluation of the probability of core damage ensuring a fixed accuracy level. However, the evaluation of new risk indicators as importance measures requires to re-examine the truncation process in order to ensure that the produced estimates will be accurate enough. In this paper a new truncation process is developed permitting to estimate from a single set of MCS the importance measure of any basic event with the desired accuracy level. The main contribution of this new method is to propose an MCS-wise truncation criterion involving two thresholds: an absolute threshold in addition to a new relative threshold concerning the potential probability of the MCS of interest. The method has been tested on a complete level 1 PSA model of a 900 MWe NPP developed by 'Electricite de France' (EDF) and the results presented in this paper indicate that to reach the same accuracy level the proposed method produces a set of MCS whose size is significantly reduced.

  18. A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment

    Duflot, Nicolas; Berenguer, Christophe; Dieulle, Laurence; Vasseur, Dominique

    2009-01-01

    A truncation process aims to determine among the set of minimal cut-sets (MCS) produced by a probabilistic safety assessment (PSA) model which of them are significant. Several truncation processes have been proposed for the evaluation of the probability of core damage ensuring a fixed accuracy level. However, the evaluation of new risk indicators as importance measures requires to re-examine the truncation process in order to ensure that the produced estimates will be accurate enough. In this paper a new truncation process is developed permitting to estimate from a single set of MCS the importance measure of any basic event with the desired accuracy level. The main contribution of this new method is to propose an MCS-wise truncation criterion involving two thresholds: an absolute threshold in addition to a new relative threshold concerning the potential probability of the MCS of interest. The method has been tested on a complete level 1 PSA model of a 900 MWe NPP developed by 'Electricite de France' (EDF) and the results presented in this paper indicate that to reach the same accuracy level the proposed method produces a set of MCS whose size is significantly reduced.

  19. The formulation of a peer evaluation measure for special forces: operational forces operator traits and attitude questionnaire (SFO-TAQ)

    Van Heerden, A

    2016-11-01

    Full Text Available International Military Testing Association (IMTA) Conference, New Delhi, India, 7-11 November 2016 The formulation of a peer evaluation measure for special forces: operational forces operator traits and attitude questionnaire (SFO-TAQ) Van Heerden A...

  20. Defining Glaucomatous Optic Neuropathy from a Continuous Measure of Optic Nerve Damage - The Optimal Cut-off Point for Risk-factor Analysis in Population-based Epidemiology

    Ramdas, Wishal D.; Rizopoulos, Dimitris; Wolfs, Roger C. W.; Hofman, Albert; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Jansonius, Nomdo M.

    2011-01-01

    Purpose: Diseases characterized by a continuous trait can be defined by setting a cut-off point for the disease measure in question, accepting some misclassification. The 97.5th percentile is commonly used as a cut-off point. However, it is unclear whether this percentile is the optimal cut-off

  1. Development of a shear force measurement dummy for seat comfort.

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  2. Development of a shear force measurement dummy for seat comfort.

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  3. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  4. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  5. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  6. Research of a smart cutting tool based on MEMS strain gauge

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  7. Comparison of setting time measured using ultrasonic wave propagation with saw-cutting times on pavements.

    2015-10-01

    At present, there is little fundamental guidance available to assist contractors in choosing when to schedule saw cuts on joints. To : conduct pavement finishing and sawing activities effectively, however, contractors need to know when a concrete mix...

  8. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    Naser, Nimal; Singh, Eshan; Ahmed, Ahfaz; Sarathy, Mani

    2017-01-01

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better

  9. Localization of fluctuation measurement by wave scattering close to a cut off layer

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  10. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  11. Diameter measurements of polystyrene particles with atomic force microscopy

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  12. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  13. Automatic registration method for multisensor datasets adopted for dimensional measurements on cutting tools

    Shaw, L; Mehari, F; Weckenmann, A; Ettl, S; Häusler, G

    2013-01-01

    Multisensor systems with optical 3D sensors are frequently employed to capture complete surface information by measuring workpieces from different views. During coarse and fine registration the resulting datasets are afterward transformed into one common coordinate system. Automatic fine registration methods are well established in dimensional metrology, whereas there is a deficit in automatic coarse registration methods. The advantage of a fully automatic registration procedure is twofold: it enables a fast and contact-free alignment and further a flexible application to datasets of any kind of optical 3D sensor. In this paper, an algorithm adapted for a robust automatic coarse registration is presented. The method was originally developed for the field of object reconstruction or localization. It is based on a segmentation of planes in the datasets to calculate the transformation parameters. The rotation is defined by the normals of three corresponding segmented planes of two overlapping datasets, while the translation is calculated via the intersection point of the segmented planes. First results have shown that the translation is strongly shape dependent: 3D data of objects with non-orthogonal planar flanks cannot be registered with the current method. In the novel supplement for the algorithm, the translation is additionally calculated via the distance between centroids of corresponding segmented planes, which results in more than one option for the transformation. A newly introduced measure considering the distance between the datasets after coarse registration evaluates the best possible transformation. Results of the robust automatic registration method are presented on the example of datasets taken from a cutting tool with a fringe-projection system and a focus-variation system. The successful application in dimensional metrology is proven with evaluations of shape parameters based on the registered datasets of a calibrated workpiece. (paper)

  14. The use of cutting temperature to evaluate the machinability of titanium alloys.

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  15. High Speed Blanking: An Experimental Method to Measure Induced Cutting Forces

    GAUDILLIERE , Camille; Ranc , Nicolas; LARUE , Arnaud; MAILLARD , A; Lorong , Philippe

    2013-01-01

    Lien vers la version éditeur: http://link.springer.com/article/10.1007/s11340-013-9738-1; International audience; A new blanking process that involves punch speed up to 10 ms −1 has obvious advantages in increased productivity. However, the inherent dynamics of such a process makes it difficult to develop a practical high speed punch press. The fracture phenomenon governing the blanking process has to be well understood to correctly design the machine support and the tooling. To observe this ...

  16. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  17. Measurement of current drive profile using electron cyclotron wave attenuation near the O-mode cut-off

    Fidone, I.

    1991-01-01

    A method for determining the radial profile of the lower-hybrid current drive in tokamaks uing electron-cyclotron attenuation of the O-mode for frequencies ω near the cut-off frequency is discussed. The basic idea is that for a given wave frequency, the cut-off plays the role of a spatial filter selecting a variable portion of the non-inductive current. It is shown that the incremental attenuation resulting from a small increase of ω displays specific features related to the current density near the cut-off point. Using the relation between the wave damping and the current density it is possible to determine the radial profile of the current drive from the wave attenuation measurements. A numerical application is also presented for plasma parameters in the reactor regime

  18. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  19. The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a Screening Tool.

    Bastiaens, Leo; Galus, James

    2018-03-01

    The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure was developed to aid clinicians with a dimensional assessment of psychopathology; however, this measure resembles a screening tool for several symptomatic domains. The objective of the current study was to examine the basic parameters of sensitivity, specificity, positive and negative predictive power of the measure as a screening tool. One hundred and fifty patients in a correctional community center filled out the measure prior to a psychiatric evaluation, including the Mini International Neuropsychiatric Interview screen. The above parameters were calculated for the domains of depression, mania, anxiety, and psychosis. The results showed that the sensitivity and positive predictive power of the studied domains was poor because of a high rate of false positive answers on the measure. However, when the lowest threshold on the Cross-Cutting Symptom Measure was used, the sensitivity of the anxiety and psychosis domains and the negative predictive values for mania, anxiety and psychosis were good. In conclusion, while it is foreseeable that some clinicians may use the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a screening tool, it should not be relied on to identify positive findings. It functioned well in the negative prediction of mania, anxiety and psychosis symptoms.

  20. Introduction and evaluation of DSM-5 cross-cutting symptom measures%DSM-5跨界症状量表评介

    李园园; 张红霞; 季建林

    2017-01-01

    The DSM-5 cross-cutting symptom measures were developed by the DSM-5 Task Force and Work Groups to serve as a "review of mental systems" in each patient who presents for mental health evaluation and treatment.The cross-cutting symptom measures have two levels.Level 1 questions are a brief survey for adult patients and for child and adolescent patients.Level 2 questions provide a more in depth assessment of certain domains.The comprehensive symptoms could be evaluated through the objective assessment other than symptoms fit nearly into the diagnostic criteria.The following are briefly introduced.%跨界症状量表(cross-cutting symptom measures)是由DSM-5工作组制定的一组精神症状评定量表.该套量表包括用于多维评估的一级跨界症状量表和用于深入评估单一维度症状的一套二级跨界量表.两个级别的量表均有三种不同的版本:成人自评版本、儿童/青少年自评版本以及父母/监护人他评版本.通过评估,可全面客观地了解患者的症状特征,而不仅仅限于诊断标准所列的症状.本文简要介绍该组量表,及其测量特征、优势、不足、需要进一步发展的方面等.

  1. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    Gutierrez, Leonardo; Nguyen, Thanh H.

    2012-01-01

    M, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation

  2. Measuring microscopic forces and torques using optical tweezers

    Mc

    2009-07-01

    Full Text Available stream_source_info McLaren_2009.pdf.txt stream_content_type text/plain stream_size 2976 Content-Encoding UTF-8 stream_name McLaren_2009.pdf.txt Content-Type text/plain; charset=UTF-8 Measuring microscopic forces... and torques using optical tweezers M.G. McLaren1,2, A. Forbes2,3,4 and E. Sideras-Haddad2 1 CSIR National Laser Centre 2 School of Physics, University of Witwatersrand 3 School of Physics, University of KwaZulu-Natal 4 School of Physics, University...

  3. Study of heat generation and cutting force according to minimization of grain size (500 nm to 180 nm) of WC ball endmill using FEM

    Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.

    2018-03-01

    As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.

  4. Transcutaneous oxygen pressure measurement in diabetic foot ulcers: mean values and cut-point for wound healing.

    Yang, Chuan; Weng, Huan; Chen, Lihong; Yang, Haiyun; Luo, Guangming; Mai, Lifang; Jin, Guoshu; Yan, Li

    2013-01-01

    The purpose of this study was to investigate mean values and cut-point of transcutaneous oxygen pressure (TcPO2) measurement in patients with diabetic foot ulcers. Prospective, descriptive study. Sixty-one patients with diabetes mellitus and foot ulcers comprised the sample. The research setting was Sun Yat-sen Memorial Hospital of SunYat-sen University, Guangzhou, China. Participants underwent transcutaneous oxygen (TcPO2) measurement at the dorsum of foot. Patients were classified into 3 groups according to clinical outcomes: (1) ulcers healed with intact skin group, (2) ulcer improved, and (3) ulcer failed to improve. TcPO2 was assessed and cut-points for predicting diabetic foot ulcer healing were calculated. Thirty-six patients healed with intact skin, 8 experienced improvement, and 17 showed no improvement. Mean TcPO2 levels were significantly higher (Pfoot ulcers. In contrast, all patients with TcPO2≥ 40 mmHg achieved wound closure. Measurement of TcPO2 in the supine position revealed a cut-point value of 25 mmHg as the best threshold for predicting diabetic foot ulcer healing; the area under the curve using this cut-point was 0.838 (95% confidence interval = 0.700-0.976). The sensitivity, specificity, positive predictive value, and negative predictive value for TxPO2 were 88.6%, 82.4%, 90.7%, and 72.2%, respectively. TcPO2≥ 40 mmHg was associated with diabetic foot ulcer healing, but a TcPO2≤ 10 mmHg was associated with failure of wound healing. We found that a cut-point of 25 mmHg was most predictive of diabetic foot ulcer healing.

  5. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Wagner, Ryan; Raman, Arvind; Moon, Robert; Pratt, Jon; Shaw, Gordon

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7–20 GPa. A key result is that multiple replicates of force–distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  6. Force Measurement with a Piezoelectric Cantilever in a Scanning Force Microscope

    Tansock, J.; Williams, C. C.

    1992-01-01

    Detection of surface forces between a tip and sample has been demonstrated with a piezoelectric cantilever in a scanning force microscope (SFM). The use of piezoelectric force sensing is particularly advantageous in semiconductor applications where stray light from conventional optical force-sensing methods can significantly modify the local carrier density. Additionally, the piezoelectric sensors are simple, provide good sensitivity to force, and can be batch fabricated. Our piezoelectric fo...

  7. Measuring the State-of-the-Art in Laser Cut Quality

    Pocorni, Jetro; Powell, John; Ilar, Torbjörn; Schwarz, A.; Kaplan, Alexander

    2013-01-01

    This paper discusses the strategy appropriate to investigating the state of the art of laser cutting from an industrial point of view. The importance of creating the samples in a high quality industrial environment is emphasised and preliminary results are presented.

  8. Fast tomographic measurements of temperature in an air plasma cutting torch

    Hlína, Jan; Šonský, Jiří; Gruber, Jan; Cressault, Y.

    2016-01-01

    Roč. 49, č. 10 (2016), č. článku 105202. ISSN 0022-3727 Institutional support: RVO:61388998 Keywords : air plasma * cutting torch * tomography Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016

  9. Cutting state identification

    Berger, B.S.; Minis, I.; Rokni, M.

    1997-01-01

    Cutting states associated with the orthogonal cutting of stiff cylinders are identified through an analysis of the singular values of a Toeplitz matrix of third order cumulants of acceleration measurements. The ratio of the two pairs of largest singular values is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter states. Sequences of cutting experiments were performed in which either depth of cut or turning frequency was varied. Two sequences of experiments with variable turning frequency and five with variable depth of cut, 42 cutting experiments in all, provided a database for the calculation of third order cumulants. Ratios of singular values of cumulant matrices find application in the analysis of control of orthogonal cutting

  10. Experimental study of the process of cutting of sugarcane bagasse

    Arzolaa, Nelson; Garcia, Joyner

    2015-01-01

    Biomass densification has encouraged significant interest around the world as a technique for utilization of agro and forest residues as an energy source, and pellets/briquettes production has grown rapidly in last few years. The cutting process is one of the most important steps for biomass preparation prior densification. This stage helps to homogenize the raw material and therefore facilitate handling, feeding and filling in the briquetting equipment. The aim of this work was to study the behavior of sugarcane bagasse submitted to cutting, as a function of its moisture content, angle of the blade edge and cutting speed. The specific cutting energy and peak cutting force were measure using an experimental facility developed for this series of experiments. An analysis of the results of the full factorial experimental design using a statistical analysis of variance (ANOVA) was performed. The response surfaces and empirical models for the specific cutting energy and peak cutting force were obtained using statistical analysis system software. Low angle of the blade edge and low moisture content are, in this order, the most important experimental factors in determining a low specific cutting energy and a low peak cutting force respectively. The best cutting conditions are achieved for an angle of blade edge of 20.8° and a moisture content of 10% w. b. The results of this work could contribute to the optimal design of sugarcane bagasse pre-treatment systems. (full text)

  11. Tomographic Measurements of Temperature Fluctuations in an Air Plasma Cutting Torch

    Hlína, Jan; Šonský, Jiří; Gruber, Jan

    2017-01-01

    Roč. 37, č. 3 (2017), s. 689-699 ISSN 0272-4324 Institutional support: RVO:61388998 Keywords : cutting arc * air plasma * tomography Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 http://link.springer.com/ article /10.1007%2Fs11090-017-9794-x

  12. Measurement of Temperature in the Steam Arcjet During Plasma Arc Cutting

    Mašláni, Alan; Sember, Viktor; Stehrer, T.; Pauser, H.

    2013-01-01

    Roč. 33, č. 3 (2013), s. 593-604 ISSN 0272-4324 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Plasma arc cutting * Optical emission spectroscopy * Plasma temperature * Steam torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.599, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11090-013-9443-y.pdf

  13. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  14. Incontinence and trauma: sexual violence, female genital cutting and proxy measures of gynecological fistula.

    Peterman, Amber; Johnson, Kiersten

    2009-03-01

    Obstetric fistula, characterized by urinary or fecal incontinence via the vagina, has begun to receive attention on the international public health agenda, however less attention has been given to traumatic fistula. Field reports indicate that trauma contributes to the burden of vaginal fistula, especially in regions wrought by civil unrest, however evidence is largely anecdotal or facility-based. This paper specifically examines the co-occurrence of incontinence and two potential sources of trauma: sexual violence and female genital cutting using the most recent Demographic and Health Surveys in Malawi, Rwanda, Uganda and Ethiopia. Multivariate selection models are used to control for sampling differences by country. Results indicate that sexual violence is a significant determinant of incontinence in Rwanda and Malawi, however not in Uganda. Simulations predict that elimination of sexual violence would result in from a 7 to a 40% reduction of the total burden of incontinence. In contrast, no evidence is found that female genital cutting contributes to incontinence and this finding is robust for types of cutting and high risk samples. Results point to the importance of reinforcing prevention programs which seek to address prevention of sexual violence and for the integration of services to better serve women experiencing both sexual violence and incontinence.

  15. A new cylindrical capacitance sensor for measurement of water cut in a low-production horizontal well

    Liu Xingbin; Hu Jinhai; Xie Zhonglin; Li Yiwei; Xu Wenfeng; Xu Lijun

    2009-01-01

    In a horizontal well with low flow rate, oil-water two-phase flow is stratified due to gravity. For measuring water cut accurately in a low-production horizontal well, a novel cylindrical capacitance sensor is proposed in this paper. The structure of the sensor is cylindrical and hollow with multi-layer structure which is consisted of inside insulation layer, electrode layer, outside insulation layer and metal casing from inside to outside. And the measurement principle is analyzed in this paper. The mathematical model is established, which shows that theoretically, there is a good relationship between the sensor response and water holdup. The response curve is monotone and the sensor has a good resolution and a high sensitivity in the whole range of water holdup. The electric field of cylindrical capacitance sensor was simulated respectively by using ANSYS software when the sensor is filled with pure water, pure oil and oil-water mixture. The results of the simulation are consistent with the mathematical model. Static experiments with the sensor filled with oil-water mixture were conducted finally. The results have verified the theoretical analysis and show that the proposed sensor is a viable solution to measuring water cut in a low-production horizontal well. Cylindrical capacitance sensor provides a good reference for the water cut in low-production horizontal well and has a good application prospect.

  16. Prototype to measure bracket debonding force in vivo

    Jéssika Lagni Tonus

    Full Text Available ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15, debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15. A universal testing machine was used for the second group. The adhesive remnant index (ARI was recorded. Results: According to Student’s t test (α = 0.05, Group 1 (2.96 MPa and Group 2 (3.08 MPa were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  17. Prototype to measure bracket debonding force in vivo

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-01-01

    ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011

  18. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  19. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  20. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  1. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  2. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  3. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  4. Electromotive force measurement of lanthanides in Bi solution

    Sheng, Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The thermodynamic properties of Tb, Dy and Ho dissolved in liquid Bi were determined by the electromotive force (EMF) measurement method. The EMF of the following galvanic cell was measured in the range of 500-800degC over a wide range of solute concentration. Ln(solid)|KCl-LiCl|Ln-Bi (solution) There was observed a linear relationship between the EMFs and the lanthanide (Ln) concentrations in liquid Bi phase at a constant temperature, which agreed with the Nernst's equation. The obtained activity coefficients of lanthanides in liquid Bi solution were almost constant at a fixed temperature condition. Temperature effects on the activity coefficients could be expressed by the following equation: log γ=a+b/T, where a and b are experimental constants which correspond to the entropy and enthalpy of the formation of Ln-Bi compound in the melt, respectively. The thermodynamic quantities obtained were discussed in terms of their systematics along the 4f series. (author)

  5. Measurement of Forces and Moments Transmitted to the Residual Limb

    2010-10-01

    Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...to produce noticeable pressure for level walking, going up stairs , up ramps, walking in a circle with the prosthetic foot inside and outside, and...0.3 Up Stairs Notch Throug hout 0.5 Notch Throug hout 0.3 Down Stairs Distal Tibia Popliteal Throughout Throughout 1 1 Distal Tibia Throughout

  6. A correction scheme for thermal conductivity measurement using the comparative cut-bar technique based on 3D numerical simulation

    Xing, Changhu; Folsom, Charles; Jensen, Colby; Ban, Heng; Marshall, Douglas W

    2014-01-01

    As an important factor affecting the accuracy of thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is primarily due to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize the uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars. (paper)

  7. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  8. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  9. Exploring Heat Stress Relief Measures among the Australian Labour Force

    Kerstin K. Zander

    2018-02-01

    Full Text Available Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%, 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected

  10. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    Fiori, F

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (ten...

  11. Measurement of the tensile forces during bone lengthening.

    Ohnishi, Isao; Kurokawa, Takahide; Sato, Wakyo; Nakamura, Kozo

    2005-05-01

    The purpose of this study was to investigate the effects of lengthening frequency on mechanical environment in limb lengthening. Tensile forces were continuously monitored using a load sensor attached to a unilateral external fixator. Twenty patients were monitored. Ten patients were with acquired femoral shortening, and five of them underwent quasi-continuous lengthening of 1440 steps per day, and the other five received step lengthening twice a day. The other 10 patients were with achondropalsia. Five of them underwent the same quasi-continuous lengthening, and the other five received the same step lengthening. The circadian change and the daily course of the tensile forces were assessed and compared between quasi-continuous lengthening and step lengthening. As for circadian change, an acute increase in the force took place simultaneously with each step of lengthening in the step-lengthening group, but very little change of the baseline force level was seen during quasi-continuous lengthening. As for daily course of the tensile force, it increased almost linearly in both lengthening frequency groups in the initial stage of lengthening. No significant difference of the average force increment rate in this phase was recognized between the quasi-continuous and step lengthening groups irrespective of the etiologies. The lengthening frequency greatly affected the circadian change of the tensile force, but did not affect the increment rate of the force in the linear phase.

  12. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.

    Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon

    2018-01-01

    The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  14. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  15. Depletion interaction measured by colloidal probe atomic force microscopy

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  16. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  17. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  18. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  19. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  20. Interrupted orthodontic force results in less root resorption than continuous force in human premolars as measured by microcomputed tomography.

    Sawicka, Monika; Bedini, Rossella; Wierzbicki, Piotr M; Pameijer, Cornelis H

    2014-01-01

    Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p root structure as opposed to continuous force while the same tooth movement was achieved.

  1. Development programs of cutting-edge technologies for measurement and detection of nuclear material for safeguards and security

    Seya, Michio; Wakabayashi, Shuji; Naoi, Yosuke; Ohkubo, Michiaki; Senzaki, Masao

    2011-01-01

    The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security ('ISCN', hereafter) of Japan Atomic Energy Agency (JAEA) has development programs of cutting-edge technologies for measurement and detection of nuclear materials for nuclear safeguards and security, under the sponsorship of Japanese government (MEXT: Ministry of Education, Culture, Sports, Science and Technology). ISCN started development programs of the following technologies this year. (1) NRF (Nuclear Resonance Fluorescence) NDA technology using laser Compton scattering (LCS) gamma-rays, (2) Alternative to 3 He neutron detection technology using inorganic solid scintillator. ISCN is also going to conduct a demonstration test of a spent fuel Pu-NDA system that is to be developed by LANL (Los Alamos National Laboratory) using very sophisticated neutron measurement technologies, under JAEA/USDOE cooperation agreement. This presentation shows the above programs of ISCN. (author)

  2. Determination of cut front position in laser cutting

    Pereira, M; Thombansen, U

    2016-01-01

    Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable. (paper)

  3. Determination of cut front position in laser cutting

    Pereira, M.; Thombansen, U.

    2016-07-01

    Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable.

  4. Forced excitation and active control for the measurement of fluid-elastic forces

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  5. Randomly forced CGL equation stationary measures and the inviscid limit

    Kuksin, S

    2003-01-01

    We study a complex Ginzburg-Landau (CGL) equation perturbed by a random force which is white in time and smooth in the space variable~$x$. Assuming that $\\dim x\\le4$, we prove that this equation has a unique solution and discuss its asymptotic in time properties. Next we consider the case when the random force is proportional to the square root of the viscosity and study the behaviour of stationary solutions as the viscosity goes to zero. We show that, under this limit, a subsequence of solutions in question converges to a nontrivial stationary process formed by global strong solutions of the nonlinear Schr\\"odinger equation.

  6. Performance, body measurements, carcass and cut yields, and meat quality in lambs fed residues from processing agroindustry of fruits

    Darcilene Maria de Figueiredo

    2015-02-01

    Full Text Available This research was conducted with the objective to evaluate the use of residue dry matter (DM from pineapple (Ananas comosus L., banana (Musa sp., mango (Mangifera indica and passion fruit (Passiflora spp. in feeding of the feedlot on productive performance, carcass yield and qualitative and quantitative characteristics of meat. Twenty-five crossbred lamps with Santa Inês breed and mixed breed were used. The treatments consisted of the replacement of 75% of sorghum silage by respective residue DM, whereas in the control treatment forage had only sorghum silage the diets had a houghageto- concentrate ratio of 40:60 interns of DM being isonitrogenous and isoenergetics. The animals were slaughtered at 32 kg liveweight. Before slaughter were obtained biometric measurements, after the same, was performed the hot carcasses weight and morphometric measurements. After 24 hours in a cold chamber at 4 ° C, was determined the cold carcass weight and yield calculation. The left half carcass was divided into five sections: neck, shoulder, shank, rib and loin, by performing the calculation of income cuts. Analyses meat quality such as pH, color (L, a, b, chroma and Ho, by cooking weight loss, water retention capacity and shear strength were carried out in the Longissimus dorsi sample. The completely randomized design was adapted. The data were interpreted using analysis of variance with the test a Tukey 5% probability. There was no effect of diet (P> 0.05 according to the parameters: growth performance, body measurements, and meat quality of lambs. There was also no effect of the diets (P> 0.05 on the loin eye area assuming that carcasses remained similar muscularity important fact to market acceptance standard. It is concluded that replacing up to 75% of sorghum silage by residues fruit (pineapple, banana, mango and passion fruit in lambs feeding becomes feasible not to change the productive performance, body measurements, yields carcass and cuts and meat

  7. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  8. The electrical double layer on gold probed by electrokinetic and surface force measurements

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  9. The big shift: measuring the forces of change

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impact...

  10. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  11. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  12. Performance Testing of Cutting Fluids

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  13. Orthogonal cutting of laser beam melted parts

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  14. Cutting cleaner

    Elsen, R.P.H. van; Smits, M.

    1991-01-01

    This paper presents the results of a long term field test of the Cutting Cleaner, which is used for the treatment of wet oil contaminated cuttings (WOCC) produced when drilling with Oil Based Mud (OBM). It was concluded that it is possible to reduce the oil content of cuttings to an average of 1 - 2%. The recovered base oil can be reused to make new oil based mud

  15. Quantum limited force measurement in a cavityless optomechanical system

    Fermani, Rachele; Mancini, Stefano; Tombesi, Paolo

    2004-01-01

    We study the possibility of revealing a weak coherent force by using a pendular mirror as a probe, and coupling this to a radiation field, which acts as the meter, in a cavityless configuration. We determine the sensitivity of such a scheme and show that the use of an entangled meter state greatly improves the ultimate detection limit. We also compare this scheme with that involving an optical cavity

  16. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  17. An Experimental Study of Cutting Performances of Worn Picks

    Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil

    2016-01-01

    The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.

  18. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  19. Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films

    Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.

    2011-06-01

    Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.

  20. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    C. Spirig

    2010-02-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m−2 s−1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  1. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  2. Force sensor for measuring power transfer between the human body and the environment

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  3. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  4. Measurement and characterization of lift forces on drops and bubbles in microchannels

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  5. Paper Cuts.

    Greene, Lisa A.

    1990-01-01

    Describes how to create paper cuts and suggests the most appropriate materials for young children that give good quality results. Describes the methods the author, a professional artist, uses to assemble her own paper cuts and how these can be adopted by older students. (KM)

  6. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  7. Fiber Bragg grating sensor for simultaneous measurement of temperature and force using polymer open loop

    Huang, Yonglin; Zhang, Shiyan

    2014-07-01

    A fiber Bragg grating (FBG) sensor for simultaneous measurement of temperature and force is proposed and demonstrated. Where a part of uniform FBG (about one half length of an FBG) is attached on the polymer open loop, the FBG is divided into two parts which has an equal length. So the two parts can be regarded as two FBGs. Because of the difference of the Young's modulus and the thermal expansion coefficients for two parts of the FBG, the two Bragg reflection wavelengths are shift when the temperature and force are applied on the sensor. Simultaneous measurement of temperature and force is demonstrated experimentally. The experimental results show that the linear response to temperature and force are achieved. The value of applied temperature and force can be obtained from the two Bragg wavelength shift via the coefficient matrix. This study provides a simple and economical method to measure temperature and force simultaneously.

  8. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-01-01

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types

  9. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  10. Chip science: Basic study of the single-point cutting process

    Donaldson, R.R.; Riddle, R.A.; Syn, C.K.; Taylor, J.S.

    1986-01-01

    Wear that diamond tools sustain during the cutting of electroless nickel (eNi) has been measured. Wear was detected at previously unattained levels, down to 100 A, and it was found that the tool wear resulted in a burnishing action after a relatively short cutting distance. To provide a more direct connection between computer-based modeling and experimental measurements, macroscopic cutting tests on a well-characterized aluminum material were also performed. The results showed good agreement between calculated and measured cutting forces

  11. Method to measure the force to pull and to break pin bones of fish.

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  12. A simple mechanism for measuring and adjusting distraction forces during maxillary advancement.

    Suzuki, Eduardo Yugo; Suzuki, Boonsiva

    2009-10-01

    Direct measurement of distraction forces on the craniofacial skeleton has never been reported. The present report describes the development of a method of assessing and adjusting traction forces applied through maxillary distraction osteogenesis. A simple mechanism to measure and adjust tension force during maxillary distraction osteogenesis was developed and connected bilaterally to the traction screws of a rigid external distraction device. Measurements were carried out before and after activation using a Shimpo (Nidec-Shimpo America Corporation, Itasca, IL) force gauge in 4 patients (2 with unilateral cleft lip and/or palate, 1 with bilateral cleft lip and palate, and 1 with noncleft) during the distraction process. Activation was performed twice a day at a rate of 1 mm/day. The average maximum force applied throughout the distraction period was 42.5 N (range 16.4 to 65.3 N), with increments, after activation, averaging 10.5 N (range 7.9 to 15.7 N). In patients with unilateral cleft lip and/or palate, distraction forces on the larger segment were 65.1% higher than on the lesser segment. A differential pattern of forces was also observed in the patients with asymmetric noncleft. However, the differential forces between lateral segments were not observed in the patient with bilateral cleft lip and palate. During the activation period, distraction forces progressively increased, whereas the amount of maxillary movement decreased. Pain and discomfort were reported with high forces. Through this mechanism, direct measurement and adjustment of distraction forces during maxillary advancement was possible. The unbalanced pattern of forces observed in patients with cleft suggests the necessity of individual adjustments for controlling pain and clinical symptoms. Accordingly, assessment of distraction forces during maxillary distraction osteogenesis is extremely helpful in understanding the biomechanics of the distraction process.

  13. Measuring the elasticity of plant cells with atomic force microscopy.

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An Investigation of Reaming Test Parameters Used for Cutting Fluid Evaluations

    De Chiffre, Leonardo; Zeng, Z.; Belluco, Walter

    2001-01-01

    It has been suggested that the lubricating efficiency of cutting fluids can be assessed using a reaming test that measures cutting forces and surface roughness. In the present work, an investigation was undertaken to ream austenitic stainless steel using water based fluids and to evaluate...

  15. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  16. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Zhang, Tianqi; Peng, Wei; Shen, Ke; Yu, Suyuan

    2015-01-01

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  17. The design and implementation of a windowing interface pinch force measurement system

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  18. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  19. Experiment to measure the gravitational force on the antiproton

    Brown, R.E.

    1985-01-01

    A collaboration has been formed to measure the acceleration of antiprotons in the earth's gravitational field. The technique is to produce, decelerate, and trap quantities of antiprotons, to cool them to untralow energy, and to measure their acceleration in a time-of-flight experiment. Present plans and the results of initial efforts toward this end are presented

  20. An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 1 experimental study

    Xing, Changhu

    2014-01-01

    In the guarded cut-bar technique, a guard surrounding the measured sample and reference (meter) bars is temperature controlled to carefully regulate heat losses from the sample and reference bars. Guarding is typically carried out by matching the temperature profiles between the guard and the test stack of sample and meter bars. Problems arise in matching the profiles, especially when the thermal conductivities of the meter bars and of the sample differ, as is usually the case. In a previous numerical study, the applied guarding condition (guard temperature profile) was found to be an important factor in measurement accuracy. Different from the linear-matched or isothermal schemes recommended in literature, the optimal guarding condition is dependent on the system geometry and thermal conductivity ratio of sample to meter bar. To validate the numerical results, an experimental study was performed to investigate the resulting error under different guarding conditions using stainless steel 304 as both the sample and meter bars. The optimal guarding condition was further verified on a certified reference material, pyroceram 9606, and 99.95% pure iron whose thermal conductivities are much smaller and much larger, respectively, than that of the stainless steel meter bars. Additionally, measurements are performed using three different inert gases to show the effect of the insulation effective thermal conductivity on measurement error, revealing low conductivity, argon gas, gives the lowest error sensitivity when deviating from the optimal condition. The result of this study provides a general guideline for the specific measurement method and for methods requiring optimal guarding or insulation

  1. Laser Cutting of Thin Nickel Bellows

    Butler, C. L.

    1986-01-01

    Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.

  2. Precision measurement of the Casimir-Lifshitz force in a fluid

    Munday, J. N.; Capasso, Federico

    2007-01-01

    The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory

  3. Wet cutting

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  4. Cutting assembly

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  5. Circular Hough Transform and Local Circularity Measure for Weight Estimation of a Graph-Cut based Wood Stack Measurement

    Galsgaard, Bo; Lundtoft, Dennis Holm; Nikolov, Ivan Adriyanov

    2015-01-01

    are finally scaled and used to acquire the necessary wood stack measurements in real-world scale (in cm). The proposed system, which works automatically, has been tested on two different datasets, containing real outdoor images of logs which vary in shapes and sizes. The experimental results show......One of the time consuming tasks in the timber industry is the manually measurement of features of wood stacks. Such features include, but are not limited to, the number of the logs in a stack, their diameters distribution, and their volumes. Computer vision techniques have recently been used...... for solving this real-world industrial application. Such techniques are facing many challenges as the task is usually performed in outdoor, uncontrolled, environments. Furthermore, the logs can vary in texture and they can be occluded by different obstacles. These all make the segmentation of the wood logs...

  6. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  7. an extended octagonal ring dynamometer for measurement of forces

    NIJOTECH

    The analysis, design, construction, evaluation and use of an extended octagonal ring dynamometer for ... For tillage applications, it has been used ..... confirmed that the dynamometer and the measurement system were capable of indicating.

  8. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  9. Application of response surface methodology for determining cutting ...

    The results indicate that the depth of cut is the dominant factor affecting cutting ... between forces and cutting regime could be represented by power function type ..... CNEPRU Research Project, CODE : 0301520090008 (University of Guelma).

  10. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  11. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal, E-mail: michal.borkovec@unige.ch [Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1205 Geneva (Switzerland); Popescu, Mihail N. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  12. Flux cutting in superconductors

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  13. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  14. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  15. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  16. Aspects of scanning force microscope probes and their effects on dimensional measurement

    Yacoot, Andrew [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Koenders, Ludger [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)], E-mail: andrew.yacoot@npl.co.uk

    2008-05-21

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  17. TOPICAL REVIEW: Aspects of scanning force microscope probes and their effects on dimensional measurement

    Yacoot, Andrew; Koenders, Ludger

    2008-05-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.

  18. Aspects of scanning force microscope probes and their effects on dimensional measurement

    Yacoot, Andrew; Koenders, Ludger

    2008-01-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  19. Time, tire measurements forces and moments: a new standard for steady state cornering tyre testing

    Oosten, J.J.M. van; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colinot, J.P.

    1999-01-01

    In order to develop vehicles which have maximum active safety, car manufacturers need information about the so-called force and moment properties of tyres. Vehicle manufacturers, tyre suppliers and automotive research organisations have advanced test equipment to measure the forces between a tyre

  20. The application of magnetic force differentiation for the measurement of the affinity of peptide libraries

    Shang Hao; Kirkham, Perry M.; Myers, Tina M.; Cassell, Gail H.; Lee, Gil U.

    2005-01-01

    A new method has been developed for measuring the binding affinity of phage displayed peptides and a target protein using magnetic particles. The specific interaction between the phage displayed peptides and the target protein was subject to a force generated by the magnetic particle. The binding affinity was obtained by analyzing the force-bond lifetime

  1. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  2. Stresses in ultrasonically assisted bone cutting

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  3. Effects of Different Cutting Patterns and Experimental Conditions on the Performance of a Conical Drag Tool

    Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre

    2017-06-01

    This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.

  4. Measurement of two-phase flow momentum with force transducers

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs

  5. Measurement of Forces and Moments Transmitted to the Residual Limb

    2009-08-01

    alignment of a prosthesis. Walking speed and cadence will be measured during the baseline conditions and a metronome will be used to help subjects...reproduced and you will be allowed to walk with your original alignment briefly to refresh your memory on how it feels. A metronome may be used to...speed and compare the maximum pressures to those in activity A (A metronome will be used to help you establish a cadence that is 10% - 15% faster than

  6. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    Marti, Othmar; Holzwarth, Michael; Beil, Michael

    2008-01-01

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells

  7. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    Marti, Othmar; Holzwarth, Michael [Institute of Experimental Physics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine, Ulm University, D-89069 Ulm (Germany)], E-mail: othmar.marti@uni-ulm.de, E-mail: michael.holzwarth@uni-ulm.de, E-mail: michael.beil@uni-ulm.de

    2008-09-24

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells.

  8. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  10. Thermophoretic forces on DNA measured with a single-molecule spring balance

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement ....... We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis.......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  11. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  12. A levitation force and magnetic field distribution measurement system in three dimensions

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  13. Tubing and cable cutting tool

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  14. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Measurement of Normal and Friction Forces in a Rolling Process

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  16. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  17. Measurement of Multiple Vitamin K Forms in Processed and Fresh-Cut Pork Products in the U.S. Food Supply.

    Fu, Xueyan; Shen, Xiaohua; Finnan, Emily G; Haytowitz, David B; Booth, Sarah L

    2016-06-08

    Vitamin K food composition data have historically been limited to plant-based phylloquinone (vitamin K1). The purpose of this study was to expand analysis of vitamin K to animal products and to measure phylloquinone and 10 forms of menaquinones (vitamin K2) in processed and fresh-cut pork products. Nationally representative samples of processed pork products (n = 28) were obtained through USDA's National Food and Nutrition Analysis Program, and fresh pork (six cuts; n = 5 per cut) and bacon (n = 4) were purchased from local retail outlets. All samples were analyzed by high-performance liquid chromatography (phylloquinone and menaquinone-4) and atmospheric-pressure chemical ionization-liquid chromatography-mass spectrometry (menaquinone-5 to menaquinone-13). Although low in phylloquinone (processed pork products and fresh pork cuts contained menaquinone-4, menaquinone-10, and menaquinone-11 (range: [35.1 ± 11.0]-[534 ± 89.0] μg of menaquinones per 100 g). The total menaquinone contents of processed pork products were correlated with fat contents (r = 0.935). In summary, processed and fresh-cut pork products are a rich dietary source of menaquinones that are currently unaccounted for in assessment of vitamin K in the food supply.

  18. A little off the top. While overall healthcare hiring is up, some health systems are being forced to cut jobs, workers and find other savings.

    Evans, Melanie

    2008-06-02

    Despite the oft-repeated theory that the healthcare industry is "recession-proof," some systems have found themselves resorting to layoffs and budget cuts during the current economic downturn. Lee Memorial Health System CFO John Wiest, left, said that the system is dealing with reduced operating income and net volume, and it has trimmed 415 jobs through attrition.

  19. Digital design and fabrication of simulation model for measuring orthodontic force.

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  20. Design and testing of an innovative measurement device for tyre-road contact forces

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  1. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  2. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  3. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  4. Cutting Cosmos

    Mikkelsen, Henrik Hvenegaard

    For the first time in over 30 years, a new ethnographic study emerges on the Bugkalot tribe, more widely known as the Ilongot of the northern Philippines. Exploring the notion of masculinity among the Bugkalot, Cutting Cosmos is not only an experimental, anthropological study of the paradoxes...... around which Bugkalot society revolves, but also a reflection on anthropological theory and writing. Focusing on the transgressive acts through which masculinity is performed, this book explores the idea of the cosmic cut, the ritual act that enables the Bugkalot man to momentarily hold still the chaotic...

  5. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  6. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

    Juan V. Escobar

    2017-04-01

    Full Text Available We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  7. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  8. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  9. Instrumented figure skating blade for measuring on-ice skating forces

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  10. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  11. Measuring lip force by oral screens. Part 1: Importance of screen size and individual variability.

    Wertsén, Madeleine; Stenberg, Manne

    2017-06-01

    To reduce drooling and facilitate food transport in rehabilitation of patients with oral motor dysfunction, lip force can be trained using an oral screen. Longitudinal studies evaluating the effect of training require objective methods. The aim of this study was to evaluate a method for measuring lip strength, to investigate normal values and fluctuation of lip force in healthy adults on 1 occasion and over time, to study how the size of the screen affects the force, to evaluate the most appropriate measure of reliability, and to identify force performed in relation to gender. Three different sizes of oral screens were used to measure the lip force for 24 healthy adults on 3 different occasions, during a period of 6 months, using an apparatus based on strain gauge. The maximum lip force as evaluated with this method depends on the area of the screen size. By calculating the projected area of the screen, the lip force could be normalized to an oral screen pressure quantity expressed in kPa, which can be used for comparing measurements from screens with different sizes. Both the mean value and standard deviation were shown to vary between individuals. The study showed no differences regarding gender and only small variation with age. Normal variation over time (months) may be up to 3 times greater than the standard error of measurement at a certain occasion. The lip force increases in relation to the projected area of the screen. No general standard deviation can be assigned to the method and all measurements should be analyzed individually based on oral screen pressure to compensate for different screen sizes.

  12. Determination of the thermal conductivity of sediment rock from measurements on cuttings; Ermittlung der Gesteinswaermeleitfaehigkeit von Sedimentgesteinen aus Messungen am Bohrklein

    Troschke, B; Burkhardt, H [Technische Univ. Berlin (Germany). Fachgebiet Angewandte Goephysik

    1997-12-01

    Due to high costs core recovery in many wells is strongly restricted. To determine thermal conductivity in these cases measurements on cuttings are necessary, since in situ measurements are expensive and protracted, too. Therefore cores from three hydrogeothermal wells of the north-east part of the German sedimentary basin were grinded to compare the results of measurements on cuttings with known values of thermal conductivity from the original cores. By a suitable model of the two-phase-system cuttings-water it is possible to calculate the thermal conductivity of the rock-matrix. On the basis of this value and a suitable rock-model an average thermal conductivity for the water saturated rock can be estimated. Certainly all influences of the texture (anisotropy, grain bond) and of the characteristics of the porespace (porosity, internal surface, saturation, permeability) are lost with measurements on cuttings. Therefore for the different systems cuttings-water and rock-porefluid as well as for different rock types different models are necessary. (orig.) [Deutsch] In vielen Bohrungen werden aus Kostengruenden keine Kerne gezogen. Fuer die Ermittlung der Waermeleitfaehigkeit koennen deshalb nur in-situ-Messungen, die ebenfalls zeit- und kostenintensiv sind, oder Messungen am Bohrklein herangezogen werden. Es wurden daher Kerne aus drei Hydrogeothermalbohrungen des nordostdeutschen Beckens aufgemahlen, um so vergleichende Messungen am `Bohrklein` aus Kernen mit bekannter Waermeleitfaehigkeit durzhzufuehren. Durch eine geeignete Modellvorstellung des Zwei-Phasen-Systems Bohrklein/Wasser laesst sich die Waermeleitfaehigkeit der Gesteinsmatrix bestimmen und aus dieser durch ein Gesteinsmodell auch eine mittlere Waermeleitfaehigkeit des wassergesaettigten Festgesteins berechnen. Klar ist, dass bei Messungen am Bohrklein Einfluesse, die durch Gefuege (Anisotropie, Kornbindung) und Porenraumeigenschaften (Porositaet, Saettigung, Permeabilitaet) hervorgerufen werden

  13. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  14. Cutting work in thick section cryomicrotomy.

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.

  15. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  16. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-01-01

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  17. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  18. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  19. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Measurement of unsteady flow forces in inline and staggered tube bundles with fixed and vibrating tubes

    Michel, A.; Heinecke, E.; Decken, C.B. von der.

    1986-01-01

    Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de

  1. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  2. Soft colloidal probes for AFM force measurements between water droplets in oil

    Vakarelski, Ivan Uriev; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  3. Soft colloidal probes for AFM force measurements between water droplets in oil

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  4. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  5. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  6. Measurement of Forces and Torques during Non Homogeneous Material Drilling Operation

    Mohd Hazny Aziz; Muhammad Azmi Ayub

    2011-01-01

    The purpose of this study is to measure the forces and toques that produce in the drilling process of non-homogenous material (bone). An automated five degree of freedom CRS CataLyst-5 robot used during the drilling process together with the six degree freedom of force toque sensor. A force torque controller that built in Matlab Simulink environment is used to control the drilling process of the robot. Different feed rate will be used during the experimental of the drilling process. The sen...

  7. Measurement of the traction force of biological cells by digital holography

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  8. Aerodynamic Interactions During Laser Cutting

    Fieret, J.; Terry, M. J.; Ward, B. A.

    1986-11-01

    Most laser cutting systems utilise a gas jet to remove molten or vaporised material from the kerf. The speed, economy and quality of the cut can be strongly dependent on the aerodynamic conditions created by the nozzle, workpiece proximity and kerf shape. Adverse conditions can be established that may lead to an unwelcome lack of reproducibility of cut quality. Relatively low gas nozzle pressures can result in supersonic flow in the jet with its associated shock fronts. When the nozzle is placed at conventional distances (1-2mm) above the workpiece, the force exerted by the gas on the workpiece and the cut products (the cutting pressure) can be significantly less than the nozzle pressure. Higher cutting pressures can be achieved by increasing the height of the nozzle above the workpiece, to a more damage resistant zone, provided that the shock structure of the jet is taken into account. Conventional conical nozzles with circular exits can be operated with conditions that will result in cutting pressures up to 3 Bar (g) in the more distant zone. At higher pressures in circular tipped nozzles the cutting pressure in this zone decays to inadequate levels. Investigations of a large number of non-circular nozzle tip shapes have resulted in the selection of a few specific shapes that can provide cutting pressures in excess of 6 Bar(g) at distances of 4 to 7mm from the nozzle tip. Since there is a strong correlation between cutting pressure and the speed and quality of laser cutting, the paper describes the aerodynamic requirements for achieving the above effects and reports the cutting results arising from the different nozzle designs and conditions. The results of the work of other investigators, who report anomalous laser cutting results, will be examined and reviewed in the light of the above work.

  9. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  10. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  11. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  12. Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion.

    Giacomozzi, C; Macellari, V; Leardini, A; Benedetti, M G

    2000-03-01

    Plantar pressure, ground reaction force and body-segment kinematics measurements are largely used in gait analysis to characterise normal and abnormal function of the human foot. The combination of all these data together provides a more exhaustive, detailed and accurate view of foot loading during activities than traditional measurement systems alone do. A prototype system is presented that integrates a pressure platform, a force platform and a 3D anatomical tracking system to acquire combined information about foot function and loading. A stereophotogrammetric system and an anatomically based protocol for foot segment kinematics is included in a previously devised piezo-dynamometric system that combines pressure and force measurements. Experimental validation tests are carried out to check for both spatial and time synchronisation. Misalignment of the three systems is found to be within 6.0, 5.0 and 1.5 mm for the stereophotogrammetric system, force platform and pressure platform, respectively. The combination of position and pressure data allows for a more accurate selection of plantar foot subareas on the footprint. Measurements are also taken on five healthy volunteers during level walking to verify the feasibility of the overall experimental protocol. Four main subareas are defined and identified, and the relevant vertical and shear force data are computed. The integrated system is effective when there is a need for loading measurements in specific plantar foot subareas. This is attractive both in clinical assessment and in biomechanics research.

  13. Operational dynamics of the cutting head of the AM-50 heading machine

    Sikora, W; Bak, K; Klich, R [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1987-01-01

    Operation of the cutter head of an AM-50 heading machine is influenced by a large number of factors, many of them of a random character. Forces acting on each of the cutting tools participating in coal or rock cutting are determined and summed up. The total cutting force is then calculated and on that basis the turning moment is derived. Cutting tool operation also is analyzed as a stochastic process. Cutting forces of each cutting tool change from 0 to maximum. However these forces are distributed in cutting time and the total cutting force is not the sum of the average cutting forces, nor is it the sum of maximum cutting forces. Using calculus of probability, the probable force distribution was determined. This distribution is compared to force distribution calculated on the basis of power consumption of the cutter motors. The differences between the two force distributions are, among others, caused by insufficient investigation into operation of conic cutters. 10 refs.

  14. Cutting Itch

    Zellweger, Christoph

    2015-01-01

    Cutting Itch” is a curatorial project by artists-duo Baltensperger-Siepert. An exhibition project about the essential need of art to be an active system that reflects, investigates social, cultural and political issues. It is about an existential necessity to shape ones environment, to think about relations, regulating structures and about how we can locate ourselves in a more and more globalised world. (from press material). \\ud \\ud Baltensperger & Siepert identified seven artists from Mexi...

  15. Measure of horizontal and vertical displacement of the acromioclavicular joint after cutting ligament using X-ray and opto-electronic system.

    Rochcongar, Goulven; Emily, Sébastien; Lebel, Benoit; Pineau, Vincent; Burdin, Gilles; Hulet, Christophe

    2012-09-01

    Surgical versus orthopedic treatments of acromioclavicular disjunction are still debated. The aim of this study was to measure horizontal and vertical acromion's displacement after cutting the ligament using standard X-ray and an opto-electronic system on cadaver. Ten cadaveric shoulders were studied. A sequential ligament's section was operated by arthroscopy. The sequence of cutting was chosen to fit with Rockwood's grade. The displacement of the acromion was measured on standard X-ray and with an opto-electronic system allowing measuring of the horizontal displacement. Statistical comparisons were performed using a paired Student's t test with significance set at p acromioclavicular ligament. The contact surface between the acromion and the clavicle decreases statistically after sectioning the acromioclavicular ligament and the coracoclavicular ligament with no effect of sectioning the delto-trapezius muscles. Those results are superposing with those dealing with the anterior translation. The measure concerning the acromioclavicular distance and the coracoclavicular distance are superposing with those of Rockwood. However, there is a significant horizontal translation after cutting the acromioclavicular ligament. Taking into account this displacement, it may be interesting to choose either surgical or orthopedic treatment. There is a correlation between anatomical damage and importance of instability. Horizontal instability is misevaluated in clinical practice.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  17. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    Pirzer, T; Geisler, M; Hugel, T; Scheibel, T

    2009-01-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C 16 or dimeric (QAQ) 8 NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH 2 PO 4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C 16 shows a higher adhesion force than (QAQ) 8 NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion

  18. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  19. Factors affecting the transverse force measurements of an optical trap: I

    Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew

    2002-03-01

    The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.

  20. Development of underwater laser cutting technology

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  1. Estimation of excitation forces for wave energy converters control using pressure measurements

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  2. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  3. Measuring minority-carrier diffusion length using a Kelvin probe force microscope

    Shikler, R.; Fried, N.; Meoded, T.; Rosenwaks, Y.

    2000-01-01

    A method based on Kelvin probe force microscopy for measuring minority-carrier diffusion length in semiconductors is described. The method is based on measuring the surface photovoltage between the tip of an atomic force microscope and the surface of an illuminated semiconductor junction. The photogenerated carriers diffuse to the junction and change the contact potential difference between the tip and the sample, as a function of the distance from the junction. The diffusion length L is then obtained by fitting the measured contact potential difference using the minority-carrier continuity equation. The method was applied to measurements of electron diffusion length in GaP pn and Schottky junctions. The measured diffusion length was found to be ∼2 μm, in good agreement with electron beam induced current measurements

  4. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  5. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  6. A Simple Measure to Assess Hyperinflation and Air Trapping: 1-Forced Expiratory Volume in Three Second / Forced Vital Capacity

    Sermin Börekçi

    2017-04-01

    Full Text Available Background: Several recent studies have suggested that 1 minus-forced expiratory volume expired in 3 seconds / forced vital capacity (1-FEV3/FVC may be an indicator of distal airway obstruction and a promising measure to evaluate small airways dysfunction. Aims: To investigate the associations of 1-FEV3/FVC with the spirometric measures and lung volumes that assess small airways dysfunction and reflects hyperinflation and air trapping. Study Design: Retrospective cross-sectional study. Methods: Retrospective assessment of a total of 1110 cases who underwent body plethysmographic lung volume estimations between a time span from 2005 to 2012. Patients were assigned into two groups: firstly by FEV1/FVC (FEV1/FVC <70% vs. FEV1/FVC ≥70%; secondly by FEV3/FVC < lower limits of normal (LLN (FEV3/FVC < LLN vs. FEV3/FVC ≥ LLN. Spirometric indices and lung volumes measured by whole-body plethysmography were compared in groups. Also the correlation of spirometric indices with measured lung volumes were assessed in the whole-study population and in subgroups stratified according to FEV1/FVC and FEV3/FVC. Results: Six hundred seven (54.7% were male and 503 (45.3% were female, with a mean age of 52.5±15.6 years. Mean FEV3/FVC and 1-FEV3/FVC were 87.05%, 12.95%, respectively. The mean 1-FEV3/FVC was 4.9% in the FEV1/FVC ≥70% group (n=644 vs. 24.1% in the FEV1/FVC <70% group (n=466. A positive correlation was found between 1-FEV3/FVC and residual volume (r=0.70; p<0.0001, functional residual capacity-pleth (r=0.61; p<0.0001, and total lung capacity (r=0.47; p<0.0001. 1-FEV3/FVC was negatively correlated with forced expiratory flow25-75 (r=−0.84; p<0.0001. The upper limit of 95% confidence interval for 1-FEV3/FVC was 13.7%. 1-FEV3/FVC showed significant correlations with parameters of air trapping and hyperinflation measured by whole-body plethysmography. Importantly, these correlations were higher in study participants with FEV1/FVC <70% or FEV3/FVC

  7. Female genital cutting.

    Perron, Liette; Senikas, Vyta; Burnett, Margaret; Davis, Victoria

    2013-11-01

    To strengthen the national framework for care of adolescents and women affected by female genital cutting (FGC) in Canada by providing health care professionals with: (1) information intended to strengthen their knowledge and understanding of the practice; (2) directions with regard to the legal issues related to the practice; (3) clinical guidelines for the management of obstetric and gynaecological care, including FGC related complications; and (4) guidance on the provision of culturally competent care to adolescents and women with FGC. Published literature was retrieved through searches of PubMed, CINAHL, and The Cochrane Library in September 2010 using appropriate controlled vocabulary (e.g., Circumcision, Female) and keywords (e.g., female genital mutilation, clitoridectomy, infibulation). We also searched Social Science Abstracts, Sociological Abstracts, Gender Studies Database, and ProQuest Dissertations and Theses in 2010 and 2011. There were no date or language restrictions. Searches were updated on a regular basis and incorporated in the guideline to December 2011. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Summary Statements 1. Female genital cutting is internationally recognized as a harmful practice and a violation of girls' and women's rights to life, physical integrity, and health. (II-3) 2. The immediate and long-term health risks and complications of female genital cutting can be serious and life threatening. (II-3) 3. Female genital cutting continues to be practised in many countries, particularly in sub-Saharan Africa, Egypt, and Sudan. (II-3) 4. Global migration

  8. Cutting method and device underwater

    Takano, Genta; Kamei, Hiromasa; Beppu, Seiji

    1998-01-01

    A place of material to be cut is surrounded by an openable/closable box. The material to be cut is cut underwater, and materials generated in this case are removed from the cut portion by a pressurized water jet. The removed materials are sucked and recovered together with water in the box. Among the materials caused by the cutting underwater, solid materials not floating on water are caused to stay in the midway of a sucking and recovering channel. A large sucking force might be required for the entire region of the sucking and recovering channel when sucking and recovering large sized solid materials not floating on water, but even large sized materials can be recovered easily according to the present invention since they are recovered after being sucked and stayed in the midway of the sucking and recovering channel. (N.H.)

  9. The role of the implementation angle of cuttings of Phyllanthus sellowianus as a reference for a soil protection measure against surface erosion

    Rauch, H. P.; Sutili, F. J.; Aschbacher, M.; Müller, B.

    2009-04-01

    Cutting plantation is a very common method of soil bioengineering techniques. The potential of vegetative reproduction is used to install a vegetation cover on eroded slopes to prevent surface erosion. The development of above and below biomass from parts of the stock plant in a very short time and the fast and easy propagation are one of the most important advantages of this soil bioengineering type. Several handbooks (Schiechtl, 1992; Florineth, 2004 and Zeh, 2007) suggest potential plants for vegetative reproduction and describe the procedure of plantation in detail. It is recommended that the cuttings are not driven vertically into the ground. A flat implementation angle guarantees a more uniform rooting of the cutting part driven into the soil, however there are no systematically investigations of the impact of the implementation angle on the biomass performance and consequently on the performance as a surface erosion protection measure. This paper shows results from field investigations focusing on the problem of the impact of the implementation angle of cuttings. In sum 75 specimens of the species of Phyllanthus sellowianus. The plant species was recommended as a native potential soil bioengineering plant by Sutili (s. Sutili, 2006). The cuttings were planted with an average length of 50 cm and diameter of 2 cm. The implementation angle differences between 90 (vertical) 45 and 10 degree. Two months after plantation all plants were excavated and the relevant plant data sets were collected in order to analyse the biomass performance. The field investigations are part of an integrated research project of the University of Natural Resources and Applied Life Sciences, Vienna and the Federal University of Santa Maria, Rio Grande do Sul - Brazil.

  10. The measurement of low pay in the UK labour force survey

    Skinner, Chris; Stuttard, Nigel; Beissel-Durrant, Gabriele; Jenkins, James

    2003-01-01

    Consideration of the National Minimum Wage requires estimates of the distribution of hourly pay. The UK Labour Force Survey (LFS) is a key source of such estimates. The approach most frequently adopted by researchers has been to measure hourly earnings from several questions on pay and hours. The Office for National Statistics is now applying a new approach, based on an alternative more direct measurement introduced in March 1999. These two measures do not produce identical values and this pa...

  11. Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stern, Frank [Navigant, Boulder, CO (United States); Spencer, Justin [Navigant, Boulder, CO (United States)

    2017-10-03

    Savings from electric energy efficiency measures and programs are often expressed in terms of annual energy and presented as kilowatt-hours per year (kWh/year). However, for a full assessment of the value of these savings, it is usually necessary to consider the measure or program's impact on peak demand as well as time-differentiated energy savings. This cross-cutting protocol describes methods for estimating the peak demand and time-differentiated energy impacts of measures implemented through energy efficiency programs.

  12. Design of an instrumented smart cutting tool and its implementation and application perspectives

    Wang, Chao; Cheng, Kai; Chen, Xun; Minton, Timothy; Rakowski, Richard

    2014-01-01

    This paper presents an innovative design of a smart cutting tool, using two surface acoustic wave (SAW) strain sensors mounted onto the top and the side surface of the tool shank respectively, and its implementation and application perspectives. This surface acoustic wave-based smart cutting tool is capable of measuring the cutting force and the feed force in a real machining environment, after a calibration process under known cutting conditions. A hybrid dissimilar workpiece is then machined using the SAW-based smart cutting tool. The hybrid dissimilar material is made of two different materials, NiCu alloy (Monel) and steel, welded together to form a single bar; this can be used to simulate an abrupt change in material properties. The property transition zone is successfully detected by the tool; the sensor feedback can then be used to initiate a change in the machining parameters to compensate for the altered material properties. (paper)

  13. Measurement of pull-off force on imprinted nanopatterns in an inert liquid

    Kim, Jae Kwan; Lee, Dong Eon; Lee, Woo Il; Suh, Kahp Y

    2010-01-01

    We report on the measurement of the pull-off force on nanoscale patterns that are formed by thermal nanoimprint lithography (t-NIL). Various patterns with feature sizes in the range of 50-900 nm were fabricated on silicon substrates using a rigiflex polymeric mold of ultraviolet curable polyurethane acrylate (PUA, Young's modulus ∼ 1 GPa) or perfluoropolyether (PFPE, Young's modulus ∼ 10.5 MPa) and a resist layer of polystyrene (PS) of three different molecular weights (M w = 18 100, 211 600 and 2043 000). The pull-off force was measured in non-polar, non-reactive perfluorodecalin (PFD) solvent between a sharp atomic force microscopy (AFM) tip and an imprinted pattern. Our experimental data demonstrated that the measured pull-off forces were in good agreement with a simple adhesion model based on Lifshitz theory. Also, the force on the pressed region (valley) is higher than that on the cavity region (hill), with the ratio (hill/valley) decreasing with the decrease of pattern size and the increase of molecular weight. The confinement effects were more pronounced for smaller patterns ( w = 211 600 and 2043 000) presumably due to sluggish movement of polymer chains into nano-cavities. Finally, the experimental observations were compared with molecular dynamic simulations based on a simplified amorphous polyethylene model.

  14. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  15. Measuring lip force by oral screens Part 2: The importance of screen design, instruction and suction.

    Wertsén, Madeleine; Stenberg, Manne

    2017-10-01

    The aim of this study was to find a reliable method for measuring lip force and to find the most important factors that influence the measurements in terms of magnitude and variability. The hypothesis tested was that suction is involved and thus the instruction and the design of the oral screen are of importance when measuring lip force. This is a methodological study in a healthy population. This study was conducted in a general community. The designs of the screens were soft and hard prefabricated screens and 2 semi-individually made with a tube allowing air to pass. The screens and the instructions squeeze or suck were tested on 29 healthy adults, one at a time and on 4 occasions. The test order of the screens was randomized. Data were collected during 4 consecutive days, and the procedure was repeated after 1 month. The participants were 29 healthy adult volunteers. The instruction was an important mean to distinguish between squeezing and sucking. The design of the screen affected the lip force so that it increases in relation to the projected area of the screen. A screen design with a tube allowing air to pass made it possible to avoid suction when squeezing. By measuring with and without allowing air to pass, it was possible to distinguish between suction related and not suction related lip force. The additional screen pressure when sucking was related to the ability to produce a negative intraoral pressure. In conclusion lip force increases in relation to the projected area of the screen, sucking generally increases the measured lip force and the additional screen pressure when sucking is related to the ability to produce a negative intraoral pressure.

  16. Force sensing using 3D displacement measurements in linear elastic bodies

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  17. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  18. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan [National Measurement Institute, 36 Bradfield Road, West Lindfield, New South Wales 2070 (Australia)

    2016-06-07

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  19. Force platform measurements as predictors of falls among older people - a review.

    Piirtola, Maarit; Era, Pertti

    2006-01-01

    Poor postural balance is one of the major risk factors for falling. A great number of reports have analyzed the risk factors and predictors of falls but the results have for the most part been unclear and partly contradictory. Objective data on these matters are thus urgently needed. The force platform technique has widely been used as a tool to assess balance. However, the ability of force platform measures to predict falls remains unknown. The purpose of this systematic review was to extract and critically review the findings of prospective studies where force platform measurements have been used as predictors of falls among elderly populations. The study was done as a systematic literature review. PubMed, the Cochrane Central Register of Controlled Trials, and CINAHL databases from 1950 to April 2005 were used. The review includes prospective follow-up studies using the force platform as a tool to measure postural balance. Nine original prospective studies were included in the final analyses. In five studies fall-related outcomes were associated with some force platform measures and in the remaining four studies associations were not found. For the various parameters derived on the basis of the force platform data, the mean speed of the mediolateral (ML) movement of the center of pressure (COP) during normal standing with the eyes open and closed, the mean amplitude of the ML movement of the COP with the eyes open and closed, and the root-mean-square value of the ML displacement of COP were the indicators that showed significant associations with future falls. Measures related to dynamic posturography (moving platforms) were not predictive of falls. Despite a wide search only a few prospective follow-up studies using the force platform technique to measure postural balance and a reliable registration of subsequent falls were found. The results suggest that certain aspects of force platform data may have predictive value for subsequent falls, especially various

  20. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy

    Podder, Tarun; Clark, Douglas; Sherman, Jason; Fuller, Dave; Messing, Edward; Rubens, Deborah; Strang, John; Brasacchio, Ralph; Liao, Lydia; Ng, W.-S.; Yu Yan

    2006-01-01

    In this paper, we present needle insertion forces and motion trajectories measured during actual brachytherapy needle insertion while implanting radioactive seeds in the prostate glands of 20 different patients. The needle motion was captured using ultrasound images and a 6 degree-of-freedom electromagnetic-based position sensor. Needle velocity was computed from the position information and the corresponding time stamps. From in vivo data we found the maximum needle insertion forces to be about 15.6 and 8.9 N for 17 gauge (1.47 mm) and 18 gauge (1.27 mm) needles, respectively. Part of this difference in insertion forces is due to the needle size difference (17G and 18G) and the other part is due to the difference in tissue properties that are specific to the individual patient. Some transverse forces were observed, which are attributed to several factors such as tissue heterogeneity, organ movement, human factors in surgery, and the interaction between the template and the needle. However, theses insertion forces are significantly responsible for needle deviation from the desired trajectory and target movement. Therefore, a proper selection of needle and modulated velocity (translational and rotational) may reduce the tissue deformation and target movement by reducing insertion forces and thereby improve the seed delivery accuracy. The knowledge gleaned from this study promises to be useful for not only designing mechanical/robotic systems but also developing a predictive deformation model of the prostate and real-time adaptive controlling of the needle

  1. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring

    Chen, Zhao; Xie, Zhipeng; Zhang, Jian

    2018-05-01

    The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.

  2. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  3. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  4. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  5. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  6. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  7. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  8. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  9. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    van den Noort, J.C.; van den Noort, Josien C.; van der Esch, Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Petrus H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  10. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  11. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  12. Measuring q/m for Water Drops--An Introduction to the Effects of Electrical Forces

    Hart, Francis X.

    1974-01-01

    Discusses an experiment which introduces students to the effects of electrical forces on the motion of macroscopic objects. Included are the proecedures of measuring the charge-to-mass ratio from deflections of charged water drops in horizontal fields and the overall charges delivered in a Faraday cup. (CC)

  13. Trial manufacture of rotary friction tester and frictional force measurement of metals

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  14. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    Gutierrez, Leonardo

    2012-08-21

    Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl2 or 70 mM MgCl2. Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl2 solution were lower than in CaCl2 solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl2 solution compared to those in MgCl2 or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus. © 2012 American Chemical Society.

  15. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  16. Finite element analysis of cutting tools prior to fracture in hard turning operations

    Cakir, M. Cemal; I Sik, Yahya

    2005-01-01

    In this work cutting FEA of cutting tools prior to fracture is investigated. Fracture is the catastrophic end of the cutting edge that should be avoided for the cutting tool in order to have a longer tool life. This paper presents finite element modelling of a cutting tool just before its fracture. The data used in FEA are gathered from a tool breakage system that detects the fracture according to the variations of the cutting forces measured by a three-dimensional force dynamometer. The workpiece material used in the experiments is cold work tool steel, AISI O1 (60 HRC) and the cutting tool material is uncoated tungsten carbide (DNMG 150608). In order to investigate the cutting tool conditions in longitudinal external turning operations prior to fracture, static and dynamic finite element analyses are conducted. After the static finite element analysis, the modal and harmonic response analyses are carried on and the dynamic behaviours of the cutting tool structure are investigated. All FE analyses were performed using a commercial finite element package ANSYS

  17. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  18. Measuring system and method of determining the Adaptive Force

    Laura Schaefer

    2017-07-01

    Full Text Available The term Adaptive Force (AF describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96. The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000. Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987. The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

  19. What's Happening to American Labor Force and Productivity Measurements? Proceedings of a Conference Sponsored by the National Council on Employment Policy (Washington, D.C., June 17, 1982).

    Upjohn (W.E.) Inst. for Employment Research, Kalamazoo, MI.

    This volume contains four papers presented at a 1982 conference sponsored by the National Council on Employment Policy. It begins with a brief policy statement warning that labor force and productivity data systems face deterioration because of budget cuts that have forced a decline in the quality and quantity of the published information and…

  20. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  1. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  2. Power of resting echocardiographic measurements to classify pulmonary hypertension patients according to European society of cardiology exercise testing risk stratification cut-offs.

    Rehman, Michaela B; Garcia, Rodrigue; Christiaens, Luc; Larrieu-Ardilouze, Elisa; Howard, Luke S; Nihoyannopoulos, Petros

    2018-04-15

    Right ventricular function is the major determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). The ESC risk assessment strategy for PAH is based on clinical status, exercise testing, NTproBNP, imaging and haemodynamics but does not include right ventricular function. Our aims were to test the power of resting echocardiographic measurements to classify PAH patients according to ESC exercise testing risk stratification cut-offs and to determine if the classification power of echocardiographic parameters varied in chronic thrombo-embolic pulmonary hypertension (CTEPH). We prospectively and consecutively recruited 46 PAH patients and 42 CTEPH patients referred for cardio-pulmonary exercise testing and comprehensive transthoracic echocardiography. Exercise testing parameters analyzed were peak oxygen consumption, percentage of predicted maximal oxygen consumption and the slope of ventilation against carbon dioxide production. Receiver operator characteristic curves were used to determine the optimal diagnostic cut-off values of echocardiographic parameters for classifying the patients in intermediate or high risk category according to exercise testing. Measurements of right ventricular systolic function were the best for classifying in PAH (area under the curve 0.815 to 0.935). Measurements of right ventricular pressure overload (0.810 to 0.909) were optimal for classifying according to exercise testing in CTEPH. Measurements of left ventricular function were of no use in either group. Measurements of right ventricular systolic function can classify according to exercise testing risk stratification cut-offs in PAH. However, this is not the case in CTEPH where pressure overload, rather than right ventricular function seems to be linked to exercise performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  4. Effects of the positioning force of electrostatic levitators on viscosity measurements

    Ishikawa, Takehiko; Paradis, Paul-Francois; Koike, Noriyuki; Watanabe, Yuki

    2009-01-01

    Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

  5. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  6. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  7. Soil bioengineering measures for disaster mitigation and environmental restoration in Central America: authochtonal cuttings suitability and economic efficiency

    Petrone, A.; Preti, F.

    2009-04-01

    The use of Soil Bio-Engineering techniques in Developing countries is a relevant issue for Disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of this Discipline. The present paper is focused on this two issues related to the realization of various typologies of Soil Bio-engineering works in the Humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, Soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for Soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Thus, a conclusion can be reached with regard to hydrological-risk mitigating actions

  8. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  9. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  10. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  11. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  12. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  13. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  14. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  15. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV push-off distance, and jump height are known.

  16. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  17. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  19. Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow

    Inada, Fumio; Kawamura, Koji; Yasuo, Akira

    1996-01-01

    Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity

  20. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  1. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  2. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  3. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  4. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David

    2013-01-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model

  5. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  6. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  8. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  9. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  10. The Impact of Feeding Diets of High or Low Energy Concentration on Carcass Measurements and the Weight of Primal and Subprimal Lean Cuts

    A. P. Schinckel

    2012-04-01

    Full Text Available Pigs from four sire lines were allocated to a series of low energy (LE, 3.15 to 3.21 Mcal ME/kg corn-soybean meal-based diets with 16% wheat midds or high energy diets (HE, 3.41 to 3.45 Mcal ME/kg with 4.5 to 4.95% choice white grease. All diets contained 6% DDGS. The HE and LE diets of each of the four phases were formulated to have equal lysine:Mcal ME ratios. Barrows (N = 2,178 and gilts (N = 2,274 were fed either high energy (HE or low energy (LE diets from 27 kg BW to target BWs of 118, 127, 131.5 and 140.6 kg. Carcass primal and subprimal cut weights were collected. The cut weights and carcass measurements were fitted to allometric functions (Y = A CWB of carcass weight. The significance of diet, sex or sire line with A and B was evaluated by linearizing the equations by log to log transformation. The effect of diet on A and B did not interact with sex or sire line. Thus, the final model was B where Diet = −0.5 for the LE and 0.5 for HE diets and A and B are sire line-sex specific parameters. cut weight = (1+bD(Diet A(CW Diet had no affect on loin, Boston butt, picnic, baby back rib, or sparerib weights (p>0.10, bD = −0.003, −0.0029, 0.0002, 0.0047, −0.0025, respectively. Diet affected ham weight (bD = −0.0046, p = 0.01, belly weight (bD = 0.0188, p = 0.001 three-muscle ham weight (bD = −0.014, p = 0.001, boneless loin weight (bD = −0.010, p = 0.001, tenderloin weight (bD = −0.023, p = 0.001, sirloin weight (bD = −0.009, p = 0.034, and fat-free lean mass (bD = −0.0145, p = 0.001. Overall, feeding the LE diets had little impact on primal cut weight except to decrease belly weight. Feeding LE diets increased the weight of lean trimmed cuts by 1 to 2 percent at the same carcass weight.

  11. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp

    Sung, Jongmin; Mortensen, Kim; Spudich, James A.

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using a new method, Harmonic Force...... and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human beta-cardiac myosin molecules interacting with an actin filament...... at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load. This points to Kramer's Brownian diffusion model of chemical reactions as explanation why muscle contracts with a velocity inversely proportional to external load....

  12. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  13. MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant

    Takahashi, Hidetoshi; Thanh-Vinh, Nguyen; Jung, Uijin G; Shimoyama, Isao; Matsumoto, Kiyoshi

    2014-01-01

    A terrestrial insect can perform agile running maneuvers. However, the balance of ground reaction forces (GRFs) between each leg in an insect have remained poorly characterized. In this report, we present a micro force plate array for the simultaneous measurement of the anterior and vertical components of GRFs of multiple legs during the running motion of an ant. The proposed force plate, which consists of a 2000 µm × 980 µm × 20 µm plate base as the contact surface of an ant's leg, and the supported beams with piezoresistors on the sidewall and surface are sufficiently compact to be adjacently arrayed along the anterior direction. Eight plates arrayed in parallel were fabricated on the same silicon-on-insulator substrate to narrow the gap between each plate to 20 µm. We compartmented the plate surface into 32 blocks and evaluated the sensitivities to two-axis forces in each block so that the exerted forces could be detected wherever a leg came into contact. The force resolutions in both directions were under 1 µN within ±20 µN. Using the fabricated force plate array, we achieved a simultaneous measurement of the GRFs of three legs on one side while an ant was running. (paper)

  14. New Modelling Strategies For Metal Cutting

    Rosa, Pedro A. R.; Martins, Paulo A. F.; Atkins, Anthony G.

    2007-01-01

    This paper draws from the 'plasticity and friction only' view of metal cutting to the presentation of new modelling strategies based on the interaction between finite elements and modern ductile fracture mechanics. The overall presentation is supported by specially designed orthogonal metal cutting experiments that were performed on Lead test specimens under laboratory-controlled conditions. Comparisons between theoretical predictions and experimental results comprise a wide range of topics such as material flow, cutting forces and specific cutting pressure. The paper demonstrates that while material flow and chip formation can be successfully modelled by traditional 'plasticity and friction only' analyses, the contribution of the fracture work involved in the formation of new surfaces is essential for obtaining good estimates of cutting forces and of the specific cutting pressure

  15. An Analysis of Measures Used to Evaluate the Air Force Critical Item Program

    1991-09-01

    example of a histogram. Cause & Effect Diagram. The cause and effect diagram was introduced in 1953 by Dr. Kaoru Ishikawa in summarizing the opinions of...Personal Interview. Air Force Institute of Technology, School of Engineering, Wright-Patterson AFB OH, 24 April 1991. 31. Ishikawa , Dr. Kaoru . Guide to...collected. How the data are collected will determine which measurement techniques are appropriate. Ishikawa classifies data collection into five categories

  16. Force measurements of flexible tandem wings in hovering and forward flights

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  17. Force measurements of a magnetic micro actuator proposed for a microvalve array

    Chang, Pauline J; Chang, Frank W; Yuen, Michelle C; Horsley, David A; Otillar, Robert

    2014-01-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO 2  matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13–80 nN, and radial forces were 11–60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction. (paper)

  18. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  19. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  20. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  1. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  2. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  3. VARIABILITY OF FORCED OSCILLATION (SIEMENS SIREGNOST FD-5) MEASUREMENTS OF TOTAL RESPIRATORY RESISTANCE IN PATIENTS AND HEALTHY-SUBJECTS

    GIMENO, F; VANDERWEELE, LT; KOETER, GH; DEMONCHY, JGR; VANALTENA, R

    The reproducibility of total respiratory resistance (R(rs)) measured with a simplified forced oscillatory method (Siemens Siregnost FD 5) was measured and compared with that of slow inspiratory vital capacity (IVC) and forced expiratory volume in one second (FEV1). The former technique has the

  4. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    Vrijsen, N.H.; Jansen, J.W.; Compter, J.C.; Lomonova, E.

    2013-01-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet.

  5. Technique to measure contact angle of micro/nanodroplets using atomic force microscopy

    Jung, Yong Chae; Bhushan, Bharat

    2008-01-01

    Contact angle is the primary parameter that characterizes wetting; however, the measurement techniques have been limited to droplets with a diameter as low as about 50 μm. The authors developed an atomic force microscopy-based technique to measure the contact angle of micro- and nanodroplets deposited using a modified nanoscale dispensing tip. The obtained contact angle results were compared with those of a macrodroplet (2.1 mm diameter). It was found that the contact angle on various surfaces decreases with decreasing the droplet size

  6. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  7. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  8. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  9. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    Lopez, Luis-David Patino [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Dilhaire, Stefan [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Grauby, Stephane [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Salhi, M Amine [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Ezzahri, Younes [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Claeys, Wilfrid [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Batsale, Jean-Christophe [Laboratoire TREFLE, Esplanade des Arts et Metiers, 33405 Talence Cedex (France)

    2005-05-21

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties.

  10. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  11. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    Lopez, Luis-David Patino; Dilhaire, Stefan; Grauby, Stephane; Salhi, M Amine; Ezzahri, Younes; Claeys, Wilfrid; Batsale, Jean-Christophe

    2005-01-01

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties

  12. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  13. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  14. Development of micro pattern cutting simulation software

    Lee, Jong Min; Song, Seok Gyun; Choi, Jeong Ju; Novandy, Bondhan; Kim, Su Jin; Lee, Dong Yoon; Nam, Sung Ho; Je, Tae Jin

    2008-01-01

    The micro pattern machining on the surface of wide mold is not easy to be simulated by conventional software. In this paper, a software is developed for micro pattern cutting simulation. The 3d geometry of v-groove, rectangular groove, pyramid and pillar patterns are visualized by c++ and OpenGL library. The micro cutting force is also simulated for each pattern

  15. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  16. A precision measurement of the neutron2. Probing the color force

    Posik, Matthew R. [Temple Univ., Philadelphia, PA (United States)

    2014-01-01

    The g2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d2, a measure of this local color force, has its information encoded in an x2 weighted integral of a linear combination of spin structure functions g1 and g2 and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d2 and extracted color forces.

  17. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  19. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  20. A concept for automated nanoscale atomic force microscope (AFM) measurements using a priori knowledge

    Recknagel, C; Rothe, H

    2009-01-01

    The nanometer coordinate measuring machine (NCMM) is developed for comparatively fast large area scans with high resolution. The system combines a metrological atomic force microscope (AFM) with a precise positioning system. The sample is moved under the probe system via the positioning system achieving a scan range of 25 × 25 × 5 mm 3 with a resolution of 0.1 nm. A concept for AFM measurements using a priori knowledge is implemented. The a priori knowledge is generated through measurements with a white light interferometer and the use of CAD data. Dimensional markup language is used as a transfer and target format for a priori knowledge and measurement data. Using the a priori knowledge and template matching algorithms combined with the optical microscope of the NCMM, the region of interest can automatically be identified. In the next step the automatic measurement of the part coordinate system and the measurement elements with the AFM sensor of the NCMM is done. The automatic measurement involves intelligent measurement strategies, which are adapted to specific geometries of the measurement feature to reduce measurement time and drift effects