WorldWideScience

Sample records for curved 2d position-sensitive

  1. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  2. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  3. Developments of a 2D Position Sensitive Neutron Detector

    CERN Document Server

    Tian, Li-Chao; Wang, Xiao-Hu; Liu, Rong-Guang; Zhang, Jian; Chen, Yuan-Bo; Sun, Zhi-Jia; Xu, Hong; Yang, Gui-An; Zhang, Qiang

    2011-01-01

    Chinese Spallation Neutron Source (CSNS), one project of the 12th five-year-plan scheme of China, is under construction in Guangdong province. Three neutron spectrometers will be installed at the first phase of the project, where two-dimensional position sensitive thermal neutron detectors are required. Before the construction of the neutron detector, a prototype of two-dimensional 200 mmx200 mm Multi-wire Proportional Chamber (MWPC) with the flowing gas of Ar/CO2 (90/10) has been constructed and tested with the 55Fe X-Ray using part of the electronics in 2009, which showed a good performance. Following the test in 2009, the neutron detector has been constructed with the complete electronics and filled with the 6atm.3He + 2.5atm.C3H8 gas mixture in 2010. The neutron detector has been primarily tested with an Am/Be source. In this paper, some new developments of the neutron detector including the design of the high pressure chamber, the optimization of the gas purifying system and the gas filling process will ...

  4. Application of 2-D Position Sensitive Detector in Spatial Straightness Measurement of Guide Rails

    Institute of Scientific and Technical Information of China (English)

    GUO Lifeng; ZHANG Guoxiong; GONG Qiang; ZHENG Qi

    2005-01-01

    A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.

  5. First Investigation on a novel 2D position sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  6. Development of a novel 2D position-sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    A novel 2D position-sensitive semiconductor detector concept has been developed employing resistive electrodes in a single-sided silicon microstrip sensor. The resistive charge division method has been implemented reading out each strip at both ends, in order to get the second coordinate of an ionizing event along the strips length. Two generations of prototypes, with different layout, have been produced and characterized using a pulsed near infra-red laser. The feasibility of the resistive charge division method in silicon microstrip detectors has been demonstrated and the possibility of single-chip readout of the device has been investigated. Experimental data were compared with the theoretical expectations and the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The agreement between experimental and simulation results validates the developed simulation as a tool for the optimization of future sensor prototypes.

  7. Design and performance of a 2-D multi-wire position sensitive X-ray detector

    Indian Academy of Sciences (India)

    S S Desai; J N Joshi; A M Shaikh

    2002-10-01

    A 2-D multi-wire position sensitive detector for X-ray diffraction and small angle X-ray scattering studies is described. The detector has an active area of 100 mm × 100 mm and consists of an anode plane with 10 m SS wires at 3 mm spacing and a pair of orthogonal cathode readout planes with 25 m SS wires placed at 1.5 mm spacing. The position information is obtained using charge division method and recorded using a laboratory built data acquisition system. The resolution and gas gain was measured for 5.9 keV X-rays (55Fe-source) as a function of the anode wire voltage and gas pressure. It was observed that the proportional region of the PSD at 100 kPa pressure extended up to a high voltage value of around 1.5 kV and it shifted to high values up to 2 kV for gas pressure of 300 kPa. The energy resolution improved from 18% (FWHM) to 12% with increase in pressure. The spatial resolution of the PSD also showed improvement, with a value of 1.2 mm × 1.4 mm at 300 kPa gas pressure. A maximum gain of 5 × 104 is obtained.

  8. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  9. Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors

    DEFF Research Database (Denmark)

    Simons, Hugh; Daniels, John E.; Studer, Andrew J.;

    2014-01-01

    employing a curved positive sensitive detector. Methodologies are proposed to account for the geometrical effects when vector fields are applied to textured materials with angularly dispersive detector geometries. Representative results are presented for the ferroelectric (Bi1/2Na1/2)TiO3-6%BaTiO3 (BNT-6BT...

  10. Polarization analysis for the 2D position-sensitive detector of the HADAS reflectometer in Jülich

    Science.gov (United States)

    Rücker, U.; Bergs, W.; Alefeld, B.; Kentzinger, E.; Brückel, Th.

    2001-03-01

    A neutron reflectometer with polarization analysis is being built on the basis of the HADAS spectrometer in the neutron guide hall at the research reactor FRJ-2 (DIDO) in Jülich. The new instrument is optimized for reflectivity and diffuse scattering measurements under grazing incidence on layered magnetic structures with thicknesses in the nm range. In order to measure diffuse scattering with polarization analysis, the 2D position-sensitive detector has been equipped with a polarization analyser that consists of a stack of supermirrors parallel to the scattering plane. First tests have revealed that the resolution of the instrument is not reduced by the polarization analyser. A flipping ratio of 20 has been achieved already during the first experiment.

  11. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  12. 2D Position Sensitive Microstrip Sensors with Charge Division Along the Strip: Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proof-of-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphas...

  13. Chiral fermions on 2D curved spacetimes

    CERN Document Server

    Loran, Farhang

    2016-01-01

    The theory of free Majorana-Weyl spinors is the prototype of conformal field theory in two dimensions in which the gravitational anomaly and the Weyl anomaly obstruct extending the flat spacetime results to curved backgrounds. In this paper, we investigate a quantization scheme in which the short distance singularity in the two-point function of chiral fermions on a two dimensional curved spacetime is given by the Green's function corresponding to the classical field equation. We compute the singular term in the Green's function explicitly and observe that the short distance limit is not well-defined in general. We identify constraints on the geometry which are necessary to resolve this problem. On such special backgrounds the theory has locally $c=\\frac{1}{2}$ conformal symmetry.

  14. 2D position sensitive microstrip sensors with charge division along the strip: Studies on the position measurement error

    Energy Technology Data Exchange (ETDEWEB)

    Bassignana, D. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Curras, E.; Fernandez, M.; Jaramillo, R. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Lozano, M. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Pellegrini, G.; Quirion, D. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Vila, I., E-mail: vila@ifca.unican.es [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Vitorero, F. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain)

    2013-12-21

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proof-of-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis on the study on how the different noise sources are affecting the device position error along the strip.

  15. De-Li-DAQ-2D - a new data acquisition system for position-sensitive neutron detectors with delay-line readout

    Science.gov (United States)

    Levchanovskiy, F. V.; Murashkevich, S. M.

    2016-09-01

    Software for a data acquisition system of modern one- and two-dimensional position-sensitive detectors with delay-line readout, which includes a software interface to a new electronic module De-Li-DAQ-2D with a USB interface, is presented. The new system after successful tests on the stand and on several spectrometers of the IBR-2 reactor has been integrated into the software complex SONIX+ [1]. The De-Li- DAQ-2D module [2] contains an 8-channel time-code converter (TDC-GPX) with a time resolution of 80 ps, field programmable gate array (FPGA), 1 Gbyte histogram memory and high-speed interface with a fiber-optic communication line. A real count rate is no less than 106 events/s. The De-Li-DAQ-2D module is implemented in the NIM standard. The De-Li-DAQ-2D module can operate in two modes: histogram mode and list mode.

  16. DEPTH-AVERAGED 2-D CALCULATION OF FLOW AND SEDIMENT TRANSPORT IN CURVED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Weiming WU; Sam S. Y. WANG

    2004-01-01

    The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.

  17. Image restoration using 2D autoregressive texture model and structure curve construction

    Science.gov (United States)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  18. Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-01-01

    Full Text Available New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.

  19. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    Science.gov (United States)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  20. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, A., E-mail: ali.ramazani@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany); Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany)

    2013-01-10

    A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor {sigma}{sub 3D}/{sigma}{sub 2D} has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.

  1. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    Science.gov (United States)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  2. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    Science.gov (United States)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  3. Gamma-convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves

    CERN Document Server

    Alama, Stan; Millot, Vincent

    2009-01-01

    We study the variational convergence of a family of two-dimensional Ginzburg-Landau functionals arising in the study of superfluidity or thin-film superconductivity, as the Ginzburg-Landau parameter epsilon tends to 0. In this regime and for large enough applied rotations (for superfluids) or magnetic fields (for superconductors), the minimizers acquire quantized point singularities (vortices). We focus on situations in which an unbounded number of vortices accumulate along a prescribed Jordan curve or a simple arc in the domain. This is known to occur in a circular annulus under uniform rotation, or in a simply connected domain with an appropriately chosen rotational vector field. We prove that, suitably normalized, the energy functionals Gamma-converge to a classical energy from potential theory. Applied to global minimizers, our results describe the limiting distribution of vortices along the curve in terms of Green equilibrium measures.

  4. Area collapse algorithm computing new curve of 2D geometric objects

    Science.gov (United States)

    Buczek, Michał Mateusz

    2017-06-01

    The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.

  5. Signal processors for position-sensitive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ken-ichi [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering

    1996-07-01

    Position-sensitive detectors (PSD) are widely used in following various fields: condensed matter studies, material engineering, medical radiology particle physics, astrophysics and industrial applications. X-ray diffraction analysis is one of the field where PSDs are the most important instruments. In this field, many types of PSAs are employed: position-sensitive proportional counters (PSPC), multi-wire proportional chambers (MWPC), imaging plates, image intensifiers combined CCD cameras and semiconductor array devices. Two readout systems used for PSDs, where one is a charge-division type with high stability and the other is an encoder with multiple delay, line readout circuits useful for fast counting, were reported in this paper. The multiple delay line encoding system can be applicable to high counting rate 1D and 2D gas proportional detectors. (G.K.)

  6. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez de Castro, Antonio [Univ. of Manchester (United Kingdom); Shokri, Nima [Univ. of Manchester (United Kingdom); Karadimitriou, Nikolaos [Univ. of Manchester (United Kingdom); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joekar-Niasar, Vahid [Univ. of Manchester (United Kingdom)

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.

  7. Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-01-01

    Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  8. Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-09-01

    Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

  9. Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY

    Science.gov (United States)

    Dass, Rupashree; Kasprzak, Paweł; Koźmiński, Wiktor; Kazimierczuk, Krzysztof

    2016-04-01

    Multidimensional NMR spectroscopy requires time-consuming sampling of indirect dimensions and so is usually used to study stable samples. However, dynamically changing compounds or their mixtures commonly occur in problems of natural science. Monitoring them requires the use multidimensional NMR in a time-resolved manner - in other words, a series of quick spectra must be acquired at different points in time. Among the many solutions that have been proposed to achieve this goal, time-resolved non-uniform sampling (TR-NUS) is one of the simplest. In a TR-NUS experiment, the signal is sampled using a shuffled random schedule and then divided into overlapping subsets. These subsets are then processed using one of the NUS reconstruction methods, for example compressed sensing (CS). The resulting stack of spectra forms a temporal "pseudo-dimension" that shows the changes caused by the process occurring in the sample. CS enables the use of small subsets of data, which minimizes the averaging of the effects studied. Yet, even within these limited timeframes, the sample undergoes certain changes. In this paper we discuss the effect of varying signal amplitude in a TR-NUS experiment. Our theoretical calculations show that the variations within the subsets lead to t1 -noise, which is dependent on the rate of change of the signal amplitude. We verify these predictions experimentally. As a model case we choose a novel 2D TR-NOESY experiment in which mixing time is varied in parallel with shuffled NUS in the indirect dimension. The experiment, performed on a sample of strychnine, provides a near-continuous NOE build-up curve, whose shape closely reflects the t1 -noise level. 2D TR-NOESY reduces the measurement time compared to the conventional approach and makes it possible to verify the theoretical predictions about signal variations during TR-NUS.

  10. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  11. GP2D12红外测距传感器曲线拟合函数设计%Design Research of GP2D12 IR Distance Measuring Sensor Curve Fitting Function

    Institute of Scientific and Technical Information of China (English)

    彭伟

    2012-01-01

    GP2D12是SHAR P公司一种新型的红外测距传感器。ACR ONAME R OBOTICS基于最小二乘原理提出了以乘幂函数为模型的两种曲线拟合设计方法,使用拟合函数编写了微控制器C程序,在嵌入式测距系统电路中实测运行,实现了稳定的高精度测距效果。%Research and propose an improvement design on the generating method of GP2D12 infrared distance sensor curve fitting function which proposed by Acroname Robotics,based on the least squares principle we use power function as a model propose an design method of two kinds of curve fitting,by using the fitting function we design a microcontroller C procedures and achieve a stable high accuracy distance measuring effects when operating it in the embedded system circuit.

  12. Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    Science.gov (United States)

    Wong, Chi Ho; Lortz, Rolf

    2016-02-01

    In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature Tc in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron-phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the Tc through phonon softening. However, if a curvature is added, Tc can be strongly enhanced. The increase in Tc with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on Tc in addition to the effect of order parameter phase fluctuations.

  13. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    Science.gov (United States)

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  14. High accuracy tracking of 2D/3D curved line-structures by consecutive cross-section matching

    NARCIS (Netherlands)

    Noordmans, H.J.; Smeulders, A.W.M.

    1998-01-01

    Curved 3D line-structures are found in domains such as angiography, cell biology and material science. This paper describes a new algorithm to track the line-structures with high subvoxel precision. Extra parameters determined for each cross-section are: local intensity, size, orientation and match

  15. A Two-dimension Position Sensitive PPAC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-dimensional position sensitive parauel-plate avalanche counter(PPAC)with a 100 mm×100 mm active area is developed for the Radioactive Ion-Beam Line in Lanzhou(RIBLL).The detector consists of one anode plane and two cathodes wire planes which are strip planes for the PPACs used in RIKEN~[1].The anode is a Mylar foil coated with a thin layer of gold on each side.The cathode planes X and Y are made of gold-

  16. Detection of multi-scale secondary flow structures using anisotropic 2D Ricker wavelets in a bent tube model for curved arteries

    Science.gov (United States)

    Plesniak, Daniel H.; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Interpretation of complex flow patterns observed in this study of a model curved artery required characterization of multiple, low-circulation secondary flow structures that were observed during the late systolic deceleration and diastolic phases under physiological inflow conditions. Phase-locked, planar vorticity PIV data were acquired at various cross-sectional locations of the 180-degree bent tube model. High circulation, deformed Dean- and Lyne-type vortices were observed during early stages of deceleration, while several smaller scale, highly deformed, low-circulation vortical patterns appeared in the core and near-wall regions during late systolic deceleration and diastolic phases. Due to the multiplicity of vortical scales and shapes, anisotropic 2D Ricker wavelets were used for coherent structure detection in a continuous wavelet transform algorithm (PIVlet 1.2). Our bio-inspired study is geared towards understanding whether optimizing the shape of the wavelet kernel will enable better resolution of several low-circulation, multi-scale secondary flow morphologies and whether new insights into the dynamics of arterial secondary flow structures can accordingly be gained. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  17. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  18. Position-sensitive transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Iyomoto, N. [NASA/GSFC, Greenbelt, MD 20771 (United States)]. E-mail: iyomoto@milkyway.gsfc.nasa.gov; Bandler, S.R. [NASA/GSFC, Greenbelt, MD 20771 (United States); Brekosky, R.P. [NASA/GSFC, Greenbelt, MD 20771 (United States); Chervenak, J.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Figueroa-Feliciano, E. [NASA/GSFC, Greenbelt, MD 20771 (United States); Finkbeiner, F.M. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Lindeman, M.A. [University of Wisconsin, 1150 University Ave, Madison, WI 53706 (United States); Murphy, K. [NASA/GSFC, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA/GSFC, Greenbelt, MD 20771 (United States); Saab, T. [NASA/GSFC, Greenbelt, MD 20771 (United States); Sadleir, J.E. [NASA/GSFC, Greenbelt, MD 20771 (United States); Talley, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K K{alpha} lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193{mu}s is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events.

  19. Practical Considerations for Optimizing Position Sensitivity in Arrays of Position-sensitive TES's

    Science.gov (United States)

    Smith, Stephen J.; Bandler, Simon R.; Figueroa-Feliciano, Encetali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porder, Frederick S.; Sadleir, John E.

    2007-01-01

    We are developing Position-Sensitive Transitions-Edge Sensors (PoST's) for future X-ray astronomy missions such as NASA's Constellation-X. The PoST consists of one or more Transitions Edge Sensors (TES's) thermally connected to a large X-ray absorber, which through heat diffusion, gives rise to position dependence. The development of PoST's is motivated by the desire to achieve the largest the focal-plan coverage with the fewest number of readout channels. In order to develop a practical array, consisting of an inner pixellated core with an outer array of large absorber PoST's, we must be able to simultaneously read out all (-1800) channels in the array. This is achievable using time division multiplexing (TDM), but does set stringent slew rate requirements on the array. Typically, we must damp the pulses to reduce the slew rate of the input signal to the TDM. This is achieved by applying a low-pass analog filter with large inductance to the signal. This attenuates the high frequency components of the signal, essential for position discrimination in PoST's, relative to the white noise of the readout chain and degrades the position sensitivity. Using numerically simulated data, we investigate the position sensing ability of typical PoST designs under such high inductance conditions. We investigate signal-processing techniques for optimal determination of the event position and discuss the practical considerations for real-time implementation.

  20. Understanding outliers on the usual dose-response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters.

    Science.gov (United States)

    Preskorn, Sheldon H

    2010-01-01

    Venlafaxine is a model substrate for the drug metabolizing cytochrome P450 (CYP) enzyme 2D6. The desvenlafaxine/venlafaxine ratio, either after a single dose or at steady state, can be used to determine whether a patient is functionally (i.e., phenotypically) a CYP 2D6 extensive or poor metabolizer (EM or PM). In turn, CYP 2D6 EM and PM status is important in determining the efficacy of venlafaxine as an antidepressant. Based on a secondary analysis of four of the venlafaxine registration trials, venlafaxine was effective in patients who were CYP 2D6 EMs versus a parallel placebo-treated control group, whereas it was not effective in patients who were CYP 2D6 PMs. Thus, venlafaxine is a useful example of how drugs can be used to quantify differences in drug metabolizing capacity among patients and how such differences can in turn affect the efficacy of a drug (i.e., make a patient an outlier on the usual dose-response curve).

  1. Measurement and Analysis on Neutron Position Sensitive Detector at CARR

    Institute of Scientific and Technical Information of China (English)

    GAO; Jian-bo; HAO; Li-jie; LIU; Xin-zhi; MA; Xiao-bai; LI; Yu-qing

    2013-01-01

    Neutron position sensitive detector is one of the key components for neutron scattering spectrometer.As the eyes of the spectrometer,the detector is mainly used for recording the position and intensity of the neutrons.The 16 linear position sensitive detectors from GE Reuter-Stokes Company have been measured

  2. Construction and commissioning of a position-sensitive ionization chamber

    Science.gov (United States)

    Kwag, M. S.; Chae, K. Y.; Cha, S. M.; Kim, A.; Kim, M. J.; Lee, E. J.; Lee, J. H.

    2016-05-01

    A position-sensitive ionization chamber has been constructed and commissioned at the Physics Department of Sungkyunkwan University to extract position information on incident charged particles for future nuclear reaction measurements. By utilizing the newly-designed position-sensitive anodes and the previously-commissioned portable gas-filled ionization chamber by Chae et al., position information on incident particles could be obtained. The device was tested with an 241Am α-emitting source, and the standard deviation of the fitted Gaussian distribution was measured to be 1.76 mm when a collimator with a 2 mm hole was used.

  3. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    CERN Document Server

    Vandebrouck, Marine; Rejmund, Maurycy; Fremont, Georges; Pancin, Julien; Navin, Alahari; Michelagnoli, Caterina; Goupil, Johan; Spitaels, Charles; Jacquot, Bertrand

    2015-01-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, interaction position on the target and the velocity of reaction products, detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) {\\mu}m for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the gamma-rays, detected in the gamma-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  4. Efficiency of position sensitive PPAC for various ions

    CERN Document Server

    Hua Hui; Li Xiang Qing; Qian Tao; Wu He Yu; JinGenMing; Tan Ji Lian; Zhan Wen Long; Duan Li Min; Xiao Zhi Guang; Guo Zhong Yan; Li Zu Yu; Wang Hong Wei; Wang Shu Fan

    2002-01-01

    The detection efficiencies of a position sensitive parallel plate avalanche counter, measured with 40 MeV/u sup 1 sup 7 N beam bombarding on a 621 mg/cm sup 2 sup 1 sup 9 sup 7 Au target, were observed to be significantly different for different ions from helium to oxygen. Furthermore, for a given type of ion, the efficiency decreases with the increase of the incident energy.

  5. New test and analysis of position-sensitive-silicon-detector

    Institute of Scientific and Technical Information of China (English)

    FENG Lang; GE Vu-Cheng; WANG He; FAN Feng-Ying; QIAO Rui; LU Fei; SONG Yu-Shou; ZHENG Tao; YE Yan-Lin

    2009-01-01

    We have tested and analyzed the properties of two-dimensional Position-Sensitive-silicon-Detector (PSD) with new integrated preamplifiers.The test demonstrates that the best position resolution for 5.5 MeV α particles is 1.7 mm (FWHM),and the best energy resolution is 2.1%,which are notably better than the previously reported results.A scaling formula is introduced to make the absolute position calibration.

  6. Position Sensitive Detector Used to Detect Beam Profile

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Non-destructive diagnostic methods are very important for beam adjustments and monitors,especially when the beam intensity is less than 10~8 pps during the heavy-ion treatment of cancer.Now the diagnostic devices of HIFRL can’t satisfy the requests,so we decide to construct a detecting system of the residual-gas beam profile~([1,2]).The system uses the Position Sensitive Detector(PSD)~([3,4])based on microchannel plate(MCP)to

  7. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  8. Improving linearity of position-sensitive detector using support vector machines

    Institute of Scientific and Technical Information of China (English)

    Meiying Ye

    2005-01-01

    An intelligent method for improving position linearity of position-sensitive detector (PSD), based on support vector machines (SVMs), is developed. The SVM is established based on the structural risk minimization principle rather than minimizing the empirical error commonly implemented in neural networks.SVM can achieve higher generalization performance. Training SVM is equivalent to solving a linearly constrained quadratic programming problem, thus the solution of SVM is always unique and globally optimal.The improving position linearity procedure has been illustrated using a two-dimensional (2D) PSD. It is pointed out that the position linearity of the measuring system with a proper SVM correction is improved by two orders of magnitude in the measurement range.

  9. Emulation workbench for position sensitive gaseous scintillation detectors

    CERN Document Server

    Pereira, L; Morozov, A; Solovov, V; Fraga, F A F

    2015-01-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transport models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed, show good agreement with simulations.

  10. Emulation workbench for position sensitive gaseous scintillation detectors

    Science.gov (United States)

    Pereira, L.; Margato, L. M. S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-12-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations.

  11. New uses of position-sensitive photomultiplier tubes

    Science.gov (United States)

    Gordon, Jeffrey S.; Redus, Robert H.; Nagarkar, Vivek V.; Squillante, Michael R.

    1992-12-01

    Recent advances in photomultiplier tube technology have led to the availability of position sensitive photomultiplier tubes (PSPMTs). These tubes make it possible to build a new generation of imaging instruments for gamma rays and other types of ionizing radiation. We have investigated the use of these tubes for the construction of several prototype instruments. The first application investigated measures the quantity and distribution of radioactive compounds on filter papers used in microbiology research. The intent of this instrument is to replace film autoradiography with an electronic imaging system which can analyze samples 75 to 110 times faster than film. The second application involved the development of an intraoperative imaging probe to help surgeons identify cancerous tissue and ensure its complete removal. This instrument will replace a non-imaging probe now in use at many hospitals. A third prototype instrument under evaluation is an imaging nuclear survey system which obtains both a video and gamma ray image for the purpose of locating and quantifying radioactive materials. This system would be used at nuclear power plants and radioactive materials preparation facilities. A modification of this system could be built into robots used for inspecting and repairing power plants.

  12. Two-dimensional position sensitive ionization chamber with GEM

    Science.gov (United States)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  13. A New Positioning Algorithm for Position-Sensitive Avalanche Photodiodes.

    Science.gov (United States)

    Zhang, Jin; Olcott, Peter D; Levin, Craig S

    2007-06-01

    We are using a novel position sensitive avalanche photodiode (PSAPD) for the construction of a high resolution positron emission tomography (PET) camera. Up to now most researchers working with PSAPDs have been using an Anger-like positioning algorithm involving the four corner readout signals of the PSAPD. This algorithm yields a significant non-linear spatial "pin-cushion" distortion in raw crystal positioning histograms. In this paper, we report an improved positioning algorithm, which combines two diagonal corner signals of the PSAPD followed by a 45° rotation to determine the X or Y position of the interaction. We present flood positioning histogram data generated with the old and new positioning algorithms using a 3 × 4 array of 2 × 2 × 3 mm(3) and a 3 × 8 array of 1 × 1 × 3 mm(3) of LSO crystals coupled to 8 × 8 mm(2) PSAPDs. This new algorithm significantly reduces the pin-cushion distortion in raw flood histogram image.

  14. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  15. READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P.; HE, Z.; HERMAN, C.; ZHANG, F.

    2007-10-27

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.

  16. ASIC for High Rate 3D Position Sensitive Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  17. Signal and noise properties of position-sensitive avalanche photodiodes.

    Science.gov (United States)

    Yang, Yongfeng; Wu, Yibao; Farrell, Richard; Dokhale, Purushottam A; Shah, Kanai S; Cherry, Simon R

    2011-10-07

    After many years of development, position-sensitive avalanche photodiodes (PSAPDs) are now being incorporated into a range of scintillation detector systems, including those used in high-resolution small-animal PET and PET/MR scanners. In this work, the signal, noise, signal-to-noise ratio (SNR), flood histogram and timing resolution were measured for lutetium oxyorthosilicate (LSO) scintillator arrays coupled to PSAPDs ranging in size from 10 to 20 mm, and the optimum bias voltage and working temperature were determined. Variations in the SNR performance of PSAPDs with the same dimensions were small, but the SNR decreased significantly with increasing PSAPD size and increasing temperature. Smaller PSAPDs (10 mm and 15 mm in width) produced acceptable flood histograms at 24 °C, and cooling lower than 16 °C produced little improvement. The optimum bias voltage was about 25 V below the break down voltage. The larger 20 mm PSAPDs have lower SNR and require cooling to 0-7 °C for acceptable performance. The optimum bias voltage is also lower (35 V or more below the break down voltage depending on the temperature). Significant changes in the timing resolution were observed as the bias voltage and temperature varied. Higher bias voltages provided better timing resolution. The best timing resolution obtained for individual crystals was 2.8 ns and 3.3 ns for the 10 mm and 15 mm PSAPDs, respectively. The results of this work provide useful guidance for selecting the bias voltage and working temperature for scintillation detectors that incorporate PSAPDs as the photodetector.

  18. An animal PET scanner using flat-panel position-sensitive PMTs.

    Science.gov (United States)

    Okamoto, Takashi; Ote, Kibou; Sakai, Koichi; Noda, Akihiro; Shimizu, Keiji; Masuda, Keisuke; Ohmura, Tomohide; Watanabe, Mitsuo

    2014-01-01

    To design, build, and evaluate an animal PET scanner, which can be used with non-human primates under conscious condition, incorporating flat-panel position-sensitive photomultiplier tubes (PS-PMTs). The system contains 30 detector modules, each having two PS-PMTs and 16×18 lutetium–yttrium oxyortho-silicate scintillation crystal arrays. The system has 17,280 crystals (480 per ring) arranged in 36 rings, with a diameter of 508 mm and axial extent of 108 mm. The gantry tilt mechanism enables PET studies to be performed on a monkey in the sitting position. Data can be acquired in either the 2D or 3D mode, with the slice collimators being retracted in the 3D mode. At the center of the field-of-view, radial resolution is 2.7 mm full width at half maximum (FWHM) and tangential resolution is 2.4 mm FWHM, while axial resolution is 2.5 mm FWHM for direct slices and 2.7 mm FWHM for cross slices. Scatter fraction, count rate capability, and sensitivity were evaluated using a cylindrical phantom 10 cm in diameter. The noise equivalent count rate in the 3D mode is equivalent to that in the 2D mode at a three times higher radioactivity level. Total system sensitivity is 1.3 kcps/(kBq/mL) in 2D mode and 7.4 kcps/(kBq/mL) in the 3D mode. Animal studies with a monkey were performed to evaluate the imaging capabilities of the scanner. The new PET scanner will be a useful research tool with non-human primates for pre-clinical drug development.

  19. 2D semiconductor optoelectronics

    Science.gov (United States)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  20. Reducing edge effects and improving position resolution in position sensitive NaI(Tl) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, R.; Haigh, A.T.; Karp, J.S. (Univ. of Pennsylvania, Philadelphia (United States))

    1993-04-01

    Large two dimensional position sensitive NaI (Tl) crystals used in positron emission tomographs and elsewhere normally have gaps or inactive, unusable areas at the edges. Experiments aimed at reducing these edge effects have been performed. Unencapsulated crystals have been used to test the feasibility of optically coupling crystals together to decrease gap size. Other experiments increased the sampling of the scintillation light at the edges in order to obtain better position sensitivity. Work was also performed to treat the edges to reduce unwanted reflections and increase the position sensitive area. Finally, experiments aimed at improving the position resolution throughout the crystal as well as at the edges were performed.

  1. Position-Sensitive Silicon Detector for X-ray Difractometry of Fast Transient Processes

    Directory of Open Access Journals (Sweden)

    Pugatch, V.M.

    2014-03-01

    Full Text Available The results of the development and application of position sensitive microdetectors to study dynamics of fast transient processes in metals and alloys under heating/cooling by means of high-speed radiography are presented.

  2. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  3. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  4. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  5. Neutron beam applications - Development of one dimensional position sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yun; Kang, Hee Dong; Kim, Wan; Moon, Myung Kook [Kyungpook National University, Taegu (Korea)

    2000-04-01

    This research is sponsored and supported by KAERI as a part of {sup D}evelopment of One Dimensional Position Sensitive Neutron Detector{sup .} To apply residual stress measurement and small angle neutron scattering the one dimensional position sensitive neutron detectors which have wide window and good position resolution were designed and fabricated. The detection area are 200 mm x 100, 120 mm x 80 mm. The thermal neutron detection efficiency are about 60%. The spatial resolution of the detector are less than 2mm. The characteristics of the detectors were studied. Using the detector we could get neutron diffraction patterns from some samples. 19 refs., 103 figs., 4 tabs. (Author)

  6. A large area position sensitive X-ray detector for astrophysical observations

    NARCIS (Netherlands)

    Mels, W.A.; Lowes, P.; Buurmans, H.B.; Brinkman, A.C.; Naber, A.P.; Rook, A.

    1988-01-01

    A large area position sensitive X-ray detector has been developed for use in the coded mask imaging X-ray spectrometer (COMIS) aboard the USSR research module KVANT. The module was launched on March 31, 1987. The detector, having a sensitive area of 256 × 256 mm2, is a sealed multiwire proportional

  7. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout

    Institute of Scientific and Technical Information of China (English)

    鄢秋荣; 赵宝升; 刘永安; 杨颢; 盛立志; 韦永林

    2011-01-01

    A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a

  8. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  9. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    Directory of Open Access Journals (Sweden)

    Ioan Alexandru Ivan

    2012-12-01

    Full Text Available When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second response time which will enable future closed-loop control by using PSD.

  10. High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: application to 2D object tracking over a Smart Surface.

    Science.gov (United States)

    Ivan, Ioan Alexandru; Ardeleanu, Mihai; Laurent, Guillaume J

    2012-12-06

    When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs) have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second) response time which will enable future closed-loop control by using PSD.

  11. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  12. Position sensitivity in large spectroscopic LaBr3:Ce crystals for Doppler broadening correction

    Science.gov (United States)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2016-12-01

    The position sensitivity of a large LaBr3:Ce crystal was investigated with the aim of correcting for the Doppler broadening in nuclear physics experiments. The crystal was cylindrical, 3 in×3 in (7.62 cm x 7.62 cm) and with diffusive surfaces as typically used in nuclear physics basic research to measure medium or high energy gamma rays (0.5 MeVPosition Sensitive Photomultipliers (PSPMT). The signals from the 256 segments of the four PSPMTs were acquired grouping them into 16 elements. An event by event analysis was performed and a positon resolution of the order of 2 cm was found. It was verified that this allows an important reduction of the Doppler broadening induced by relativistic beams in Nuclear Physics experiments.

  13. Design and experimental study of a two-dimensional position sensitive X-ray detector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A prototype of a two-dimensional position sensitive X-ray detector was designed and constructed for small angle X-ray scattering experiments at BSFR (Beijing Synchrotron Radiation Facility). The detector is based on MWPC with cathode strip readout, and has a sensitive area of 200 mmx200 mm. The spatial resolution (FWHM) of about 210 μm along the anode wire direction was obtained from the 55Fe X-ray test of the detector.

  14. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  15. A position-sensitive time-of-flight analyser for study of molecular photofragmentation

    CERN Document Server

    Rius-I-Riu, J; Karawajczyk, A; Winiarczyk, P

    2002-01-01

    The basic features of a simple radial position-sensitive detector design, construction and performance, are described in detail in this paper. The electronics and method used to correlate the position information from the spectrum recorded by the detector are presented. Monte Carlo simulations of the performance of the detector embedded in a time of flight analyser show that such an instrument enables kinetic energy and angular distribution measurements and triple coincidence studies of photofragmentation of simple molecules.

  16. 2 Dimensional position sensitive XAFS by using in-house X-ray spectrometer

    Science.gov (United States)

    Shinoda, Kozo; Suzuki, Shigeru; Kuribayashi, Masaru; Taguchi, Takeyoshi

    2009-09-01

    Position sensitive XAFS measurements by using the in-house X-ray spectrometer and the position sensitive X-ray detector were attempted. The in-house spectrometer produces monochromized divergent X-ray beam. Therefore, an extended direct-beam image projected on the detector can be taken, and its extension rate is depending on the arrangement of the sample and the detector. A position sensitive XAFS measurement was demonstrated by using Ni metal foil and NiO powder as a model sample. Ge(220) or Si(400) Johansson-type bent single-crystal was used as monochromator, and Mo and LaB6 were used as the target and filament, respectively. Tube voltage and current were operated at 16 kV and 100 mA (1.6 kW). XAFS spectra were measured by transmission-mode with sample set/reset method and required time of each experiment is about 6 hours in total. It was confirmed that metal and oxide spectra with enough quality for structural analysis were clearly separated by each position in the sample.

  17. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Suzaki, F. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Izumikawa, T. [RI Center, Niigata University, Niigata 951-8510 (Japan); Miyazawa, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Morimoto, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Tokanai, F. [Department of Physics, Yamagata University, Yamagata 990-8560 (Japan); Furuki, H.; Ichihashi, N.; Ichikawa, C. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Momota, S. [School of Environmental Science and Engineering, Kochi University of Technology, Kochi 782-8502 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nagashima, M.; Nakamura, Y. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Nishikiori, R.; Niwa, T. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); and others

    2013-12-15

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  18. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    Science.gov (United States)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  19. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  20. Development of a one-dimensional Position Sensitive Detector for tracking applications

    Science.gov (United States)

    Lydecker, Leigh Kent, IV

    Optical Position Sensitive Detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS processing, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. Because they are non-contact, they do not degrade over time from surface friction due to repetitive sliding motion associated with standard full contact sliding potentiometers. This results in long, reliable device lifetimes. In this work, an innovative PSD was developed to replace the linear hard contact potentiometer currently being used in a human-computer interface architecture. First, a basic lateral effect PSD was developed to provide real-time positioning of the mouthpiece used in the interface architecture which tracks along a single axis. During the course of this work, multiple device geometries were fabricated and analyzed resulting in a down selection of a final design. This final device design was then characterized in terms of resolution and responsivity and produced in larger quantities as initial prototypes for the test product integration. Finally, an electronic readout circuit was developed in order to interface the dual- line lateral effect PSD developed in this thesis with specifications required for product integration. To simplify position sensing, an innovative type of optical position sensor was developed using a linear photodiodes with back-to-back connections. This so- called Self-Balancing Position Sensitive Detector (SBPSD) requires significantly fewer processing steps than the basic lateral effect position sensitive detector discussed above and eliminates the need for external readout circuitry entirely. Prototype devices were fabricated in this work, and the performance characteristics of these devices were established paving the way for ultimate integration into the target product as well as additional applications.

  1. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  2. Characterization of the VEGA ASIC coupled to large area position-sensitive Silicon Drift Detectors

    CERN Document Server

    Campana, R; Fuschino, F; Ahangarianabhari, M; Macera, D; Bertuccio, G; Grassi, M; Labanti, C; Marisaldi, M; Malcovati, P; Rachevski, A; Zampa, G; Zampa, N; Andreani, L; Baldazzi, G; Del Monte, E; Favre, Y; Feroci, M; Muleri, F; Rashevskaya, I; Vacchi, A; Ficorella, F; Giacomini, G; Picciotto, A; Zuffa, M

    2014-01-01

    Low-noise, position-sensitive Silicon Drift Detectors (SDDs) are particularly useful for experiments in which a good energy resolution combined with a large sensitive area is required, as in the case of X-ray astronomy space missions and medical applications. This paper presents the experimental characterization of VEGA, a custom Application Specific Integrated Circuit (ASIC) used as the front-end electronics for XDXL-2, a large-area (30.5 cm^2) SDD prototype. The ASICs were integrated on a specifically developed PCB hosting also the detector. Results on the ASIC noise performances, both stand-alone and bonded to the large area SDD, are presented and discussed.

  3. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm

    Science.gov (United States)

    Bolotnikov, A. E.; Camarda, G. S.; Chen, E.; Cheng, S.; Cui, Y.; Gul, R.; Gallagher, R.; Dedic, V.; De Geronimo, G.; Ocampo Giraldo, L.; Fried, J.; Hossain, A.; MacKenzie, J. M.; Sellin, P.; Taherion, S.; Vernon, E.; Yang, G.; El-hanany, U.; James, R. B.

    2016-02-01

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm2 and 6 × 6 mm2 and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  4. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm

    OpenAIRE

    Bolotnikov, AE; Camarda, GS; Chen, E.; Cheng, S.; Cui, Y.; Gul, R; Gallagher, R; Dedic, V.; De Geronimo, G.; Giraldo, LO; Fried, J.; Hossain, A; MacKenzie, JM; Sellin, P.; Taherion, S

    2016-01-01

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 5 mm2 and 6 6 mm2 and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabric...

  5. Development and Improvement of Position Sensitive Parallel Plate Avalanche Counter (PS-PPAC)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PS-PPAC was developed and the position resolution was successively improved by us in order to meet the need of heavy ion physics research.The PS-PPAC may be divided into two groups.1 PS-PPAC used for stable(ion)bearna)Double grid position sensitive avalanche chamber(DGAC)~[1].DGAC consists of 4 electrodes:anode A,cathode C,grids K and G,which are made of wire planes.The sensitive area was 25×20 cm~2.A position

  6. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Zeynalov, Sh. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Mosow region (Russian Federation)

    2016-09-11

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in {sup 235}U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  7. Development of a simple test device for spindle error measurement using a position sensitive detector

    Science.gov (United States)

    Liu, Chien-Hung; Jywe, Wen-Yuh; Lee, Hau-Wei

    2004-09-01

    A new spindle error measurement system has been developed in this paper. It employs a design development rotational fixture with a built-in laser diode and four batteries to replace a precision reference master ball or cylinder used in the traditional method. Two measuring devices with two position sensitive detectors (one is designed for the measurement of the compound X-axis and Y-axis errors and the other is designed with a lens for the measurement of the tilt angular errors) are fixed on the machine table to detect the laser point position from the laser diode in the rotational fixture. When the spindle rotates, the spindle error changes the direction of the laser beam. The laser beam is then divided into two separated beams by a beam splitter. The two separated beams are projected onto the two measuring devices and are detected by two position sensitive detectors, respectively. Thus, the compound motion errors and the tilt angular errors of the spindle can be obtained. Theoretical analysis and experimental tests are presented in this paper to separate the compound errors into two radial errors and tilt angular errors. This system is proposed as a new instrument and method for spindle metrology.

  8. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Science.gov (United States)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  9. Position sensitivity in 3"×3" Spectroscopic LaBr3:Ce Crystals

    Science.gov (United States)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2015-06-01

    The position sensitivity of a thick, cylindrical and continuous 3" × 3" (7.62 cm × 7.62 cm) LaBr3:Ce crystal with diffusive surfaces was investigated. Nuclear physics basic research uses thick LaBr3:Ce crystals (> 3cm) to measure medium or high energy gamma rays (0.5 MeV < Eγ< 20 MeV). In the first measurement the PMT photocathode entrance window was covered by black absorber except for a small window 1 cm × 1cm wide. A complete scan of the detector over a 0.5 cm step grid was performed. The data show that even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. The position of the full energy peak centroids are sufficient to identify the collimated gamma source position. The crystal was then coupled to four Position Sensitive Photomultipliers (PSPMT). We acquired the signals from the 256 segments of the four PSPMTs grouping them into 16 elements. An event by event analysis shows a positon resolution of the order of 2 cm.

  10. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    Science.gov (United States)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; Sad (eor. K/ E/); Figueroa-Feliciano, E.

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  11. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    CERN Document Server

    Wei, Wanchun; Hoffbauer, M A; Makela, M; Morris, C L; Tang, Z; Adamek, E R; Callahan, N B; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Geltenbort, P; Hickerson, K P; Holley, A T; Ito, T M; Leung, K K; Liu, C -Y; Morley, D J; Ramsey, J C; Pattie,, R W; Salvat, D J; Saunders, A; Seestrom, S J; Sharapov, E I; Sjue, S K; Wexler, J; Womack, T L; Young, A R; Zeck, B A; Wang, Zhehui

    2016-01-01

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 $\\mu$m has been achieved, which through the relation $\\delta E = m_0g \\delta x$, converts to UCN energy resolution below 2 pico-electron volts. The symbols $\\delta E$, $\\delta x$, $m_0$ and $g$ are for energy resolution, spatial resolution, the neutron rest mass and gravitational acceleration respectively. A multilayer surface convertor described previously is used to capture UCNs and emits visible light for CCD imaging. Particle identification and noise rejection are discussed through light intensity profile analysis. This method allows new types of UCN spectroscopy and various applications.

  12. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Science.gov (United States)

    Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodríguez, A.

    2003-10-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8×8 cm2 with a pixel size of 1.27×1.27 mm2. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  13. Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector

    Science.gov (United States)

    Pierce, M.; Stuart, J.; Pungor, A.; Dryden, P.

    2012-01-01

    The atomic force microscope (AFM), in addition to providing images on an atomic scale, can be used to measure the forces between surfaces and the AFM probe. The potential uses of mapping the adhesive forces on the surface include a spatial determination of surface energy and a direct identification of surface proteins through specific protein–ligand binding interactions. The capabilities of the AFM to measure adhesive forces can be extended by replacing the four-quadrant photodiode detection sensor with an external linear position sensitive detector and by utilizing a dedicated user-programmable signal generator and acquisiton system. Such an upgrade enables the microscope to measure in the larger dynamic range of adhesion forces, improves the sensitivity and linearity of the measurement, and eliminates the problems inherent to the multiple repetitious contacts between the AFM probe and the specimen surface. PMID:25125792

  14. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  15. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Pant, L.M. E-mail: lalit.pant@exp2.physik.uni-giessen.de; Biswas, D.C.; Dinesh, B.V.; Thomas, R.G.; Saxena, A.; Sawant, Y.S.; Choudhury, R.K

    2002-12-11

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with {alpha} particles from {sup 241}Am-{sup 239}Pu source, fission fragments from {sup 252}Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  16. A position-sensitive detector with lithium glass and MaPMT

    Institute of Scientific and Technical Information of China (English)

    FU Zai-Wei; LIU Shu-Dong; LEI Xiang-Cui; HUANG Guo-Rui; JIA Ru; HENG Yue-Kun; QI Ming; HUANG Chang-Hao; LIU Shu-Lin; QIAN Sen; LI Shao-Li; CHEN Xiao-Hui

    2012-01-01

    A position-sensitive detector is designed for neutron detection.It uses a single continuous screen of a self-made lithium glass scintillator,rather than discrete crystal implementations,coupling with a multianode PMT (MaPMT).The scintillator is fast and efficient; with a decay time of 34 ns and thermal neutron detection efficiency of around 95.8% for the 3 mm thick screen,and its light yield is around 5670 photons per neutron and 3768 photons per MeV γrays deposition.The spatial resolution is around 1.6 mm (FWHM) with the energy resolution around 34.7% by using α (5.2 MeV) rays test.

  17. Development of an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube

    Science.gov (United States)

    Ando, Koki; Oka, Miki; Yamamoto, Seiichi

    2017-02-01

    We developed an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (PSPMT). The alpha-particle imaging system consists of an optical lens, an extension tube and a 1 in. square high quantum efficiency (HQE) type PSPMT. After a ZnS(Ag) is attached to subject, the scintillation image of ZnS(Ag) is focused on the photocathode of the PSPMT by the use of the optical lens. With this configuration we could image the alpha particle distribution with energy information without contacting to the subject. The spatial resolution and energy resolution were 0.8 mm FWHM and 50% FWHM at 5 mm from the optical lens, respectively. We could successfully image the alpha particle distribution in uranium ore. The developed alpha-particle imaging system will be a new tool for imaging alpha emitters with energy information without contacting the subject.

  18. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  19. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout

    Institute of Scientific and Technical Information of China (English)

    YAN Qiu-Rong; ZHAO Bao-Sheng; LIU Yong-An; YANG Hao; SHENG Li-Zhi; WEI Yong-Lin

    2011-01-01

    A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensionai Vernier anode axe introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 μm according to the resolution test. The detector may realize the imaging of very weak particle flow of high- energy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.

  20. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  1. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  2. Imaging, Detection, and Identification Algorithms for Position-Sensitive Gamma-Ray Detectors

    Science.gov (United States)

    Wahl, Christopher G.

    Three-dimensional-position-sensitive semiconductors record both the locations and energies of gamma-ray interactions with high resolution, enabling spectroscopy and imaging of gamma-ray-emitting materials. Imaging enables the detection of point sources of gamma rays in an otherwise extended-source background, even when the background spectrum is unknown and may share the point source's spectrum. The generalized likelihood ratio test (GLRT) and source-intensity test (SIT) are applied to this situation to detect one-or-more unshielded point sources from a library of isotopes in a spectrally unknown or known background when the background intensity varies spatially by a factor of two or less. In addition to estimating the number of sources present, their activities, isotopes, and directions from the detector are estimated. Experimental and some simulated results are presented for a single detector and an 18-detector array of 2 cm by 2 cm by 1.5 cm CdZnTe crystals and compared with the performance of spectral-only detection when the background and source are assumed to be spectrally different. Furthermore, the expected detection performance of the 18-detector array system is investigated statistically using experimental data in the case where the background is distinct spectrally from the point source and the possible source location and isotopic identity are known. Including imaging gave at least 7% higher SNR compared to ignoring the image dimension. Also, imaging methods based on the maximum-likelihood, expectation-maximization method are introduced to determine the spatial distribution of isotopes and to find the activity distributions within targets moving with known motion through a radioactive background. Software has also been developed to support the analysis of the data from 3D-position-sensitive spectroscopic systems, for a range of detector designs and applications. The software design and unique features that allow fast multidimensional data analysis are

  3. Aero Fighter - 2D Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  4. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  5. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database....

  6. CYP2D6 pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Mohanan Geetha Gopisankar

    2017-10-01

    Full Text Available Cytochromes are proteins that catalyze electron transfer reactions of many metabolic pathways. They are involved in drug metabolism and thus determines the therapeutic safety and efficacy of drugs in patients. Cytochrome P450 in mitochondria accounts for 90% of the oxidative metabolism of clinically used drugs during phase 1 reaction. CYP2D6 is a major gene member of this superfamily as it carries out metabolism of 25% of drugs currently available in the market. Contrary to the concept of specificity of enzyme action these can metabolize substrates of different chemistry. Since its discovery, many have intensively studied this unique hemoprotein and contributed to the elucidation of its molecular properties and physiological functions and also the structure-activity relationships of its substrates and inhibitors. Its activity ranges considerably within a population due to genetic polymorphisms which lead to varied responses to drug intake. Studying such polymorphisms which cause a significant impact in the management of patients and helps to achieve the final target of personalizing medicine. This review briefs about history, structure, and function, molecular genetics, substrates, regulators and inhibitors of CYP2D6 and its clinical pharmacogenomics.

  7. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Science.gov (United States)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Gernhäuser, R.; Hess, H.; Lewandowski, L.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M.

    2017-02-01

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8° and 19.1°, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6° was determined for the same γ-ray energy.

  8. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  9. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  10. Estimation of Compton imager using single 3D position-sensitive LYSO scintillator: Monte Carlo simulation

    Science.gov (United States)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho

    2017-07-01

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm3 and 0.3 × 0.3 × 0.3 cm3, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-to-noise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of 137Cs (662 keV) could be distinguishable if they were more than 17° apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  11. A position-sensitive neutron spectrometer/dosimeter based on pressurized superheated drop (bubble) detectors

    Science.gov (United States)

    d'Errico, F.; Nath, R.; Holland, S. K.; Lamba, M.; Patz, S.; Rivard, M. J.

    2002-01-01

    A position-sensitive, superheated emulsion chamber (SEC) is introduced for three-dimensional (3D) spectrometry and dosimetry of fast neutrons. The detector is based on a fine suspension of octafluorocyclobutane droplets emulsified in a tissue-equivalent gel. This gel is highly viscous and immobilizes the bubbles at the location of their formation. At an operating temperature of 35°C, the droplets are moderately superheated and their evaporation is nucleated by the densely ionizing products of fast neutron interactions, with no response to sparsely ionizing radiations. Thus, when a neutron emitter such as a 252Cf brachytherapy source is inserted in the SEC, a bubble distribution forms around the source and makes the neutron field visible. The SEC is operated at different externally applied pressures that correspond to different response thresholds. These responses form a virtually orthogonal matrix which is suitable for spectrometry and allows the use of effective few channel unfolding procedures, yielding the spatial dependence of absorbed dose and neutron energy spectra in-tissue. Bubble spatial distributions in the chamber can be determined through optical tomography or magnetic resonance imaging (MRI). A 3D, steady-state MRI method has proven particularly effective for this purpose. After the imaging, the SEC can be pressurized above the halocarbon vapor tension in order to recondense the bubbles to the liquid phase. Within a few minutes, the device is annealed and ready to be used again for repeated measurements improving the bubble counting statistics.

  12. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Science.gov (United States)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  13. The particle background of the Rosat PSPC. [Position Sensitive Proportional Counter

    Science.gov (United States)

    Snowden, S. L.; Plucinsky, P. P.; Briel, U.; Hasinger, G.; Pfeffermann, E.

    1992-01-01

    In order to permit quantitative studies of the diffuse cosmic X-ray background and of extended X-ray sources, the particle induced background of the Roentgen Satellite, Rosat, Position Sensitive Proportional Counter (PSPC) is parameterized. Data collected during 210,000 s of PSPC operation have been analyzed and the temporal, spectral, and spatial distributions investigated. About 77 percent of the residual events originate within the detector while the remainder enter through the counter window. During typical conditions, the count rate of the residual events is well correlated with the Master Veto (MV) count rate. The spectrum of these events is well described by a flat component plus a soft power law and an Al K-alpha line at 1.5 keV. Also during typical conditions, the ratio between the power law and flat components remains constant to +/- 4 while the relative Al K-alpha contribution increases with increasing MV count rate. The distribution of the counts over the field of view is uniform except for a slight radial dependence and shadowing caused by blockage of the externally produced component by the window support structure.

  14. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.

    Science.gov (United States)

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-11-07

    Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm  ×  3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180  ±  2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm  ×  3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204  ±  1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.

  15. Development of large area and of position-sensitive timing RPCs

    CERN Document Server

    Blanco, A; Finck, C; Fonte, Paulo J R; Gobbi, A; Mendiratta, S K; Monteiro, J; Policarpo, Armando; Rozas, M

    2002-01-01

    Resistive Plate Chambers (RPC) made with glass and metal electrodes forming accurately spaced gas gaps of a few hundred micrometers have reached timing accuracies below 50 ps sigma with efficiencies above 99% for MIPs. This type of detector, operating at atmospheric pressure with non-flammable gases, seems well suited for large TOF systems, providing performances comparable to the scintillator-based TOF technology with significantly lower price per channel and being compatible with magnetic fields. In this work, we report recent developments of the timing RPC technology, including a large area counter (0.16 m sup 2) and smaller, position-sensitive, single-gap counters. The latter devices are aimed to be applied in small and accurate TOF systems using a multilayer structure. The large counter has shown a timing resolution between 50 and 75 ps sigma over the whole active area, with 96% efficiency and very small timing tails, along with a longitudinal position-resolution of 1.2 cm sigma. The single-gap counters ...

  16. Performance studies on high pressure 1-D position sensitive neutron detectors

    Indian Academy of Sciences (India)

    S S Desai; A M Shaikh

    2008-11-01

    The powder diffractometer and Hi-Q diffractometer at Dhruva reactor make use of five identical 1-D position sensitive detectors (PSDs) to scan scattering angles in the range 3° to 140°. In order to improve the overall throughput of these spectrometers, it is planned to install a bank of 15 high-efficiency and high-resolution PSDs arranged in three layers with five PSDs in each layer. With each high pressure PSD (3He 10 bar + Kr 2 bar) showing the efficiency gain of 1.8 at 1.2 Å, detector bank is expected to show overall gain of 5.5 times the present detection efficiency and reduction in data collection time by equivalent factor. The 1-D PSDs are developed in batches of five, and are characterized so that all PSDs operate at uniform parameters such as position resolution, uniformity of efficiency and linearity of response. Position spectrum indicates the differential position resolution to be ∼ 1 mm and integral position resolution to be 3–4 mm. Broadening of position spectrum at the extreme end of sensitive length of PSD is analysed using fine shift of the beam. Dependence of position resolution and dynamic range of output pulse on the input impedance of pre-amplifier is also presented.

  17. High-energy resolution μ-XRF analysis by position sensitive spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With a high-energy resolution micro-X-ray fluorescence (μ-XRF) analysis setup, which basically consists of an X-ray microbeam formed by an X-ray focusing lens combined with an X-ray apparatus and a wavelength dispersive position sensitive spectrometer with a flat crystal (PSS), preliminary results have been obtained. The counting rate of the analyzed element linearly increased with the power of X-ray apparatus, and the energy resolution, full width of half maximum (FWHM) of Ka lines of Ti and Cr reached 16.6 and 23.6 eV, respectively. The Cr Kb and Mn Ka lines in a sample of stainless steel could clearly be resolved. The above-mentioned results are also compared with those obtained by synchrotron radiation light microbeam combined with the PSS. The facts show that the high-energy resolution element analysis is feasible by using the setup. Moreover, problems for the setup and the ways to resolve them are discussed as well.

  18. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network

    Science.gov (United States)

    Bieniosek, M. F.; Cates, J. W.; Levin, C. S.

    2016-11-01

    Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm  ×  3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180  ±  2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm  ×  3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204  ±  1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.

  19. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  20. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain)]. E-mail: lerche@ific.uv.es; Benlloch, J.M. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Sanchez, F. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Pavon, N. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Gimenez, N. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Fernandez, M. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Gimenez, M. [Instituto de Fisisca Corpuscular (CSIC-UV), Apdo. 22085, 46071 Valencia (Spain); Sebastia, A. [Universidad Politecnica de Valencia, Valencia (Spain); Martinez, J. [Universidad Politecnica de Valencia, Valencia (Spain); Mora, F.J. [Universidad Politecnica de Valencia, Valencia (Spain)

    2005-01-21

    A new method of determining the depth of interaction of {gamma}-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the {gamma}-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation {sigma} is computed using an enhanced position-sensitive proportional resistor network which is often used in {gamma}-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost.

  1. New Developments in the Position Sensitive Detectors Based on Microchannel Plates

    Science.gov (United States)

    Tremsin, A. S.; Siegmund, O. H. W.

    2002-11-01

    We report on the latest developments in position sensitive photon counting detectors based on microchannel plates. Substantial improvement of the spatial resolution was achieved with introduction of new readout technology, namely crossed strip (XS) anode, and corresponding processing electronics. The spatial resolution of XS readout appeared to be as small as ~3-4 μm FWHM. Reduction of the total detector gain (down to 106 and potentially lower) without compromising the spatial accuracy allows detector operation at much higher local and global counting rates since the microchannel recharge time becomes smaller. Recent developments of novel microchannel plate technologies provide basis for substantial increase of the spectral sensitivity and quantum efficiency of MCP detectors. We have tested a number of new Silicon micromachined MCPs The new MCP technologies should allow deposition of completely new photocathode materials directly on the front surface of microchannel plates (opaque photocathodes). Opposite to standard glass MCPs new Silicon MCPs can sustain high temperatures (-800 C°) required for the photocathode deposition and activation processes.

  2. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    CERN Document Server

    Arnold, C W; Meierbachtol, K; Bredeweg, T; Jandel, M; Jorgenson, H J; Laptev, A; Rusev, G; Shields, D W; White, M; Blakeley, R E; Mader, D M; Hecht, A A

    2014-01-01

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $\\alpha$-particles from $^{229}$Th and its decay chain and $\\alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for mode...

  3. A position-sensitive neutron spectrometer/dosimeter based on pressurized superheated drop (bubble) detectors

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, F. E-mail: francesco.derrico@yale.edu; Nath, R.; Holland, S.K.; Lamba, M.; Patz, S.; Rivard, M.J

    2002-01-01

    A position-sensitive, superheated emulsion chamber (SEC) is introduced for three-dimensional (3D) spectrometry and dosimetry of fast neutrons. The detector is based on a fine suspension of octafluorocyclobutane droplets emulsified in a tissue-equivalent gel. This gel is highly viscous and immobilizes the bubbles at the location of their formation. At an operating temperature of 35 deg.C, the droplets are moderately superheated and their evaporation is nucleated by the densely ionizing products of fast neutron interactions, with no response to sparsely ionizing radiations. Thus, when a neutron emitter such as a {sup 252}Cf brachytherapy source is inserted in the SEC, a bubble distribution forms around the source and makes the neutron field visible. The SEC is operated at different externally applied pressures that correspond to different response thresholds. These responses form a virtually orthogonal matrix which is suitable for spectrometry and allows the use of effective few channel unfolding procedures, yielding the spatial dependence of absorbed dose and neutron energy spectra in-tissue. Bubble spatial distributions in the chamber can be determined through optical tomography or magnetic resonance imaging (MRI). A 3D, steady-state MRI method has proven particularly effective for this purpose. After the imaging, the SEC can be pressurized above the halocarbon vapor tension in order to recondense the bubbles to the liquid phase. Within a few minutes, the device is annealed and ready to be used again for repeated measurements improving the bubble counting statistics.

  4. The residual stress instrument with optimized Si(220) monochromator and position-sensitive detector at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Moon, Myung-Kook [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Em, Vyacheslav T. [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Nam, Uk-Won [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of); Kong, Kyung-Nam [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of)

    2005-06-11

    An upgraded residual stress instrument at the HANARO reactor of the KAERI is described. A horizontally focusing bent perfect crystal Si(220) monochromator (instead of a mosaic vertical focusing Ge monochromator) is installed in a drum with a tunable (2{theta}{sub M}=0-60{sup o}) take-off angle/wavelength. A specially designed position-sensitive detector (60% efficiency for {lambda}=1.8A) with 200mm (instead of 100mm) high-active area is used. There are no Soller type collimators in the instrument. The minimum possible monochromator to sample distance, L{sub MS}=2m, and sample to detector distance, L{sub SD}=1.2m, were found to be optimal. The new PSD and bent Si(220) monochromator combined with the possibility of selecting an appropriate wavelength resulted in about a ten-fold gain in data collection rate. The optimal reflections of austenitic and ferritic steels, aluminum and nickel for stress measurements with a Si(220) monochromator were chosen experimentally. The ability of the instrument to make strain measurements deep inside the austenitic and ferritic steels has been tested. For the chosen reflections and wavelengths, no shift of peak position (apparent strain) was observed up to 56mm length of path.

  5. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  6. 2D SIMPLIFIED SERVO VALVE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  7. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    Science.gov (United States)

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    Science.gov (United States)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  10. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes.

    Science.gov (United States)

    Yang, Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-05-07

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.

  11. A study of the timing properties of position-sensitive avalanche photodiodes.

    Science.gov (United States)

    Wu, Yibao; Ng, Thomas S C; Yang, Yongfeng; Shah, Kanai; Farrell, Richard; Cherry, Simon R

    2009-09-07

    In this paper, we study position-dependent timing shifts and timing resolution in position sensitive avalanche photodiodes (PSAPDs) and their effects on the coincidence window used in positron emission tomography (PET) systems using these devices. There is a delay in PSAPD signals that increases as the excitation position moves from the corner to the center of the device and the timing resolution concurrently worsens. The difference in timing between the center and the corner can be up to 30.7 ns for a 14 x 14 mm(2) area PSAPD. This means that a PSAPD-based PET system could require a very wide coincidence timing window (>60 ns) if this effect is not corrected, although the individual crystal pairs still have full-width half-maximum (FWHM) timing resolutions better than 7.4 ns. In addition to characterizing the timing properties of PSAPDs, two correction methods were developed and applied to data from a pair of PSAPD detectors. These two timing offset corrections reduced the timing shift of a crystal pair from 52.4 ns to 9.7 ns or 1.3 ns, improved the FWHM timing resolution of the detector pair from 24.6 ns to 9.5 ns or 6.0 ns and reduced the timing window (sufficient to cover at least twice the FWHM for all crystal pairs) from 65.1 ns to 22.0 ns or 15.2 ns, respectively. A two-step timing alignment method is proposed for a PET system consisting of multiple PSAPDs. Lastly, the effect of PSAPD size on the timing performance was also evaluated.

  12. Performance of resistive-charge position sensitive detectors for RBS/Channeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.A., E-mail: pjmirand@gmail.com [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2696-953 Sacavém (Portugal); Wahl, U. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2696-953 Sacavém (Portugal); Catarino, N. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2696-953 Sacavém (Portugal); Ribeiro da Silva, M. [Centro de Física Nuclear da Universidade de Lisboa, Avenida Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2696-953 Sacavém (Portugal)

    2014-10-01

    The performance of two types of 1×1 cm{sup 2} photodiode position sensitive detectors (PSDs) based on resistive charge division was evaluated for their use in Rutherford Backscattering/Channeling (RBS/C) experiments in blocking geometry. Their energy resolution was first determined for ∼5.5MeV alpha particles from a radioactive sources, and values of full width half maximum (FWHM) of 22 keV and 33 keV were achieved using a shaping time constant of τ=2.0μs. Additional tests were performed using backscattered {sup 4}He particles from the 2.0 MeV beam of a Van de Graaff accelerator. While the 22 keV FWHM detector failed after exposure to less than 5×10{sup 6} cm{sup −24}He particles, the other did not show any noticeable deterioration due to radiation damage for a fluence of 4×10{sup 8} cm{sup −2}. For this type of PSD position resolution (τ=0.5μs) standard deviations of ΔL=0.072mm at ∼5.5MeV and ΔL=0.247mm at 1.1 MeV were achieved. RBS/Channeling experiments using PSD were performed on several crystalline samples, showing that this setup seems suitable for lattice location studies, particularly for heavy ions implantation (D≳10{sup 15}at/cm{sup 2}) on light substrates like Si, SiC, and AlN.

  13. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    Science.gov (United States)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  14. 2D transition metal dichalcogenides

    Science.gov (United States)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  15. A Study of Position-Sensitive Solid-State Photomultiplier Signal Properties.

    Science.gov (United States)

    Schmall, Jeffrey P; Du, Junwei; Judenhofer, Martin S; Dokhale, Purushottam; Christian, James; McClish, Mickel; Shah, Kanai S; Cherry, Simon R

    2014-06-12

    We present an analysis of the signal properties of a position-sensitive solid-state photomultiplier (PS-SSPM) that has an integrated resistive network for position sensing. Attractive features of PS-SSPMs are their large area and ability to resolve small scintillator crystals. However, the large area leads to a high detector capacitance, and in order to achieve high spatial resolution a large network resistor value is required. These inevitably create a low-pass filter that drastically slows what would be a fast micro-cell discharge pulse. Significant changes in the signal shape of the PS-SSPM cathode output as a function of position are observed, which result in a position-dependent time delay when using traditional time pick-off methods such as leading edge discrimination and constant fraction discrimination. The timing resolution and time delay, as a function of position, were characterized for two different PS-SSPM designs, a continuous 10 mm × 10 mm PS-SSPM and a tiled 2 × 2 array of 5 mm × 5 mm PS-SSPMs. After time delay correction, the block timing resolution, measured with a 6 × 6 array of 1.3 × 1.3 × 20 mm(3) LSO crystals, was 8.6 ns and 8.5 ns, with the 10 mm PS-SSPM and 5 mm PS-SSPM respectively. The effect of crystal size on timing resolution was also studied, and contrary to expectation, a small improvement was measured when reducing the crystal size from 1.3 mm to 0.5 mm. Digital timing methods were studied and showed great promise for allowing accurate timing by implementation of a leading edge time pick-off. Position-dependent changes in signal shape on the anode side also are present, which complicates peak height data acquisition methods used for positioning. We studied the effect of trigger position on signal amplitude, flood histogram quality, and depth-of-interaction resolution in a dual-ended readout detector configuration. We conclude that detector timing and positioning can be significantly improved by implementation of digital timing

  16. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  17. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  18. New Reductions and Nonlinear Systems for 2D Schrodinger Operators

    CERN Document Server

    Mironov, A

    2010-01-01

    New Completely Integrable (2+1)-System is studied. It is based on the so-called L-A-B-triples $L_t=[H,L]-fL$ where L is a 2D Schrodinger Operator. This approach was invented by S.Manakov and B.Dubrovin, I.Krichever, S.Novikov(DKN) in the works published in 1976. A nonstandard reduction for the 2D Schrodinger Operator (completely different from the one found by S.Novikov and A.Veselov in 1984) compatible with time dynamics of the new Nonlinear System, is studied here. It can be naturally treated as a 2D extension of the famous Burgers System. The Algebro-Geometric (AG) Periodic Solutions here are very specific and unusual (for general and reduced cases). The reduced system is linearizable like Burgers. However, the general one (and probably the reduced one also) certainly lead in the stationary AG case to the nonstandard examples of algebraic curves $\\Gamma\\subset W$ in the full complex 2D manifold of Bloch-Floquet functions W for the periodic elliptic 2D operator H where $H\\psi(x,y,P)=\\lambda(P)\\psi(x,y,P),P\\...

  19. Improving the energy resolution of bent crystal X-ray spectrometers with position-sensitive detectors.

    Science.gov (United States)

    Honkanen, Ari Pekka; Verbeni, Roberto; Simonelli, Laura; Moretti Sala, Marco; Al-Zein, Ali; Krisch, Michael; Monaco, Giulio; Huotari, Simo

    2014-07-01

    Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanen et al. (2014). J. Synchrotron Rad. 21, 104-110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.

  20. Proportional counter for X-ray analysis of lunar and planetary surfaces. [a position sensitive scintillating imaging proportional counter

    Science.gov (United States)

    1979-01-01

    A position sensitive proportional scintillation detector was developed and evaluated for use in applications involving X-ray imaging as well as spectroscopy. Topics covered include limitations of the proportional scintillation counter for use in space; purification of the xenon gas in the detector, and the operation of the detector system. Results show that the light signal in a proportional scintillation detector remains well localized. With modest electric fields in xenon, the primary electrons from a photoelectric absorption of an X-ray can be brought a distance of a few millimeters to a higher field region without spreading more than a millimeter or so. Therefore, it is possible to make a proportional scintillation detector with good position sensitivity that could be used to calibrate out the difference in light collection over its sensitive volume.

  1. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  2. Bedform characterization through 2D spectral analysis

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    2011-01-01

    characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...... energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...

  3. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  4. Port Adriano, 2D-Model Tests

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  5. Structural Theory of 2-d Adinkras

    CERN Document Server

    Iga, Kevin

    2015-01-01

    Adinkras are combinatorial objects developed to study 1-dimensional supersymmetry representations. Recently, 2-d Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2-d Adinkras, confirming a conjecture of T. H\\"ubsch. Along the way, we obtain other structural results, including a simple characterization of H\\"ubsch's even-split doubly even code.

  6. On Self-growing Modeling for Curves

    Institute of Scientific and Technical Information of China (English)

    HUANG Dong-zhao; ZHU Zhi-hong; ZHOU Hui-cheng; SHI Han-min

    2008-01-01

    This paperpresents a novel curoe modeling method based on controlling rules of the shaping technique.The method describes the curve based on steplength and turning angle,and the characteristics of the curve near a point.Then it introduces the process to extract" growing-rules"for 2D and 3D curves described by familiar analytical expressions and curvature-torsion expressions.Examples of selfgrowing modeling for familiar analytical curves are presented.New curves are obtained by designing the grow-rules;corresponding examples are also presented.

  7. 2D materials for nanophotonic devices

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  8. L 1 Generalized Procrustes 2D Shape Alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2008-01-01

    This paper describes a new method for resistant and robust alignment of sets of 2D shapes wrt. position, rotation, and iso-tropical scaling. Apart from robustness a major advantage of the method is that it is formulated as a linear programming (LP) problem, thus enabling the use of well known and...... results in resistance towards object as well as landmark outliers. Examples that illustrate the properties of the robust norm are given on simulated as well as medical data sets....... on the orientation of the coordinate system, i.e. it is not rotationally invariant. However, by simultaneously minimizing the city block distances in a series of rotated coordinate systems we are able to approximate the circular equidistance curves of Euclidean distances with a regular polygonal equidistance curve...

  9. Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector.

    Science.gov (United States)

    Gilles, Hervé; Girard, Sylvain; Hamel, Joseph

    2002-08-15

    An original approach to directly measuring the Goos-Hänchen longitudinal shift between TE and TM polarization states during a total internal reflection is introduced. The technique is based on the modulation of the polarization state of a laser by an electro-optic modulator combined with a precise measurement of the resulting spatial displacement with a position-sensitive detector. This method presents many advantages over other techniques and allows measurements at different wavelengths over a broad range for the incident angle.

  10. Extensive simulation studies on the reconstructed image resolution of a position sensitive detector based on pixelated CdTe crystals

    CERN Document Server

    Zachariadou, K; Kaissas, I; Seferlis, S; Lambropoulos, C; Loukas, D; Potiriadis, C

    2011-01-01

    We present results on the reconstructed image resolution of a position sensitive radiation instrument (COCAE) based on extensive simulation studies. The reconstructed image resolution has been investigated in a wide range of incident photon energies emitted by point-like sources located at different source-to-detector distances on and off the detector's symmetry axis. The ability of the detector to distinguish multiple radioactive sources observed simultaneously is investigating by simulating point-like sources of different energies located on and off the detector's symmetry axis and at different positions

  11. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  12. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  13. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  16. Image processing of 2D crystal images.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Díez, Daniel; Thierry, Raphaël; Gipson, Bryant R; Zeng, Xiangyan; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.

  17. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  18. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  19. 2d index and surface operators

    Science.gov (United States)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  20. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    Institute of Scientific and Technical Information of China (English)

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  1. 2D velocity fields of simulated interacting disc galaxies

    CERN Document Server

    Kronberger, T; Schindler, S; Ziegler, B L

    2007-01-01

    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for...

  2. 3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo

    2016-01-01

    with equipment in the price range of conventional 2-D imaging. This study proposes a delay-and-sum (DAS) beamformation scheme specific to double-curved RCA 2-D arrays and validates its focusing ability based on simulations. A synthetic aperture imaging (SAI) sequence with single element transmissions at a time...... is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions....

  3. 2d Index and Surface operators

    CERN Document Server

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  4. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  5. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  6. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  7. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  8. Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction

    CERN Document Server

    Marmotti, M; Kampmann, R

    2002-01-01

    Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution neutron and X-ray diffractometry. They are multi-wire proportional counters with delay-line readout and sensitive areas of 300 mm x 300 mm or 500 mm x 500 mm. For detecting X-rays, neutrons and hard X-rays the counters are filled with Ar/CO sub 2 , sup 3 He/CF sub 4 and Xe/CO sub 2 , respectively. One neutron detector is used at the ARES diffractometer at GKSS, which is dedicated to the analysis of residual stresses. Further ones are used for analysing textures and residual stresses at the hard-X-ray beamline PETRA-2 at HASYLAB, and one detector is being developed for the neutron reflectometer REFSANS at the research reactor FRM-II in Munich, Germany. (orig.)

  9. Study of performance of small gamma camera consisting of crystal pixel array and position sensitive photomultiplier tube

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; LIU Shi-Tao; LEI Xiao-Wen; YAN Tian-Xin; XU Zi-Zong; WANG Zhao-Min

    2005-01-01

    The performance of gamma camera with NaI(T1) array coupled with position sensitive photomultiplier tube (PSPMT) R2486 has been studied. The pixel size of NaI(T1) crystal is 2mm×2mm and the overall dimension of the array is 48.2mm×48.2mm×5mm. There are 484 pixels in a 22×22 matrix. Because each pixel can produce a much focused light spot and restrict the spread of photons, position resolution of the gamma camera is mainly determined by pixel size. It is shown that crystal array pixel can reduce shrinkage effect and improve intrinsic position resolution greatly via restricting the spread of photons. Experimental results demonstrate that its position resolution and linearity are much improved comparing with the gamma camera using planar crystals coupled with PSPMT.

  10. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    Science.gov (United States)

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  11. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  12. Canonical structure of 2D black holes

    CERN Document Server

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  13. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  14. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  15. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  16. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  17. Assessment of biopsy-proven liver fibrosis by 2D-shear wave elastography

    DEFF Research Database (Denmark)

    Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe

    2017-01-01

    equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic (ROC) and area under the ROC curve (AUROC) analysis accounting for random effects. RESULTS: Data on both 2D-SWE and liver biopsy was available in 1134 patients from 13...

  18. Fast and robust recognition and localization of 2D objects

    Science.gov (United States)

    Otterbach, Rainer; Gerdes, Rolf; Kammueller, R.

    1994-11-01

    The paper presents a vision system which provides a robust model-based identification and localization of 2-D objects in industrial scenes. A symbolic image description based on the polygonal approximation of the object silhouettes is extracted in video real time by the use of dedicated hardware. Candidate objects are selected from the model database using a time and memory efficient hashing algorithm. Any candidate object is submitted to the next computation stage which generates pose hypotheses by assigning model to image contours. Corresponding continuous measures of similarity are derived from the turning functions of the curves. Finally, the previous generated hypotheses are verified using a voting scheme in transformation space. Experimental results reveal the fault tolerance of the vision system with regard to noisy and split image contours as well as partial occlusion of objects. THe short cycle time and the easy adaptability of the vision system make it well suited for a wide variety of applications in industrial automation.

  19. Schottky diodes from 2D germanane

    Science.gov (United States)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  20. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  1. 2D Metals by Repeated Size Reduction.

    Science.gov (United States)

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  2. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  3. 2D-Tasks for Cognitive Rehabilitation

    OpenAIRE

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  4. Quasiparticle interference in unconventional 2D systems

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  5. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  6. Irreversibility-inversions in 2D turbulence

    Science.gov (United States)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  7. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  8. High-Efficiency CdZnTe Position-Sensitive VFG Gamma-Ray Detectors for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey E. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, Ralph B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Camarda, G. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hossain, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Indusi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Boyer, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-30

    The goal of this project is to incorporate a Cadmium-Zinc-Telluride (CdZnTe or CZT) detector (with 1% or better resolution) into a bench-top prototype for isotope identification and related safeguards applications. The bench-top system is based on a 2x2 array of 6x6x20 mm3 position-sensitive virtual Frisch-grid (VFG) CZT detectors. The key features of the array are that it allows for the use of average-grade CZT material with a moderate content of defects, and yet it provides high energy resolution, 1% FWHM at 662 keV, large effective area, and low-power consumption. The development of this type of 3D detector and new instruments incorporating them is motivated by the high cost and low availability of large, > 1 cm3, CZT crystals suitable for making multi-pixel detectors with acceptable energy resolution and efficiency.

  9. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  10. High-Efficiency CdZnTe Position-Sensitive VFG Gamma-Ray Detectors for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey E. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, Ralph B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Camarda, G. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hossain, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Indusi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Boyer, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-30

    The goal of this project is to incorporate a Cadmium-Zinc-Telluride (CdZnTe or CZT) detector (with 1% or better resolution) into a bench-top prototype for isotope identification and related safeguards applications. The bench-top system is based on a 2x2 array of 6x6x20 mm3 position-sensitive virtual Frisch-grid (VFG) CZT detectors. The key features of the array are that it allows for the use of average-grade CZT material with a moderate content of defects, and yet it provides high-energy resolution, 1% FWHM at 662 keV, large effective area, and low-power consumption. The development of this type of 3D detector and new instruments incorporating them is motivated by the high cost and low availability of large, > 1 cm3, CZT crystals suitable for making multi-pixel detectors with acceptable energy resolution and efficiency.

  11. Design of a beam position sensitive cavity as a Schottky noise detector for mass measurements in CR rate at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangcheng; Huelsmann, Peter; Nolden, Fritz; Steck, Markus [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Sanjari, Shahab [ExtreMe Matter Institute, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Litvinov, Yuri [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Piotrowski, Jeremi [AGH University of Science and Technology, Krakow (Poland)

    2014-07-01

    Mass is one of fundamental characteristics of a nucleus. It plays an important role in many areas of physics, as well as other science branches. Especially in nuclear astrophysics, the masses of unstable nuclei close to nucleon drip lines are of great interests, since they are indispensable quantities for modelling nucleosynthesis processes in stellar objects. The Facility for Antiproton and Ion Research (FAIR), by providing high-intensity high-energy secondary beams, will enable unprecedented opportunities to investigate such nuclei. In particular, the collector ring (CR) is designed to be operated in the isochronous ion-optical mode as a high precision mass spectrometer. In order to satisfy the stringent requirements on accuracy and sensitivity for the future mass measurements, a non-destructive detector that is sensitive to single ions is being developed. Owing to the position sensitivity, it will be possible to correct for errors originating from different orbit lengths. In this work, we present simulation results of several possible designs of a cavity-based detector and discuss their potential applications as Schottky-noise detectors.

  12. 2D superconductivity by ionic gating

    Science.gov (United States)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  13. DAMAGE MECHANISM ANALYSIS OF 2D 1 × 1 BRAIDED COMPOSITES UNDER UNIDIRECTIONAL TENSION

    Institute of Scientific and Technical Information of China (English)

    张超; 许希武; 陈康

    2013-01-01

    Coupling with the periodical displacement boundary condition ,a representative volume element (RVE) model is established to simulate the progressive damage behavior of 2D 1 × 1 braided composites under unidirection-al tension by using the nonlinear finite element method .Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix .The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D 1 × 1 braided composites .Murakami′s damage tensor is adopted to characterize each damage mode .In the simulation process ,the damage mechanisms are revealed and the tensile strength of 2D 1 × 1 braided composites is predicted from the calculated average stress-average strain curve . Numerical results show good agreement with experimental data ,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites .

  14. 2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis

    CERN Document Server

    Schmitt, Jérémy; Borgnat, Pierre; Flandrin, Patrick; Condat, Laurent

    2014-01-01

    This work proposes an extension of the 1-D Hilbert Huang transform for the analysis of images. The proposed method consists in (i) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure, and (ii) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2-D mode decompositions based on non-smooth convex optimization: a "Genuine 2-D" approach, that constrains the local extrema of the IMFs, and a "Pseudo 2-D" approach, which constrains separately the extrema of lines, columns, and diagonals. The spectral analysis step is based on Prony annihilation property that is applied on small square patches of the IMFs. The resulting 2-D Prony-Huang transform is validated on simulated and real data.

  15. Functional 2D Procrustes Shape Analysis

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2005-01-01

    Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve sh...

  16. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  17. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Radiology

    1996-06-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to {minus}90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner.

  18. Organic Position-Sensitive Detectors Based on ZnO:Al and CuPc:C60.

    Science.gov (United States)

    Morimune, Taichiro; Kajii, Hirotake; Nishimaru, Hiroki; Ono, Shinji

    2016-04-01

    Organic position-sensitive detector (OPSD) based on copper phthalocyanine CuPc:fullerene C60 bulk-heterojunction with an inverted structure have been fabricated using aluminum doped ZnO (ZnO:Al) as a resistive layer, which is prepared by sol-gel method. The resistance length of the one-dimensional PSD is fixed at 5 mm, and the Ag common electrode is fabricated by vacuum evaporation within the 100-µm width. The current density-voltage characteristics with different structures of photodetector, the influence of ZnO:Al resistivity on the thickness and the position characteristics of PSDs are investigated. The experimental results indicate that the architecture, which uses an inverted structure, increases sensitivity under red light illumination compared to the conventional structure. In addition, the thickness of the ZnO:Al has influence on the position characteristics. The resistivity of ZnO:A film with Al doping concentration of 2 mol% prepared in this study is around 150 Ωcm and it increases from less than approximately 400 nm-thickness. These characteristics seem to be correlated with the properties of ZnO:AI resistive layer. For a device with a 620 nm-thick ZnO:Al layer, the measured position values obtained from the output photocurrent agree with the actual position values under red laser light illumination. CuPc:C60 OPSD with an inverted structure exhibits red light sensitivity, high incident-photon-to-current conversion efficiency of above 80% at -3 V and linearity error of 5.9% at -2 V.

  19. Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out.

    Science.gov (United States)

    Dokhale, P A; Silverman, R W; Shah, K S; Grazioso, R; Farrell, R; Glodo, J; McClish, M A; Entine, G; Tran, V H; Cherry, S R

    2004-09-21

    We are developing a high-resolution, high-efficiency positron emission tomography (PET) detector module with depth of interaction (DOI) capability based on a lutetium oxyorthosilicate (LSO) scintillator array coupled at both ends to position-sensitive avalanche photodiodes (PSAPDs). In this paper we present the DOI resolution, energy resolution and timing resolution results for complete detector modules. The detector module consists of a 7 x 7 matrix of LSO scintillator crystals (1 x 1 x 20 mm3 in dimension) coupled to 8 x 8 mm2 PSAPDs at both ends. Flood histograms were acquired and used to generate crystal look-up tables. The DOI resolution was measured for individual crystals within the array by using the ratio of the signal amplitudes from the two PSAPDs on an event-by-event basis. A measure of the total scintillation light produced was obtained by summing the signal amplitudes from the two PSAPDs. This summed signal was used to measure the energy resolution. The DOI resolution was measured to be 3-4 mm FWHM irrespective of the position of the crystal within the array, or the interaction location along the length of the crystal. The total light signal and energy resolution was almost independent of the depth of interaction. The measured energy resolution averaged 14% FWHM. The coincidence timing resolution measured using a pair of identical detector modules was 4.5 ns FWHM. These results are consistent with the design goals and the performance required of a compact, high-resolution and high-efficiency PET detector module for small animal and breast imaging applications.

  20. Spatial distortion correction and crystal identification for MRI-compatible position-sensitive avalanche photodiode-based PET scanners.

    Science.gov (United States)

    Chaudhari, Abhijit J; Joshi, Anand A; Wu, Yibao; Leahy, Richard M; Cherry, Simon R; Badawi, Ramsey D

    2009-06-01

    Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulae derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the 'template'. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to

  1. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    Energy Technology Data Exchange (ETDEWEB)

    Hanu, A.R., E-mail: hanua@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada)

    2015-04-21

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×10{sup 6} Hz without any loses and will report a maximum event rate of 6.11×10{sup 5} Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  2. Extrinsic curvature induced 2-d gravity

    CERN Document Server

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  3. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  4. Robust and resistant 2D shape alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    \\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l...

  5. Another solution of 2D Ising model

    Science.gov (United States)

    Vergeles, S. N.

    2009-04-01

    The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.

  6. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available is omitted. This can be an important consideration as aircraft altitude limits the attack pro�les a target can��y [1]. 33.2 HEIGHT ESTIMATION The current literature regarding height estimation restricts itself to computations involving two or more 2D... is instrumental in determining the aircraft altitude. The accuracy to which these speeds are known is directly pro- portional to the accuracy to which the altitude can be determined. Knowledge of aircraft speed can be obtained in a variety of ways. For example...

  7. A scintillating GEM for 2D-dosimetry in radiation therapy

    CERN Document Server

    Timmer, J; Bom, V; Eijk, C W; Haas, J D; Schippers, J M

    2002-01-01

    The first results of a study on the properties of a gaseous scintillation detector based on a Gas Electron Multiplier (GEM) are reported. The detector is designed for use in position-sensitive dosimetry applications in radiation therapy. A double GEM system, operating in a 90-10% Ar-CO sub 2 gas mixture at a gas amplification factor of approx 3000, emits a sufficient amount of detectable light to perform measurements of approx 1 Gy doses in two dimensions. The light yield does not suffer from quenching processes when particles with high stopping power are detected. This operation mode of GEMs offers the dosimetric advantages of a gas-filled detector and the 2D read-out can be performed with a CCD camera. Compared to the existing dosimeters, this system is relatively simple and no complex multi-electrode read-out is necessary.

  8. The strength of heterogeneous volcanic rocks: A 2D approximation

    Science.gov (United States)

    Heap, Michael J.; Wadsworth, Fabian B.; Xu, Tao; Chen, Chong-feng; Tang, Chun'an

    2016-06-01

    Volcanic rocks typically contain heterogeneities in the form of crystals and pores. We investigate here the influence of such heterogeneity on the strength of volcanic rocks using an elastic damage mechanics model in which we numerically deform two-dimensional samples comprising low-strength elements representing crystals and zero-strength elements representing pores. These circular elements are stochastically generated so that there is no overlap in a medium representing the groundmass. Our modelling indicates that increasing the fraction of pores and/or crystals reduces the strength of volcanic rocks, and that increasing the pore fraction results in larger strength reductions than increasing the crystal fraction. The model also highlights an important weakening role for pore diameter, but finds that crystal diameter has a less significant influence for strength. To account for heterogeneity (pores and crystals), we propose an effective medium approach where we define an effective pore fraction ϕp‧ = Vp/(Vp + Vg) where Vp and Vg are the pore and groundmass fractions, respectively. Highly heterogeneous samples (containing high pore and/or crystal fractions) will therefore have high values of ϕp‧, and vice-versa. When we express our numerical samples (more than 200 simulations spanning a wide range of crystal and pore fractions) in terms of ϕp‧, we find that their strengths can be described by a single curve for a given pore diameter. To provide a predictive tool for the strength of heterogeneous volcanic rocks, we propose a modified version of 2D solution for the Sammis and Ashby (1986) pore-emanating crack model, a micromechanical model designed to estimate strength using microstructural attributes such as porosity, pore radius, and fracture toughness. The model, reformulated to include ϕp‧ (and therefore crystal fraction), captures the strength curves for our numerical simulations over a sample heterogeneity range relevant to volcanic systems. We find

  9. Remarks on thermalization in 2D CFT

    Science.gov (United States)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  10. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  11. Comments on Thermalization in 2D CFT

    CERN Document Server

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  12. Invariance for Single Curved Manifold

    KAUST Repository

    Castro, Pedro Machado Manhaes de

    2012-08-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  13. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  14. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  15. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  16. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  17. Lie symmetries and 2D Material Physics

    CERN Document Server

    Belhaj, Adil

    2014-01-01

    Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

  18. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  19. Full revivals in 2D quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Stefanak, M; Jex, I [Department of Physics, FJFI CVUT v Praze, Brehova 7, 115 19 Praha 1-Stare Mesto (Czech Republic); Kollar, B; Kiss, T, E-mail: martin.stefanak@fjfi.cvut.c [Department of Quantum Optics and Quantum Information, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Konkoly-Thege M. u. 29-33, H-1121 Budapest (Hungary)

    2010-09-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  20. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment...

  1. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  2. Fast 2-D Complex Gabor Filter with Kernel Decomposition

    OpenAIRE

    Um, Suhyuk; Kim, Jaeyoon; Min, Dongbo

    2017-01-01

    2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific...

  3. Metrology for graphene and 2D materials

    Science.gov (United States)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  4. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  5. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  6. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    Science.gov (United States)

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?

    DEFF Research Database (Denmark)

    Cortes, Ines Olmedo; Nielsen, Peter V.

    The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...

  8. Curvilinear 3-D Imaging Using Row--Column-Addressed 2-D Arrays with a Diverging Lens: Feasibility Study

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Beers, Christopher

    2017-01-01

    Constructing a double-curved row–columnaddressed (RCA) 2-D array or applying a diverging lens over the flat RCA 2-D array can extend the imaging field-of-view (FOV) to a curvilinear volume without increasing the aperture size, which is necessary for applications such as abdominal and cardiac imag...... of this study demonstrate that the proposed beamforming approach is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions....

  9. Multiphasic growth curve analysis.

    NARCIS (Netherlands)

    Koops, W.J.

    1986-01-01

    Application of a multiphasic growth curve is demonstrated with 4 data sets, adopted from literature. The growth curve used is a summation of n logistic growth functions. Human height growth curves of this type are known as "double logistic" (n = 2) and "triple logistic" (n = 3) growth curves (Bock

  10. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  11. Intermittency in 2D soap film turbulence

    CERN Document Server

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  12. Competing coexisting phases in 2D water

    Science.gov (United States)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  13. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  14. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Institute of Scientific and Technical Information of China (English)

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  15. Cosmological model in 2d dilaton gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1993-01-01

    We apply CGHS-type dilaton gravity model to (1+1)-dimensional cosmological situations. First the behavior of a compact 1-dimensional universe (i.e. like a closed string) is classified on the assumption of homogeneity of universe. Several interesting solutions are found, which include a Misner-type universe having closed time-like curves, and an asymptotically de Sitter universe first pointed out by Yoshimura. In the second half of this talk, we discuss the modification of the classical homogeneous solutions, considering inhomogeneity of classical conformal matters and also quantum back-reaction respectively. (An expanded version of the talk presented by T. Mishima at Yukawa Institute of Theoretical Physics workshop `Quantum Gravity' 24-27, November 1992.)

  16. Homotopical Complexity of 2D Billiard Orbits

    CERN Document Server

    Goswick, Lee M

    2010-01-01

    Traditionally, rotation numbers for toroidal billiard flows are defined as the limiting vectors of average displacements per time on trajectory segments. The billard trajectories, being curves, oftentimes getting very close to closed loops, quite naturally define elements of the fundamental group of the billiard table. The simplest non-trivial fundamental group obtained this way belongs to the classical Sinai billiard, i.e., the billiard flow on the 2-torus with a single, convex obstacle removed. This fundamental group is known to be the group $\\textbf{F}_2$ freely generated by two elements, which is a heavily noncommutative, hyperbolic group in Gromov's sense. We define the homotopical rotation number and the homotopical rotation set for this model, and provide lower and upper estimates for the latter one, along with checking the validity of classically expected properties, like the density (in the homotopical rotation set) of the homotopical rotation numbers of periodic orbits. The natural habitat for these...

  17. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    and a composite material is created, which has the same magnetization characteristic. The benefit of this technique is that it allows a designer to perform design and optimization of magnetic cores with overlapped laminations using a 2-D FE model rather than a 3-D FE model, which saves modeling and simulation...... time. The modeling technique is verified experimentally by creating a composite material of a lap joint with a 3-mm overlapping region and using it in a 2-D FE model of a ring sample made up of a stack of 20 laminations. The B-H curve of the simulated ring sample is compared with the B-H curve obtained...

  18. Anisotropy effects and friction maps in the framework of the 2d PT model

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O.Y. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gnecco, E. [Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, 28049 Madrid (Spain); Mazo, J.J., E-mail: juanjo@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    We present a series of numerical simulations on the friction–anisotropy behavior and stick–slip dynamics of a point mass in the framework of a 2d Prandtl–Tomlinson model. Results for three representative surface lattice are shown: square, hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at T=0 K and T=300 K are shown. Friction force maps are computed at different directions.

  19. 2-D Animation's Not Just for Mickey Mouse.

    Science.gov (United States)

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  20. RESEARCH ANNOUNCEMENTS On the Simultaneous Pell Equations x2-D1y2=δ and z2-D2y2=δ

    Institute of Scientific and Technical Information of China (English)

    乐茂华

    2001-01-01

    @@  Let , , be the sets of all integers, positive integers and rational numbers, respectively.Let D1, D2 be distinct positive integers, and let δ∈-1, 1. The simultaneous Pell equations x2-D1y2=δ, z2-D2y2=δ, x,y,z∈, y≠0 1 arise in connection with a variety of classical problems on number theory and arithmetic algebraic geometry. As has been noted by K. One[1], the solutions (x,y,z) of (1) imply the existence of rational points of infinite order on the elliptic curve E=Eδ: Y2=X(X+δD1)(X+δD2). Let p,q be twin primes with

  1. Curve Length Estimation using Vertix Chain Code Curve Length Estimation

    Directory of Open Access Journals (Sweden)

    Habibollah Haron

    2010-09-01

    Full Text Available Most of the applications in image analysis are based on Freeman chain code. In this paper, for the first time, vertex chain code (VCC proposed by Bribiesca is applied to improve length estimation of the 2D digitized curve. The chain code has some preferences such as stable in shifting, turning, mirroring movement of image and has normalized starting point. Due to the variety of length estimator methods, we focused on the three specific techniques. First, the way Bribiesca proposed which is based on counting links between vertices; second, based on maximum length digital straight segments (DSSs and lastly local metrics. The results of these length estimators with the real perimeter are compared. Results thus obtained exhibits thatlength estimation using VCC is nearest to the actual length.

  2. Stability Test for 2-D Continuous-Discrete Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  3. Pharm GKB: CYP2D6 [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available el for vortioxetine and CYP2D6 FDA Label for acetaminophen,tramadol and CYP2D6 FDA Label for dextromethorphan... Label for vortioxetine and CYP2D6 European Medicines Agency (EMA) Label for dextromethorphan,quinidine and ...ore of this label. Read more. last updated 10/25/2013 FDA Label for dextromethorphan, quinidine and CYP2D6 O...of NUEDEXTA is a CYP2D6 inhibitor used to increase the plasma availability of dextromethorphan, which is met... 05/02/2014 European Medicines Agency (EMA) Label for dextromethorphan, quinidine

  4. 3D/2D Registration of medical images

    OpenAIRE

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  5. Analysis list: Mef2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  6. Spinal curves (image)

    Science.gov (United States)

    There are four natural curves in the spinal column. The cervical, thoracic, lumbar, and sacral curvature. The curves, along with the intervertebral disks, help to absorb and distribute stresses that occur from everyday activities such as walking or from ...

  7. Contractibility of curves

    Directory of Open Access Journals (Sweden)

    Janusz Charatonik

    1991-11-01

    Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.

  8. Parametrizing Algebraic Curves

    OpenAIRE

    Lemmermeyer, Franz

    2011-01-01

    We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.

  9. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  10. Caloric curves of atomic nuclei and other small systems

    CERN Document Server

    Schiller, A; Hjorth-Jensen, M; Rekstad, J; Siem, S

    2003-01-01

    Caloric curves have traditionally been derived within the microcanonical ensemble via dS/dE=1/T or within the canonical ensemble via E=T^2*d(ln Z)/dT. In the thermodynamical limit, i.e., for large systems, both caloric curves give the same result. For small systems like nuclei, the two caloric curves are in general different from each other and neither one is reasonable. Using dS/dE=1/T, spurious structures like negative temperatures and negative heat capacities can occur and have indeed been discussed in the literature. Using E=T^2*d(ln Z)/dT a very featureless caloric curve is obtained which generally smoothes too much over structural changes in the system. A new approach for caloric curves based on the two-dimensional probability distribution P(E,T) will be discussed.

  11. Backscattering in a 2D topological insulator and the conductivity of a 2D strip

    Science.gov (United States)

    Magarill, L. I.; Entin, M. V.

    2015-01-01

    A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge irregularities, and phonons produce transitions between the counterpropagating edge states on different edges. This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temperature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially grows with the strip width. In the same approximation the nonlocal resistance coefficients of a four-terminal strip are found.

  12. ECM using Edwards curves

    DEFF Research Database (Denmark)

    Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja;

    2013-01-01

    This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the modular......-arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...

  13. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    Science.gov (United States)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  14. Sensitivity of 2-D complex resistivity measurements to subsurface anisotropy

    Science.gov (United States)

    Kenkel, J.; Kemna, A.

    2017-02-01

    In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artefacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, that is, the partial derivative of the impedance forward response with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, that is, the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement

  15. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  16. COMPARISON OF FATIGUE AND CREEP BEHAVIOR BETWEEN 2D AND 3D-C/SiC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    D. Han; S.R. Qiao; M. Li; J.T. Hou; X.J. Wu

    2004-01-01

    The differences of tension-tension fatigue and tensile creep characters of 2D-C/SiCand 3D-C/SiC composites have been scrutinized to meet the engineering needs. Experiments of tension-tension fatigue and tensile creep are carried out under vacuum high temperature condition. All of the high temperature fatigue curves are flat; the fatigue curves of the 2D-C/SiC are flatter and even parallel to the horizontal axis. While the tension-tension fatigue limit of the 3D-C/SiC is higher than that of the 2D-C/SiC, the fiber pullout length of the fatigue fracture surface of the 3D-C/SiC is longer than that of the 2D-C/SiC, and fracture morphology of the 3D-C/SiC is rougher, and pullout length of the fiber tows is longer. At the same time the 3D-C/SiC has higher tensile creep resistance. The tensile curve and the tensile creep curve of both materials consist of a series of flat step. These phenomena can be explained by the non-continuity of the damage.

  17. Analysis of directional dependence of the two-dimensional array of detectors 2D array seven 29 implications in the planning system; Analisis de la dependencia direcccional de la matriz bidimensional de detectores 2D array seven29. Implicaciones en el sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.

    2013-07-01

    The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)

  18. Regulation of cerebral CYP2D alters tramadol metabolism in the brain: interactions of tramadol with propranolol and nicotine.

    Science.gov (United States)

    Wang, Qiaoli; Han, Xiaotong; Li, Jian; Gao, Xinghui; Wang, Yan; Liu, Mingzhou; Dong, Guicheng; Yue, Jiang

    2015-04-01

    1. Cytochrome P450 2D (CYP2D) protein is widely expressed across brain regions in human and rodents. We investigated the interactions between tramadol, a clinically used analgesic, and brain CYP2D regulators, by establishing concentration-time curves of tramadol and O-desmethyltramadol (M1) in rat cerebrospinal fluid (CSF) and plasma, as well as by analyzing the analgesia-time course of tramadol. 2. Propranolol (20 μg, intracerebroventricular injection), CYP2D inhibitor, prolonged the elimination t1/2 of tramadol (40 mg/kg, intraperitoneal injection) in the CSF; meanwhile, lower Cmax and AUC0-∞ values of M1 were observed. Nicotine (1 mg base/kg, subcutaneous injection, seven days), brain CYP2D inducer, induced a shorter Tmax and elevated Cmax of M1 in CSF. No differences in the peripheral metabolism of tramadol were observed following propranolol and nicotine pretreatment. Nicotine increased areas under the analgesia-time curve (AUC) for 0-45 min and 0-90 min of tramadol, which was attenuated by propranolol administration. The analgesic actions of tramadol positively correlated with cerebral M1 concentration. 3. The results suggest that the regulation of brain CYP2D by xenobiotics may cause drug-drug interactions (DDIs) of tramadol. Brain CYPs may play an important role in DDIs of centrally active substances.

  19. The No-Hair Conjecture in 2D Dilaton Supergravity

    CERN Document Server

    Gamboa-Rios, J

    1993-01-01

    We study two dimensional dilaton gravity and supergravity following hamiltonian methods. Firstly, we consider the structure of constraints of 2D dilaton gravity and then the 2D dilaton supergravity is obtained taking the squere root of the bosonic constraints. We integrate exactly the equations of motion in both cases and we show that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity.

  20. Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics

    Directory of Open Access Journals (Sweden)

    Jiantong Li

    2015-12-01

    Full Text Available Two-dimensional (2D layered materials are anticipated to be promising for future electronics. However, their electronic applications are severely restricted by the availability of such materials with high quality and at a large scale. In this review, we introduce systematically versatile scalable synthesis techniques in the literature for high-crystallinity large-area 2D semiconducting materials, especially transition metal dichalcogenides, and 2D material-based advanced structures, such as 2D alloys, 2D heterostructures and 2D material devices engineered at the wafer scale. Systematic comparison among different techniques is conducted with respect to device performance. The present status and the perspective for future electronics are discussed.

  1. Optimization and practical implementation of ultrafast 2D NMR experiments

    OpenAIRE

    Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau

    2013-01-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...

  2. Computed tomography with thermal neutrons and gaseous position sensitive detector; Tomografia computadorizada com neutrons termicos e detetor a gas sensivel a posicao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched {sup 3} He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched {sup 3} He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF{sub 3} detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  3. Note: A two-dimensional position-sensitive micro-channel plate detector with a cross-connected-pixels resistive anode and integrated spectroscopy amplifiers.

    Science.gov (United States)

    Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong

    2017-08-01

    Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an (241)Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.

  4. Note: A two-dimensional position-sensitive micro-channel plate detector with a cross-connected-pixels resistive anode and integrated spectroscopy amplifiers

    Science.gov (United States)

    Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong

    2017-08-01

    Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an 241Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.

  5. Pencils on real curves

    CERN Document Server

    Coppens, Marc

    2011-01-01

    We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.

  6. JUMPING THE CURVE

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-01-01

    Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.

  7. A Jacobian Separable 2-D Finite-Element Method for Electromagnetic Waveguide Problems

    CERN Document Server

    Khodapanah, Ehsan

    2016-01-01

    We propose an efficient finite-element analysis of the vector wave equation in a class of relatively general curved polygons. The proposed method is suitable for an accurate and efficient calculation of the propagation constants of waveguides filled with pieces of homogeneous materials. To apply the method, we first decompose the 2-D problem domain into a set of curved polygons of a specific characteristic. Then we divide every polygon into a set of triangular elements with two straight edges. Finally, we introduce a set of hierarchical mixed-order curl-conforming vector basis functions inside every triangular element to discretize the vector wave equation. The advantages of the method are as follows. The curved boundaries of the elements are modeled exactly and hence there is no approximation in the geometrical modeling. 2-D integrals of the matrix elements are reduced to 1-D integrals. Therefore, the matrix filling can be performed very fast. Total number of elements due to the discretization of a given dom...

  8. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Science.gov (United States)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  9. Effects of Flos carthami on CYP2D6 and on the Pharmacokinetics of Metoprolol in Rats

    Directory of Open Access Journals (Sweden)

    Gaofeng Liu

    2011-01-01

    Full Text Available Flos carthami is a traditional Chinese herbal medicine. Clinically, the Flos carthami Injection has been used concomitantly with other Western drugs and may be used concomitantly with β-blockers, such as metoprolol, to treat cerebrovascular and coronary heart diseases, in China. Metoprolol is a CYP2D6 substrate and is predominantly metabolized by this isozyme. However, we do not know whether there is an effect of Flos carthami on CYP2D6 and the consequences of such an effect. Concern is raised regarding the possible herb-drug interaction. In this report, the effects of Flos carthami on the activity of CYP2D6 in vivo and in vitro and on the pharmacokinetics of metoprolol, in rats, are investigated. To assess the inhibitory potency of Flos carthami, the concentration associated with 50% inhibition (IC50 of dextromethorphan metabolism was determined based on the concentration-inhibition curves. The inhibitory effect of Flos carthami on CYP2D6 was also compared with cimetidine in vitro. Flos carthami could significantly inhibit CYP2D6 in rats both in vitro and in vivo (P<.05 and could slow down the metabolic rate of metoprolol as suggested by prolonged t1/2 (67.45%, by increased Cmax (74.51% and AUC0−∞ (76.89%. These results suggest that CYP2D6 is a risk factor when Flos carthami is administered concomitantly with metoprolol or other CYP2D6 substrates.

  10. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  11. Animación 2D: curriculum vitae animado

    OpenAIRE

    CANTOS BELMONTE, CONSUELO

    2015-01-01

    Trabajo Fin de Grado de animación 2D donde un personaje (alter ego de la animadora) expone, mediante la interación con una Voz en Off y su sombra, el curriclum vitae de la animadora. Cantos Belmonte, C. (2014). Animación 2D: curriculum vitae animado. http://hdl.handle.net/10251/45910. Archivo delegado

  12. Symmetries and solvable models for evaporating 2D black holes

    CERN Document Server

    Cruz, J; Navarro-Salas, J; Talavera, C F

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.

  13. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  14. Two-Dimensional Gel Electrophoresis and 2D-DIGE.

    Science.gov (United States)

    Meleady, Paula

    2018-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  15. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  16. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  17. Energy Efficiency of D2D Multi-User Cooperation.

    Science.gov (United States)

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  18. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  19. Analytical Solution for Predicting In-plane Elastic Shear Properties of 2D Orthogonal PWF Composites

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu; XIONG Junjiang; BAI Jiangbo

    2012-01-01

    This paper proposes a new analytical solution to predict the shear modulus of a two-dimensional (2D) plain weave fabric (PWF) composite accounting for the interaction of orthogonal interlacing strands with coupled shear deformation modes including not only relative bending but also torsion,etc.The two orthogonal yams in a micromechanical unit cell are idealized as curved beams with a path depicted by using sinusoidal shape functions.The intemal forces and macroscopic deformations carried by the yarn families,together with macroscopic shear modulus of PWFs are derived by means of a strain energy approach founded on micromechanics.Three sets of experimental data pertinent to three kinds of 2D orthogonal PWF composites have been implemented to validate the new model.The calculations from the new model are also compared with those by using two models in the earlier literature.It is shown that the experimental results correlate well with predictions from the new model.

  20. IB2d: a Python and MATLAB implementation of the immersed boundary method

    CERN Document Server

    Battista, Nicholas A; Miller, Laura A

    2016-01-01

    The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred...

  1. Hemodynamic simulation of the heart using a 2D model and MR data

    DEFF Research Database (Denmark)

    Adeler, Pernille Thorup

    2002-01-01

    Computational models of the blood flow in the heart are a useful tool for studying the functioning of the heart. The purpose of this thesis is to achieve a better understanding of hemodynamics of the normal and diseased hearts through the use of a computational model and magnetic resonance (MR......) data. We present a 2D computational model of the blood flow in the left side of the heart. The work is based on Peskin and McQueen's 2D model dimensioned to data on the dog heart, which we improve and adjust using physiological knowledge and MR velocity data to achieve a model of the human heart...... parameter values. This is our reference model, which gives representative simulation results. We compare a simulation using our reference model with an MR velocity data set obtained from a healthy human. The comparison is carried out for the intraventricular velocity field and the velocity time curves over...

  2. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2013-01-01

    Full Text Available Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

  3. An Optimum Method for a Grooved 2D Planar Ion Trap Design

    Institute of Scientific and Technical Information of China (English)

    JI Wei-Bang; WAN Jin-Yin; CHENG Hua-Dong; LIU Liang

    2011-01-01

    We investigate an effective grooved 2D ion chip design and optimize the ratio between the size of the rf electrodes and the groove.We calculate the optimal size of the groove using the analyticai model,which was introduced by House,and the optimum result is obtained. We aiso obtain the simulated scattering points with the finite element analysis method.The analytical curve and simulated scattering points are coincident with each other.It is shown that this analytical model also fits for the grooved planar ion chip.Thus the optimum grooved 2D planar ion chip design could be obtained.It is effective for scalable quantum information processing.

  4. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    Science.gov (United States)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zhong

    2008-11-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications. Supported by National Nature Science Foundation of China (10275063)

  5. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1998-06-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates.

  6. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications,since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications.

  7. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian T.; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  8. 2D materials and van der Waals heterostructures.

    Science.gov (United States)

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  9. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  10. Tempo curves considered harmful

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1993-01-01

    In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression th

  11. Pairings on hyperelliptic curves

    CERN Document Server

    Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn

    2009-01-01

    We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.

  12. Retrospectives: Engel Curves

    National Research Council Canada - National Science Library

    Andreas Chai; Alessio Moneta

    2010-01-01

    ..., Professor of Economics, University of Illinois, Chicago, at jpersky@uic.edu jpersky@uic.edu.. Introduction Introduction Engel curves describe how household expenditure on particular goods or Engel curves describe how household expenditure on particular goods or services depends on household income. The name comes from the German st...

  13. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  14. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  15. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  16. The curve shortening problem

    CERN Document Server

    Chou, Kai-Seng

    2001-01-01

    Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.

  17. Rational trigonometric cubic spline to conserve convexity of 2D data

    Directory of Open Access Journals (Sweden)

    Farheen Ibraheem

    2013-11-01

    Full Text Available Researchers in different fields of study are always in dire need of spline interpolating function that conserve intrinsic trend of the data. In this paper, a rational trigonometric cubic spline with four free parameters has been used to retain convexity of 2D data. For this purpose, constraints on two of free parameters βi and γi in the description of the rational trigonometric function are derived while the remaining two αi and δi are set free. Numerical examples demonstrate that resulting curves using the technique of the underlying paper are C1.

  18. A 2-D graphical representation of protein sequences based on nucleotide triplet codons

    Science.gov (United States)

    Bai, Fenglan; Wang, Tianming

    2005-09-01

    Graphical representation of DNA provides a simple way of viewing, sorting and comparing various gene structures. A 2-D graphical representation of protein sequences based on nucleotide triplet codons has been derived for similarity analysis of protein sequences. This approach is based on a graphical representation of triplets of DNA in which the interior of the left half plane of the complex plane is used to accommodate 64 sites for the 64 codons. We associate a directed curve, numerical value, or matrix with a protein as a descriptor. The approach is illustrated on the Homo sapiens X-linked nuclear protein (ATRX) gene.

  19. Position sensitive solid state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schnatterly, S.E.; Husk, D.

    1986-05-15

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  20. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  1. An automated pipeline to screen membrane protein 2D crystallization.

    Science.gov (United States)

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban

    2010-06-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

  2. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Science.gov (United States)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  4. Learning Curve? Which One?

    Directory of Open Access Journals (Sweden)

    Paulo Prochno

    2004-07-01

    Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.

  5. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  6. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  7. Optimization and practical implementation of ultrafast 2D NMR experiments

    Directory of Open Access Journals (Sweden)

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  8. Spin Waves in 2D ferromagnetic square lattice stripe

    OpenAIRE

    Ahmed, Maher Z.

    2011-01-01

    In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...

  9. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  10. Harvest Survive : Game Mechanics of Unity 2D Game

    OpenAIRE

    2014-01-01

    The purpose of this project was to learn how to create Games in Unity 2D, to see the work-flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for developing 2D games. A further aspect was to learn the different steps and mechanics of the Unity environment. The goal was to create a survival game, in which the player would have to grow plants in order to get food and money to stay alive in a hostile environment. The player has to survive in six different...

  11. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  12. Comparison Between 2-D and 3-D Stiffness Matrix Model Simulation of Sasw Inversion for Pavement Structure

    Directory of Open Access Journals (Sweden)

    Sri Atmaja P. Rosidi

    2007-01-01

    Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.

  13. Gas-filled position-sensitive detectors of thermal neutrons at the Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences

    Science.gov (United States)

    Andreev, V. A.; Ganzha, G. A.; Ivanov, E. A.; Ilyin, D. S.; Kovalenko, S. N.; Kolkhidashvili, M. R.; Krivshich, A. G.; Nadtochy, A. V.; Runov, V. V.; Soloveĭ, V. A.; Shabanov, G. D.

    2010-05-01

    The manufacturing line for the development and fabrication of position-sensitive detectors of thermal neutrons has been organized at the Petersburg Nuclear Physics Institute of the Russian Academy of Sciences. Three detectors with sensitive regions 300 × 170 (prototype), 200 × 200, and 300 × 300 mm in size have been constructed to date. The detectors represent multiwire proportional chambers with cathode data readout to a delay line. The devices are filled with the 3He/CF4 gas mixture. These detectors are intended for modernizing the detector systems of the Vector and Membrana-2 diffractometers (VVR-M reactor, Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences, Gatchina, Russia).

  14. MRI compatibility of position-sensitive photomultiplier depth-of-interaction PET detectors modules for in-line multimodality preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero, J.J., E-mail: juanjose.vaquero@uc3m.es [Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, Avda. de la Universidad 30 Leganés, 28911 Madrid (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain); Sánchez, J.J. [Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain); Udías, J.M.; Cal-González, J. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid (Spain); Desco, M. [Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, Avda. de la Universidad 30 Leganés, 28911 Madrid (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain)

    2013-02-21

    This work addresses the feasibility of a small-animal, in-line PET/MR system based on Position-Sensitive Photo Multiplier Tubes (PS-PMTs). To this end, we measured the effects of static magnetic fields on the PS-PMTs performance in order to explore the minimal tandem separation between the PET and MR subsystems to preserve their respective performances. We concluded that it is possible to achieve minimal degradation of the PET scanner performance (after a system recalibration) if the magnetic field strength influencing the PET detectors is less than 1 mT and if it is oriented perpendicularly to the longitudinal axis of the tube. Therefore, we predict that it will be possible to maintain the PET image quality if it is placed outside the 1 mT line.

  15. Count rate studies of a box-shaped PET breast imaging system comprised of position sensitive avalanche photodiodes utilizing monte carlo simulation.

    Science.gov (United States)

    Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S

    2006-01-01

    We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi).

  16. Comparisons of LET distributions measured in low-earth orbit using tissue-equivalent proportional counters and the position-sensitive silicon-detector telescope (RRMD-III).

    Science.gov (United States)

    Doke, T; Hayashi, T; Borak, T B

    2001-09-01

    Determinations of the LET distribution, phi(L), of charged particles within a spacecraft in low-Earth orbit have been made. One method used a cylindrical tissue-equivalent proportional counter (TEPC), with the assumption that for each measured event, lineal energy, y, is equal to LET and thus phi(L) = phi(y). The other was based on the direct measurement of LETs for individual particles using a charged-particle telescope consisting of position-sensitive silicon detectors called RRMD-III. There were differences of up to a factor of 10 between estimates of phi(L) using the two methods on the same mission. This caused estimates of quality factor to vary by a factor of two between the two methods.

  17. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  18. ROBUST DECLINE CURVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  19. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... materials are few. However as the list of 2D materials is growing it is necessary to investigate their fundamental structural, electronic and optical properties. These are determined by the atomic and electronic structure of the materials that can quite accurately predicted by computational quantum...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  20. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  1. Emerging and potential opportunities for 2D flexible nanoelectronics

    Science.gov (United States)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  2. CYP2D6 polymorphism in relation to tramadol metabolism

    DEFF Research Database (Denmark)

    Halling, Jónrit; Weihe, Pál; Brosen, Kim

    2008-01-01

    Several studies have demonstrated the impact of CYP2D6 polymorphism on the pharmacokinetics of tramadol. However, the relationship between the O-demethylation of tramadol and O-desmethyltramadol (M1) and CYP2D6 activity has not previously been investigated with tramadol in multimedicated...... outpatients under steady-state conditions. Hence, the aim of this study was to determine if the well documented pharmacokinetics of tramadol regarding CYP2D6 could be verified in a study including 88 multimedicated Faroese patients, treated with tramadol at steady-state conditions. Further, the study aimed...... collection over 12 hours. Sparteine and its metabolites were assayed by gas chromatography. Genotype analyses for the CYP2D6 3, 4, 6, and 9 alleles were performed by polymerase chain reaction and Taqman technology. Plasma and urinary concentrations of (+/-)-tramadol and (+/-)-M1 were determined by high...

  3. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    ) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2...

  4. Orbifold Reduction and 2d (0,2) Gauge Theories

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  5. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... Laser capture microdissection and two-dimensional difference gel electrophoresis were used to establish ... As a technique with high-flux and high resolution, pro- teomics ... in which the protein sample was labeled before 2-D.

  6. 2-D electromagnetic simulation of passive microstrip circuits

    CERN Document Server

    Dueñas Jiménez, Alejandro

    2009-01-01

    A reference for circuit design engineers and microwave engineers. It uses a simple 2-D electromagnetic simulation procedure to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies.

  7. Materials science: Screen printing of 2D semiconductors

    Science.gov (United States)

    Kim, Young Duck; Hone, James

    2017-04-01

    Atomically thin semiconductors have been made by transferring the oxide 'skin' of a liquid metal to substrates. This opens the way to the low-cost mass production of 2D semiconductors at the sizes needed for electronics applications.

  8. Use of spatial information in 2D SEMG array decomposition

    NARCIS (Netherlands)

    Smit, C.T.; Kallenberg, L.A.C.; Hermens, Hermanus J.

    2007-01-01

    A new feature extraction/classification method for High Density surface ElectroMyoGraphy (HD sEMG) Motor Unit Aciton Potential (MUAP) decomposition using 2D shape and energy distribution features is presented and experimentally tested.

  9. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...... this form of factorization. The developed algorithms have been used for source separation and music transcription....

  10. Large Curved Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.

  11. Counting curves on surfaces

    OpenAIRE

    2015-01-01

    In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface $S$, and fix a number of points $F$ on its boundary. We ask: how many configurations of disjoint arcs are there on $S$ whose boundary is $F$? We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of to...

  12. Arithmetic of Shimura curves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.

  13. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  14. A simultaneous 2D/3D autostereo workstation

    Science.gov (United States)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  15. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  16. New design of 2-D photonic crystal waveguide couplers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  17. 2D IR Correlation Spectroscopy in Wood Science

    Directory of Open Access Journals (Sweden)

    Carmen Mihaela Popescu

    2012-10-01

    Full Text Available Generalized 2D correlation spectroscopy is a well-established technique that provides considerable utility and benefit in various spectroscopic studies of polymers. Some of the important features of generalized 2D correlation spectra are simplification of complex spectra consisting of many overlapped peaks, enhancement of spectral resolution by spreading peaks along the second dimension, unambiguous assignments through the correlation of bands selectively coupled by various interaction mechanisms, and determination of the sequence of the spectral peak emergence.

  18. RNA folding pathways and kinetics using 2D energy landscapes.

    Science.gov (United States)

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  19. Generating a 2D Representation of a Complex Data Structure

    Science.gov (United States)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  20. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  1. Highly curved microchannel plates

    Science.gov (United States)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  2. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  3. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  4. Interaction of water molecules with hexagonal 2D systems. A DFT study

    Science.gov (United States)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  5. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Science.gov (United States)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  6. Physical and Stable Closed Timelike Curves

    CERN Document Server

    Ho, Chiu Man

    2012-01-01

    We construct a class of closed timelike curves (CTCs) using a compactified extra dimension $u$. A nonzero metric element $g_{tu}(u)$ enables particles to travel backwards in global time $t$. The compactified dimension guarantees that the geodesic curve closes in $u$. The effective 2D ($t$ and $u$) nature of the metric ensures that spacetime is flat, therein satisfying all the classical stability conditions as expressed by the energy conditions. Finally, stationarity of the metric guarantees that a particle's energy is conserved. The pathologies that plague many hypothesized metrics admitting CTCs, e.g. an infinite cylinder of matter, a negative energy-distribution, particle acceleration/blue-shifting along the CTC, do not occur within our metric class.

  7. Geometry of curves and surfaces with Maple

    CERN Document Server

    Rovenski, Vladimir

    2000-01-01

    This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...

  8. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    Science.gov (United States)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  9. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  10. Moduli of Trigonal Curves

    CERN Document Server

    Stankova-Frenkel, Z E

    1997-01-01

    We study the moduli of trigonal curves. We establish the exact upper bound of ${36(g+1)}/(5g+1)$ for the slope of trigonal fibrations. Here, the slope of any fibration $X\\to B$ of stable curves with smooth general member is the ratio Hodge class $\\lambda$ on the moduli space $\\bar{\\mathfrak{M}}_g$ to the base $B$. We associate to a trigonal family $X$ a canonical rank two vector bundle $V$, and show that for Bogomolov-semistable $V$ the slope satisfies the stronger inequality ${\\delta_B}/{\\lambda_B}\\leq 7+{6}/{g}$. We further describe the rational Picard group of the {trigonal} locus $\\bar{\\mathfrak T}_g$ in the moduli space $\\bar{\\mathfrak{M}}_g$ of genus $g$ curves. In the even genus case, we interpret the above Bogomolov semistability condition in terms of the so-called Maroni divisor in $\\bar{\\mathfrak T}_g$.

  11. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  12. Failure Mechanism of True 2D Granular Flows

    CERN Document Server

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  13. Twin characterisation using 2D and 3D EBSD

    Institute of Scientific and Technical Information of China (English)

    M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA

    2005-01-01

    Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.

  14. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  15. The NH$_2$D hyperfine structure revealed by astrophysical observations

    CERN Document Server

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  16. The sales learning curve.

    Science.gov (United States)

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  17. 位敏型探测器数字法读出研究%Digital Readout Method for Position Sensitive Detectors

    Institute of Scientific and Technical Information of China (English)

    田立朝; 孙志嘉; 祁辉荣; 唐彬; 吕新宇; 陈元柏; 欧阳群

    2013-01-01

    Efficient thermal neutron detectors with large area,two-dimensional position sensitive,high counting rate high detection efficiency and low gamma sensitivity are required to satisfy the demands for the China Spallation Neutron Source (CSNS).Compared with the traditional analog readout method,the digital readout method has the advantages of higher counting rate,smaller quantity of data transmission,simpler readout system and higher signal to noise ratio.The theoretical analysis of the digital readout method is reported in this paper.Used the raw data of GEM detector,the relationship between the position resolution and the width of the readout strip was studied.The results indicate that the digital readout method could be a good choice for the large area position sensitive detector where the requirement of position resolution is less than 4 mm,e.g.the detector of Small-Angle Neutron Scattering (SANS) ditfractometer of CSNS.%中国散裂中子源(CSNS)的建造对中子探测器提出了非常高的要求,如更大的有效面积、二维位置灵敏、高计数率、高探测效率和低的y,灵敏度等.与传统的模拟读出方法相比,数字法读出具有更高的计数率,更小的数据传输量,更简单的电子学设计以及更高的信噪比.对数字法读出进行了理论计算,利用GEM探测器的原始数据分析了数字法读出的位置分辨率与读出条宽度的关系.结果表明,数字法读出对于位置分辨要求较低(小于4mm)的大面积位置灵敏探测器是一种较好的选择,如CSNS小角谱仪探测器.

  18. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  19. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  20. Power curve investigation

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Vesth, Allan

    are not performed according to IEC 61400-12-1 [1]. Therefore, the results presented in this report cannot be considered a power curve according to the reference standard, and are referred to as “power curve investigation” instead. The measurements have been performed by a customer and the data analysis has been......This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis...

  1. UPLAND EROSION MODELING WITH CASC2D-SED

    Institute of Scientific and Technical Information of China (English)

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  2. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  3. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  4. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    Science.gov (United States)

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  5. Joint 2-D DOA and Noncircularity Phase Estimation Method

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-03-01

    Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.

  6. Applications of Doppler Tomography in 2D and 3D

    Science.gov (United States)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  7. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  8. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  9. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  10. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  11. Paths of algebraic hyperbolic curves

    Institute of Scientific and Technical Information of China (English)

    Ya-juan LI; Li-zheng LU; Guo-zhao WANG

    2008-01-01

    Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter α in the space spanned by {1, t, sinht, cosht}. Modifying the value of α yields a family of AH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when α changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.

  12. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  13. Integrability from 2d N=(2,2) Dualities

    CERN Document Server

    Yamazaki, Masahito

    2015-01-01

    We study integrable models in the context of the recently discovered Gauge/YBE correspondence, where the Yang-Baxter equation is promoted to a duality between two supersymmetric gauge theories. We study flavored elliptic genus of 2d $\\mathcal{N}=(2,2)$ quiver gauge theories, which theories are defined from statistical lattices regarded as quiver diagrams. Our R-matrices are written in terms of theta functions, and simplifies considerably when the gauge groups at the quiver nodes are Abelian. We also discuss the modularity properties of the R-matrix, reduction of 2d index to 1d Witten index, and string theory realizations of our theories.

  14. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  15. 2D-ACAR investigations of PPT aramid fibres

    Energy Technology Data Exchange (ETDEWEB)

    Mijnarends, P.E.; Falub, C.V.; Eijt, S.W.H.; Veen, A. van [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands)

    2001-07-01

    2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of {proportional_to}14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)

  16. On the Nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator

    OpenAIRE

    Grinevich, P.; Mironov, A.(Lebedev Physics Institute; ITEP, Moscow, Russia); Novikov, S.

    2011-01-01

    The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous "Burgers System". This article contains also exposition of the previous works made since 1980 including the first topological...

  17. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  18. Recording 2-D Nutation NQR Spectra by Random Sampling Method.

    Science.gov (United States)

    Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-10-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.

  19. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  20. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  1. CH2D+, the Search for the Holy Grail

    CERN Document Server

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  2. Using 2-D arrays for sensing multimodal Lamb waves

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-04-01

    Monitoring structural integrity of large planar structures requires normally a relatively dense network of uniformly distributed ultrasonic sensors. A 2-D ultrasonic phased array with all azimuth angle coverage would be extremely useful for the structural health monitoring (SHM) of such structures. Known techniques for estimating direction of arriving (DOA) waves cannot efficiently cope with dispersive and multimodal Lamb waves (LWs). In the paper we propose an adaptive spectral estimation technique capable of handling broadband LWs sensed by 2-D arrays, the modified Capon method. Performance of the technique is evaluated using simulated multiple-mode LWs, and verified using experimental data.

  3. Exact computation of scalar 2D aerial imagery

    Science.gov (United States)

    Gordon, Ronald L.

    2002-07-01

    An exact formulation of the problem of imaging a 2D object through a Koehler illumination system is presented; the accurate simulation of a real layout is then not time- limited but memory-limited. The main idea behind the algorithm is that the boundary of the region that comprise a typical TCC Is made up of circular arcs, and therefore the area - which determines the value of the TCC - should be exactly computable in terms of elementary analytical functions. A change to integration around the boundary leads to an expression with minimal dependence on expensive functions such as arctangents and square roots. Numerical comparisons are made for a simple 2D structure.

  4. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  5. Graphs, Curves and Dynamics

    NARCIS (Netherlands)

    Kool, J.

    2013-01-01

    This thesis has three main subjects. The first subject is Measure-theoretic rigidity of Mumford Curves. One can describe isomorphism of two compact hyperbolic Riemann surfaces of the same genus by a measure-theoretic property: a chosen isomorphism of their fundamental groups corresponds to a homeomo

  6. Power Curve Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present anal...

  7. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  8. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  9. Fitting a Gompertz curve

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractIn this paper, a simple Gompertz curve-fitting procedure is proposed. Its advantages include the facts that the stability of the saturation level over the sample period can be checked, and that no knowledge of its value is necessary for forecasting. An application to forecasting the stoc

  10. Gompertz curves with seasonality

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractThis paper considers an extension of the usual Gompertz curve by allowing the parameters to vary over the seasons. This means that, for example, saturation levels can be different over the year. An estimation and testing method is proposed and illustrated with an example.

  11. Power Curve Measurements

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  12. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Yordanova, Ginka

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  13. Graphing Polar Curves

    Science.gov (United States)

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  14. Power Curve Measurements, REWS

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere...

  15. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  16. Straightening Out Learning Curves

    Science.gov (United States)

    Corlett, E. N.; Morecombe, V. J.

    1970-01-01

    The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…

  17. Carbon Lorenz Curves

    NARCIS (Netherlands)

    Groot, L.F.M.

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across

  18. Power Curve Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Federici, Paolo

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  19. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  20. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    Science.gov (United States)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  1. Investigation on gamma-ray position sensitivity at 662 keV in a spectroscopic 3” x 3” LaBr{sub 3}:Ce scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Giaz, A., E-mail: agnese.giaz@mi.infn.it [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F.; Birocchi, F. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Dept., Via Celoria 16, 20133 Milano (Italy); Blasi, N.; Boiano, C.; Brambilla, S.; Coelli, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Fiorini, C. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 40, 20133, Milano (Italy); Marone, A. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 40, 20133, Milano (Italy); Million, B. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Riboldi, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Dept., Via Celoria 16, 20133 Milano (Italy); Wieland, O. [INFN Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-02-01

    The position sensitivity of a thick, cylindrical and continuous 3” x 3” (7.62 cm x 7.62 cm) LaBr{sub 3}:Ce crystal was studied using a 1 mm collimated beam of 662 keV gamma rays from a 400 MBq intense {sup 137}Cs source and a spectroscopic photomultiplier (PMT) (HAMAMATSU R6233-100SEL). The PMT entrance window was covered by black absorber except for a small window 1 cm x 1 cm wide. A complete scan of the detector over a 0.5 cm step grid was performed for three positions of the 1 cm x 1 cm window. For each configuration the energy spectrum was measured and the peak centroid, the FWHM, the area and peak asymmetry of the 662 keV gamma transition were analyzed. The data show that, even in a 3” thick LaBr{sub 3}:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. We verified that, on average, the position of the full energy peak centroids measured in the three 1 cm x 1 cm window configurations is sufficient for the correct identification of the collimated gamma source position.

  2. Investigation on gamma-ray position sensitivity at 662 keV in a spectroscopic 3' x 3' LaBr3:Ce scintillator

    Science.gov (United States)

    Giaz, A.; Camera, F.; Birocchi, F.; Blasi, N.; Boiano, C.; Brambilla, S.; Coelli, S.; Fiorini, C.; Marone, A.; Million, B.; Riboldi, S.; Wieland, O.

    2015-02-01

    The position sensitivity of a thick, cylindrical and continuous 3" x 3" (7.62 cm x 7.62 cm) LaBr3:Ce crystal was studied using a 1 mm collimated beam of 662 keV gamma rays from a 400 MBq intense 137Cs source and a spectroscopic photomultiplier (PMT) (HAMAMATSU R6233-100SEL). The PMT entrance window was covered by black absorber except for a small window 1 cm x 1 cm wide. A complete scan of the detector over a 0.5 cm step grid was performed for three positions of the 1 cm x 1 cm window. For each configuration the energy spectrum was measured and the peak centroid, the FWHM, the area and peak asymmetry of the 662 keV gamma transition were analyzed. The data show that, even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. We verified that, on average, the position of the full energy peak centroids measured in the three 1 cm x 1 cm window configurations is sufficient for the correct identification of the collimated gamma source position.

  3. Determination of Distance from a 2D Picture

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, J [Department of Mathematics, Technical University of Denmark, Matematiktorvet Building 303S, DK-2800 Kgs. Lyngby, Denmark (Denmark); Lassen, B [Mads Clausen Institute, University of Southern Denmark, Grundvigs Alle 150, DK-6400 Soenderborg, Denmark (Denmark); Melnik, R [Mads Clausen Institute, University of Southern Denmark, Grundvigs Alle 150, DK-6400 Soenderborg, Denmark (Denmark); Picasso, B [Scuola Normale Superiore, Pisa (Italy); Piche, R [Department of Mathematics, Tampere University of Technology, FIN-33101 Tampere (Finland); Radulovic, N [Mads Clausen Institute, University of Southern Denmark, Grundvigs Alle 150, DK-6400 Soenderborg, Denmark (Denmark); Wang, L X [Mads Clausen Institute, University of Southern Denmark, Grundvigs Alle 150, DK-6400 Soenderborg, Denmark (Denmark)

    2006-11-01

    An optical device is used to scan a cavity. In a single incident the scanner produces what can be considered a blurred image of the intersection curve between a plane and the cavity. Mathematically the image represents an intensity function and that is obtained by integrating a certain kernel along the intersection curve. We suggest methods to determine the kernel and subsequently the intersection curve given the image. The methodology is tested with some success using an artificial, but realistic kernel and some synthetic images produced by this kernel.

  4. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  5. The partition function of 2d string theory

    CERN Document Server

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  6. The Anglo-Australian Observatory's 2dF Facility

    CERN Document Server

    Lewis, I J; Taylor, K; Glazebrook, K; Bailey, J A; Baldry, I K; Barton, J R; Bridges, T J; Dalton, G B; Farrell, T J; Gray, P M; Lankshear, A; McCowage, C; Parry, I R; Sharples, R M; Shortridge, K; Smith, G A; Stevenson, J; Straede, J O; Waller, L G; Whittard, J D; Wilcox, J K; Willis, K C

    2002-01-01

    The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of ...

  7. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...

  8. Nonlinear excursions of particles in ideal 2D flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.;

    2010-01-01

    A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular ...

  9. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.;

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...

  10. CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS

    NARCIS (Netherlands)

    ROCHA, P; WILLEMS, JC

    1990-01-01

    A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.

  11. The 2D Boussinesq equations with logarithmically supercritical velocities

    CERN Document Server

    Chae, Dongho

    2011-01-01

    This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity $u$ in this system is related to the vorticity $\\omega$ through the relations $u=\

  12. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...

  13. On the sensitivity of the 2D electromagnetic invisibility cloak

    Energy Technology Data Exchange (ETDEWEB)

    Kaproulias, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Sigalas, M.M., E-mail: sigalas@upatras.gr [Department of Materials Science, University of Patras, 26504 Patras (Greece)

    2012-10-15

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  14. Research Synthesis and Characterization of 2D Conjugated Polymers

    Science.gov (United States)

    2007-07-13

    polythiophene chain on the Scheme should necessarily result in a continuous brick wall 2D structure). Furthermore, the design should eliminate any...Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy are under way. We have also conducted preliminary experiments on the two other low

  15. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  16. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  17. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...

  18. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...

  20. Fast 2D-DCT implementations for VLIW processors

    OpenAIRE

    Sohm, OP; Canagarajah, CN; Bull, DR

    1999-01-01

    This paper analyzes various fast 2D-DCT algorithms regarding their suitability for VLIW processors. Operations for truncation or rounding which are usually neglected in proposals for fast algorithms have also been taken into consideration. Loeffler's algorithm with parallel multiplications was found to be most suitable due to its parallel structure

  1. The Analytical Approximate Solution of the 2D Thermal Displacement

    Institute of Scientific and Technical Information of China (English)

    Chu-QuanGuan; Zeng-YuanGuo; 等

    1996-01-01

    The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.

  2. BPS black holes in N=2 D=4 gauged supergravities

    NARCIS (Netherlands)

    Hristov, K.; Looyestijn, H.T.; Vandoren, S.J.G.

    2010-01-01

    We construct and analyze BPS black hole solutions in gauged N=2, D=4 supergravity with charged hypermultiplets. A class of solutions can be found through spontaneous symmetry breaking in vacua that preserve maximal supersymmetry. The resulting black holes do not carry any hair for the scalars. We de

  3. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...

  4. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  5. Validation of minor species of the MIPAS2D database

    Directory of Open Access Journals (Sweden)

    Enzo Papandrea

    2014-01-01

    Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […

  6. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  7. Dynamic and approximate pattern matching in 2D

    DEFF Research Database (Denmark)

    Clifford, Raphaël; Fontaine, Allyx; Starikovskaya, Tatiana

    2016-01-01

    updates can be performed in O(log2 n) time and queries in O(log2 m) time. - We then consider a model where an update is a new 2D pattern and a query is a location in the text. For this setting we show that Hamming distance queries can be answered in O(log m + H) time, where H is the relevant Hamming...... distance. - Extending this work to allow approximation, we give an efficient algorithm which returns a (1+ε) approximation of the Hamming distance at a given location in O(ε−2 log2 m log log n) time. Finally, we consider a different setting inspired by previous work on locality sensitive hashing (LSH......). Given a threshold k and after building the 2D text index and receiving a 2D query pattern, we must output a location where the Hamming distance is at most (1 + ε)k as long as there exists a location where the Hamming distance is at most k. - For our LSH inspired 2D indexing problem, the text can...

  8. Computational study of interfaces and edges of 2D materials

    NARCIS (Netherlands)

    Farmanbar Gelepordsari, M.

    2016-01-01

    The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated

  9. Stabilization of 2D quantum gravity by branching interactions

    CERN Document Server

    Diego, O

    1995-01-01

    In this paper the stabilization of 2D quantum Gravity by branching interactions is considered. The perturbative expansion and the first nonperturbative term of the stabilized model are the same than the unbounded matrix model which define pure Gravity, but it has new nonperturbative effects that survives in the continuum limit.

  10. Discrepant Results in a 2-D Marble Collision

    Science.gov (United States)

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  11. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...

  12. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per;

    2017-01-01

    -infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association....... The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women....

  13. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  14. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  15. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  16. Preliminary 2D numerical modeling of common granular problems

    Science.gov (United States)

    Wyser, Emmanuel; Jaboyedoff, Michel

    2017-04-01

    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  17. 2D/3D Image Registration using Regression Learning.

    Science.gov (United States)

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  18. Liquid-like 2D plasmonic waves (Conference Presentation)

    Science.gov (United States)

    Zhang, Baile

    2017-05-01

    We predict some novel 2D plasmonic waves as analogues of corresponding hydrodynamic wave phenomena, including plasmonic splashing and V-shaped ship-wakes excited by a swift electron perpendicularly impacting upon and moving parallel above a graphene monolayer, respectively. 2D plasmons have fueled substantial research efforts in the past few years. Recent studies have identified that 2D plasmons exhibit peculiar dispersion that is formally analogous to hydrodynamic deep-water-waves on a 2D liquid surface. Logically, many intricate and intriguing hydrodynamic wave phenomena, such as the splashing stimulated by a droplet or stone impacting a calm liquid surface and the V-shaped ship-wakes generated behind a ship when it travels over a water surface, should have counterparts in 2D plasmons, but have not been studied. We fill this gap by investigating dynamic excitation of graphene plasmons when a monolayer graphene is perpendicularly impacted by a swift electron, as an analogue of hydrodynamic splashing. A central jet-like rise, called "Rayleigh jet" or "Worthington jet" as a hallmark in hydrodynamic splashing, is demonstrated as an excessive concentration of graphene plasmons, followed by plasmonic ripples dispersing like concentric ripples of deep-water waves. This plasmonic jet, serving as a monopole antenna, can generate radiation as analogue of splashing sound. This is also the first discussion on the space-time limitation on surface plasmon generation. We then demonstrate a V-shaped plasmonic wave pattern when a swift electron moves parallel above a graphene monolayer, as an analogue of hydrodynamic ship-wakes. The plasmonic wake angle is found to be the same with the Kelvin angle and thus insensitive to the electron velocity when the electron velocity is small. However, the wake angle gradually decreases by increasing the electron's velocity when the electron velocity is large, and thus transits into the Mach angle, being similar to recent development in fluid

  19. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  20. Carbon Lorenz Curves

    Energy Technology Data Exchange (ETDEWEB)

    Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2008-11-15

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.

  1. Managing curved canals

    Directory of Open Access Journals (Sweden)

    Iram Ansari

    2012-01-01

    Full Text Available Dilaceration is the result of a developmental anomaly in which there has been an abrupt change in the axial inclination between the crown and the root of a tooth. Dilaceration can be seen in both the permanent and deciduous dentitions, and is more commonly found in posterior teeth and in maxilla. Periapical radiographs are the most appropriate way to diagnose the presence of root dilacerations. The controlled regularly tapered preparation of the curved canals is the ultimate challenge in endodontics. Careful and meticulous technique will yield a safe and sufficient enlargement of the curved canals. This article gives a review of the literature and three interesting case reports of root dilacerations.

  2. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  3. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  4. Estimating Corporate Yield Curves

    OpenAIRE

    Antionio Diaz; Frank Skinner

    2001-01-01

    This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...

  5. Atypical Light Curves

    CERN Document Server

    Steenwyk, Steven D; Molnar, Lawrence A

    2013-01-01

    We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least o...

  6. Novel Hydrogen-bonded Three-dimensional Supramolecular Architectures Containing 2D Honeycomb Networks or 2D Grids

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen

    2006-01-01

    Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.

  7. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    Science.gov (United States)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  8. A 2D inverse problem of predicting boiling heat transfer in a long fin

    Science.gov (United States)

    Orzechowski, Tadeusz

    2016-10-01

    A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi two-dimensional model for thicker elements. In the case when the drop in temperature over the thickness could be omitted, the rejected local values of heat fluxes were calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.

  9. The transition matrix method for a 2D eddy current interaction problem

    Science.gov (United States)

    Larsson, Lars; Rosell, Anders

    2012-05-01

    A 2D model of the eddy current interaction problem that consists of an inhomogeneity in a conductive half space is presented. The applied analytical method of solution is the transition (T) matrix method. This involves use of the free space Green's function to generate a system of boundary integral relations. In this way, it is easy to identify the contributions to the total solution from each different scattering surface. The different parts are separated also in the computation of the impedance. This leads to low cost simulations in terms of computation time and qualify the method to be used to obtain probability of detection (POD) curves. The T matrix method is a building block method and the possibility to extend the geometry with several inhomogeneities and extra layers will be discussed. The model is compared with a Finite Element (FE) model and numerical examples for the case with a cylindrical inhomogeneity are given.

  10. A 2D Acceptance Diagram Description of Neutron Primary Spectrometer Beams

    CERN Document Server

    Cussen, Leo D

    2016-01-01

    Many types of neutron spectrometer use a conventional primary spectrometer consisting of some collimator, a crystal monochromator and a second collimator. Conventional resolution descriptions use instrument parameter values to deduce the beam character and thence the instrument transmission and resolution. This article solves the inverse problem of choosing beam elements to deliver some desired beam character and shows that there are many possible choices of elements to deliver any given beam character. Dealing with this multiplicity seems to be a central issue in the search for optimal instrument designs especially if using numerical methods. The particular approach adopted here is to extend the 2D "Acceptance Diagram" view of the in-scattering-plane component of primary spectrometer beams to include horizontally curved monochromators and a variety of collimator types (beamtubes, guides, Soller collimators and radial Soller collimators). This visual approach clarifies the effect of primary spectrometer varia...

  11. Time-dependent backgrounds of 2D string theory: Non-perturbative effects

    CERN Document Server

    Alexandrov, S Yu; Alexandrov, Sergei Yu.; Kostov, Ivan K.

    2005-01-01

    We study the non-perturbative corrections (NPC) to the partition function of a compactified 2D string theory in a time-dependent background generated by a tachyon source. The sine-Liouville deformation of the theory is a particular case of such a background. We calculate the leading as well as the subleading NPC using the dual description of the string theory as matrix quantum mechanics. As in the minimal string theories, the NPC are classified by the double points of a complex curve. We calculate them by two different methods: by solving Toda equation and by evaluating the quasiclassical fermion wave functions. We show that the result can be expressed in terms of correlation functions of the bosonic field associated with the tachyon source and identify the leading and the subleading corrections as the contributions from the one-point (disk) and two-point (annulus) correlation functions.

  12. The gravitational sector of 2d (0, 2) F-theory vacua

    Science.gov (United States)

    Lawrie, Craig; Schäfer-Nameki, Sakura; Weigand, Timo

    2017-05-01

    F-theory compactifications on Calabi-Yau fivefolds give rise to two-dimensional N = (0, 2) supersymmetric field theories coupled to gravity. We explore the dilaton supergravity defined by the moduli sector of such compactifications. The massless moduli spectrum is found by uplifting Type IIB compactifications on Calabi-Yau fourfolds. This spectrum matches expectations from duality with M-theory on the same elliptic fibration. The latter defines an N = 2 Supersymmetric Quantum Mechanics related to the 2d (0, 2) F-theory supergravity via circle reduction. Using our recent results on the gravitational anomalies of duality twisted D3-branes wrapping curves in Calabi-Yau fivefolds we show that the F-theory spectrum is anomaly free. We match the classical Chern-Simons terms of the M-theory Super Quantum Mechanics to one-loop contributions to the effective action by S 1 reduction of the dual F-theory.

  13. 2D-Manifold Boundary Surfaces Extraction from Heterogeneous Object on GPU

    Institute of Scientific and Technical Information of China (English)

    Ming Wang; Jie-Qing Feng

    2012-01-01

    The conventional isosurface techniques are not competent for meshing a heterogeneous object because they assume that the object is homogeneous.Thus the visualization method taking the heterogeneity into account is desired.In this paper,we propose a novel algorithm to extract the boundary surfaces from a heterogeneous object in one pass,whose remarkable advantage is free of the number of materials contained.The heterogeneous object is first classified into a series of homogeneous material components.Then each component is enclosed with a 2D-manifold boundary surface extracted via our algorithm.The information important to the heterogeneous object is also provided,such as the interface between two materials,the intersection curve where three materials meet and the intersection point where four materials meet.To improve the performance,the algorithm is also designed and implemented on GPU.Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm.

  14. Maximal subbundles, quot schemes, and curve counting

    CERN Document Server

    Gillam, W D

    2011-01-01

    Let $E$ be a rank 2, degree $d$ vector bundle over a genus $g$ curve $C$. The loci of stable pairs on $E$ in class $2[C]$ fixed by the scaling action are expressed as products of $\\Quot$ schemes. Using virtual localization, the stable pairs invariants of $E$ are related to the virtual intersection theory of $\\Quot E$. The latter theory is extensively discussed for an $E$ of arbitrary rank; the tautological ring of $\\Quot E$ is defined and is computed on the locus parameterizing rank one subsheaves. In case $E$ has rank 2, $d$ and $g$ have opposite parity, and $E$ is sufficiently generic, it is known that $E$ has exactly $2^g$ line subbundles of maximal degree. Doubling the zero section along such a subbundle gives a curve in the total space of $E$ in class $2[C]$. We relate this count of maximal subbundles with stable pairs/Donaldson-Thomas theory on the total space of $E$. This endows the residue invariants of $E$ with enumerative significance: they actually \\emph{count} curves in $E$.

  15. Functionalized 2D atomic sheets with new properties

    Science.gov (United States)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  16. A brief review of the 2d/4d correspondences

    CERN Document Server

    Tachikawa, Yuji

    2016-01-01

    An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.

  17. 2D Models for Dust-driven AGB Star Winds

    CERN Document Server

    Woitke, P

    2006-01-01

    New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...

  18. Simulation of corium concrete interaction in 2D geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)

    2010-07-01

    Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)

  19. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    Institute of Scientific and Technical Information of China (English)

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  20. Extreme Growth of Enstrophy on 2D Bounded Domains

    Science.gov (United States)

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  1. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  2. Stable 2D Feature Tracking for Long Video Sequences

    Directory of Open Access Journals (Sweden)

    Jong-Seung Park

    2008-12-01

    Full Text Available In this paper, we propose a 2D feature tracking method that is stable to long video sequences. To improve the stability of long tracking, we use trajectory information about 2D features. We predict the expected feature states and compute a rough estimate of the feature location on the current image frame using the history of previous feature states up to the current frame. A search window is positioned at the estimated location and similarity measures are computed within the search window. Once the feature position is determined from the similarity measures, the current feature states are appended to the history bu®er. The outlier rejection stage is also introduced to reduce false matches. Experimental results from real video sequences showed that the proposed method stably tracks point features for long frame sequences.

  3. Hard and Soft Physics with 2D Materials

    Science.gov (United States)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  4. Optimizing sparse sampling for 2D electronic spectroscopy

    Science.gov (United States)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  5. Enhanced automated platform for 2D characterization of RFID communications

    Science.gov (United States)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  6. Security Issues for 2D Barcodes Ticketing Systems

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2011-03-01

    Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.

  7. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  8. Critical Dynamics in Quenched 2D Atomic Gases

    Science.gov (United States)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  9. 2D/3D Program work summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  10. Structural Complexity and Phonon Physics in 2D Arsenenes.

    Science.gov (United States)

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  11. Wave propagation in pantographic 2D lattices with internal discontinuities

    CERN Document Server

    Madeo, A; Neff, P

    2014-01-01

    In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

  12. Polymer ultrapermeability from the inefficient packing of 2D chains

    Science.gov (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.

    2017-09-01

    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  13. Band-structure engineering in conjugated 2D polymers.

    Science.gov (United States)

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  14. A "Necklace" Model for Vesicles Simulations in 2D

    CERN Document Server

    Ismail, Mourad

    2012-01-01

    The aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force. Numerical simulations of vesicles in shear flow have been run using Finite Element Method and the FreeFem++[1] software. Exploring different ratios of inner and outer viscosities, we recover the well known "Tank-Treading" and "Tumbling" motions predicted by theory and experiments. Moreover, for the first time, 2D simulations of the "Vacillating-Breathing" regime predicted by theory in [2] and observed experimentally in [3] are done without special ingredient like for example thermal fluctuations used in [4].

  15. Planar maps, circle patterns and 2d gravity

    CERN Document Server

    David, Francois

    2013-01-01

    Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.

  16. Controlling avalanche criticality in 2D nano arrays.

    Science.gov (United States)

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  17. Tradeoffs for reliable quantum information storage in 2D systems

    CERN Document Server

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd^2=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. We show that the analogous tradeoff for the classical information storage is k\\sqrt{d} =O(n).

  18. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  19. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  20. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  1. An Arbitrary 2D Structured Replica Control Protocol

    OpenAIRE

    Basmadjian, Robert; Meer, Hermann,

    2011-01-01

    Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are ...

  2. FASTWO - A 2-D interactive algebraic grid generator

    Science.gov (United States)

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  3. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006....

  4. Controllable and Observable Polynomial Description for 2D Noncausal Systems

    Directory of Open Access Journals (Sweden)

    M. S. Boudellioua

    2007-01-01

    Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.

  5. Stereoscopic highlighting: 2D graph visualization on stereo displays.

    Science.gov (United States)

    Alper, Basak; Höllerer, Tobias; Kuchera-Morin, JoAnn; Forbes, Angus

    2011-12-01

    In this paper we present a new technique and prototype graph visualization system, stereoscopic highlighting, to help answer accessibility and adjacency queries when interacting with a node-link diagram. Our technique utilizes stereoscopic depth to highlight regions of interest in a 2D graph by projecting these parts onto a plane closer to the viewpoint of the user. This technique aims to isolate and magnify specific portions of the graph that need to be explored in detail without resorting to other highlighting techniques like color or motion, which can then be reserved to encode other data attributes. This mechanism of stereoscopic highlighting also enables focus+context views by juxtaposing a detailed image of a region of interest with the overall graph, which is visualized at a further depth with correspondingly less detail. In order to validate our technique, we ran a controlled experiment with 16 subjects comparing static visual highlighting to stereoscopic highlighting on 2D and 3D graph layouts for a range of tasks. Our results show that while for most tasks the difference in performance between stereoscopic highlighting alone and static visual highlighting is not statistically significant, users performed better when both highlighting methods were used concurrently. In more complicated tasks, 3D layout with static visual highlighting outperformed 2D layouts with a single highlighting method. However, it did not outperform the 2D layout utilizing both highlighting techniques simultaneously. Based on these results, we conclude that stereoscopic highlighting is a promising technique that can significantly enhance graph visualizations for certain use cases.

  6. Compression of 2D vector fields under guaranteed topology preservation

    OpenAIRE

    2003-01-01

    In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topology, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm, we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which is based on a ...

  7. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  8. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  9. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  10. An inverse design method for 2D airfoil

    Science.gov (United States)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  11. Physical degrees of freedom in 2-D string field theories

    CERN Document Server

    Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki

    1992-01-01

    States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.

  12. 2D relaxation/diffusion correlations in porous media.

    Science.gov (United States)

    Godefroy, S; Callaghan, P T

    2003-01-01

    2D correlations between NMR relaxation and/or diffusion have been used to investigate water and oil dynamics in food and micro-emulsion systems. In the case of Mozzarella and Gouda cheese samples, a significant change in D/T2 correlation is appearing with cheese aging. In the case of a water/toluene micro-emulsion, some evidence for coalescence effects is suggested by D/D exchange spectra.

  13. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    OpenAIRE

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior...

  14. Mapping Proprioception across a 2D Horizontal Workspace

    OpenAIRE

    2010-01-01

    Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the le...

  15. Evolutionary learning in the 2D artificial life system "avida"

    CERN Document Server

    Adami, C; Chris Adami

    1994-01-01

    We present a new tierra-inspired artificial life system with local interactions and two-dimensional geometry, based on an update mechanism akin to that of 2D cellular automata. We find that the spatial geometry is conducive to the development of diversity and thus improves adaptive capabilities. We also demonstrate the adaptive strength of the system by breeding cells with simple computational abilities, and study the dependence of this adaptability on mutation rate and population size.

  16. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  17. Magnetism in curved geometries

    Science.gov (United States)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  18. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L; Fallin, Brent [Medical Physics Graduate Program, Duke University, Durham, NC 27705 (United States); Gunasingha, Rathnayaka; Yoshizumi, Terry T [Radiation Safety Division, Duke University, Durham, NC 27705 (United States); Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P [Department of Physics, Duke University, Durham, NC 27706 (United States); Dewhirst, Mark W, E-mail: yoshi003@mc.duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-09-07

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the {sup 2}H(d,n){sup 3}He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  19. F-theory and 2d (0, 2) theories

    Science.gov (United States)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  20. Inversions for MT data in 2D symmetrical anisotropic media

    Institute of Scientific and Technical Information of China (English)

    YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he

    2005-01-01

    In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.